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ABSTRACT
Joint mining of multiple data sets can often discover interesting,
novel, and reliable patterns which cannot be obtained solely from
any single source. For example, in cross-market customer segmen-
tation, a group of customers who behave similarly in multiple mar-
kets should be considered as a more coherent and more reliable
cluster than clusters found in a single market. As another exam-
ple, in bioinformatics, by joint mining of gene expression data and
protein interaction data, we can find clusters of genes whichshow
coherent expression patterns and also produce interactingproteins.
Such clusters may be potential pathways.

In this paper, we investigate a novel data mining problem,min-
ing cross-graph quasi-cliques, which is generalized from several
interesting applications such as cross-market customer segmenta-
tion and joint mining of gene expression data and protein interac-
tion data. We build a general model for mining cross-graph quasi-
cliques, show why the complete set of cross-graph quasi-cliques
cannot be found by previous data mining methods, and study the
complexity of the problem. While the problem is difficult, wede-
velop an efficient algorithm,Crochet, which exploits several inter-
esting and effective techniques and heuristics to efficaciously mine
cross-graph quasi-cliques. A systematic performance study is re-
ported on both synthetic and real data sets. We demonstrate some
interesting and meaningful cross-graph quasi-cliques in bioinfor-
matics. The experimental results also show that algorithmCrochet
is efficient and scalable.

Categories and Subject Descriptors:H.2.8 [Database Applica-
tions]: Data Mining

General Terms: Algorithms, Performance.

Keywords: Graph mining, mining multiple data sets, quasi-cliques,
bioinformatics.
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1. INTRODUCTION
In many applications, data is often collected, organized and stored

in multiple sources. Many hidden patterns crossing multiple pieces
of data cannot be found by mining only one single data set. There-
fore, the advanced data analysis in practice calls forjoint mining
of multiple data sets, which can often discover interesting, novel,
and reliable patterns that cannot be obtained solely from any single
source.

EXAMPLE 1. (MOTIVATING EXAMPLE – CROSS-MARKET

CUSTOMER SEGMENTATION). In marketing and customer relation
management, customer segmentation is an important task, which
partitions customers into groups according to their marketbehav-
ior such as their purchase records and their responses to marketing
campaigns. Customer segmentation in a single market has been ex-
tensively studied. However, it is interesting and informative to ex-
plorecross-market customer segmentation, which identifies groups
of customers who have similar behavior in multiple markets.Cus-
tomer groups found in cross-market customer segmentation can be
more coherent and more reliable.

Consider the market behavior of six customers, Ann, Bunny,
Cathy, Deborah, Ellen and Frank, in two markets, the financial
product market and the consumer product market. In a specific
market, the similarity among customers in market behavior can be
modeled as a similarity graph. Each customer is a vertex in the
graph, and two customers are connected by an edge if their behav-
ior in the market is similar enough. Figure 1 shows the similarity
graphs in the two markets.
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Figure 1: The similarity graph of six customers in two markets.

A close look at both similarity graphs may find that the sub-
graphs induced by the group of customersS = {Ann, Bunny,
Cathy, Deborah, Ellen} in both similarity graphs are interesting:
they are quasi-cliques (i.e., the subgraphs are almost cliques). In
each similarity graph, each customer inS is similar to at least3
out of the4 customers in the group. This observation may strongly
suggest thatS is a coherent and reliable customer group.

Example 1 motivates a novel problem of mining multiple graphs
as follows. Consider multiple graphs about a set of objects which



are the vertices of the graphs. We are interested in finding groups
of objects such that the induced subgraph of each group of objects
in each graph is almost a clique (thus called quasi-clique) –that
is, in every graph, each object in a group is connected to at least
a portionγ (0 < γ ≤ 1) of the other objects in the same group,
whereγ is a user-specified parameter. We call the problemmining
cross-graph quasi-cliques.

Mining cross-graph quasi-cliques and its variations appear in
many applications. We present below another interesting example
in bioinformatics – joint mining gene expression data and protein
interaction data.

EXAMPLE 2. (MOTIVATING EXAMPLE – JOINT MINING OF

GENE EXPRESSION DATA AND PROTEIN INTERACTION DATA).
From the gene expression data, we can find co-expressed genes,
which are groups of genes that demonstrate coherent patterns on
samples or against stimuli. On the other hand, from the protein
interaction data, we can find groups of proteins which frequently
interact with each other.

Genes and proteins are related – a protein is a product of a gene
(however, one gene can produce more than one protein). If we can
conduct a joint mining of both gene expression data and protein
interaction data, then we may find the clusters of genes that are
co-expressed and also their proteins interact.

Such cross-data set clusters found from the joint mining arein-
teresting and meaningful in bioinformatics. First, both the gene
expression data and the protein data are often very noisy. Clus-
ters in a single source are often unreliable. The clusters confirmed
by both data sets will strongly indicate the correlation/connection
among the genes in a cluster, and thus are more reliable. Second, al-
though highly related, gene expression data and protein interaction
data still carry different biological meaning. The coincidence of
co-expressed genes and interacting proteins is biologically signifi-
cant. As indicated in [25], many pathways exhibit two properties:
their genes exhibit a similar gene expression profile, and the protein
products of the genes often interact.

Technically, the gene expression data and the protein interac-
tion data can be modeled using a gene coherence graphGg and
a protein interaction graphGp, respectively. In the gene coherence
graphGg , vertices are genes, and two genes are connected if their
expression patterns are similar according to a user-specified simi-
larity measure (e.g., Euclidean distance, Pearson’s correlation coef-
ficient, KL-distance [19], or pattern-based similarity measures [7,
29]). In the protein interaction graphGp, the vertices are proteins,
and two proteins are connected if they interact with each other. We
use a surjective (i.e., onto) mappingm(p) = g from proteins to
genes to model the relationship between genes and proteins.

A group of proteins is interesting if each protein in the group
interacts with most of the rest of the proteins in the same group,
and in the set of genes producing the group of proteins, each gene
is similar to most of the rest of the genes in the same group. They
arecross-graph quasi-cliques.

As shown, mining multiple graphs may discover interesting pat-
terns that cannot be found by conventional data mining approaches.
Finding cliques in a graph is a problem that has been investigated
for a long time. Computing quasi-cliques in one graph was also
the topic of some recent studies, such as [1, 21]. One may won-
der, “Can the complete set of cross-graph quasi-cliques be mined
easily by extending the existing algorithms for finding cliques or
quasi-cliques in an ‘integrated’ graph?”

EXAMPLE 3. (CAN CROSS-GRAPH QUASI-CLIQUES BE MINED

FROM AN INTEGRATED GRAPH?). A natural thinking may be as
follows. We can integrate the multiple graphs into one basedon
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Figure 2: An integrated graph based on a weighted sum sim-
ilarity function. The thick edges are of weight 2 and the thin
edges are of weight1.

a similarity function between data objects. The integratedsimilar
function combines the similarity between data objects in different
data sets in some weighted manner. Then, we can find quasi-cliques
in the integrated graph.

Consider the two graphs in Example 1 again. Figure 2 shows
an integrated graph based on a weighted sum similarity function.
Any two objects are connected by an edge in the integrated graph
if there is an edge between those two objects in eitherGf or Gc in
Figure 1. The weight of an edge is2 if the edge appears in bothGf

andGc, otherwise, the weight is1.
From the integrated graph, we cannot observe the groupS =

{Ann, Bunny, Cathy, Deborah, Ellen} as a cluster. If we only con-
sider all edges with weight2, each of Ann, Bunny, Deborah and
Ellen only connects to2 of the other customers inS. If we con-
sider all edges with weight1 or above, then the6 customers form a
clique. Therefore, the integrated graph method does not work!

Although there are extensive studies on cliques and some recent
studies on quasi-cliques, to the best of our knowledge, our study is
the first one to address the following two issues at the same time.

• We investigatemining from multiple graphsthe quasi-cliques.
We propose a general model on the cross-graph quasi-cliques
and the mining.

• We compute thecomplete set of cross-graphquasi-cliques.
The previous studies focused on finding one quasi-clique (from
one graph) with an optimization goal, such as maximizing
the number of vertices in the clique. However, many data
mining applications require the completeness of the answers.

Mining the complete set of quasi-cliques from multiple graphs
is challenging. A naı̈ve method may have to examine a huge num-
ber of possible combinations of vertices and edges over the graphs,
which is computationally expensive or even prohibitive on large
graphs (e.g., graphs with thousands of vertices and tens of thou-
sands of edges).

Bearing the above challenges, in this paper, we tackle the prob-
lem of mining cross-graph quasi-cliques and make the following
contributions.

• We propose a novel and general model for the problem of
mining cross-graph quasi-cliques. We show that the cross-
graph quasi-cliques are interesting and meaningful in appli-
cations.

• We investigate the complexity of the problem and develop
an efficient algorithm to tackle the problem. We show that
the problem is in #P-complete. We develop an efficient al-
gorithm, Crochet, to mine cross-graph quasi-cliques.Cro-
chetexploits several interesting and effective techniques and
heuristics to prune the search space sharply.



• We present a systematic performance study onCrochetto
verify our design using both synthetic and real data sets. The
experimental results show that the cross-graph quasi-cliques
are interesting in real applications andCrochet is efficient
and scalable.

The remainder of the paper is organized as follows. In Section 2,
we present the general model of mining cross-graph quasi-cliques,
and also show the complexity of the problem. The algorithms are
developed in Section 3. A systematic performance study is reported
in Section 4. We discuss related work in Section 5. Section 6 con-
cludes the paper.

2. MODEL AND PROBLEM DEFINITION
In this section, we propose a general model for cross-graph quasi-

clique mining and show the complexity of the problem.

2.1 Quasi-Complete Graph
In this paper, we considersimple graphsonly, i.e., the graphs

without self-loops or multi-edges. For graphG, V (G) andE(G)
denote the sets of vertices and edges ofG, respectively.

For verticesu, v ∈ V (G), let d(u, v) be the number of edges in
the shortest path betweenu andv. Trivially, d(u, u) = 0. A graph
is calledconnectedif d(u, v) < ∞ for anyu, v ∈ V (G).

For a vertexu ∈ V (G), N(u) is the set of neighbors ofu, i.e.,
N(u) = {v|(u, v) ∈ E(G)}. Moreover, we defineNk(u) =

{v|d(u, v) ≤ k} for (k ≥ 1). Clearly, N (|V (G)|−1)(u) is the
set of vertices that are connected tou. We also denote the set by
N∗(u). In a connected graph,N∗(u) = V (G).

In graphG, let U ⊆ V (G) be a subset of vertices. Thesub-
graph induced onU , denoted byG(U), is the subgraph ofG whose
vertex-set isU and whose edge-set consists of all edges inG that
have both endpoints inU , i.e., G(U) = (U, EU ), whereEU =
{(u, v)|(u, v) ∈ E(G) ∧ u, v ∈ U}.

A complete graphis a graph such that every pair of vertices is
joined by an edge. In a graphG, a subset of verticesS ⊆ V (G)
is aclique if the subgraph induced onS, i.e.,G(S), is a complete
graph, and no proper superset ofS has this property. Please note
that, there can be more than one clique in a graph, and the cliques
may not be exclusive. That is, two cliques may share some common
vertices.

DEFINITION 2.1. (QUASI-COMPLETE GRAPH AND QUASI-
CLIQUE). A connected graphG is aγ-complete graph(0 < γ ≤
1) if every vertex in the graph has a degree at leastγ ·(|V (G)|−1).

In a graphG, a subset of verticesS ⊆ V (G) is aγ-quasi-clique
(0 < γ ≤ 1) if G(S) is aγ-quasi-complete graph, and no proper
superset ofS has this property.

Clearly, a1-quasi-complete graph is a complete graph, and a1-
quasi-clique is a clique.

The degree of a vertex must be an integer. Aγ-quasi-complete
graphG must be connected. That is, necessarily,γ · (|V (G)| −
1) ≥ 1. Hence, we haveγ ≥ 1

|V (G)|−1
. Moreover, we have the

following result.

PROPOSITION 1. (ANTI-MONOTONICITY OF COMPLETE

GRAPHS). In a graphG, let S ⊆ V (G). If G(S) is a complete
graph, then, for any subsetS′ ⊂ S, G(S) is also a complete graph.

In general, the anti-monotonicity does not hold for quasi-complete
graphs. That is, for aγ-quasi-complete graphG (0 < γ < 1),
G(S) may not be aγ-quasi-complete graph for anS ⊂ V (G).
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Figure 3: A graph and an induced subgraph.

EXAMPLE 4 (QUASI-COMPLETE GRAPH). Consider graphG
in Figure 3. It is a0.8-quasi-complete graph, since every vertex has
a degree of4 = (6 − 1) × 0.8.

Interestingly, a subgraph induced on any subset of5 vertices is
not a0.8-quasi-complete graph. As an example, the subgraph in-
duced on{a, b, c, d, e} is also shown in Figure 3. Verticesa, c, d
ande in the induced subgraph have a degree of3 < (5−1)×0.8 =
3.2.

In γ-quasi-complete graphs, parameterγ controls the compact-
ness of the graph. That is, with a largerγ, each vertex joins to
more other vertices and thus the graph is more compact. One
measure of the compactness of a graph is the diameter. Thedi-
ameter ofG, denoted bydiam(G), is defined asdiam(G) =
maxu,v∈V (G){d(u, v)}. It is interesting to examine the relation-
ship between the diameter of aγ-quasi-complete graph andγ.

THEOREM 1 (DIAMETER OF QUASI-COMPLETE GRAPH). Let
G be aγ-quasi-complete graph such thatn = |V (G)| > 1.

diam(G)
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:

= 1 if 1 ≥ γ > n−2
n−1

≤ 2 if n−2
n−1

≥ γ ≥ 1
2

≤ 3⌊ n
γ(n−1)+1

⌋ − 3 if 1
2

> γ ≥ 2
n−1

and
n mod (γ(n − 1) + 1) = 0

≤ 3⌊ n
γ(n−1)+1

⌋ − 2 if 1
2

> γ ≥ 2
n−1

and
n mod (γ(n − 1) + 1) = 1

≤ 3⌊ n
γ(n−1)+1

⌋ − 1 if 1
2

> γ ≥ 2
n−1

and
n mod (γ(n − 1) + 1) ≥ 2

≤ n − 1 if γ = 1
n−1

The upper bounds are realizable.
Proof sketch. When1 ≥ γ > n−2

n−1
, the degree of each vertex is

greater than(n − 2), and hence must be(n − 1). Thus,G is a
complete graph anddiam(G) = 1.

When n−1
n−2

≥ γ ≥ 1
2
, for any verticesu, v ∈ V (G), |{u, v} ∪

N(u) ∪ N(v)| ≥ n. Thus,diam(G) = 2.
When 1

2
> γ ≥ 2

n−1
, the situations are complicated. Consider

verticesu, v ∈ V (G) such that the shortest path betweenu andv
has lengthl = diam(G). V (G) can be partitioned into(l + 1)
exclusive groupsS1, . . . ,Sl+1: a vertexw ∈ Si (1 < i ≤ (l + 1))
if and only if d(u, w) = (i − 1).

Clearly,∪1≤i≤(l+1)Si = V (G), otherwise,diam(G) > l. A
critical fact is that, for any vertexw ∈ Si (1 ≤ i ≤ (i + 1)),
N(w) ⊆ Si−1 ∪ Si ∪ Si+1. That means|Si−1 ∪ Si ∪ Si+1| =
|Si−1|+|Si|+|Si+1| ≥ deg(w)+1 ≥ γ(n−1)+1. Moreover, we
have|S1| = 1, |S2| = γ(n−1), and|Sl|+ |Sl+1| ≥ γ(n−1)+1
(otherwise, there exists at least one vertexv such thatdeg(v) <
γ(n− 1)). The inequations in the theorem can be proved using the
above inequations. Limited by space, we omit the details here.

Whenγ = 1
n−1

, some vertices have degree1. In the worst case,
the graph can be a path, and thusdiam(G) = (n − 1). Recall that
a quasi-complete graph must be connected.γ ≥ 1

n−1
.

The bounds can be shown realizable. For example, Figure 4
shows three cases that the bounds are realized for1

2
> γ ≥ 2

n−1
.
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Figure 4: The cases where1
2

> γ ≥ 2
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and the upper bounds in Theorem 1 are realized.
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Figure 5: The change of diameter onγ (|V (G)| = 100).

The theorem is important, which discloses the effect ofγ. Fig-
ure 5 shows the trend of diameter onγ, where the number of ver-
tices is set to100. We can observe the following. First, whenγ is
reasonably large, i.e.,0.5 or up, theγ-quasi-complete graph is com-
pact, i.e., the diameter is very small, no more than2. Second, when
γ is small, the upper bound of the diameter of the quasi-complete
graph is approximately in portion to1

γ
, which is intuitive. Third,

whenγ is small, the quasi-complete graph can be a series of small
clusters. Whenγ = 1

n−1
, in the worst case, the quasi-complete

graph can be a path ofn vertices. Based on the above analysis, a
user may be often interested in quasi-complete graphs with area-
sonably largeγ value, such asγ ≈ 0.5 or larger. In such cases, the
diameter is bounded by a small integer.

2.2 Cross-Graph Quasi-Clique
Intuitively, a cross-graph quasi-clique is a maximal set ofver-

tices whose induced graphs in all the graphs are quasi-complete
subgraphs.

DEFINITION 2.2 (CROSS-GRAPH QUASI-CLIQUE). LetU be
a set of vertices andG1, . . . ,Gn ben graphs such thatV (Gi) = U
(1 ≤ i ≤ n). For parametersγ1, . . . , γn (0 < γi ≤ 1), a subset
S ⊆ U of vertices is called across-graph quasi-clique(CGQCfor
short) if Gi(S) is aγi-quasi-complete graph for all(1 ≤ i ≤ n)
and there is no proper superset ofS has the property.

Clearly, in Definition 2.2, whenn = 1, a cross-graph quasi-
clique on a single graph is simply a quasi-clique in the graph. There-
fore, the concept of cross-graph quasi-clique is a generalization of
quasi-clique crossing multiple graphs. However, whenn > 1, a
cross-graph quasi-clique may not be a quasi-clique in any graph
due to the maximality requirement.

EXAMPLE 5 (MAXIMALITY ). Consider graphsG1 and G2

in Figure 6. Supposeγ1 = γ2 = 0.5. Then,S = {a, b, d} is a
cross-graph quasi-clique. However,S is not a0.5-quasi-clique in
eitherG1 or G2. In G1, S is a proper subset of{a, b, d, e} which is
a 0.5-quasi-clique. InG2, S is also a proper subset of{a, b, c, d}
which is a0.5-quasi-clique.

A cross-graph quasi-clique can be insignificant in data analysis
if it contains a very small number of vertices. For example, asingle
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Figure 6: A cross-graph quasi-clique may not be quasi-cliques
in any individual graphs due to the maximality requirement.

vertex itself is a (trivial) quasi-complete graph for anyγ. To avoid
such a triviality, a user may specify a minimum number of vertices
in the cross-graph quasi-cliques. Only cross-graph quasi-cliques
large enough should be returned.

Problem Definition (Mining Cross-Graph Quasi-Cliques). For
a given set of graphsG1, . . . , Gn on a set of verticesU (i.e.,
V (G1) = · · · = V (Gn) = U ), parametersγ1, . . . , γn (0 < γi ≤
1), and a minimum size thresholdmins, the problem ofmining
cross-graph quasi-cliquesis to find the complete set of cross-graph
quasi-cliques that each has at leastmins vertices.

In some cases, such as joint mining of gene expression data and
protein interaction data (Example 2), the sets of vertices in differ-
ent graphs are different, and there exist mappings between sets of
vertices in different graphs. Our basic model of mining cross-graph
quasi-cliques can be extended to handle such cases.

DEFINITION 2.3. (CROSS-GRAPH QUASI-CLIQUE WITH MAP-
PING). Let G1, . . . ,Gn ben graphs andf2, . . . ,fn ben functions
such thatfi (2 ≤ i ≤ n) is from V (G1) to V (Gi). For pa-
rametersγ1, . . . , γn (0 < γi ≤ 1), a subsetS ⊆ V (G1) of
vertices inG1 is called across-graph quasi-clique with mapping
(CGQC(M) for short) if (1) G1(S) is a γ1-quasi-complete graph;
(2) for Si = {fi(v)|v ∈ S}, Gi(Si) is aγi-quasi-complete graph;
and (3) there is no proper superset ofS has properties (1) and (2).

Problem Definition (Mining Cross-Graph Quasi-Cliques with
Mapping). For a given set of graphsG1, . . . ,Gn and functionsf2,
. . . , fn such thatfi : V (G1) → V (Gi) (2 ≤ i ≤ n), parameters
γ1, . . . , γn (0 < γi ≤ 1), and a minimum size thresholdmins,
the problem ofmining cross-graph quasi-cliques with mappingis
to find the complete set of CGQC(M)’s that each has at leastmins

vertices.

THEOREM 2 (COMPLEXITY). The problem of counting the
number of cross-graph quasi-cliques is in #P-Complete.
Proof sketch. We prove by restriction. That is, we show that the
problem of counting the number of cross-graph quasi-cliques con-
tains a #P-Complete problem as a special case. In fact, the prob-
lem of counting the number of cliques from one graph is in #P-
Complete [14], and is a special case of the problem of counting the
number of cross-graph quasi-cliques wheren = 1 andγ = 1.

Thus, the problem of mining (i.e., enumerating) the complete set
of cross-graph quasi-cliques is NP-hard in the worst case.



Input: graphsG1, . . . ,Gn; γ1, . . . ,γn; mapping
functionsf2, . . . ,fn; minimum size thresholdmins;

Output: the complete set of cross-graph quasi-cliques;
Method:

// Phase 1: miningG1

1: in G1, compute the complete set ofγ1-quasi-complete
subgraphsH that has at leastmins vertices;
// Phase 2: jointly mining

2: for eachγ1-quasi-complete subgraphH , in the
|V (H)| descending order

3: let cross-graph-quasi-clique= true;
4: if H has a proper superset as a cross-graph

quasi-cliquethen continue;
5: for i = 2 to n
6: if Gi(V (H)) is not aγi-quasi-complete graph

then cross-graph-quasi-clique= false, break;
end-for

7: if (cross-graph-quasi-clique== true) then
outputV (H) as a cross-graph quasi-clique;

end-for

Figure 7: The rudimentary algorithm.

3. ALGORITHMS
In this section, we develop algorithms for mining cross-graph

quasi-cliques. The algorithms target at the applications where there
are a small number of large graphs. We assume that the graphs can
be held into main memory.

We present two algorithms. The first algorithm is rudimentary.
The second algorithm,Crochet, exploits several smart and effective
techniques to achieve efficient mining.

3.1 A Rudimentary Algorithm
As illustrated in Examples 4 and 5, a cross-graph quasi-clique

may not be a quasi-clique in any graph, and an induced subgraph on
a subset of a quasi-clique may not even be a quasi-complete graph.
Hence, we cannot find the quasi-cliques in each graph and takethe
intersection. Instead,we have to take a joint mining approach.

By definition, a cross-graph quasi-clique must be a quasi-complete
graph in every graph by the mapping. Thus, a rudimentary algo-
rithm works in two steps:miningG1 andjointly mining, as shown
in Figure 7.

In the first step, we mine the complete set ofγ1-quasi-complete
graphs inG1 which have at leastmins vertices. In other words, in
graphG1, we find the subsets of verticesS such that the subgraph
induced onS is aγ1-quasi-complete graph.

In the step of joint mining, for each subset of verticesS found in
the first step, we check whetherGi(S) is still a γi-quasi-complete
graph for all(2 ≤ i ≤ n). Only maximal subsets passing the tests
are output as the cross-graph quasi-cliques.

Please note that the rudimentary algorithm never searches the
complete set of quasi-complete subgraphs in all the graphs.Instead,
to prune the search space, it exploits the fact that a cross-graph
quasi-clique must form a quasi-complete subgraph inG1 and must
be a maximal subset having the properties in Definition 2.2.

The rudimentary algorithm may not be efficient in mining large
graphs due to two reasons. First,it still has to compute the com-
plete set of quasi-complete subgraphs inG1, since it conducts the
joint mining as the second step. If G1 is large and dense (i.e., it
has many edges), then there can be many such quasi-complete sub-
graphs. Computing all of them can be expensive.Can we compute
as less quasi-complete subgraphs inG1 as possible?

{a,b,d}

{a,b} {a,c}

{a,c,d}

{a,b,c,d}

{a,d}

{a}

{b,c} {b,d}

{b,c,d}

{b} {c}

{c,d}

{d}

{}

{a,b,c}

Figure 8: A set enumeration tree.

Second,the rudimentary algorithm mines the whole graphs.If
the graphs are large, it can be costly. A careful check can find
that, some vertices and edges in the graphs, such as the vertices
with low degrees, cannot be a part of a cross-graph quasi-clique
or the induced subgraphs. Such parts should be pruned as early as
possible so that the graphs can be reduced. Mining smaller graphs
can definitely improve the efficiency. In order to reduce the graphs,
we have to consider multiple graphs at the very beginning.Can we
reduce the graphs aggressively to speed up the mining?

In summary, the major drawback of the rudimentary algorithmis
that it conducts the joint mining late. We need to exploit “aggres-
sive” joint mining of multiple graphs.

3.2 Algorithm Crochet

To make our presentation clear and easy to follow, we first exam-
ine a basic case of cross-graph quasi-clique mining – miningfrom
two graphsG1 andG2 such thatV (G1) = V (G2) = U . Then, we
discuss how to extend the basic case to mine multiple graphs and
handle mapping functions other than bijections.

3.2.1 General Idea and Framework
In order to efficiently mine the complete set of cross-graph quasi-

cliques, we have to address two issues as follows. First, thecorrect-
ness and completeness.That is, how can we find a systematic way
to find all the cross-graph quasi-cliqueswithout duplicates? Sec-
ond, theefficiency.That is, how can we find rules to prune futile
search subspaces (i.e., the subspaces where there is no cross-graph
quasi-clique at all) and heuristics to speed up the mining?

To address the issue of correctness and completeness, we com-
pute the complete set of cross-graph quasi-cliques by enumerat-
ing the subsets of vertices systematically and pruning the unfruitful
subsets.

Given a setS of n elements and a total order≺ on S, the com-
plete set of various subsets ofS (i.e., 2S) can be enumerated sys-
tematically using aset enumeration tree[24]. For example, the set
enumeration tree for set{a, b, c, d} with respect to ordera ≺ b ≺
c ≺ d is shown in Figure 8.

In a set enumeration tree of vertices, each node is a subset of
vertices. Some nodes are cross-graph quasi-cliques. Algorithm
Crochetconducts a depth-first search on the set enumeration tree
of vertices to find the cross-graph quasi-cliques, which canidentify
the complete set of answers.

To address the concern on efficiency, at each step of the depth-
first search,Crochetemploys the following techniques.

• Aggressively reducing graphs. Crochetremoves edges and
vertices, and even combines graphs as long as the correct
mining results are retained. By reducing graphs,Crochetcan
work on smaller graphs and thus can mine cross-graph quasi-
cliques faster.

• Carefully choosing the order of search.In the depth-first
search of a set enumeration tree, a node in the tree may have



multiple children. The order that we use to search the chil-
dren may have a substantial effect on the efficiency.Crochet
uses an effective heuristic to dynamically determine the order
of children based on the information from multiple graphs.

• Sharply pruning futile subtrees.If a graph has many vertices,
the set enumeration tree can be huge.Crochetactively de-
tects whether a subtree has the potential to have some cross-
graph cross-cliques before it really searches the nodes in the
subtree. If a subtree is futile, i.e., it is impossible to con-
tain any node of cross-graph quasi-cliques, then the subtree
should be pruned as early as possible.

3.2.2 Reducing Graphs

Reducing Vertices

Some vertices in the graphs can be removed if their degrees are
too small or they are not connected to enough other vertices to form
a quasi-complete graph.

LEMMA 3.1 (REDUCING VERTICES). For vertexu in graph
Gi (i = 1 or 2), if deg(u) < γi · (mins − 1) or |Nk(u)| <

(mins−1), wherek is the upper bound ofdiam(G) in Theorem 1,
thenu and the edges havingu as an endpoint can be removed from
bothG1 andG2 and all cross-graph quasi-cliques inG1 andG2

are retained.
Proof. If deg(u) < γi · (mins − 1), u fails the requirement on the
minimum degree in a quasi-complete graph inGi. If |Nk(u)| <
(mins − 1), u cannot be a vertex in any subgraph which has a
diameterk and also has at leastmins vertices. Hence, in either of
the two cases,u cannot be a vertex in any quasi-complete subgraph
in Gi. That meansu cannot be a vertex in any cross-graph quasi-
clique. Thus,u as well as the edges havingu as an endpoint can
be removed fromG1 andG2, and the mining results will not be
affected.

Lemma 3.1 can be applied iteratively to reduce the graphs, until
no vertex or edge can be removed. The checking of degrees is
simple. However, dynamically maintainingNk(u) for every vertex
u can be costly ifk is large. Fortunately, as shown in Theorem 1,
the upper bound of the diameter of aγ-quasi-complete graph is
pretty small ifγ is not too small. Moreover, as discussed before,
a user is often interested in only the cross-graph quasi-cliques with
respect to reasonably largeγ values, e.g.,γ ≈ 0.5 or larger. In
our experiments, whenγ ≥ 0.5, Lemma 3.1 often improves the
efficiency by a factor of at least20%.

Reducing Edges

BetweenG1 andG2, if there is aγi = 1 (i = 1 or 2), then we
can remove some edges in the other graph according to the edges
in Gi.

LEMMA 3.2 (REDUCING EDGES). Whenγi = 1, an edge
(u, v) ∈ E(G3−i) can be removed if(u, v) 6∈ E(G1), and all
cross-graph quasi-cliques fromG1 andG2 are retained.
Proof. Supposeγ1 = 1. If (u, v) 6∈ E(G1), u and v cannot
be in a complete subgraph inG1, and thus cannot be in a cross-
graph quasi-clique. Removing(u, v) from E(G2) will not affect
any cross-graph quasi-cliques.

We can apply Lemma 3.2 to reduce the graphs by scanning the
edges of the two graphs once, if their edges are sorted consistently.

Combining Graphs

In the caseγ1 = γ2 = 1, we can combine the two graphsG1 and
G2 into one graphG as follows. The vertices inG is the same set

of vertices inG1 andG2, i.e.,V (G) = V (G1) = V (G2); (u, v)
is an edge inG if and only if (u, v) is an edge in bothG1 andG2,
i.e.,E(G) = E(G1)∩E(G2). Then, the problem of mining cross-
graph quasi-cliques from the two graphs can be reduced to mining
cliques in the combined graph.

LEMMA 3.3 (COMBINING GRAPHS). Whenγ1 = γ2 = 1,
let G be a combined graph such thatV (G) = V (G1) = V (G2)
andE(G) = E(G1)∩E(G2). A set of verticesS is a cross-graph
quasi-clique inG1 andG2 if and only ifS is a clique inG.
Proof. Intuitively, whenγ1 = γ2 = 1, S is a cross-graph quasi-
clique means that the induced subgraph onS in G1 andG2 are both
complete sub-graphs. In other words, every edge in the induced
subgraph onS in one graph (e.g.,G1) must also appear in the other
graph (e.g.,G2).

3.2.3 Searching and Pruning
As discussed in Section 3.2.1,Crochet conducts a depth-first

search on a set enumeration tree of vertices. If a graph has many
vertices, the set enumeration tree can be huge. Therefore, one crit-
ical part ofCrochetis to prune the futile subtrees as early as possi-
ble.

Basically, three issues have to be addressed.

• At a nodeX in the set enumeration tree, what are the vertices
u ∈ (V (G1) − X) that should be used to extendX to its
children and may likely lead to a cross-graph quasi-clique?

• In what situation is a subtree rooted at the current node in
the set enumeration tree futile (i.e., there is no cross-graph
quasi-clique in the subtree) and thus can be pruned?

• A node in the set enumeration tree may have multiple chil-
dren. In which order should the children be searched so as
the efficiency is likely high?

We answer the above three questions one by one.

Generating Children
Let us consider a nodeX ⊆ V (G1) in the set enumeration tree

such thatX 6= ∅. The following lemma indicates the set of vertices
which can be used to generate the children ofX that may lead to
some cross-graph quasi-cliques.

LEMMA 3.4 (CANDIDATE VERTICES). Let X 6= ∅ be a sub-
set of vertices. IfC ⊃ X is a cross-graph quasi-clique, then for
every vertexu ∈ (C − X),

u ∈
\

v∈X,i=1,2

N
ki
Gi

(v),

whereki is the upper bound of diameter of completeγi-quasi-
complete graph inGi given by Theorem 1.
Proof sketch.Following Theorem 1, for anyu ∈ (C−X) andv ∈
X, d(u, v) in Gi is bounded by the upper bound of the diameter.
Thus, we have the lemma.

For a nodeX in the set enumeration tree, Lemma 3.4 gives the
initial set of candidate vertices. Moreover, as required by the set
enumeration tree, only the vertices behind the last vertex in X in
the order of vertices should be taken.

Pruning Futile Children and Subtrees
The initial set of candidate vertices can be reduced further. The

central idea is as follows. LetY be the initial set of candidate ver-
tices given by Lemma 3.4. If there is no cross-graph quasi-clique in
G1(X ∪Y ) andG2(X ∪ Y ), thenX cannot be in any cross-graph
quasi-cliques. In other words, the vertices inY should not be used
to generate children ofX since they are futile.



LEMMA 3.5 (PROJECTION). Let X ⊂ V (G1) be a node in
the set enumeration tree andY be the initial set of candidate ver-
tices given by Lemma 3.4. For anyC such thatX ⊂ C ⊆ (X∪Y ),
C is a cross-graph quasi-clique inG1 andG2 if and only ifC is a
cross-graph quasi-clique inG1(X ∪ Y ) andG2(X ∪ Y ).
Proof sketch. The necessity is straightforward. To show the suffi-
ciency, supposeC is a cross-graph quasi-clique inG1(X ∪Y ) and
G2(X ∪ Y ), but not inG1 andG2. Thus, there must be aC′ ⊃ C
such thatC′ is a cross-graph quasi-clique inG1 andG2. However,
according to the construction ofX andY , X ⊂ C′ ⊆ (X ∪ Y ).
Thus,C′ must be a cross-graph quasi-clique inG1(X ∪ Y ) and
G2(X ∪ Y ), which leads to a contradiction.

Gi(X ∪ Y ) is called theprojection of Gi on X. Based on
Lemma 3.5, we can recursively apply the vertex reduction
(Lemma 3.1) to prune the projections. We denote the set of ver-
tices in the projections after the pruning byP (X). Clearly, in the
set enumeration tree, only the children ofX in the form ofX∪{u}
u ∈ (P (X) − X) should be considered.

Moreover, in some situations, the whole subtree rooted atX can-
not contain any cross-graph quasi-cliques. The following lemma
lists four cases.

LEMMA 3.6 (PRUNING RULES). Let X be a node in the set
enumeration tree. The subtree rooted atX does not contain any
cross-graph quasi-clique if (1)|P (X)| < mins; (2) X 6⊆ P (X);
(3) P (X) ⊂ C whereC is a cross-graph quasi-clique already
found; or (4)X is not a clique inGi if γi = 1.
Proof sketch.The first pruning rule follows the requirement on the
minimum number of vertices in cross-graph quasi-cliques. That is,
if the sets of vertices in the subtree are too small, there is no hope
to find a significant cross-graph quasi-clique and thus the subtree
can be pruned.

The second rule follows the construction of the set enumeration
tree. That is, some vertex inX can be pruned by edge reduction
and vertex reduction. Then, there is no hope to get a cross-graph
quasi-clique from the subtrees which are superset ofX.

The third rule follows the requirement of maximality for cross-
graph quasi-cliques. In other words, the cross-graph quasi-cliques
containingX as a subset should be found in different branches of
the set enumeration tree instead of the subtree rooted atX.

The last rule follows Proposition 1. Sinceγi = 1 andX is not a
clique inGi, X cannot be in any cross-graph quasi-clique.

If one of the four conditions specified in Lemma 3.6 happens,
the subtree rooted atX should be pruned.

Ordering Children and Identifying Cross-Graph Quasi-Cliq ues

Intuitively, a vertex with a high degree is likely a member ofa
cross-graph quasi-clique. Heuristically, we can useθ(v) = ldeg(v)

γ

to measure how well a vertex satisfies theγ-quasi-complete graph
requirement, whereldeg(v) is the degree ofv in the induced graph
on the current nodeX in the set enumeration tree. The vertices
can be sorted in theθ(v) descending order. However, a vertex may
have differentθ value in different graphs. An observation is that
how well a vertex is connected to the others crossing the graphs is
bounded by the minimumθ(v) value in the graphs. Therefore, we
have the following heuristic.

HEURISTIC1 (ORDERING VERTICES). The children vertices
of a node in the set enumeration tree can be explored in theθmin(v)
descending order, whereθmin(v) = minG1,G2

{θ(v)}.

The experimental results in Section 4 show that the heuristic
accomplishes good performance in practice. However, sinceit is

Input: graphsG1, G2; γ1, γ2; minimum size
thresholdmins;

Output: the complete set of cross-graph quasi-cliques;
Method:

// graph reduction
1: apply edge reduction (Lemma 3.2), vertex

reduction (lemma 3.1), and combine graphs (Lemma 3.3)
if possible;

2: if graphs can be combined then compute the complete set
of cliques in the combined graph; exit;

3: letG1 andG2 denote the reduced graphs;
// depth-first search

4: for each vertexv ∈ V (G1) in θmin(v) descending
order // Heuristic 1

5: letX = {x}
6: call recursive-mine(X, G1, G2);

end for

Function recursive-mine(X, G1, G2)
7: computeP (X) according to Lemma 3.4;

// graph reduction
8: letGi = Gi(P (X)); // Lemma 3.5
9: apply vertex reduction (lemma 3.1);
10: letG1 andG2 denote the reduced graphs;
11: if at least one condition in Lemma 3.6 holds

then return(0);
// depth-first search

12: letunsubsumed= 1;
13: for each vertexv ∈ P (X) − X, in θmin(v) descending

order // Heuristic 1
14: call recursive-mine(X ∪ {v}, G1, G2);
15: if the returned value is1 then unsubsumed= 0;

end for
16: if unsubsumedis 0 thenreturn(1);

else // Lemma 3.7
17: if Gi(X) is aγi-quasi-complete graphthen

outputX as a cross-graph quasi-clique andreturn(1);
else return(0);

Figure 9: Algorithm Crochet: the basic case.

a heuristic, there is no theoretical guarantee that the rulealways
achieves the optimal efficiency.

After searching the subtree rooted atX, we can determine thatX
is a cross-graph quasi-clique ifG1(X) andG2(X) are both quasi-
complete graphs and there is no cross-graph quasi-clique inthe sub-
tree ofX.

LEMMA 3.7 (DETERMINATION OF CGQC). LetX be a node
in the set enumeration tree.X is a cross-graph quasi-clique if and
only if G1(X) and G2(X) are both quasi-complete graphs and
there exists no cross-graph quasi-cliqueC such thatX ⊂ C ⊆
P (X).

Algorithm Crochetis summarized in Figure 9.

3.2.4 Mining More Than Two Graphs
The basicCrochetalgorithm can be straightforwardly extended

to handle more than two graphs. If there are more than one graph
with γ = 1, we can combine them into one graph according to
Lemma 3.3. The benefit of combining all the graphs havingγ = 1
into one is twofold. First, it reduces the number of graphs. Sec-
ond, it can be shown that, for the combined graphG, |E(G)| ≤



min1≤i≤l{|E(Gi)|}. In words, the combined graph reduces the
edges and thus may have a better chance to use the edge-reduction
(Lemma 3.2) to further reduce edges in other graphs.

3.2.5 Handling Non-Bijective Functions
Now, let us consider the problem of mining cross-graph quasi-

cliques with mapping, where the mapping fromV (G1) to V (Gi)
(i > 1) may not be bijective.Crochetcan handle the non-bijective
functions with minor extensions.

Consider mining cross-graph quasi-cliques from graphsG1 and
G2 such thatV (G1) 6= V (G2). Let f2 : V (G1) → V (G2) be the
mapping. For any vertexv ∈ V (G2), the pre-images ofv underf2

is denoted asf−1
2 (v) = {u|(u ∈ V (G1)) ∧ (f2(u) = v)}.

Clearly, a vertexv cannot be in any cross-graph quasi-clique if
f2(v) does not appear inG2. Moreover, any vertex inG2 is irrel-
evant to any cross-graph quasi-clique if there exists no vertex u in
G1 such thatf2(u) = v. Those vertices can be removed and the
mining results will not be affected.

LEMMA 3.8. (REMOVING VERTEX WITH NO IMAGE OR NO

PRE-IMAGE ). A vertexu ∈ V (G1) and the edges inG1 having
u as an endpoint can be removed iff2(u) 6∈ V (G2). A vertex
v ∈ V (G2) and the edges inG2 havingv as an endpoint can be
removed fromG2 if f−1

2 (v) = ∅. The removal of those vertices
and edges will not affect the mining of cross-graph quasi-cliques.

For non-bijective mapping, all the above discussion aboutCro-
chetstill holds by replacingu ∈ V (Gi) by fi(u), except for edge
reduction (Lemma 3.2) and combining graphs (Lemma 3.3).

For edge reduction (Lemma 3.2), there are two cases. First, sup-
poseγ1 = 1. For any edge(u, v) ∈ E(Gi) (i > 1), if there
exists no edge(u′, v′) ∈ E(G1) such thatu′ ∈ f−1

i (u) and
v′ ∈ f−1

i (v), then(u, v) can be safely removed fromGi and all
cross-graph quasi-cliques are retained, since such an edgecannot
contribute to the construction of any cross-graph quasi-clique.

Second, supposeγi0 = 1. For any edge(u, v) ∈ E(G1),
if (fi0(u), fi0(v)) 6∈ E(Gi0), then(u, v) can be removed from
graphG1 and all cross-graph quasi-cliques are retained. More-
over, for any edge(u, v) ∈ E(Gi) (i > 1, i 6= i0), if there ex-
ists no edge(u′, v′) ∈ E(Gi0) such thatu′ ∈ fi0(f−1

i (u)) and
v′ ∈ fi0(f−1

i (v)), then(u, v) can be removed from graphGi and
the cross-graph quasi-cliques are retained. The rationaleis similar.
Limited by space, we omit the formal proof here.

For combining graphs (Lemma 3.3), in order to handle non-
bijective mapping, we revise the definition of combined graph as
follows. Suppose graphsGi1 , . . . , Gil

are withγij
= 1 (1 ≤

j ≤ l). Then, we construct the combined graphG = (V, E) such
thatV = V (G1) andE = {(u, v)|(u, v ∈ V (G1)) ∧ (∀j : 1 ≤
j ≤ l, (fij

(u), fij
(v)) ∈ E(Gij

))}. It can be shown that, with the
revision, Lemma 3.3 holds.

4. EXPERIMENTAL RESULTS
We conducted an extensive performance study using both real

data sets and synthetic data sets. The algorithms were implemented
in Java and the experiments were run on a Sun Ultra10 work station
with a 440MHz CPU and 256 MB main memory.

4.1 The Data Sets

4.1.1 The Genomic Data Set
We used a real data set consisting of the gene expression data

CDC28 and the protein-protein interaction data DIP.

The CDC28 data set [8] records the mRNA transcript levels of
the budding yeastS. cerevisiaeduring the cell cycle. It contains the
expression values of6, 096 ORFs (genes) during a 17-point time-
series, and is publicly available at http://cellcycle-www.stanford.edu.

The protein-protein interaction data DIP, which is publicly avail-
able at http://dip.doe-mbi.ucla.edu, is a database of interacting pro-
teins. We downloaded the version on June 6th, 2004, of theS. cere-
visiaesubset (yeast20040606.lst). This data set contains15, 409
pairs of interacting proteins identified in the yeastS. cerevisiae.

We found4, 668 matched gene-protein pairs between CDC28
and DIP. For CDC28 data set, we used the Pearson’s correlation co-
efficient as the measure of coherence and set the coherence thresh-
old ρ = 0.5. As the result, the gene graphGE contains865, 080
edges whose both endpoints (genes) appear in the matched gene-
protein pairs. After removing the self-interacting protein pairs, the
protein graphGP contains15, 115 edges whose both endpoints
(proteins) appear in the matched gene-protein pairs.

In our experiments, we found the complete set of quasi-cliques
across the gene graphGE and the protein graphGP . Unless par-
ticularly specified, we setγE = 1 for GE , γP = 0.5 for GP , and
mins = 5.

4.1.2 Synthetic Data Sets
We wrote a data generator for synthetic data sets, which gener-

ates synthetic data sets as follows.
Given the number of graphsk and a set of verticesV , the data

generator first createsk graphsG1, . . . , Gk such that for each graph
Gi, V (Gi) = V andE(Gi) = ∅. Then, given the expected num-
ber of cross-graph quasi-cliquesNq and the parametersγ1, . . . , γk,
the data generator randomly generatesNq cross-graph quasi-cliques
and embeds them into graphsG1, . . . , Gk. The size of the cross-
graph quasi-cliques is uniformly distributed betweenqMin and
qMax that are specified by user. Finally, given the density valueσi

for graphGi, the data generator keeps adding randomly generated
edges into the graphGi until the overall density ofGi reachesσi.
Here, the density of a graphG is defined as

density(G) =
|E(G)|

(|V (G)|·(|V (G)|−1))
2

=
2|E(G)|

(|V (G)| · (|V (G)| − 1))
.

In the experiments reported in this section, the default values for
the parameters were as follows:k = 2, γ1 = 1 for G1, γ2 = 0.5
for G2, mins = 5, qMin = 5 andqMax = 20.

The experimental results on real data sets and synthetic data sets
are consistent. Limited by space, we use the results from thereal
data set to illustrate the effectiveness of the mining and the effect
of the pruning techniques, and use both the real data set and the
synthetic data sets to examine the efficiency and the scalability.

4.2 Results on the Genomic Data
We mined cross-graph quasi-cliques from the genomic data set.

Figure 10 shows an example cross-graph quasi-cliqueQ (γE = 1
andγP = 0.4), where the diameter is only3. The induced graph of
GE (the gene expression graph) onQ is a perfect clique, so we only
show the induced graph ofGP (the protein interaction graph) onQ
here. The cross-graph quasi-clique contains 11 vertices. We use the
ORF (Open Reading Frame) names to represent the corresponding
genes and proteins.

The cross-graph quasi-clique is interesting in biology since these
11 genes are highly coherent and the corresponding11 proteins are
intensively interacting.

To compare the efficiency of the rudimentary algorithm (Sec-
tion 3.1) andCrochet, we got subsets of genes and proteins in the
genomic data set by sampling. We used the induced graphs on the
samples to test both algorithms. The number of vertices in the sub-
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Figure 10: A cross-graph quasi-clique of
11 proteins.
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Figure 12: Effects ofmins, γP and γE.

sets ranges from4, 000 to 6, 018 (the whole data set). The runtime
is shown in Figure 11(a). Please note that axisY is in logarith-
mic scale. Clearly,Crochetis dramatically more efficient than the
rudimentary method. This strongly indicates that the techniques in
Crochetare effective.

To understand the huge difference between the efficiency of the
two algorithms, recall that the rudimentary algorithm computes the
complete set of quasi-complete subgraphs inGE . In Figure 11(b),
we plot the number of quasi-complete subgraphs inGE and the
number of cross-graph quasi-cliques, respectively. Clearly, the num-
ber of cross-graph quasi-cliques is much smaller. That partly ex-
plains the saving inCrochet. SinceCrochetis dramatically faster
and more scalable than the rudimentary algorithm, hereafter, we
focus on analyzing the performance ofCrochet.

Figures 12 (a) and (b) show the number of cross-graph quasi-
cliques and the runtime ofCrochetwith respect to parametermins,
the minimum number of vertices in a cross-graph quasi-clique. As
can be seen, whenmins is large, the number of cross-graph quasi-
cliques is small and the runtime is short. Asmins decreases, the
number of cross-graph quasi-cliques may increase substantially and
the runtime also increases accordingly. The two curves follow the
same trend.

We also tested the effect ofγP andγE , as shown in Figures 12(c)-
(f). We fixedγE = 1 in Figures 12(c) and (d). The two curves
follow the same trend. WhenγP ≥ 0.5, the cross-graph quasi-
cliques are compact and the number of cross-graph quasi-cliques is

Technique Runtime Runtime Speedup
w/o the tech. w/ the tech.

Graph reduction 27.819 16.392 1.697
& projection
Heuristic 1 44.274 16.392 2.701

Rule (1), Lemma 3.6 16.765 16.392 1.023
Rule (2), Lemma 3.6 130.460 16.392 7.959
Rule (3), Lemma 3.6 10.838 16.392 0.661
Rule (4), Lemma 3.6 338.916 16.392 20.676

Figure 13: The effect of various techniques inCrochet (γE =
1.0, γP = 0.5, mins = 5).

small. WhenγP < 0.5, the number of cross-graph quasi-cliques
increases substantially and so does the runtime.

In Figures 12(e) and (f), we fixedγP = 0.5 and variedγE from
0.5 to 1. Interestingly, the number of cross-graph quasi-cliques
does not decrease monotonically whenγE increases. The reason is
that whenγE increases, some large cross-graph quasi-cliques may
split into several smaller ones. The runtime ofCrochetdecreases
consistently asγE increases.

To examine the effect of the techniques inCrocheton improv-
ing the efficiency, we tested the speedup of the specific techniques.
That is, for a specific technique, we recorded the ratio of therun-
time of Crochetwithout the technique against using the technique.
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Figure 14: Scalability on synthetic data sets.
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Figure 15: Scalability with respect to the maximal size of cross-graph quasi-cliques.
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number of graphs.

The results are shown in Figure 13. From the figure, we can see
that rules (2) and (4) in Lemma 3.6 are most effective in pruning.
Interestingly, rule (3) in Lemma 3.6, checking whether a potential
quasi-complete subgraph is a subset of a cross-graph quasi-clique,
is expensive and costs more than it can save. However, to avoid du-
plicates in output, this step cannot be removed from the algorithm.

4.3 Scalability Results on Synthetic Data Sets
Using synthetic data sets, we tested the scalability ofCrocheton

five aspects, namely (1)the number of cross-graph quasi-cliques in
the data set; (2) the number of vertices in the graphs; (3) theden-
sity of the graphs; (4) the maximal size of the cross-graph quasi-
cliques; and (5) the number of graphs. Among the five factors,we
observed that the number of cross-graph quasi-cliques is the deter-
minant one. The reason is that the more cross-graph quasi-cliques
in the graphs, the fewer nodes we can prune from the set enumer-
ate tree, and the longer the runtime. However, the other factors
may also influence the runtime. For example, the more edges inthe
graphs, more cross-graph quasi-cliques may exist.

We created synthetic graphs with 1,000 vertices and embedded
1,000-10,000 cross-graph quasi-cliques in the graphs. Figure 14(a)
illustrates the runtime with respect to the number of cross-graph
quasi-cliques. With the graph reduction, graph projectionand other
pruning rules, we can see thatCrochet is approximately linearly
scalable with respect to the number of cross-graph quasi-cliques.

We also tested the runtime ofCrochetwith respect to the num-
ber of vertices (Figure 14(b)). We fixed the density of both graphs
at 2% and embedded 100 expected cross-graph quasi-cliques in
the graphs. As the number of vertices increases, the number of
cross-graph quasi-cliques as well as their sizes increase substan-
tially. That leads to the rapid increase of the runtime.

We explored the scalability ofCrochetwith respect to the density
of the graphs. The general trend is that the runtime ofCrochetin-
creases as the density increases. Moreover, the increase ofdensity
in the graph with higherγ value brings more significant effect to the
increase ofCrochetruntime. This is because, likely, the number of
cross-graph quasi-cliques is bounded by the graphs with higher γ

values. When theγ values are set to be the same, then the increase

of density in the graph with the lowest density brings the most sig-
nificant effect on the runtime. Please note that, in our synthetic data
sets, the noisy edges are randomly distributed to satisfy the density
requirement. In real applications, the distribution of edges may not
be even. Limited by space, we omit the details here.

Figure 15 shows the runtime ofCrochetand the number of cross-
graph quasi-cliques with respect to the maximal size of cross-graph
quasi-cliques, respectively. As can be seen, the larger theembed-
ded cross-graph quasi-cliques, the more skewed the edges are dis-
tributed. Thus, the number of cross-graph quasi-cliques and the
runtime increase substantially.

Last, Figure 16 shows the scalability ofCrochetwith respect to
the number of graphs. We fixed the number of vertices to1, 000
and generated multiple graphs with density10%. Since the more
graphs, the less likely and the smaller cross-graph quasi-cliques are
formed, and also the sharper the cross graph pruning (edge reduc-
tion and vertex reduction) is, the runtime ofCrochetdrops dramat-
ically when the number of graphs increases.

From the above experiments, we can see thatCrochetis efficient
and scalable in mining large graphs. On the other hand, scalable
mining of dense graphs and graphs with large cross-graph quasi-
cliques is still challenging.

5. RELATED WORK
To the best of our knowledge, [1] and [21] are the two previous

studies most related to this paper. In [1], Abello et al. defined aγ-
clique in a graphG as a subset of verticesS ⊆ V (G) such that the

induced graph onS is connected and|E(G(S))| ≥ γ ·

„

|S|
2

«

.

They also proposed a greedy randomized adaptive search algo-
rithm, GRASP, to find aγ-clique with the maximum size. In [21],
Matsuda et al. introduced a definition of quasi-clique similar to ours
in this paper. However, instead of finding the complete set ofquasi-
cliques in the graph, they proposed an approximation algorithm to
cover all the vertices in the graphG with a minimum number of
p-quasi-complete subgraphs. However, both [1] and [21]neither
find the complete set of quasi-cliques, nor address mining multiple
graphs.



To a more general extent, graph mining has become an important
topic in data mining. For example, mining frequent substructures
and subgraph patterns from many graphs (i.e., a graph database)
has been studied intensively [4, 27, 16, 17, 20, 32, 31, 28]. Yan
et al. [33] used frequent graph patterns to index graphs. Frequent
graph pattern mining in those previous studies focuses on find-
ing the common embedded subgraphs that appear in many graphs,
which is very different from the problem of mining cross-graph
quasi-cliques investigated in this study. For a cross-graph quasi-
clique, the induced graphs on the clique can be very different from
graph to graph. Therefore, those frequent graph pattern mining al-
gorithms cannot be extended to mine cross-graph quasi-cliques.

In addition to frequent graph pattern mining, Palmer et al. [23]
developed a fast and scalable toolANF to answer various complex
analytical queries from massive graphs that may not be able to fit
into main memory. Faloutsos et al. [13] investigated the problem
of fast discovery of connection subgraphs which nicely capture the
relationship between pairs of nodes in large social networks graphs.
In [18], Jeh and Widom proposed the problem of mining the space
of graph properties.

Besides graph mining, graph-based algorithms are applied to
cluster large data sets. A data set can be modeled as a graph,
and the problem of clustering can be converted to some traditional
graph problems, such as finding (quasi-)cliques or minimum cut in
the graph. For example, the spectral clustering approach [9] can be
viewed as finding the relaxed optimal normalized cuts in a weighted
graph. A spectral clustering algorithm that uses thek eigenvectors
of the adjacency matrix simultaneously was presented in [22].

As another frontier of data mining research, mining from mul-
tiple sources has received more and more attention. The papers
in [11] provided good examples for techniques and applications of
mining multiple relational tables.

On the application side, recent technical advances have enabled
collections of many different types of biological data at a genome-
wide scale, such as DNA and protein sequences, gene expression
measurements, and protein-protein interactions. Variouscluster-
ing approaches, including the graph-based algorithms, have been
developed to explore interesting patterns in those data sets. For
example, Hartuv et al. [15] proposed an algorithm,HCS, to find
groups of genes that have similar expression patterns.HCS re-
cursively splits the weighted gene graphG into a set of highly
connected components along the minimum cut. Each highly con-
nected component is considered as a gene cluster. Motivatedby
HCS, Shamir et al. developed the algorithmCLICK [26]. In [5],
Ben-dor et al. presented a heuristic algorithmCASTto iteratively
identify the maximal cliques once at a time. Xu et al. [30] gen-
erated aMinimum Spanning Tree(MST) from the weighted gene
graphG. By removing(K−1) edges from the generated MST, the
data set is partitioned intoK clusters. Moreover, Enright et al. [12]
developedTRIBE-MCLbased onMCL [10], a graph-based algo-
rithm using flow simulation, to efficiently detect protein families
from large protein sequence databases. Bu et al. [6] used thespec-
tral clustering method [22] to analyze the topological structure in
the protein interaction graphs. Moreover, Bader et al. [2] proposed
a heuristic approach,MCODE, based on the concept of scale-free
networks [3] to find molecular complexes in large protein interac-
tion graphs.

Recently, joint mining of multiple biological data sets hasre-
ceived intense interest. As a pioneer work, Segal et al. [25]pro-
posed a unified probabilistic model to learn the pathways from
gene expression data and protein interaction data. However, their
method requires the users to input the number of pathways that is
often unknown in advance.

6. CONCLUSIONS
In this paper, we proposed a novel and interesting problem, min-

ing cross-graph quasi-cliques from multiple graphs, and showed
some promising application examples. The complexity analysis
showed that the problem is difficult. We developed an efficient
algorithm,Crochet, which exploits several effective techniques to
mine the complete set of cross-graph quasi-cliques. An extensive
performance study using both real data sets and synthetic data sets
illustrated that the mining results are interesting and algorithmCro-
chetis efficient and scalable.
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