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ABSTRACT
Mining co-location patterns from spatial databases may re-
veal types of spatial features likely located as neighbors in
space. In this paper, we address the problem of mining con-
fident co-location rules without a support threshold. First,
we propose a novel measure called the maximal participa-
tion index. We show that every confident co-location rule
corresponds to a co-location pattern with a high maximal
participation index value. Second, we show that the maxi-
mal participation index is non-monotonic, and thus the con-
ventional Apriori-like pruning does not work directly. We
identify an interesting weak monotonic property for the in-
dex and develop efficient algorithms to mine confident co-
location rules. An extensive performance study shows that
our method is both effective and efficient for large spatial
databases.
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1. INTRODUCTION
Spatial data mining becomes more interesting and impor-

tant as more spatial data have been accumulated in spatial
databases [9, 11, 12, 4, 6, 7]. Spatial patterns are of great
values in many applications. For example, in mobile com-
puting, to provide location-sensitive promotions, it is de-
manding to find services requested frequently and located
together from mobile devices such as PDAs.

Mining spatial co-location patterns [10, 8, 3] is an impor-
tant spatial data mining task with broad applications. To
illustrate the idea of spatial co-location patterns, let us con-
sider the events in Figure 1. In the figure, there are various
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types of spatial objects denoted by different symbols. As
can be seen, objects of {‘+’,‘×’} and {‘o′, ‘∗′} tends to be
located together, respectively.
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Figure 1: Spatial Co-location Patterns Illustration

In [10], efficient algorithms have been proposed to mine
spatial co-location patterns from spatial databases. A set of
spatial features form a pattern if, for each spatial feature,
at least s% objects having the feature are neighbours to
some objects having other features in the pattern. However
this method biases towards popular spatial features when
both frequent and rare features are involved. Many impor-
tant rules involve both frequent and rare features where the
above mentioned approach could fail. For example, in a
case settled in 1996, PG&E’s nearby plant was leaching
chromium 6, a rust inhibitor, into Hinkley’s water supply,
and the suit blamed the chemical for dozens of symptoms,
ranging from nosebleeds to breast cancer, Hodgkin’s dis-
ease, miscarriages and spinal deterioration. The prosecutors
proved that “chromium 6 contaminated water → nosebleeds,
breast cancer, . . . , in their nearby region with high probabil-
ity”. This is a typical confident co-location rule involving
both frequent and rare events because although nosebleeds
are quite common and chromium 6 contaminated water is
rare the later factor implies the former one strongly.

Unfortunately, since the rule in the above example is con-
fident but not popular, they cannot be found using any pre-
vious methods, such as the one in [10, 8]. We need to explore
new methods to solve the problem. In general, the challenges
of mining confident spatial co-location rules lay in two as-
pects. First, how to identify and measure confident spatial
co-location rules? Rare events are often ignored when they
are happening together with popular events. Many measures
are based on frequency such that rare events are unfavorable.
Second, how to mine the patterns efficiently? Even though
we have a good measure for confident patterns, it is still
challenging to find all the patterns efficiently. One dominant



obstacle is that the maximal participation index is not mono-
tonic w.r.t. co-location pattern containment relation. Thus,
the conventional apriori-like [1] pruning technique cannot be
applied.

Our contributions. In this paper, we propose a novel
measure called maximal participation index, which incorpo-
rates confident spatial co-location patterns regardless of the
freqencies of the events involved. We show that finding con-
fident spatial co-location rules can be achieved by finding
confident co-location patterns w.r.t. the maximal participa-
tion index. We propose two algorithms. The first algorithm
is a rudimentary extension of the Apriori-like [1] solutions.
Our second method explores an interesting weak monotonic
property of the maximal participation index, and uses the
property to push the maximal participation index threshold
deep into the mining. It achieves good performance in most
cases. The experimental results show that our methods are
effective and efficient for mining large spatial databases.

The remainder of the paper is organized as follows. In
Section 1.1, we review related work. Section 2 presents an
overview of a prevalent co-location pattern mining frame-
work [10] and its limitations. In Section 3, we extend the
framework in Section 2 to handle confident patterns, and
show that the problem of mining confident co-location rules
can be solved by mining confident co-location patterns. Ef-
ficient algorithms for the mining are developed in Section
4. An extensive performance study is reported in Section 5.
We conclude the paper in Section 6.

1.1 Related Work
We categorize the related work of mining co-location pat-

terns into spatial statistics approaches and combinatorial
approaches.

In spatial statistics, dedicated techniques such as cross k-
functions with Monte Carlo simulations [3] have been devel-
oped to test the co-location of two spatial features. However,
the Monte Carlo simulation could be expensive. Another ap-
proach is to arbitrarily partition the space into a lattice. For
each cell of the lattice, count the number of instances of each
spatial feature. Pairwise correlation of spatial features could
be found by tests such as χ2 [3]. Arbitrary partitioning may
loss neighboring instances across borders of cells.

In market basket data sets, finding highly correlated items
without support pruning [2] is a close analogy to our prob-
lem, but without a spatial component. The related algo-
rithms mostly rely on sampling and hashing. Thus, the re-
sults may not be complete.

The spatial co-location pattern mining framework pre-
sented in [10, 8] biased on popular events. It may miss
some highly confident but “infrequent” co-location rules by
using only “support”-based pruning.

To the best of our knowledge, mining confident co-location
rules without support threshold in the spatial context has
not been investigated systematically yet.

2. PREVALENT CO-LOCATION RULES IN
SPATIAL DATABASES

In a spatial database S, let F = {f1, . . . , fk} be a set of
boolean spatial features. Let I = {i1, . . . , in} be a set of n
instances in the spatial database S, where each instance is a
vector 〈instance-id, location, spatial features〉. The spatial
feature f of instance i is denoted as i.f . We assume that a
neighborhood relation R over pairwise locations in S exists.

The objective of the co-location rule mining is to find
rules in the form of A → B, where A and B are subsets of
spatial features. For example, a rule “{traffic jam, police}
→ car accident (80%)” means that, when there are a traffic
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Figure 2: Example Data set

jam and policemen, there is a probability of 80% that a car
accident is in a nearby region. Here, 80% is the conditional
probability of the rule.

To capture the concept of “nearby”, the concept of user-
specified neighbor-sets was introduced. A neighbor-set L is
a set of instances such that all pairwise locations in L are
neighbors. For example, in Figure 2, neighborhood rela-
tion R is defined based on Euclidean distance and neigh-
boring instances are linked by edges. {3, 17}, {5, 13}, and
{7, 10, 16, 4} are all neighbor-sets. A co-location pattern (or
pattern in short) C is a set of spatial features, i.e., C ⊆ F .
A neighbor-set L is said to be a row instance of co-location
pattern C if every feature in C appears in an instance of L,
and there exists no proper subset of L does so. We denote
all row instances of a co-location pattern C as rowset(C).
In other words, rowset(C) is the set of neighbor-sets where
spatial features in C co-locate.

For a co-location rule R : A → B, the conditional proba-
bility of R is defined as

|{L ∈ rowset(A)|∃L′ s.t. (L ⊆ L′) ∧ (L′ ∈ rowset(A ∪B))}|
|rowset(A)|

In words, the conditional probability is the probability that
a neighbor-set in rowset(A) is a part of a neighbor-set in
rowset(A ∪ B). Intuitively, the conditional probability p
indicates that, whenever we observe the occurrences of the
spatial features in A, the probability to find the occurrence
of B in a nearby region is p.

Example 1. To find the conditional probability of {A, B} →
{C}, we firsts identify {A, B}’s rowset, i.e., {{5, 13}, {7, 10},
{14, 2}, {14, 8}}. Please note that {7, 10, 4} is not a row in-
stance of {A, B}, since it has a proper subset {7, 10} does so.
Then we identify {A, B, C}’s rowset, i.e., {{7, 10, 16}, {14, 2, 5}}.
Among all of the 4 row instances of {A, B}, two of them,
i.e. {7, 10} and {14, 2}, are subsets of some neighbor-sets
in the rowset of {A, B, C}. So the condition probability of
{A, B} → {C} is 2

4
= 50%.

Given a spatial database S, to measure the implication
strength of a spatial feature in a co-location pattern, a par-
ticipation ratio pr(C, f) can be defined as

pr(C, f) =
|{r|(r ∈ S) ∧ (r is in a row instance of C)}|

{r|(r ∈ S) ∧ (r.f = f)}|
In words, a feature f has a partition ratio pr(C, f) in pattern
C means wherever the feature f is observed, with probabil-
ity pr(C, f), all other features in C are also observed in a
neighbor-set.

In spatial application domain, there exist no natural trans-
actions. Thus in [10], a participation index is proposed to
measure the implication strength of a pattern from spatial



features in the pattern. For a co-location pattern C, the
participation index PI(C) = minf∈C{pr(C, f)}. In words,
wherever a feature in C is observed, with a probability of
at least PI(C), all other features in C can be observed in
a neighbor-set. A high participation index value indicates
that the spatial features in a co-location pattern likely show
up together.

Given a user-specified prevalent threshold min prev, a co-
location pattern is called prevalent if PI(C) ≥ min prev.
Interestingly, the prevalent measure here plays a role similar
to the “support” measure in the mining frequent patterns
from tradition databases.

As shown below, both the participation ratio and the par-
ticipation index are monotonic w.r.t. the size of co-location
patterns. (Because of lack of space, please refer to [5] for
proofs of all lemmas)

Lemma 1. Let C and C′ be two co-location patterns such
that C ⊂ C′. Then, for each feature f ∈ C ∩C′, pr(C, f) ≥
pr(C′, f). Furthermore, PI(C) ≥ PI(C′).

It is interesting to note that, in the above prevalent co-
location pattern mining framework, some confident co-location
rules with rare events may be unfortunately missed.

Example 2. Let us consider co-location pattern C =
{chromium 6 contaminated water, nosebleeds,miscarriages}.
Suppose pr(C, chromium 6 contaminated water ) = 85%,
pr(C,nosebleed) = 0.1% and pr(C,miscarriages) = 1%. Then,
PI(C) = min{85%, 0.1%, 1%} = 0.1%. As can be seen, even
though chromium 6 contaminated water has strong implica-
tion to nosebleed and miscarriages, unfortunately, the whole
co-location pattern is weak in the term of participation index.

Can we extend the framework to mine such confident pat-
terns and rules even though their participation index values
are low? In other words, can we mine confident rule without
“support”-based pruning?” That is the topic of the next two
sections.

3. MAXIMAL PARTICIPATION INDEX
There is one important observation about confident co-

location patterns: “even though the participation index of
the whole pattern could be low, there must be some spatial
feature(s) with high participation ratio(s)”. In the pattern
of Example 2, P = {chromium 6 contaminated water, nose-
bleeds, miscarriages}, the participation index is low, since
chromium 6 contaminated water sources are rare. However,
the participation ratio of “chromium 6 contaminated water”
in the pattern is pretty high.

The above observation motivates our extension of the par-
ticipation index framework. For a co-location pattern C, we
define the maximal participation index of a spatial feature
f as maxPI = maxf∈C{pr(C, f)}. In words, a high maxi-
mal participation index value indicates that there are some
spatial features strongly imply the pattern.

Using confident co-location patterns, we can generate con-
fident co-location rules. In general, given a confident pat-
tern C = {f1, . . . , fk}. We sort all spatial features in C in
the participation ratio descending order. Without loss of
generality, suppose that, for (1 ≤ i ≤ l ≤ k), pr(C, fi) ≥
min conf . Then, we can generate a rule R : f1 · · · fl →
fl+1 · · · fk. The rule carries the information that if a spatial
feature fi (1 ≤ i ≤ l) is observed in some location, then the
probability of observing all other spatial features in C−{fi}
in a neighbor-set is at least maxPI(C).

Given a confidence threshold min conf , the problem of
mining confident co-location patterns in a spatial

database is to find the complete set of co-location patterns
C such that maxPI(C) ≥ min conf .

While the extension of participation index to maximal
participation index is intuitive, there is no easy way to ex-
tend the existing level-by-level Apriori-like [1] algorithm to
mine confident patterns w.r.t. a maximal participation index
threshold. The dominant obstacle is that maximal participa-
tion index is not monotonic w.r.t. the pattern containment
relation, as shown in the following example.

Example 3. In Figure 2, the set of spatial features {B, C} ⊂
{A, B, C}. However, maxPI({B, C}) = max{ 3

5
, 3

6
} = 60% ≤

maxPI({B, C, D}) = max{ 2
5
, 2

6
, 2

2
} = 100%! (Please refer

[5] for rowsets and maxPIs)

Now, the challenge becomes how we can push the confi-
dence threshold to prune the search space. That is the topic
of the next section.

4. ALGORITHMS
In this section, we will develop efficient algorithms for

mining confident co-location patterns from spatial databases.
We propose two methods. The first method is a rudimentary
extension of the Apriori [1] algorithm. The second method
is based on an interesting weak monotonic property of the
maximal participation index.

4.1 A Rudimentary Algorithm
In many applications, very rare events could be just noise.

Thus, we may have a minimal prevalent threshold min prev
and a confidence threshold min conf such that we only want
to find patterns P with PI(P ) ≥ min prev and maxPI(P ) ≥
min conf . Based on this observation, we develop an Apriori-
like algorithm called Min-Max algorithm as follows. We use
the minimal prevalent threshold min prev to do Apriori-like
pruning, then filter out patterns failed the maximal partic-
ipation index threshold by a postprocessing. Limited by
space, the details are omitted here. Please refer [5] for de-
tails. One advantage of the Min-Max algorithm is that the
user can specify the prevalence of patterns she wants to see
by the min prev value. The major disadvantage of the al-
gorithm is that, if the user want to find the complete an-
swer, the algorithm has to generate a huge number of candi-
dates and test them, even though the confidence threshold
min prev is high.

4.2 Pruning By A Weak Monotonic Property
Is there any property of the maximal participation index

we can use to get efficient algorithms for mining confident
rules? Let us re-examine Example 2. Pattern P = {chromium
6 contaminated water, nosebleeds,miscarriages} has three
proper subsets such that each subset has exactly 2 features.
Feature “chromium 6 contaminated water” has a high par-
ticipation ratio, and it participates in two out of the three
subsets. Since the participation ratio is monotonic (Lemma
1), the maximal participation index values of the two proper
subsets containing “chromium 6 contaminated water” must
be higher or equal to that of P . In other words, at most one
2-subpattern of P can have a lower maximal participation
index value.

The above observation can be generalized to a pattern
with l features and we have the following weak monotonic
property.

Lemma 2 (Weak monotonicity). Let P be a k-co-
location pattern. Then, there exists at most one (k − 1)-
subpattern P ′ such that P ′ ⊂ P and maxPI(P ′) < maxPI(P ).



Based on the weak monotonic property if a k-pattern is
confident, at least (k−1) out of its k subpatterns with (k−1)
features are confident. Therefore, we can revise the candi-
date generation process, such that a k-pattern having at
most one non-confident (k− 1)-subpattern should be gener-
ated. The idea is illustrated in the following example.

Example 4. Suppose the maximal participation index val-
ues of {A, B, C}, {A, C, D} and {B, C, D} are all over the
confidence threshold, but that of {A, B, D} is not. We still
should generate a candidate P = {A, B, C, D}, since it is
possible that maxPI(P ) passes the threshold.

To achieve this, we need a systematic way to generate
the candidates. Please note that, in apriori, for the above
example, {A, B, C, D} is generated only if {A, B, C} and
{A, B, D} (differ only in their last spatial feature) are both
frequent. However, in the confident pattern mining, it is
possible that {A, B, D} is not confident, while {A, B, C, D}
is still confident. The candidate generation here is tricky.

In general, two co-location patterns from the confident k-
pattern set Pk, i.e. P ∈ Pk and P ′ ∈ Pk, can be joined
and generate a candidate (k+1)-pattern in Ck+1 if and only
if P and P ′ have one different feature in the last two fea-
tures. For example, even though {A, B, D} is not confident,
candidate {A, B, C, D} can be generated by {A, B, C} and
{A, C, D}.

We will illustrate the correctness of the above candidate
generation method in Lemma 3 and Example 5.

With the revised candidate generator, the mining algo-
rithm is presented as follows.

Algorithm maxPrune

Input: A spatial database S, a neighbourhood relation R,
a confidence threshold min conf .

Output: Co-location patterns P such that maxPI(P ) ≥
min conf .

Method:

1. let k = 2; generate C2, the set of candidates of
confident 2-patterns and their rowsets, by geo-
metric methods;

2. For each C ∈ Ck calculate maxPI(C) from C’s
rowset rowset(C); Let Pk be the subset of Ck such
that for each P ∈ Pk, maxPI(P ) ≥ min conf ;

3. generate Ck+1, the set of candidates of confident
(k + 1)-patterns, as illustrated in Example 4 ; if
Ck+1 6= ∅, let k = k + 1, go to Step 2;

4. output ∪iPi

The algorithm does not need minimal prevalence thresh-
old and finds all confident co-location patterns.

To make sure the candidate generation does not miss any
confident co-location, we need to prove candidate (k + 1)-
patterns Ck+1 generated by the maxPrune algorithm is a
superset of the actual confident (k +1)-patterns Pk+1. This
is proved in the following lemma.

Lemma 3. Let P be a confident k-pattern (k ≥ 2). Then,
there exist two (k − 1) patterns P1 and P2 such that (1)

P1 ⊂ P , P2 ⊂ P , (2) P1 and P2 share either the kth or the
(k− 1)th feature in P , but not both, and (3) both P1 and P2

are confident.

Example 5. Suppose min conf = 0.85. Initially all
singleton co-location patterns are confident since they have
maxPI = 1. A general geometric method is used to generate
candidate confident 2-patterns and their rowsets. From their

rowsets, we calculate their maxPI. Only P2 = {{A, C}, {A, D},
{B, C}, {C, D}} are confident.

Then, we generate candidates 3-patterns. In detail, {A, C}
joins {A, D}, {A, C} joins {B, C}, {A, C} joins {C, D},
{A, D} joins {C, D}, and {B, C} joins {C, D} to generate
candidate 3-patterns {{A, B, C}, {A, B, D}, {A, C, D}, and
{B, C, D}}. The rowsets of the candidates are generated by
joining the rowsets of the two 2-patterns leading to the can-
didate.

We go back to step 2. From their rowsets, we calculate
the maximal participation index values for the candidates of
3-patterns. We get P3 = {{A, B, D}, {A, C, D} {B, C, D}},
which are the confident patterns. Then, we generate the can-
didates of confident 4-patterns. In detail, {A, B, D} joins
{A, C, D} according to Lemma 3. We thus generate can-
didate 4-pattern {A, B, C, D}, as illustrated in Example 4.
Rowsets of {A, C, D} and {B, C, D} are joined to produce
the rowset of {A, B, C, D}. Its maxPI is calculated and it
is confident. The algorithm proceeds similarly. It can be
verified that C5 = ∅ and thus the algorithm stops.

Compared to the Min-Max algorithm, the maxPrune al-
gorithm does not need any minimum prevalence threshold
and finds the complete set of confident co-locations with
any prevalence. In the process of mining the complete set of
highly confident co-locations, the maxPrune algorithm gen-
erates much less candidate co-location patterns compared to
that of min-max with prev min = 0, and thus lowers down
the costs of expensive rowset generation and test dramati-
cally.

5. PERFORMANCE EVALUATION
To evaluate the performance of the two algorithms, Min-

Max and maxPrune, we conducted an extensive performance
study on synthetic datasets. All the experiments were per-
formed on a Pentium III 550MHz PC machine with 4G
megabytes main memory, running Redhat 6.1. All methods
were implemented using C++. The experimental results are
consistent. Limited by space, we report only the results on
some representative datasets.

We made up a data synthetic generator. Our Data gen-
erator is similar to the one in [1], with some proper exten-
sions to produce spatial datasets. The major parameters of
the data generator are demonstrated as follows. For syn-
thetic dataset I100k.C10.R50, we generate 100k instances
(denoted as I100k). There are up to 50 co-location patterns
with very high confidence but very low prevalence (denoted
as R50). We achieved this by binding a spatial feature to
a pre-generated potential co-location pattern, and making
those bound spatial features not prevalent. The number of
attributes in a co-location pattern yields to a Possion dis-
tribution, while the mean is 10 (denoted as C10). For all
the datasets, the total number of spatial attributes is 100
and the total number of pre-generated potential co-location
pattern is 500.

We first evaluated the performance of the two algorithms
on mining a dataset that has no co-location patterns which
are with high confidence and low prevalence. Dataset I100kC5R0
is used. Clearly, this condition favors algorithm Min-Max.
We varied the confidence threshold from 2.5% to 4%. Fig-
ure 3 shows the run time of the algorithm maxPrune and
the algorithm Min-Max with respect to different min conf
thresholds.

For the Min-Max algorithm, we chose the min prev values
as 0%,0.05%,0.5%, and 2.5%, respectively. Only when the
min prev value was set to 0%, the algorithm Min-Max finds
all the confident co-location patterns. Because algorithm
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Min-Max has to generate all co-location patterns with par-
ticipation index value over min prev, the run time of Min-
Max is not sensitive to the change of confidence threshold.
To the contrast, the run time of maxPrune increases as the
min prev threshold decreases.

When min prev > 0, algorithm Min-Max may miss some
patterns. When the two algorithms generate the same set of
patterns, i.e., min prev = 0 for Min-Max, Min-Max outper-
forms maxPrune only when the confidence threshold is lower
than 3.2%. In such an extreme region, most co-location pat-
terns are confident, and algorithm maxPrune has a heavier
overload on the candidate generation than Min-Max has. In
all other situations, maxPrune wins. Figure 4 shows the
number of confident co-location patterns found w.r.t. con-
fident thresholds. As can be seen, using a small min prev
threshold, Min-Max can generate results close to maxPrune
does.

Next, we compared the performance of the two algorithms
on a dataset(I100K.C5.R50) where there were many confi-
dent co-locations with low prevalence. In this experiment,
we treid to find confident co-locations with high maxPI
thresholds, say above 50%. As shown in Figure 5 and Fig-
ure 6, maxPrune outperforms Min-Max in a wide margin.
To obtain a comparable runtime performance, Min-Max has
to adopt a high min prev threshold, and miss almost half
of the confident co-location patterns.

Then we evaluated the scalability of the maxPrune al-
gorithm w.r.t. confidence thresholds. Limited by space, we
only plotted the runtime of maxPrune on dataset I1M.C15.R50
in Figure 7 as an example. The results on other datasets are
consistent. As can be seen, the algorithm is scalable w.r.t.
confidence thresholds. On the other hand, the more spatial
features on average in a pattern, the longer the run time.

Finally, we evaluated the scalability of maxPune algo-
rithm w.r.t. total number of instances. We fixed the con-
fidence thresholds as 20%. The run time of maxPrune is
linearly scalable to the database size as show in Figure 8.

6. CONCLUSIONS
In this paper, we identified the limitation of the con-

ventional co-location pattern mining and proposed a novel

approach to mining confident co-location patterns without
“support”-based pruning. We developed efficient algorithms
for the mining. An extensive performance study shows that
our method is both effective and efficient. The maxPrune
algorithm is scalable in mining large spatial databases.

This study opens two interesting directions for future ex-
plorations. First, as an initial study, in this paper, we con-
sidered only boolean spatial features. In the real world, the
features can be categorical and continuous. There is a need
to extend the co-location mining framework to handle con-
tinuous features. Second, it would be interesting to mine
temporal-spatial co-location patterns for moving objects.
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