IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006 1

Regression Cubes with Lossless Compression
and Aggregation

Yixin Chen, Guozhu Dong, Senior Member, IEEE, Jiawei Han, Senior Member, IEEE, Jian Pei,
Benjamin W. Wah, Fellow, IEEE, and Jianyong Wang, Member, IEEE

Abstract—As OLAP engines are widely used to support multidimensional data analysis, it is desirable to support in data cubes
advanced statistical measures, such as regression and filtering, in addition to the traditional simple measures such as count and
average. Such new measures will allow users to model, smooth, and predict the trends and patterns of data. Existing algorithms for
simple distributive and algebraic measures are inadequate for efficient computation of statistical measures in a multidimensional
space. In this paper, we propose a fundamentally new class of measures, compressible measures, in order to support efficient
computation of the statistical models. For compressible measures, we compress each cell into an auxiliary matrix with a size
independent of the number of tuples. We can then compute the statistical measures for any data cell from the compressed data of the
lower-level cells without accessing the raw data. Time- and space-efficient lossless aggregation formulae are derived for regression
and filtering measures. Our analytical and experimental studies show that the resulting system, regression cube, substantially reduces
the memory usage and the overall response time for statistical analysis of multidimensional data.

Index Terms—Aggregation, compression, data cubes, OLAP.

1 INTRODUCTION

ATA warehouses provide online analytical processing

(OLAP) tools for interactive analysis of multidimen-
sional data. With years of research and development of
data warehouse and OLAP technology [15], [7], [1], [34], a
large number of data warehouses and data cubes have
been successfully constructed and deployed in many
applications.

The fast development of OLAP technology has led to
high demand for more sophisticated data analyzing
capabilities, such as prediction, trend monitoring, and
exception detection of multidimensional data. Oftentimes,
existing simple measures such as sum() and average()
become insufficient, and more sophisticated statistical
models, such as regression analysis, are desired to be
supported in OLAP. Moreover, there are lots of applica-
tions with dynamically changing stream data generated
continuously in a dynamic environment, with huge

Y. Chen is with the Computer Science Department, Washington University

in St. Louis, One Brookings Dr., St. Louis, MO 63130.

E-mail: chen@cse.wustl.edu.

o G. Dong is with the Computer Science Department, Wright State
University, 3640 Colonel Glenn Hwy., Dayton, OH 45435.
E-mail: gdong@cs.wright.edu.

e J. Han is with the Computer Science Department, University of Illinois,
202 N. Goodwin St., Urbana, IL 61801. E-mail: hanj@uiuc.edu.

o . Pei is with the Computer Science Department, Simon Fraser University,
8888 University Drive, Burnaby, BC Canada V5A 156.
E-mail: jpei@cs.sfu.ca.

o B.W. Wah is with the Electrical and Computer Engineering Department,
University of Illinois, 1308 Main St., Urbana, IL 61801.
E-mail: wah@uiuc.edu.

o |. Wang is with the Computer Science Department, Tsinghua University,
Beijing University, Beijing, China 100008.
E-mail: jianyong@mail.tsinghua.edu.cn.

Manuscript received 5 Feb. 2006; revised 31 May 2006; accepted 18 July 2006,

published online 18 Oct. 2006.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0055-0206.

1041-4347/06/$20.00 © 2006 IEEE

volume, infinite flow, and fast changing behavior. When
collected, such data is almost always at a rather low level,
consisting of various kinds of detailed temporal and other
features. To find interesting or unusual patterns, it is
essential to perform regression analysis at certain mean-
ingful abstraction levels, discover critical changes of data,
and drill down to some more detailed levels for in-depth
analysis when needed.

To illustrate the multidimensional regression models, let
us examine the following example.

Example 1. A power supply station collects infinite streams
of power usage data, with the lowest granularity as
individual user, location, and minute. Given a large
number of users, it is only realistic to analyze the
fluctuation of power usage at certain high levels, such as
by city or district and by hour, in order to make timely
power supply adjustments and handle unusual situa-
tions. For this application, simple measures like sum()
are insufficient, and regression models for data at
different levels are needed. A simplest regression in this
case would be a linear model between time t and the
power usage y as y = 7y + 7it, where 7 and 7j; are two
parameters. The linear regression model describes the
major trend of the power usage over a certain period.

Conceptually, for multidimensional analysis, one can
view such a data warehouse as a virtual data cube,
consisting of one measure and a set of dimensions,
including one regression dimension and a few standard
dimensions such as location and user-category. However,
in practice, it is impossible to materialize such a stream data
cube, since the materialization requires a huge (and
potentially infinite) amount of data to be computed and
stored in a multidimensional space. Some efficient methods

Published by the IEEE Computer Society

must be developed for systematic regression analysis over
such data.

The example shows that multidimensional analysis of
regression measures offers an analytical modeling engine to
generate smoothed trend summarizations, prediction, and
exception detection at different view levels. Such a
regression-enabled OLAP engine is a powerful data
analysis tool as well as a user-friendly environment for
interactive data analysis. In this paper, we examine the
issue of supporting advanced statistical measures, includ-
ing regression and filtering measures, in a multidimen-
sional space. In the rest of this section, we discuss why this
is a challenging problem and outline our contributions.

1.1 Regression Cubes and Compressible Measures
Data warehouses and OLAP tools are based on a multi-
dimensional data model. The model views data in the form
of a data cube. A data cube is defined by dimensions and
facts. In an n-dimensional data cube, the n dimensions are
the perspectives or entities with respect to which an
organization wants to keep records. A multidimensional
data model is typically organized around a central theme
such as power usage. The theme is represented by a fact table.
Facts are numerical measures by which we want to analyze
relationships between dimensions. In the multidimensional
data cube, data are organized into multiple dimensions, and
each dimension contains multiple levels of abstraction
defined by concept hierarchies. Measures in a data cube
can be classified into three categories based on the difficulty
of aggregation:

e Distributive. An aggregate function is distributive if
it can be computed in a distributed manner as
follows: Suppose the data is partitioned into n sets.
The computation of the function on each partition
derives one aggregate value. If the result derived by
applying the function to the n aggregate values is the
same as that derived by applying the function on all
the data without partitioning, the function can be
computed in a distributive manner. count(), sum(),
min(), and max() are distributive aggregate func-
tions. A measure is distributive if it is obtained by
applying a distributive aggregate function.

e Algebraic. An aggregate function is algebraic if it can
be computed by an algebraic function with several
arguments, each of which is obtained by applying a
distributive aggregate function. For example, avg()
(average) can be computed by sum()/count() where
both sum() and count() are distributive aggregate
functions. min_N(), max_N(), and stand_dev() are
algebraic aggregate functions. A measure is algebraic
if it is obtained by applying an algebraic aggregate
function.

e Holistic. An aggregate function is holistic if there is
no constant bound on the storage size needed to
describe a subaggregate. That is, there does not exist
an algebraic function with A arguments (where M is
a constant) that characterize the computation.
Common examples of holistic functions include
median(), mode(), and rank(). A measure is holistic

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

if it is obtained by applying a holistic aggregate
function.

If we characterize the regression measure using the
above classification, it seems to be a holistic measure
because it requires the information of all the data points in a
cuboid in order to compute the regression model. It is
impossible to compute the regression model distributively
and compose the high-level regression model merely from
the low-level models.

Thus, the requirement for multilevel, multidimensional
online analysis of advanced statistical measures, though
desirable, raises a challenging research issue: “Is it feasible to
perform OLAP analysis for advanced statistical measures on huge
volumes of data since a data cube is usually much bigger than the
original data set, and its construction may take multiple database
scans?”

Our main idea in this paper is to compress the raw data
for each cell, store only a minimum number of measures
that are just sufficient to support the online analysis, and
compute high-level measures from the corresponding low-
level cells without accessing the raw data. Such a compres-
sion technique leads to the definition of a new category of
measures:

e Compressible. An aggregation function is compres-
sible if it can be computed by a procedure with a
number of arguments from lower level cells, and the
number of arguments is independent of the number of
tuples in the data cuboid. In other words, for
compressible aggregate functions, we can compress
each cuboid, regardless of its size (i.e., the number of
tuples), into a constant number of arguments, and
aggregate the function based on the compressed
representation. The data compression technique
should satisfy the following requirements: 1) the
compressed data should support efficient lossless or
nearly lossless aggregation of regression measures in
a multidimensional data cube environment and
2) the space complexity of compressed data should
be low and be independent of the number of tuples
in each cell, as the number of tuples in each cell may
be huge. A measure is compressible if it is obtained by
applying a compressible aggregate function.

In this paper, we will show that certain advanced
statistical measures, including regression models and
filters, are compressible measures. Note that compressible
measures are different from holistic measures in that the
number of arguments is a constant for compressible
aggregate functions, but not for holistic aggregate functions.
The compressible measures are different from algebraic
measures in that the arguments for algebraic aggregate
functions are distributive measures, while the arguments
for compressible aggregate functions are still compressible
measures. We will explain this in detail later.

One important assumption of this paper is that the
measure and the attributes of regression dimensions have to
be numerical and not categorical. Regression and filtering
analysis require the measures of regression dimensions to
be continuous or discrete numbers, but not unordered,
discrete symbolic values. In the future, we plan to extend

CHEN ET AL.: REGRESSION CUBES WITH LOSSLESS COMPRESSION AND AGGREGATION 3

the theory to logistic regression which can handle catego-
rical data.

1.2 Applications of Regression Cubes

We believe that supporting advanced statistical analysis is
an important feature for the next-generation data cube
technology and OLAP engines. In addition to performing
the analysis at the lowest or the highest abstraction level, it
is more important that the users would like to see
regression models anywhere they want in a data cube
space. Specifically, there are several important applications
of regression cubes:

1. Trend analysis. A user can explore the data cube to
find interesting cuboids guided by the regression
models at different levels. For example, a sales
manager might want to first examine the data at a
higher abstraction level, find out a year when the
sales drop down quickly, and drill down in that
particular year to find out which months and states
are main causes for the sales decrease. Such analysis
will allow the users to interact with the data
repository to find out certain views and levels that
can provide key insights to their marketing.

2. Exception detection. In a regression cube, a user is able
to find cuboids with an exceptional change rate (out of
certain thresholds). In a typical case, an exception only
occurs for cuboids at a particular view of a certain
combination of the dimension levels, and a user
cannot observe the exception at levels too low or too
high. Therefore, it is an essential requirement that a
user can explore the data cube space and generate
regression models for different cuboids efficiently.

3. Incremental cubing. Using the regression cube tech-
nique, the user can scan the data only once, compute
and store the regression measures for the cells at the
lowest level, and discard the raw data. For any
newly generated data, a user only needs to generate
the regression model for the new part. The regres-
sion models for all the cuboids after any update can
be efficiently recovered using the compression and
aggregation techniques proposed in this paper.
Without compression, a user has to maintain all
historical raw data and update the relevant data
models from scratch for every update.

4. Partial materialization. Due to space and time limita-
tions, it is usually desirable to materialize only a
subset of the cuboids in the data cube space, and
there have been an extensive study for partial
materialization schemes of data cubes. When such
partially materialized cubes are used, it is necessary
to be able to derive the regression model of any
cuboid not materialized on the fly from other
materialized cuboids. The proposed regression cube
will support this operation.

In summary, the proposed regression cube technique
will provide users insights to the trend of data and the
correlations among dimensions, allow users to explore the
data cube space efficiently, and support efficient regression
computation when the data cube is constructed incremen-
tally and/or partially.

1.3 Research Contributions

In this paper, we propose the concept of regression cubes
and a data cell compression technique NCR (nonlinear
compression representation) to support efficient OLAP opera-
tions in the regression cubes. Our study shows that to
support multidimensional regression analysis, only a small
number of compressed measures need to be registered. We
develop lossless aggregation formulae based on the NCRs.

The space complexity of the compressed NCR in data
cells is independent of the number of tuples in those cells and
is only quadratic to the number of regression coefficients.
Therefore, we make the regression measure a compressible
measure and the space consumption is significantly reduced
using NCR compression.

In addition to regression analysis, we have extended the
results to filtering analysis of time-series data. We have
shown that filters are also compressible measures by
showing that we can compress each data cell into a small,
fixed-size data block while still allowing lossless aggrega-
tion of the measures.

The rest of the paper is organized as follows: In Section 2,
we define the basic concepts and introduce the research
problem. In Section 3, we illustrate the key concepts and
results of this paper using linear regression, the simplest
special case of general multiple linear regression analysis.
In Section 4, we present the theoretical foundation for
computing regression models in data cubes. We propose
the NCR compression technique to support online regres-
sion analysis of stream data in data cubes, and present
lossless NCR aggregation formulae in regression and
standard dimensions. In Section 5, we develop lossless
compression schemes for predictive filters. We present
performance studies in Section 6, discuss related work in
Section 7, and give conclusions in Section 8.

2 PROBLEM DEFINITION

In this section, we introduce the basic concepts related to
regression analysis in data cubes.

2.1 Data Cubes

To perform multidimensional, multilevel analysis, we need
to introduce some basic terms related to data cubes. Let D
be a relational table, called the base table, of a given cube.
The set of all attributes A in D are partitioned into two
subsets, the dimensional attributes DIM and the measure
attributes M (so DIM UM = A and DIM N M = (). The
measure attributes functionally depend on the dimensional
attributes in D and are defined in the context of data cube
using some typical aggregate functions, such as count(),
sum(), avg(), or some regression related measures to be
studied here.

A key feature of data warehouses is that they are time-
variant. Data are stored to provide information from a
historical perspective. Every structure in the data ware-
house contains, either implicitly or explicitly, a dimension
of time. In this paper, we assume that the time dimension is
always a dimensional attributes for stream data analysis.

Example 2. For our power supply analysis in Example 1, the
dimensional attributes may include time, user location,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

T T T T
yl(t) ——
- regression curve ------- i

0 2 4 6 8 1012 14 16 18
t

(@)

T T T T T
y2(t) —+—
- regression curve ——-———- -

0
0 2 4 6 8 10 12 14 16 18
t

(b)

T T T T T T T T
yO=ylO +y2() —+—

TN TR TN N N N N N
0 2 4 6 8 1012 14 16 18
t

(©

Fig. 1. An example showing aggregation in the location dimension, a standard dimension. y(¢) represents the amount of power usage in billion
kilowatts during the tth minute. We aggregate £ = 2 component cells in time ¢ € [0,19]. (a) y1(¢): Eastern US power in [0, 19]. (b) y.(¢): Western US

power in [0, 19]. (c) y(¢): US power in [0, 19].

and user category, and the measure attributes include
amount of power usage and the regression model
parameters.

A tuple with schema A in a multidimensional space is
called a cell. Given three distinct cells ¢, ¢9, and ¢z, ¢; is an
ancestor of ¢y, and ¢, a descendant of ¢, iff on every
dimensional attribute, either ¢; and ¢, share the same value,
or ¢i’s value is a generalized value of ¢’s in the dimension’s
concept hierarchy. A tuple ¢ € D is called a base cell. A base
cell does not have any descendant. A cell c is an aggregated
cell iff it is an ancestor of some base cells. For each
aggregated cell, the values of its measure attributes are
derived from the set of its descendant cells.

2.2 Regression and Standard Dimensions

In a regression analysis environment, the dimensions can
be divided into regression dimensions, which are those
involved in regression, and other dimensions, which are
called standard dimensions. We denote the dimensions as
(1,22, ,Zp, 51, S2,- -+, 5,), Where z;s are the regression
dimensions (or regression attributes) and s;s are the
standard dimension (or standard attributes). The regres-
sion dimensions should be represented in numerical
attributes. Typically, the time dimension is used in
regression and we assume it to be z; in this paper. As
usual, there is a hierarchy for each dimension. Concep-
tually, the base facts of interest is a base relational table
T(xy, 9,2y, 51,82, Sq, Y1, Y2, -+, Y1), Where y1 to y
are measure attributes. Without loss of generality, to
simplify our presentation, we assume there is only one
measure attribute y to be modeled by regression in this
paper.

In such a data cube, each primitive aggregation is either
over a standard dimension, or over a regression dimension.
For the former, aggregation means to sum up the measure y
over all corresponding base cells. For the latter, aggregation
means to merge all base cells into the resulting cell.

Example 3. Continuing from Example 1, for our power
supply analysis, we assume that the regression dimen-
sion is the time dimension ¢, and that the user location L
is a standard dimension. We assume that linear least
square error (LSE) regression is used, i.e., for each cell,
we use the least square error as the standard to model a

linear relationship between time ¢ and the power usage y
as y =1y + Mt

Figs. 1 and 2 show some examples to illustrate the
regression models and aggregation of regression models
over standard and regression dimensions. Fig. 1 shows
the aggregation over the standard dimension of user
locations. Figs. 1a and 1b show two data cells for the
amount of power usage of eastern and western US,
respectively. Suppose the cell for the overall US power
usage is the ancestor cell of these two cells, Fig. 1c plots
this cell aggregated from Figs. 1la and 1b. It is obvious
that the measure attribute y (amount of power usage) in
Fig. 1c are obtained by summing up the corresponding
descendants.

Fig. 2a shows two cells for power usage over two time
intervals [0,9] and [10,19], while Fig. 2b shows the
resulting cell after aggregating the two base cells along
the regression (time) dimension. We see that aggregation
along a regression dimension means to merge all base
cells into the resulting cell.

2.3 Multidimensional Regression Analysis

In this study, we assume that the data is collected at the
most detailed level in a multidimensional space, which may
represent time, location, user, theme, and other semantic
information. Thus, the direct regression of data at the most
detailed level may generate a large number of regression
lines, but still cannot tell the general trends contained in the
data.

— T T T T
y(®: [0:19] ——

y({): [0,‘9] -
y(©): [10,19] ---x---

0 L L L L L 1 L L 0 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

t t

(a) (b)

Fig. 2. An example showing aggregation in the time dimension. y(t)
represents the power usage in billion kilowatts during the ¢th minute. We
aggregate time series over two time intervals, namely, [0, 9] and [10,
19]. (a) Power in [0, 9] and [10, 19]. (b) Power in [0, 19].

CHEN ET AL.: REGRESSION CUBES WITH LOSSLESS COMPRESSION AND AGGREGATION 5

As we have discussed before, data measures are
classified by the difficulty in aggregating them. In this
paper, we want to study how to aggregate the regression
measures. In our running example, we want to compute the
regression measures of the aggregated curve y(t) from the
regression measures of base-cell curves y;(t) and y»(¢). An
aggregation function is lossless if the values of the regression
measures obtained from the aggregating computation are
identical to the original regression measures computed
from the raw data, and is lossy otherwise.

Our task is to perform time and space-efficient high-level, on-
line, multidimensional regression analysis in a data cube
environment. There are two issues to be resolved: 1) what
to store for each cell and 2) how to aggregate the data
stored. Our objective is to compress the data to minimize
the space requirement and support lossless aggregation in
both standard and regression dimensions.

3 MULTIDIMENSIONAL LINEAR REGRESSION
ANALYSIS

To give a gentle introduction to the theory, we first work on
linear regression, a simple special case. After reviewing the
basics of linear regression, we illustrate the research
problem and our solutions for linear regression measures.

3.1 Linear Regression Analysis for Data Cubes

Linear regression is one of the most common methods to
model the overall trend of a series of data. We now briefly
review the linear regression analysis.

Suppose we have n tuples in a cell: (z;,y;),i=1.n,
where z; is the regression dimension attribute of the
ith tuple, and each scalar y; is the measure attribute of
the ith tuple. The linear regression function is defined as
E(yi|x;) = no + ma;, where n = (7]0,771)T is a 2 x 1 vector
of regression parameters.

Remember we have n samples in the cell, so we can write
all the measure attribute values into an n x 1 vector y =
(y1,- -+ ,yn)T and we collect the terms z; into an n x 2 model
matrix U as follows:

T
U:(1 .. 1)’ 1)
r1 T2 . . Ty
and we can now write the regression function in matrix
form as E(y|U) = Un.
We consider the ordinary least square (OLS) estimates of
regression parameters 7 in this paper. The OLS estimate 7) of

7 is the argument that minimizes the residual sum of squares
function

RSS(n) = (y —Un)’ (y — Up). (2)
For the linear regression, we have

n

RSS(n) =Y (v — (m +m))*.
=1
Differentiating (2) and setting the result to be zero:
B%RSS(n) = 0, we get the following result about #:

i = (UTU)'UTy. (3)

Example 4. Continuing from Example 3, in Figs. 1 and 2, a
linear least square error(LSE) regression is used, i.e., for
each cell, we model a linear relationship between time ¢
and the power usage y as y =y + nit.

The data cell in Fig. 1a has n = 20 tuples, where

y = (y1, -, y20)" =(0.450629,0.361298, 0.161426,0.702031,
1.09753, 0.734187, 0.388058, 0.611386,
1.00416, 1.28791, 0.574888, 1.38808,
1.34544, 1.26086, 0.987224, 0.862096,

0.759747,0.994751,1.0792, 0.818197)",

and

T T
11 . .1 11 . .01
U*<t1 ty .. tn)*(o 1. 19)' “)

We can compute the regression parameters using (3):

(0N _ prpr—iyir., 0.540995
= (ﬁl) = (U0 Uy = (0.0318379)' ®)

Fig. la plots the resulting regression curve of
E(y;|t) = o + mt. Other regression curves in Figs. 1 and 2
are obtained following the same way:

3.1.1 Aggregation in Standard Dimensions

We now consider aggregation (roll-up) in a standard
dimension. Suppose that ¢, is a cell aggregated from a
number of component cells ¢y, ..., ¢,, and that we want to
compute the linear model of ¢,’s data. The component cells
can be base cells at the bottom level, or derived descendant
cells at higher levels.

In this roll-up, the stream data for ¢, is defined to be the
summation of the stream data for the component cells.
More precisely, all component cells are supposed to have
same number of tuples and they only differ in one standard
dimension. Suppose that each component cell has n tuples,
then ¢, also has n tuples; let y,;, where ¢ =1..n, be the
measure attribute of the ith tuple in ¢,, and let y;;, where
j=1..m, be the measure attribute of the ith tuple in ¢;.
Then, y,; = >_j", yji for i = 1.n. In matrix form, we have
Yo = 2.j.1¥; Where y, and y; are vectors of measure
attributes for corresponding cells, respectively.

Suppose we have the linear regression measures but not
the raw data of all the descendant cells. We wish to derive
the regression measures of the aggregated cell from the
those of the component cells.

Example 5. Continuing from Example 4, Fig. 1 illustrates an
example of aggregation in the standard dimension of
user locations. The ancestor cell ¢, in Fig. 1lc is
aggregated from the two component cells ¢; and ¢; in
Figs. 1a and 1b, respectively.

We have (7j,7)" = (0.540995,0.0318379)" for (),
(Ao, m)" = (0.294875,0.0493375)" for 1,(t), and (7, i)’ =
(0.83587,0.0811754)" for y(t).

Now, the problem is, in multidimensional analysis for
large-scale data, especially stream data, we cannot afford to
store the raw data. Also, it is infeasible due to time and

space costs to materialize and store all cuboids. Therefore, it
is necessary to aggregate the analytical measures from
lower levels.

Specifically, we want to compute the regression mea-
sures (7, ﬁl)T = (0.83587,0.081 1754)T of the aggregated cell
y(t) from the data of y;(¢t) and y(t). Since we do not store
the raw data, we need to compress the data. It will be a
lossless compression if (7, 7;) of y(t) reconstructed from
compressed data are identical to those obtained from the
raw data, and will be a lossy compression otherwise.

3.1.2 Aggregation in Regression Dimensions

We now consider aggregation (roll-up) in regression
dimensions. Still, we suppose that ¢, is a cell aggregated
from a number of component cells ¢y, . . ., ¢,,, which differ in
one regression dimension, and that we want to compute the
linear regression model of ¢,’s stream data. The component
cells can be base cells or derived descendant cells.

In this roll-up, the set of tuples of ¢, is defined to be the
union of tuples of the component cells. Since ¢, contains the
union of tuples of all component cells, in matrix form, we
have y, = (y1,¥9, - 7ym)T, where y, and y; are vectors of
measure attributes for corresponding cells, respectively.

Example 6. Continuing from Example 4, Fig. 2 illustrates
an example of aggregation in the regression dimen-
sion of time. The ancestor cell ¢, in Fig. 2b is
aggregated from the two component cells ¢; and ¢; in
Fig. 2a. We have (7j,7)" = (0.582995,0.0240189)" for
yi(t), (i,)" = (0.459046,0.047474)" for y(t), and
(7, 7)" = (0.509033,0.0431806)” for y(t). Again, in
this example, we want to compute the regression
measures (7, 71)" = (0.509033,0.0431806)" of the ag-
gregated cell y(t) from the data of y(t) and y»(¢).

3.2 SA Compression: A Lossy Compression

When faced with the problem of multidimensional aggre-
gation of regression measures, a simple and intuitive
compression technique would be to store just (7, 7;) for
each cell, and using the following formulae during
aggregation:

(70) = <7ZU > + < 770 > for standard dimensions
m/y m/a m/o

. LT/ .
(70) == {(70) + (70) } for regression dimensions,
/. 20\m/y \in/,

where (ijp,71)! are the regression measures of the aggre-
gated cell, and (7, 71)] and (7, 71)s
measures of two component cells.

Here, we use summation to aggregate the regression
measures in standard dimensions, and use averaging to
aggregate the regression measures in regression dimen-
sions. It is called sum/avg (SA) compression. Let us explain
the intuition of SA compression from a geometry point of
view. For a regression line E(y|r) =mny+mz, 1o is the
intercept and 7, is the slope. For aggregations in a standard
dimension, we sum up the measure y over a same region of
x. Therefore, the slope and intercept of the regression lines

are regression

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

should accumulate. This calculation is actually lossless
along standard dimensions. For aggregations in a regres-
sion dimension, suppose we have two regression lines for
two cells with the same length of regression region, and we
should expect that the overall slope and intercept will get
averaged out.

Example 7. Let us check if the SA compression is lossy or
lossless. Continuing from Example 6, if we use the
SA compression to aggregate the measures along the
regression (time) dimension, we have:

M\ _ Lo ({0 L) | = (0-5210205
n), 2), \im /), \0.03574645)

We can see that the reconstructed regression measures
are different from the original regression measures
(7o,)" = (0.509033,0.0431806)" of the aggregated cell.
Hence, the SA compression is lossy.

We note that the SA compression is applicable to
complex aggregations over both standard and regression
dimensions, but is lossy due to the errors incurred in
regression dimensions.

3.3 NCR: A Lossless Compression

In this paper, we will present a lossless compressed
representation of the regression models of cells of data
cubes called the Nonlinear Compression Representation (NCR).
The compressed NCR for the materialized base cells will be
sufficient for deriving NCR and regression models of all
other cells losslessly. Moreover, the size of NCR is
independent of the number of tuples in each cell. Since
the number of tuples in a cell could be very huge at higher
levels, it is desirable that the size of the compressed data for
each cell is independent of the number of tuples.

We will define the NCR compression in the next section.
Here, we use the result to illustrate the application of NCR.
The NCR for each cell consists of two matrices: 7 for the
regression measures, and © to store some auxiliary
information needed for lossless aggregation. For linear
regression in the running examples, the two matrices in
NCR will be:

N 7o 0o O
— (" d ©= ,
K <771 > o (910 O)
where 6y =n, Op1 = 010 = (to +t1)n/2,

011 = (t1(t1 + 1)(2t1 + 1) — (to — 1)to(2t9 — 1)) /6,

nis the number of tuples, and t;, and ¢; are starting and ending
time of the cell being compressed, respectively. Therefore, for
linear regression, we need to store five numerical values in its
NCR for each cell ¢: NCR(c) = (7,1, n, 6o1, 011). Note that
the NCR includes the necessary information about regression
measures (jg, ﬁl)T and some additional measures n, 6y, 011.

We have designed the NCR compression in such a way
that the regression models of any data cell can be losslessly
reconstructed from the NCRs of its descendant cells without
accessing the raw data. We demonstrate the lossless
aggregation of the NCR compression in both standard
and regression dimensions using the running example. In

CHEN ET AL.: REGRESSION CUBES WITH LOSSLESS COMPRESSION AND AGGREGATION 7

our running example, there are two base cells ¢; and ¢, and
one aggregated cell ¢,. Let

NCR(c1) = (71, 01),
NCR(CQ) = (7’72,62), and
NCR(CIL) = (ﬁavea)v

using the aggregation formulae we will develop in the next
section, NCR(c,) can be derived from NCR(c;) and
NCR(c) as follows:

e For standard dimension aggregation:
ﬁa =1 + 7, (6)

6,=6,=0,. (7)

e For regression dimension aggregation:

fla = (O1 4 62) " (B17)1 + Oaia), (8)

0, =06, +06,. 9)

Example 8. Continuing from Example 5, Fig. 1 illustrates an
example of aggregation in the standard dimension of
user locations. The ancestor cell ¢, in Fig. lc is
aggregated from the two component cells ¢; and ¢; in

Figs. 1a and 1b, respectively. Their NCRs are as follows:
R 0.540995 20 190
h = 0, =
0.0318379 190 2,470
0.294875 20 190
= 0, =
0.0493375 190 2,470
0.83587 o — 20 190
0.0811754 “\190 2,470)
It can be verified that NCR(c,) = (7,,0,) can be
losslessly reconstructed from NCR(c;) = (71,01) and

NCR(cz) = (12, 02) using (6) and (7).

Example 9. Continuing from Example 6, Fig. 2 illustrates an

>

>
I

a

example of aggregation in the regression dimension of
time. The ancestor cell ¢, in Fig. 2b is aggregated from
the two component cells ¢; and ¢, in Fig. 2a. Their NCRs

are as follows:
. 0.582995 10 45
= 0, =
0.0240189 45 285
0.459046 10 145
) = 0, =
0.047474 145 2,185
0.509033 o, — 20 190
“ "\ 0.0431806 "7 \190 2,470)
It can be verified that NCR(c,) = (7,,0,) can be

losslessly reconstructed from NCR(c;) = (71,01) and
NCR(cz) = (12, 02) using (8) and (9).

>

>
I

4 MULTIDIMENSIONAL GENERAL MULTIPLE LINEAR
REGRESSION ANALYSIS

In this section, we review the theory of general multiple
linear regression (GMLR) and propose our compression
technique to support the construction of regression cubes.

4.1 Theory of GMLR

We now briefly review the theory of GMLR (See [10], for
example, for more details). Suppose we have n tuples in a
cell: (x;,9;),i =1..n, where x! = (i1, 2, -+, 7;,) are the
p regression dimensions of the ith tuple, and each scalar y;
is the measure of the ith tuple. To apply multiple linear
regression, from each x;, we compute a vector of k terms u;:

(N 1

w = Ul(xz) Uj,1

(10)

Uk—1 (X1) Ui k—1

The first element of u; is uy = 1 for fitting an intercept, and
the remaining k —1 terms w;(x;),j =1..k—1 are derived
from the regression attributes x; and are often written as u; ;
for simplicity. u;(x;) can be any kind of function of x;. It
could be as simple as a constant, or it could also be a
complex nonlinear function of x;. For example, for time
series regression (where x = (t)), we have k =2 and u; = ¢;
for 2D spatial regression (where x = (z1, 22)) used in spatial
and moving-object databases, we can have k=4, u; = 2y,
Ug = T2, and Uz = T1T2.

The nonlinear regression function is defined as follows:

(1)

where 1= (no,m,--,m-1)" is a kx 1 vector of regression

parameters, and k is the number of regression terms.
Remember we have n samples in the cell, so we can write

all the measure attribute values into an n x 1 vector

E(yilw) =no +mui + -+ + Mpo1Uif1 = nw,

y = (Y192, ,y,,L)T. and we collect the terms u;; into an
n x k model matrix U as follows, where u; ; = u;(z;):
1wy wpe UL k-1
1w up U2 k-1
U= (12)
1 Unpl Up2 Un, k-1

We can now write

E(y|U) = Un.

Definition 1. The OLS estimate 7 of n is the arqument that
minimizes the residual sum of squares function
RSS(n) = (y = Un)"(y — Uy). If the inverse of (UTU)
exists, OLS estimates 1) of regression parameters are unique
and are given by:

the regression function as

7= (UTu) 'uly. (13)

In the rest of this paper, without loss of generosity, we
only consider the case where the inverse of (U’ U) exists. If
the inverse of (UTU) does not exist, then the matrix (U7 U)
is of less than full rank and we can always use a subset of
the u terms in fitting the model so that the reduced model

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

matrix has full rank. Our major results will remain valid in
this case.

The memory size of U in (12) is nk, and the size of UTU
is k%, where n is the number of tuples of a cell and k is the
number of regression terms which is usually a very small
constant independent of the number of tuples. For example,
k is two for linear regression, and three for quadratic
regression. Therefore, the overall space complexity is O(n)
and only linear to n.

4.2 Nonlinear Compression Representation of a
Data Cell

We propose a compressed representation of data cells to

support multidimensional GMLR analysis. The compressed

information for the materialized cells will be sufficient for

deriving regression models of all other cells.

Definition 2. For multidimensional online regression analysis in
data cubes, the Nonlinear Compression Representation (NCR)
of a data cell c is defined as the following set:

NCR(C):{f]i“:Ov"'vk_l} (14)
U{6;li,7=0,---,k—1,i < j},
where
91] = Zuhiuhj~ (15)
h=1

It is useful to write NCR in the form of matrices. In fact,
elements in an NCR can be arranged into two matrices: 7

and ©, where 7 = (i, 1, - 7-1)" and
oo o1 o2 00 -1
010 011 012 01 k-1
o—
Or—10 Or—11 Or—12 Or—1,1-1

We can write an NCR in a matrix form as NCR = (7}, ©).
Note that, since §;; = 6;; and, thus, o7 =06, we only need
to store the upper triangle of © in an NCR. Therefore, the
size of an NCR is S(k) = (k* + 3k)/2. The following
property of NCRs indicates that this representation is
economical in space and scalable for large data cubes:

Theorem 4.1. The size S(k) of an NCR of a data cell is quadratic
in k, the number of regression terms, and is independent of n,
the number of tuples in the data cell.

7 in NCR provides the regression parameters one expects
to see in the description of a regression model. © is an
auxiliary matrix that facilitates the aggregation of regression
models in a data cube environment. As we will show in the
next two sections, by storing such a compressed representa-
tion in the base cells, we can compute the regression models
of all other cells in a data cube. We have illustrated the use
of NCRs in Examples 8 and 9.

We have designed the NCR compression in such a way
that the compressed data contains sufficient information to
support the desired lossless aggregation. In fact, the
regression models of any data cell can be losslessly
reconstructed from the NCRs of its descendant cells without
accessing the raw data.

Theorem 4.2. If we materialize the NCRs of the base cells at the
lowest level of a data cube, then we can compute the NCRs of
all other cells in the data cube losslessly.

We will prove this theorem in the rest of this section. We
consider the aggregation in standard dimensions in Sec-

tion 4.3 and in regression dimensions in Section 4.4.

4.3 Lossless Aggregation in Standard Dimensions

We now consider aggregation (roll-up) in standard dimen-
sions. Suppose that ¢, is a cell aggregated from a number of
component cells ¢y, ..., ¢, and that we want to compute the
regression model of ¢,’s stream data. The component cells
can be base cells, or derived descendant cells.

In this roll-up, the measure attribute of ¢, is defined to be
the summation of the measure attributes of the component
cells. More precisely, all component cells are supposed to
have the same number of tuples and they only differ in one
standard dimension. Suppose that each component cell has
n tuples, then ¢, also has n tuples; let y,;, where i = 1..n, be
the measure attribute of the ith tuple in c,, and let y;;,
where j = 1..m, be the measure attribute of the ith tuple in
¢j. Then, y,; = Z;”:I y;; for i =1.n. In matrix form, we
have:

m

Yo = Z yj'v
Jj=1

where y, and y; are vectors of measure attributes for
corresponding cells, respectively.

Suppose we have the NC'Rs but not the raw data of all
the descendant cells we wish to derive NCR(c,) from the
NCRs of the component cells. The following theorem shows
how this can be done.

(16)

Theorem 4.3 (Lossless aggregation in standard dimen-
sions). For aggregation in a standard dimension, suppose
NCR(c1) = (71,01), NCR(¢c2) = ()2, 02), -+, NCR(cp,) =
(Mm,Om) are the NCRs for the m component cells,
respectively, and suppose NCR(c,) = (74,0,) is the NCR
for the aggregated cell, then NCR(c,) can be derived from that
of the component cells using the following equations:

a. fg =Dy and
b. ©,=06,;,, i=1.m.

Proof. a) Since all ¢; and ¢,s differ only in a standard
dimension, they are identical in the regression dimen-
sions. We see from (10) that all u;; terms used in the
regression model are only related to the regression
dimensions. Therefore, all cells have identical u;; terms,
where i = 1..n,j = 0..k — 1, and we have:

Ua :Ui, Z:1m,

(17)

where U, is the model matrix (defined in (12)) of ¢,, and
U; is the model matrix of c;.
Therefore, from (13), (16), and (17), we have:

= (UzUll)_anTYU - UTU UT ZYL

zm: vlu) 'uty, = Zﬁi.
i=1 =1

(18)

CHEN ET AL.: REGRESSION CUBES WITH LOSSLESS COMPRESSION AND AGGREGATION 9

b) From (18), we see that 0;; terms only depend on
u;; terms. Since all cells have identical u; ; terms, we see
that all cells also have identical 6;; terms, for
1,7 = 0..k — 1. Therefore, we have:

0,=¢0;, i=1.m. (19)

a

An assumption for aggregation in standard dimensions
is that each component cell has the same number of tuples.
We have found that this assumption is satisfied in most
applications. Moreover, since aggregation in a standard
dimension implies that the component cells share a same
region along the regression dimension, it is usually not
meaningful to aggregate two cells with different numbers of
tuples. For example, for the location dimension, we can
aggregate eastern and western parts into the United States
for a same month or year, but it is not meaningful to
aggregate one month of the eastern part with two months of
the western part.

4.4 Lossless Aggregation in Regression
Dimensions

We now consider aggregation (roll-up) in regression

dimensions. Still, we suppose that ¢, is a cell aggregated

from a number of component cells ¢y, . . ., ¢;,, which differ in

one regression dimension, and that we want to compute the

GMLR model of ¢,.

In this roll-up, the set of tuples of ¢, is defined to be the
union of tuples of the component cells. More precisely, all
component cells only differ in one regression dimension
and do not necessarily have the same number of tuples.
Suppose the component cell ¢; has n; tuples, and ¢, has
n, tuples, then we have n, =) /", n;. Since ¢, contains the
union of the tuples from all component cells, we have:
(20)

T
Yo = (YIaYQa"'aYm))

where y, and y; are vectors of measure attributes for
corresponding cells, respectively. The following theorem
shows how to aggregate NCRs along a regression dimen-
sion without accessing the raw data.

Theorem 4.4. (Lossless aggregation in regression dimen-
sions). For aggregation in a regression dimension, suppose
NCR(Cl) = (ﬁl, (‘)1), NCR(CQ) = (ﬁg, 82), s ,NCR(Cm) =
(T, Om) are the NCRs for the m component cells,
respectively, and suppose NCR(c,) = (),,0,) is the NCR
for the aggregated cell, then NCR(c,) can be derived from that
of the component cells using the following equations:

—1

a = (X060 (S0) and

b. 8,=>",0.

Proof. We will prove item b, first and then prove item a
based on item b.

Let U, be the model matrix of ¢, and let U; be the
model matrix of ¢; for ¢ = 1..m, from (12), we see that U,
has n, rows and U; has n; rows, respectively. Similar to
Y., we can write U, in matrix form as:

U, = (U, Uy,---, U, (21)

From the definition of matrix multiplication, and from
the definition of ©, we see that

Q,= UZUH and ©; = UZTU,L'7 fori=1---m. (22)
Therefore, from (21), we have:
e,=(ul ul Ul) (U, U, U,,)"
(23)

= i Ul'U, = Zm: 0,.
1=1 i=1

Thus, we proved item b. We now turn to prove
item a. From (13), we know that 7; = (UiTUi)flUiTyi, for
i =1---m, therefore, we have

(UfU,)n, =Uly,, fori=1---m. (24)
Substituting (22) into (24) gets:
©,, =Uly, fori=1---m. (25)
By combining (20), (21), and (25), we have:
Yo = 3 Uly,
=1 =1 (26)

= (U{ Ug e U,Tn)(}ﬁ Yo oo y’IVL)T
= Ugya.

From (22) and from item b of this theorem, we get:

Y e;=6,=U/U,. (27)
=1
From (13), we have:
= (U;U,) ' ULy, (28)
By substituting (26) and (27) into (28), we get:
m -1 m
o = (Z e) <Z en) (29)
i1 =1

Thus, we proved item a and the proof is completed. O

4.5 Remarks

Theorems 4.3 and 4.4 show lossless aggregation properties
of our NCR compression to support multidimensional
regression analysis. For aggregations in the standard and
regression dimensions, we see from Theorems 4.3 and 4.4
that all the parameters needed to compute the regression
model of the aggregated cell can be obtained from the NCRs
of the component cells. Also, Theorem 4.1 shows that the
space complexity of NCR is low and is independent of the
number of base tuples in each cell. These properties of the
proposed NCR compression technique make aggregations
in a data cube efficient and scalable.

Our method is general for multidimensional data cells,
since any aggregation involving multiple dimensions can be
decomposed into several single-dimension aggregations.
Since each aggregation is lossless, the combined aggregation
is still lossless. If we need to compute multiple regression
models, it is true that we need to save the NCR auxiliary
information for each regression model. For example, if we

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

have both a linear regression and a quadratic regression
model, then we need to keep NCRs for both of them.

Our work is applicable to multidimensional data cubes
no matter if the hierarchies of data cubes are shallow or
deep. Typically, in older applications, the basic unit of time
is large and dimension hierarchies are shallow, while in
many recent “monitoring” type of applications such as
homeland security and power usage monitoring, the basic
unit of time can be very small and the hierarchies are
lengthy. Our theory is general for these data cubes with
different characteristics.

The proposed technique can save computational time
under incremental updates of the raw data. There are
several cases of data updates. If all of the raw data are
updated, then all the regression models need to be updated
at the bottom level. If only a few records of the raw data are
updated, which is more often, then we only need to
recompute the cells that are modified and propagate the
changes to higher level cells using the aggregation for-
mulae. If new records of data are added into the data set,
then we only need to recompute the new data cells and
propagate the changes.

5 MULTIDIMENSIONAL FILTERING ANALYSIS

Filtering is a popular technique that is widely used to
describe the relation of one output, or system variable, to one
or more inputs. Filters have ample applications in statistical
analysis of time-series and stream data, such as weather
prediction and financial market modeling. We extend our
theory for GMLR to support multidimensional aggregation
of filter measures in a multidimensional data cube.

5.1 Autoregressive Filters

Givenann x 1 vector of time-series datay = (y1,92, -, yn)Tr
the autoregressive filter models the dynamics of the the time-
series using the following model [6]:

E(yi) = myi—1 + moyi—2 + - + Npliop, (30)

where 1 = (n1,72,---,mp) is a p x 1 vector of autoregression
parameters. We can see that the autoregressive filter is a
model that predicts the future data using the p previous
historical data, where p > 1 is the number of lag steps for the
filter. For all the data points, the autoregression can be
written as:

N AT
R I e I S
(Yn) Yy Unpt e Yo Ny

The autoregression analysis can be viewed as a special
case of GMLR regression discussed in the last section, with
the following model matrix Uy:

yl y2 e yp
Y2 Y3 o Yptt

U, (32)
Yn—p Un—p+1 Yn—1

We can now write the regression function in matrix form
as E(y|U,) = U,n. The ordinary least square(OLS) esti-
mates of the autoregression parameters 7 is defined as:

7= (Ul'u,)'Uly. (33)

We show that autoregression filter parameters are
compressible measures. Like the regression analysis, we
propose the following compressed representation of a data
cell to support multidimensional aggregation of autore-
gresssion filter measures.

Definition 3. For multidimensional online autoregression
filtering analysis in data cubes, the Nonlinear Compression
Representation (NCR,) of a data cell ¢ is defined
as NCRG(C) = {777‘Z =1, ap} U {97]‘Za] =1,-,pi<]}/
where 05 =3 1) Yivh-1 - Yjrn-1.

Intuitively, 6;; is a compressed measure that records the
sum of the autocorrelations among the variables with
different distances defined by i and ;.

In the matrix form, the elements in NCR, can be
arranged into two matrices: 9 and ©, where

i O O O O1p

1 Oo1 Oo1 O3 02p
=™ | and ©@=

K Op1 bp2 Opo Opp

Since © is symmetric, we only need to store the upper
triangle of © in NCR, The size of NCR, is
S(p) :p+w:@, where p is the number of lag
steps in the filter. Therefore, similar to NCRs for
regression analysis, the size S(p) of the NCR, for
autoregressive filtering analysis is quadratic in the
number of lag steps p and is independent of the number
of tuples in the data cell.

Since autoregressive filter is used to analyze time-series
data, typically only aggregation in the regression dimension
is performed to combine multiple time segments together.
For aggregation in a regression dimension, suppose
NCRG,(Cl) = (771, 61), NCR{I(CQ) = (’f]g, 62), ey, NCR,I,(Cm) =
()m,©y,) are the NCR,s for the m component cells,
respectively, and suppose NCR,(c,) = (1,,0,) is the
NCR, for the aggregated cell, then NCR,(c,) can be
derived from that of the component cells using the
following equations:

m -1 m m
Ny = (297) (Zgzﬁz) and ©, = ;e‘ : (34)

The correctness of the above lossless aggregation formula
can be proved as a corollary of Theorem 4.5.

5.2 Linear Prediction Filters

A general linear prediction filter [33] usually includes two
parts, one for an autoregressive model, and one for moving
average of input values. Suppose we have n tuples in a cell:
(Liyyi),i=1...n, where each of I;,i=1...n is an input
variable at step 4, and each scalar y; is the measure attribute
of the ith tuple. A linear prediction filter defines the

CHEN ET AL.: REGRESSION CUBES WITH LOSSLESS COMPRESSION AND AGGREGATION 11

262144 T T T T T T T
131072 | 4
3
g 65536 - exhaustive —+— B
3 compression ---X---
2
& 32768 4
£
§ L — B
& X
8192 - e —
e 1 1 1 1 L

9
400 600 800 1000 1200 1400 1600 1800 2000
Size (in K tuples)

(a)

256 T T T T T T T

128 |] E
exhaustive —+—

64 F compression ---X---

32 E

Memory Space (in M-Bytes)

1 1 1 1 Il 1 1 1
600 800 1000 1200 1400 1600 1800 2000
Size (in K tuples)

(b)

Fig. 3. Time and space versus the number of tuples for data sets D3L3C5. (a) Time versus size. (b) Space versus size.

following model relating the output measure and input
variables:

D m
E(y) =Y nwi-j+ Y i, (35)
7=1 k=1

where 1= (1,2, ,np)T is a px1 vector, and a=
(1,9, -, am)T is an m x 1 vector. (7, «) is the parameter
measures for a linear prediction filter.

The linear prediction filter is a model that predicts the
future data using the autoregression of p previous historical
data and the moving average of m previous input data.
Typically, the autoregressive part models the internal
dynamics of a systems and the moving average part models
the dynamics of the interaction between a system and its
external inputs.

The ordinary least square (OLS) estimates of linear
prediction parameters (7, a) is defined as:

7 _
(a) = (UjU;) ULy, (36)
where
Y1 [N yp Il [N I”L
Yy o Y1 Do I
UL = .)
Yn—p Yn—1 I"—P ITL—[H—WL—I

Fitting into the GMLR regression framework, the linear
prediction filter parameters are also compressible measures
under the following compression:

Definition 4. For multidimensional online linear prediction
filter analysis in data cubes, the Nonlinear Compression
Representation (NCRy) of a data cell c is

NCRp(c)={mli=1,---,p U{&li =1,---,m}
U {92J|Z7j: 17 7p+7na7' S.]}v
where eij = Zh;f ULm : UL};.j'
The size of NCRy, is only quadratic to p and m: S(p, m) =

(p* + m*+2pm + 3p+3m)/2 and is independent of the
number of tuples in the data cell. The lossless aggregation

formula along the regression dimension can be derived
straightforwardly from Theorem 4.4.

6 PERFORMANCE STUDY

To evaluate the effectiveness and efficiency of the proposed
NCR compression technique, we perform a performance
study on synthetic data sets. Our results show that the
memory and time taken by the proposed algorithms are
small in comparison to the exhaustive methods.

In our experiments, we need to generate © and 7 for the
NCRs. For a cell with n tuples, the time complexity is O(n)
to compute 0;; using (15), O(nk?) to generate ©, and O(nk)
to generate 1. The overall time complexity to compute the
NCR for a cell is O(nk?). There are k> numbers in © and
k elements in 7, where k, the number of regression termes, is
a small constant independent of n. In our experiments, we
have used linear regression where k = 2. Increasing k will
only increase the complexity by a constant factor.

In our experiments, we use synthetic data sets generated
by a data generator similar in spirit to the IBM data generator
[3] designed for testing data mining algorithms. The
convention for the data sets is as follows: D3L3C107'4000K
means there are three dimensions, each dimension contains
three levels, the node fan-out factor (cardinality) is 10 (i.e., 10
children per node), and there are in total 4000K tuples in the
lowest level. All experiments were conducted on a 1.0GHz
AMD PC with 1G megabytes memory, running Microsoft
Windows-2000 Server.

We compare the proposed compression-based regression
cube computation technique with the exhaustive method in
which the regression models are generated from scratch for
all cuboids. The performance results of data cubing (cube
computation) are reported in Figs. 3, 4, and 5.

Fig. 3 shows the processing time and memory usage for
the two methods to generate regression measures for all
data cells in data cubes with increasing size, where the size
is measured as the number of tuples at the lowest level.
Fig. 4 shows the time and memory usage for the two
methods with increasing number of dimensions, and Fig. 5
shows the results with varying number of levels for each
dimension.

Note that our compression technique saves the time to
compute 7 for all the cells. For data D3L3C5 with linear

262144
65536

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,

T T T
exhaustive —+—
compression ---%77-

4096

T T T
exhaustive —+—
compgession ---X---

VOL. 18, NO. 12, DECEMBER 2006

16384
4096
1024
256
64

Time (in Second)

1 1.5 2 25 3 35 4 4.5 5
Number of Dimensions

(a)

1024

256

64

Memory (in M bytes)

1 1.5 2 2.5 3 35 4 4.5 5
Number of Dimensions

(o)

Fig. 4. Time and space versus the number of dimensions for data sets L2C574000K. (a) Time versus the number of dimensions. (b) Space versus

the number of dimensions.

T T T T T
8192 - exhaustive —t—

vl
4096
2048

1024

512

256 | b

Time (in Second)

128 | 1

64

32 1 1 1 1 1

Number of Levels

(a)

Fig. 5. Time and space versus the number of hierarchy levels for data sets

number of levels.

regression, we need to generate 54,692 1 values for the
27,346 data cells in the data cube. For the exhaustive
method, the time complexity to compute 1 is O(n) which
increases as the dimension levels go up. Using our
compression technique, the time complexity to compute 7
is significantly reduced for high-level cells as we can reuse
the results of descendent cells.

We can see that, in all the cases, the proposed
compressed regression cube is significantly more efficient
in time and space than the exhaustive method without
using compression. Note that the CPU time and space usage
on the vertical axes in these figures are in a logarithmic
scale, so that a small difference along the vertical axes
typically represents a large difference in running time or
space usage. The techniques in Section 5 will have similar
performance as the regression models in Section 4, since
they use similar compression and aggregation techniques.

Our work can also be extended to handle massive stream
data. In practice, stream data are generated in real time and
one can only scan the raw data once. Also, the data cube
space is usually so huge that it is impossible to materialize
all the cuboids. We have studied the performance of the
regression cube in a more sophisticated and more realistic
setting in which the data cuboids are partially and
selectively materialized. Our implementation is based on
the Stream Cube architecture [18], a general and efficient
framework for online processing of large-scale stream data.

1024 . , : . _
exhaustive —+—
compression ---X---
256 g
3
z
64 T |
=
£
-
g 16 - |
g
=
________________ 3
4 fmmmmmmm I Xommmmmmmmmmmmm o X .
1 1 | | | |
3 35 4 4.5 35 5.5 6

Number of Levels
(b)

D3C5T50K. (a) Time versus the number of levels. (b) Space versus the

Our experimental study showed that compression-based
regression cubing can significantly improve the efficiency
for computing multidimensional, multilevel regression
cubes for stream data in the Stream Cube environment.

7 DiscussioN oF RELATED WORK

In this section, we compare our study with some related
work and point out the differences from our work.

In 2002, we proposed to support simple linear regression
in a multidimensional space [9] by compressing each cuboid
to four arguments to support lossless aggregation of linear
regression models. In this paper, we have generalized the
concept of regression cubes and extended the compression
technique to the general GMLR and filtering analysis.

A highly related work to ours is the tool of prediction
cubes proposed in 2005 [8], which supports OLAP of
prediction models including probability-based ensemble,
naive Bayesian classifier, and kernel-density classifier. The
prediction cubes bear similar ideas as regression cubes in
that both of them aim at deriving high-level models from
lower-level models instead of accessing the raw data and
rebuilding the models from scratch. A key difference is
that, the prediction cube only supports models that are
distributively decomposable or algebraically decomposable
(i.e., the models are distributive or algebraic measures) [8],

CHEN ET AL.: REGRESSION CUBES WITH LOSSLESS COMPRESSION AND AGGREGATION 13

whereas the regression models in our study are not
distributively or algebraically decomposable. We have
overcome the mathematical difficulty with regression
models by venturing the concept of compressible measures
and developing lossless compression techniques for
regression models. Also, the theory developed in predic-
tion cubes deals with the prediction accuracy of nonpara-
metric statistical models such as naive Bayesian classifiers,
whereas our compression theory is developed for para-
meter reconstruction of parametric models such as regres-
sion models and filters.

Our paper considers efficient aggregation operations
without accessing the raw data. Palpanas et al. [29] have
considered the reverse problem, which is to derive original
raw data from the aggregates. An approximative estimation
algorithm based on maximum information entropy is
proposed [29]. It will be interesting to study the interactions
of these two complimentary approaches. We believe that
using regression cubes will further improve the quality of
data reconstruction, and estimated raw data can lead to
enhanced statistical models at high levels.

Statistical time series analysis has been extensively
studied [10]. A common assumption of these studies is that
users are responsible for choosing the time series to be
analyzed, including the scope of the object of the time series
and the level of granularity. These studies and tools
(including longitudinal studies [11]) do not provide the
capabilities of relating the time series to the associated
multidimensional multilevel characteristics, and they do
not provide adequate support for online analytical proces-
sing and mining of the time series. In contrast, the
framework established in this paper provides efficient
support to help users form, select, analyze, and mine time
series in a multidimensional and multilevel manner.

Similarity search and efficient retrieval of time series has
been the major focus for time series-related research in the
database community [25], [28]. Previous data mining
research also paid attention to time series data, including
shape-based patterns [2], representative trends [19], peri-
odicity [24], and using time warping for data mining [26],
management and querying of stream data [4], [13], [14],
[16], and data mining (classification and clustering) on
stream data [17], [22]. These works do not relate the
multidimensional, multilevel characteristics with time ser-
ies and stream data and do not seriously consider the
aggregation of statistical measures.

Dimension hierarchies, cubes, and cube operations are
formally introduced by Vassiliadis [32]. Lenz and Thalheim
[27] proposed to classify OLAP aggregation functions into
distributive, algebraic, and holistic ones. In data ware-
housing and OLAP, much progress has been made on the
efficient support of standard and advanced OLAP queries
in data cubes, including selective cube materialization [21],
iceberg cubing [5], [20], cube gradients analysis [12], [23],
exception [30], and intelligent roll-up [31]. However, the
measures studied in OLAP systems are usually single
values, and previous studies do not consider the support for
regression analysis. In contrast, our work studies OLAP of
complex regression measures in data cubes.

In statistics, regression and filtering are parametric
models with fixed functions. In practice, parametric models
are most useful when the users have prior domain knowl-

edge of the applications and know how to choose the
functions. For applications where users have no knowledge
about the data, nonparametric models are preferable. We
are currently working on supporting nonparametric models
in the regression cube environment and will report the
results in a later publication.

8 CONCLUSIONS

In this paper, we have promoted online analytical proces-
sing of advanced statistical measures in multidimensional
data cubes, and proposed a general theory for efficiently
compressing and aggregating the regression and filtering
measures. We have developed the NCR compression
technique for aggregations of linear and nonlinear regres-
sion parameters in data cubes, so that only a small number
of numerical values instead of the complete raw data need
to be registered for multidimensional regression analysis.
Lossless aggregation formulae are derived based on the
compressed NCR representation. The aggregation is effi-
cient in terms of time and space complexities. We have also
extended the results to filtering analysis of time-series data.

We believe that this study is the first one that explores
online regression analysis of multidimensional data. There
are a lot of issues to be explored further. For example, we
can extend the method to support other statistical models
that may bring new computational power and user
flexibility to online multidimensional statistical analysis.
Moreover, the results developed here are confined to
numerical data. It is an interesting topic to study the
extension to other regression models, such as logistic
regression, that can be applied to categorical data. Finally,
we believe that an important direction is to develop data
mining methods to utilize the advanced statistical measures
provided by the regression cubes.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
comments to improve this paper. The work is supported by
research grants from the Washington University in St.
Louis, the US Department of Energy, US National Science
Foundation, the University of Illinois, and Microsoft
Research.

REFERENCES

[1] S. Agarwal, R. Agrawal, P.M. Deshpande, A. Gupta, J.F.
Naughton, R. Ramakrishnan, and S. Sarawagi, “On the Computa-
tion of Multidimensional Aggregates,” Proc. Int’l Conf. Very Large
Data Bases (VLDB "96), pp. 506-521, Sept. 1996.

[2] R. Agrawal, G. Psaila, E.L. Wimmers, and M. Zait, “Querying
Shapes of Histories,” Proc. Int’l Conf. Very Large Data Bases (VLDB
'95), pp. 502-514, Sept. 1995.

[3] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
Int’l Conf. Data Eng. (ICDE '95), pp. 3-14, Mar. 1995.

[4] S.Babu and J. Widom, “Continuous Queries Over Data Streams,”
SIGMOD Record, vol. 30, pp. 109-120, 2001.

[5] K. Beyer and R. Ramakrishnan, “Bottom-Up Computation of
Sparse and Iceberg Cubes,” Proc. ACM-SIGMOD Int'l Conf.
Management of Data (SIGMOD ’99), pp. 359-370, June 1999.

[6] G. Box and F.M. Jenkins, Time Series Analysis: Forecasting and
Control, second ed. Holden-Day, 1976.

[71 S. Chaudhuri and U. Dayal, “An Overview of Data Warehousing
and OLAP Technology,” SIGMOD Record, vol. 26, pp. 65-74, 1997.

(8]
]

(10]
(1]

[12]

[13]

[14]

[15]

[10]

(171

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

[20]

(271

(28]

[29]

[30]

B31]

(32]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

B.C. Chen, L. Chen, Y. Lin, and R. Ramakrishnan, “Prediction
Cubes,” Proc. Very Large Data Bases Conf., 2005.

Y. Chen, G. Dong,]J. Han, BW. Wah, and J. Wang, “Multi-
dimensional Regression Analysis of Time-Series Data Streams,”
Proc. Very Large Data Bases Conf., 2002.

D. Cook and S. Weisberg, Applied Regression Including Computing
and Graphics. John Wiley, 1999.

P. Diggle, K. Liang, and S. Zeger, Analysis of Longitudinal Data.
Oxford Science Publications, 1994.

G. Dong, J. Han,]J. Lam, J. Pei, and K. Wang, “Mining Multi-
Dimensional Constrained Gradients in Data Cubes,” Proc. Int’l
Conf. Very Large Data Bases (VLDB '01), pp. 321-330, Sept. 2001.

J. Gehrke, F. Korn, and D. Srivastava, “On Computing Correlated
Aggregates over Continuous Data Streams,” Proc. ACM-SIGMOD
Int’l Conf. Management of Data (SIGMOD '01), pp. 13-24, May 2001.
A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss,
“Surfing Wavelets on Streams: One-Pass Summaries for Approx-
imate Aggregate Queries,” Proc. Int’l Conf. Very Large Data Bases
(VLDB '01), pp. 79-88, Sept. 2001.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M.
Venkatrao, F. Pellow, and H. Pirahesh, “Data Cube: A Relational
Aggregation Operator Generalizing Group-By, Cross-Tab and
Sub-Totals,” Data Mining and Knowledge Discovery, vol. 1, pp. 29-
54, 1997.

M. Greenwald and S. Khanna, “Space-Efficient Online Computa-
tion of Quantile Summaries,” Proc. ACM-SIGMOD Int’l Conf.
Management of Data (SIGMOD '01), pp. 58-66, May 2001.

S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering
Data Streams,” Proc. Symp. Foundations of Computer Science (FOCS
"00), pp- 359-366, 2000.

J. Han, Y. Chen, G. Dong, J. Pei, BW. Wah, J. Wang, and D. Cai,
“Stream Cube: An Architecture for Multi-Dimensional Analysis of
Data Streams,” Distributed and Parallel Databases |., 2005.

J. Han, G. Dong, and Y. Yin, “Efficient Mining of Partial Periodic
Patterns in Time Series Database,” Proc. Int’l Conf. Data Eng. (ICDE
'99), pp- 106-115, Apr. 1999.

J. Han,]. Pei, G. Dong, and K. Wang, “Efficient Computation of
Iceberg Cubes With Complex Measures,” Proc. ACM-SIGMOD
Int’l Conf. Management of Data (SIGMOD '01), pp. 1-12, May 2001.
V. Harinarayan, A. Rajaraman, and].D. Ullman, “Implementing
Data Cubes Efficiently,” Proc. ACM-SIGMOD Int’l Conf. Manage-
ment of Data (SIGMOD ’96), pp. 205-216, June 1996.

G. Hulten, L. Spencer, and P. Domingos, “Mining Time-Changing
Data Streams,” Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery
in Databases (KDD '01), Aug. 2001.

T. Imielinski, L. Khachiyan, and A. Abdulghani, “Cubegrades:
Generalizing Association Rules,” technical report, Dept. of
Computer Science, Rutgers Univ., Aug. 2000.

P. Indyk, N. Koudas, and S. Muthukrishnan, “Identifying
Representative Trends in Massive Time Series Data Sets Using
Sketches,” Proc. Int’l Conf. Very Large Data Bases (VLDB ’00),
pp- 363-372, Sept. 2000.

T. Kahveci and A K. Singh, “Variable Length Queries for Time
Series Data,” Proc. Int’l Conf. Data Eng. (ICDE '01), Mar. 2001.
E.J. Keogh and M.]. Pazzani, “Scaling Up Dynamic Time Warping
to Massive Dataset,” Proc. European Symp. Principle of Data Mining
and Knowledge Discovery (PKDD ’99), pp. 1-11, Sept. 1999.

H. Lenz and B. Thalheim, “OLAP Databases and Aggregation
Functions,” Proc. 13th Int’l Conf. Scientific and Statistical Database
Management, pp. 91-100, 2001.

Y.-S. Moon, K.-Y. Whang, and W.-K. Loh, “Duality-Based
Subsequence Matching in Time-Series Databases,” Proc. Int’l Conf.
Data Eng. (ICDE '01), pp. 263-272, Apr. 2001.

T. Palpanas, N. Koudas, and A.O. Mendelzon, “Using Datacube
Aggregates for Approximate Querying and Deviation Detection,”
IEEE Trans. Knowledge and Data Eng., vol. 17, no. 11, pp. 1465-1477,
Nov. 2005.

S. Sarawagi, R. Agrawal, and N. Megiddo, “Discovery-Driven
Exploration of OLAP Data Cubes,” Proc. Int’l Conf. Extending
Database Technology (EDBT ’98), pp. 168-182, Mar. 1998.

G. Sathe and S. Sarawagi, “Intelligent Rollups in Multidimen-
sional OLAP Data,” Proc. Int’l Conf. Very Large Data Bases (VLDB
'01), pp. 531-540, Sept. 2001.

P. Vassiliadis, “Modeling Multidimensional Databases, Cubes and
Cube Operations,” Proc. 10th Int’l Conf. Scientific and Statistical
Database Management, pp. 53-62, 1998.

[33] A.B. Williams and FE.J. Taylor, Electronic Filter Design Handbook.
McGraw-Hill, 1995.

[34] Y. Zhao, P.M. Deshpande, and J.F. Naughton, “An Array-Based
Algorithm for Simultaneous Multidimensional Aggregates,” Proc.
ACM-SIGMOD Int’l Conf. Management of Data (SIGMOD ’97),
pp- 159-170, May 1997.

Yixin Chen received the PhD degree in comput-
ing science from the University of lllinois at
Urbana-Champaign in 2005. He is an assistant
professor of computer science at the Washing-
ton University in St Louis, Missouri. His research
interests including nonlinear optimization, con-
strained search, planning and scheduling, data
mining, and data warehousing. His work on
constraint partitioning and planning has won
First Prizes in optimal and satisficing tracks in
the International Planning Competitions (2004 and 2006) and the Best
Paper Award at the International Conference on Tools for Al (2005). His
work on data clustering has won the Best Paper Award at the
International Conference on Machine Learning and Cybernetics (2004)
and the Best Paper nomination at the International Conference on
Intelligent Agent Technology (2004). He is partially funded by a Early
Career Principal Investigator Award (2006) from the US Department of
Energy.

Guozhu Dong received the PhD degree from
the University of Southern California in 1988. He
is a professor at Wright State University. His
main research interests are databases, data
mining, and bioinformatics. He has published
around 100 articles in journals and conferences,
holds three US patents, and was a recipient of
the Best Paper Award from ICDM 2005.
Representative research includes results on
first-order incremental maintenance of transitive
closure and shortest paths, expressive power of first-order queries with
arithmetic constraints, mining of emerging patterns and their use for
classification and bioinformatics, and iceberg cubing, gradient cubing,
regression cubing, and bound-prune cubing for OLAP. He has served on
the program committee of ICDE, ICDM, ICDT, ACM PODS, ACM
SIGKDD, and VLDB. He was a program commitee cochair of the
International Conference on Web-Age Information Management 2003, is
on the steering committee of the same conference series, is on the
editorial board of the International Journal of Information Technology,
and will serve as a program cochair of the Joint International Conference
of APWeb and WAIM in 2007. His research has been funded by US
NSF, ARC, AFRL, and private corporations.

Jiawei Han is a professor in the Department of
Computer Science at the University of lllinois at
Urbana-Champaign. He has been working on
research into data mining, data warehousing,
stream data mining, spatiotemporal and multi-
media data mining, biological data mining, social
network analysis, text and Web mining, and
software bug mining, with more than 300
conference and journal publications. He has
chaired or served in many program committees
of |nternat|ona| conferences and workshops. He also served or is
serving on the editorial boards for Data Mining and Knowledge
Discovery, the IEEE Transactions on Knowledge and Data Engineering,
the Journal of Computer Science and Technology, and the Journal of
Intelligent Information Systems. He is founding editor-in-chief of the
ACM Transactions on Knowledge Discovery from Data (TKDD), and on
the board of directors for the Executive Committee of ACM SIGKDD. He
has received ACM SIGKDD Innovation Award (2004) and IEEE
Computer Society Technical Achievement Award (2005). He is an
ACM Fellow (2004).

CHEN ET AL.: REGRESSION CUBES WITH LOSSLESS COMPRESSION AND AGGREGATION 15

Jian Pei received the PhD degree in computing
science from Simon Fraser University in 2002.
He is an assistant professor of computing
science at Simon Fraser University. His re-
search focuses on effective and efficient data
analysis techniques for novel data intensive
applications. His current research is supported
in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC), the US
National Science Foundation (NSF), Hewlett-
Packard Company (HP), and the Canadian Imperial Bank of Commerce
(CIBC). He has published prolifically in refereed journals, conferences,
and workshops, has served regularly in the organization committees and
the program committees of many international conferences and work-
shops, and has been a reviewer for the leading academic journals in his
fields. He is a member of the ACM.

Benjamin W. Wah received the PhD degree in
computer science from the University of Califor-
nia, Berkeley, in 1979. He is currently the
Franklin W. Woeltge Endowed Professor of
Electrical and Computer Engineering and a
professor of the Coordinated Science Labora-
tory of the University of lllinois at Urbana-
Champaign, Urbana, IL. Previously, he had
served on the faculty of Purdue University
(1979-1985), as a program director at the US
Natlonal Science Foundation (1988-89), as Fujitsu Visiting Chair
Professor of Intelligence Engineering, University of Tokyo (1992), and
McKay Visiting Professor of Electrical Engineering and Computer
Science, University of California, Berkeley (1994). In 1989, he was
awarded a university scholar at the University of lllinois; in 1998, he
received the IEEE Computer Society Technical Achievement Award; in
2000, the IEEE Millennium Medal; in 2003, the Raymond T. Yeh Lifetime
Achievement Award from the Society for Design and Process Science;
and in 2006, the IEEE Computer Society W. Wallace-McDowell Award
and the Pan Wen-Yuan Outstanding Research Award. Dr. Wah’s current
research interests are in the areas of nonlinear search and optimization,
multimedia signal processing, and computer networks. He cofounded
the IEEE Transactions on Knowledge and Data Engineering in 1988 and
served as its editor-in-chief between 1993 and 1996, and is the honorary
editor-in-chief of Knowledge and Information Systems. He currently
serves on the editorial boards of Information Sciences, the International
Journal on Atrtificial Intelligence Tools, the Journal of VLSI Signal
Processing, World Wide Web, and Neural Processing Letters. He had
chaired a number of international conferences, including the 2000 IFIP
World Congress and the 2006 IEEE/WIC/ACM International Confer-
ences on Data Mining and Intelligent Agent Technology. He has served
the IEEE Computer Society in various capacities, including as vice
president of Publications (1998 and 1999) and president (2001). He is a
fellow of the AAAS, the ACM, and the IEEE.

Jianyong Wang received the PhD degree in
computer science in 1999 from the Institute of
Computing Technology, the Chinese Academy
of Sciences. Since then, he has worked as an
assistant professor in the Department of Com-
_— puter Science and Technology, Peking Univer-
- sity, and visited the School of Computing

Science at Simon Fraser University, the Depart-
‘~ ment of Computer Science at the University of

lllinois at Urbana-Champaign, and the Depart-
ment of Computer Science and Engineering at the University of
Minnesota, working in data mining. He is currently an associate
professor in the Department of Computer Science and Technology,
Tsinghua University, Beijing, China. He is a member of the IEEE
Computer Society and the ACM SIGKDD.

- -
-

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

