On Mining Cross-Graph Quasi-Cliques

*

Jian Pei Daxin Jiang Aidong Zhang
Simon Fraser University, State University of New York at  State University of New York at
Canada Buffalo, USA Buffalo, USA

jpei@cs.sfu.ca

ABSTRACT

Joint mining of multiple data sets can often discover irggng,
novel, and reliable patterns which cannot be obtainedsd@ilem

any single source. For example, in cross-market custongenese-
tation, a group of customers who behave similarly in mudtiplar-
kets should be considered as a more coherent and more eeliabl
cluster than clusters found in a single market. As anothamex
ple, in bioinformatics, by joint mining of gene expressiataland
protein interaction data, we can find clusters of genes wsicw
coherent expression patterns and also produce interguineins.
Such clusters may be potential pathways.

In this paper, we investigate a hovel data mining problerim-
ing cross-graph quasi-cliquesvhich is generalized from several
interesting applications such as cross-market custonugnesata-
tion and joint mining of gene expression data and proteierat-
tion data. We build a general model for mining cross-graphsiu
cliques, show why the complete set of cross-graph quagiret
cannot be found by previous data mining methods, and stugly th
complexity of the problem. While the problem is difficult, we-
velop an efficient algorithmCrochet which exploits several inter-
esting and effective techniques and heuristics to efficetyomine
cross-graph quasi-cliques. A systematic performanceystuce-
ported on both synthetic and real data sets. We demonstrate s
interesting and meaningful cross-graph quasi-cliquesiomfor-
matics. The experimental results also show that algorifitothet
is efficient and scalable.

Categories and Subject Descriptors:H.2.8 [Database Applica-
tions]: Data Mining

General Terms: Algorithms, Performance.

Keywords: Graph mining, mining multiple data sets, quasi-cliques,
bioinformatics.
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1. INTRODUCTION

In many applications, data is often collected, organizetisiored
in multiple sources. Many hidden patterns crossing mutipéces
of data cannot be found by mining only one single data setréFhe
fore, the advanced data analysis in practice callgdimt mining
of multiple data setswhich can often discover interesting, novel,
and reliable patterns that cannot be obtained solely fropsengle
source.

EXAMPLE 1. (MOTIVATING EXAMPLE — CROSSMARKET
CUSTOMER SEGMENTATION. In marketing and customer relation
management, customer segmentation is an important taskhwh
partitions customers into groups according to their mabledtav-
ior such as their purchase records and their responses ke timgr
campaigns. Customer segmentation in a single market hashee
tensively studied. However, it is interesting and inforivato ex-
plorecross-market customer segmentafiaich identifies groups
of customers who have similar behavior in multiple marké€tss-
tomer groups found in cross-market customer segmentagiote
more coherent and more reliable.

Consider the market behavior of six customers, Ann, Bunny,
Cathy, Deborah, Ellen and Frank, in two markets, the financia
product market and the consumer product market. In a specific
market, the similarity among customers in market behavaor twe
modeled as a similarity graph. Each customer is a vertexen th
graph, and two customers are connected by an edge if theawbeh
ior in the market is similar enough. Figure 1 shows the sirtjla
graphs in the two markets.

Ann Bunny Ann Bunny
Frank Cathy  Frank Cathy
Ellen Deborah Ellen Deborah

G;: similarity graph in
financial product market

G similarity graph in
consumer product marke

Figure 1: The similarity graph of six customers in two markets.

A close look at both similarity graphs may find that the sub-
graphs induced by the group of custométs= {Ann, Bunny,
Cathy, Deborah, Ellehin both similarity graphs are interesting:
they are quasi-cliques (i.e., the subgraphs are almosiedjq In
each similarity graph, each customerg$nis similar to at leas8
out of the4 customers in the group. This observation may strongly
suggest thab is a coherent and reliable customer group. =

Example 1 motivates a novel problem of mining multiple giaph
as follows. Consider multiple graphs about a set of objedtichv



are the vertices of the graphs. We are interested in findiagpgr
of objects such that the induced subgraph of each group ettshj
in each graph is almost a clique (thus called quasi-cliqu#)at
is, in every graph, each object in a group is connected toast le
a portiony (0 < v < 1) of the other objects in the same group,
where~ is a user-specified parameter. We call the probteiming
cross-graph quasi-cliques

Mining cross-graph quasi-cliques and its variations appea
many applications. We present below another interestiagngie
in bioinformatics — joint mining gene expression data anotgin
interaction data.

EXAMPLE 2. (MOTIVATING EXAMPLE — JOINT MINING OF
GENE EXPRESSION DATA AND PROTEIN INTERACTION DATA.

Ann Bunny
Q
Frank 7 Cathy
Ellen Deborah

G,,; Weighted similarity graph

Figure 2: An integrated graph based on a weighted sum sim-
ilarity function. The thick edges are of weight2 and the thin
edges are of weight.

From the gene expression data, we can find co-expressed, genes similarity function between data objects. The integratiedlar

which are groups of genes that demonstrate coherent paiern
samples or against stimuli. On the other hand, from the prote
interaction data, we can find groups of proteins which fregye
interact with each other.

Genes and proteins are related — a protein is a product ofea gen
(however, one gene can produce more than one protein). lawe ¢
conduct a joint mining of both gene expression data and jorote
interaction data, then we may find the clusters of genes tieat a
co-expressed and also their proteins interact.

Such cross-data set clusters found from the joint miningrare
teresting and meaningful in bioinformatics. First, botle tene
expression data and the protein data are often very noisys-Cl
ters in a single source are often unreliable. The clustarfroeed
by both data sets will strongly indicate the correlationfoection
among the genes in a cluster, and thus are more reliablen&eale
though highly related, gene expression data and protesnaation
data still carry different biological meaning. The coirente of
co-expressed genes and interacting proteins is bioldgisanifi-
cant. As indicated in [25], many pathways exhibit two pradiest
their genes exhibit a similar gene expression profile, aagtbtein
products of the genes often interact.

Technically, the gene expression data and the proteinaiciter
tion data can be modeled using a gene coherence gkgpand
a protein interaction grap@,,, respectively. In the gene coherence
graphG,, vertices are genes, and two genes are connected if their
expression patterns are similar according to a user-spédafimi-
larity measure (e.g., Euclidean distance, Pearson’slatioe coef-
ficient, KL-distance [19], or pattern-based similarity rmeges [7,
29]). In the protein interaction graph,,, the vertices are proteins,
and two proteins are connected if they interact with eachroive
use a surjective (i.e., onto) mappimg(p) = g from proteins to
genes to model the relationship between genes and proteins.

A group of proteins is interesting if each protein in the grou
interacts with most of the rest of the proteins in the sameigro
and in the set of genes producing the group of proteins, eacé g
is similar to most of the rest of the genes in the same groupy Th
arecross-graph quasi-cliques [

As shown, mining multiple graphs may discover interestiaty p
terns that cannot be found by conventional data mining abres.
Finding cliques in a graph is a problem that has been inwestif
for a long time. Computing quasi-cliques in one graph wase als
the topic of some recent studies, such as [1, 21]. One may won-
der, “Can the complete set of cross-graph quasi-cliques be mined
easily by extending the existing algorithms for finding wdg or
quasi-cliques in an ‘integrated’ graph?

EXAMPLE 3. (CAN CROSSGRAPH QUASFCLIQUES BE MINED
FROM AN INTEGRATED GRAPH?). A natural thinking may be as
follows. We can integrate the multiple graphs into one based

function combines the similarity between data objects ffedint
data sets in some weighted manner. Then, we can find qugseisli
in the integrated graph.

Consider the two graphs in Example 1 again. Figure 2 shows
an integrated graph based on a weighted sum similarity ifomct
Any two objects are connected by an edge in the integratgzhgra
if there is an edge between those two objects in eitheor G. in
Figure 1. The weight of an edgelsf the edge appears in both
andG., otherwise, the weight is.

From the integrated graph, we cannot observe the giup
{Ann, Bunny, Cathy, Deborah, Ell¢ras a cluster. If we only con-
sider all edges with weigh, each of Ann, Bunny, Deborah and
Ellen only connects t@ of the other customers ifi. If we con-
sider all edges with weight or above, then thé customers form a
clique. Therefore, the integrated graph method does ndt!wom

Although there are extensive studies on cliques and soneatrec
studies on quasi-cliques, to the best of our knowledge, tougtyss
the first one to address the following two issues at the same ti

e \We investigatenining from multiple graphthe quasi-cliques.
We propose a general model on the cross-graph quasi-cliques
and the mining.

e We compute theomplete set of cross-gragfuasi-cliques.
The previous studies focused on finding one quasi-cliquen(fr
one graph) with an optimization goal, such as maximizing
the number of vertices in the clique. However, many data
mining applications require the completeness of the arswer

Mining the complete set of quasi-cliques from multiple drap
is challenging. A naive method may have to examine a huge num
ber of possible combinations of vertices and edges overrdphg,
which is computationally expensive or even prohibitive arge
graphs (e.g., graphs with thousands of vertices and terisoof t
sands of edges).

Bearing the above challenges, in this paper, we tackle thie-pr
lem of mining cross-graph quasi-cliques and make the fofigw
contributions.

e \We propose a novel and general model for the problem of
mining cross-graph quasi-cliguedVe show that the cross-
graph quasi-cliques are interesting and meaningful iniappl
cations.

We investigate the complexity of the problem and develop
an efficient algorithm to tackle the problenwe show that
the problem is in #P-complete. We develop an efficient al-
gorithm, Crochet to mine cross-graph quasi-clique§ro-
chetexploits several interesting and effective techniques and
heuristics to prune the search space sharply.



e We present a systematic performance studyCoochetto
verify our design using both synthetic and real data s€te
experimental results show that the cross-graph quagiesiq
are interesting in real applications a@ochetis efficient
and scalable.

The remainder of the paper is organized as follows. In Se&jo
we present the general model of mining cross-graph quagied,
and also show the complexity of the problem. The algorithnes a
developed in Section 3. A systematic performance studysrted
in Section 4. We discuss related work in Section 5. Sectiooré c
cludes the paper.

2. MODEL AND PROBLEM DEFINITION

In this section, we propose a general model for cross-graphig
cligue mining and show the complexity of the problem.

2.1 Quasi-Complete Graph

In this paper, we considesimple graphsonly, i.e., the graphs
without self-loops or multi-edges. For gragh V(G) and E(G)
denote the sets of vertices and edge& pfespectively.

For verticesu, v € V(G), letd(u, v) be the number of edges in
the shortest path betweearandv. Trivially, d(u,«) = 0. A graph
is calledconnectedf d(u,v) < oo foranyu,v € V(G).

For a vertexu € V(G), N(u) is the set of neighbors af, i.e.,
N(u) = {v|(u,v) € E(G)}. Moreover, we defineéV*(u) =
{vld(u,v) < k} for (k > 1). Clearly, NIV(&I=Y(y) is the
set of vertices that are connectedito We also denote the set by
N*(u). Ina connected graply* (u) = V(G).

In graphG, letU C V(G) be a subset of vertices. Tlseb-
graph induced o/, denoted by=(U), is the subgraph af whose
vertex-set idJ and whose edge-set consists of all edge§'ithat
have both endpoints i#, i.e., G({U) = (U, Ev), whereEy =
{(u,v)|(u,v) € E(G) ANu,v € U}.

A complete graphs a graph such that every pair of vertices is
joined by an edge. In a gragh, a subset of verticeS C V(G)
is acliqueif the subgraph induced of, i.e., G(S), is a complete
graph, and no proper superset$has this property. Please note
that, there can be more than one clique in a graph, and theesliq
may not be exclusive. That s, two cliques may share some @mm
vertices.

DEFINITION 2.1. (QUASI-COMPLETE GRAPH AND QUASH
CLIQUE). A connected grapli is ay-complete grapi{0 < v <
1) if every vertex in the graph has a degree at leastV (G)| —1).

In a graphG, a subset of verticeS C V(G) is ay-quasi-clique
(0 < v < 1)if G(S) is ay-quasi-complete graph, and no proper
superset of' has this property. [

Clearly, al-quasi-complete graph is a complete graph, and a
quasi-clique is a clique.

The degree of a vertex must be an integery-§uasi-complete
graphG must be connected. That is, necessanly,(|V(G)| —
1) > 1. Hence, we have > Moreover, we have the

following result.

1
V(G)|-1*

PROPOSITION 1. (ANTI-MONOTONICITY OF COMPLETE
GRAPHS). In a graphG, let S C V(G). If G(S) is a complete
graph, then, for any subsét C S, G(S) is also a complete graph.

| |

In general, the anti-monotonicity does not hold for quashplete
graphs. That is, for g-quasi-complete grapt¥ (0 < v < 1),
G(S) may not be ay-quasi-complete graph for # C V (G).

e d e d
G G({a, b, c, d, e})

Figure 3: A graph and an induced subgraph.

EXAMPLE 4 (QUASI-COMPLETE GRAPH. Consider grapliz
in Figure 3. Itis &).8-quasi-complete graph, since every vertex has
adegree oft = (6 — 1) x 0.8.

Interestingly, a subgraph induced on any subset eértices is
not a0.8-quasi-complete graph. As an example, the subgraph in-
duced on{a, b, c,d, e} is also shown in Figure 3. Vertices ¢, d
ande in the induced subgraph have a degreg ef (5—1) x 0.8 =
3.2. ]

In v-quasi-complete graphs, parametecontrols the compact-
ness of the graph. That is, with a larggr each vertex joins to
more other vertices and thus the graph is more compact. One
measure of the compactness of a graph is the diameter.difhe
ameter ofG, denoted bydiam(G), is defined asliam(G) =
max, ,cv(e){d(u,v)}. Itis interesting to examine the relation-
ship between the diameter ofjaquasi-complete graph and

THEOREM1 (DIAMETER OF QUASFCOMPLETE GRAPH. Let
G be ay-quasi-complete graph such that= |V (G)| > 1.

- i —2
=1 |f122’*/> ZTll
o
<2 IfF 27225
n .
< 3L7,Y(7L71)+1J -3 if3>y>_ =5 and

nmd (y(n—1)+1)=0
n ; 2
'y(nfl)JrlJ -2 if % > 2 n—1 and
nmod (y(n—1)+1)=1

diam(G) ¢ <3|

<3Blsmtprrl -1 3> 2> ;% and
nmod (y(n—1)+1)>2
<n-1 ifﬁ/:ﬁ

The upper bounds are realizable.

Proof sketch. When1 > ~ > Z—:Q the degree of each vertex is
greater thar(n — 2), and hence must bgx — 1). Thus,G is a
complete graph andiam(G) = 1.

WhenZ=1 > ~ > 1 for any verticesu, v € V(G), [{u, v} U
N(u) U N(v)| > n. Thus,diam(G) = 2.

Wheni > v > -2 the situations are complicated. Consider
verticesu, v € V(@) such that the shortest path betweeandv
has length = diam(G). V(G) can be partitioned intdl + 1)
exclusive groupsy, ..., Si41: avertexw € S; (1 <i < (I+1))
if and only if d(u, w) = (i — 1).

Clearly, Ui <i<+1)Si = V(G), otherwisediam(G) > 1. A
critical fact is that, for any vertexw € S; (1 < i < (i + 1)),
N(w) C Si—1 U S; U Sip1. That meandS;—1 U S; U Siq1| =
|Si—1|+]Si|+|Si+1] > deg(w)+1 > v(n—1)+1. Moreover, we
have|Si| = 1, |S2| = y(n—1), and|S;|+ |Si+1] > y(n—1)+1
(otherwise, there exists at least one vertesuch thatdeg(v) <
~(n — 1)). The inequations in the theorem can be proved using the
above inequations. Limited by space, we omit the details.her

When~y = ﬁ some vertices have degréeln the worst case,
the graph can be a path, and thlism(G) = (n — 1). Recall that
a quasi-complete graph must be connectet: ﬁ

The bounds can be shown realizable. For example, Figure 4
shows three cases that the bounds are realized fory > —2..

u



n=18, r=5/17, d=6

Diameter

O 0.1 02 03 04 05 0.6 0.7 0.8 09 1
Y

Figure 5: The change of diameter ony (|V (G)| = 100).

The theorem is important, which discloses the effecy.ofig-
ure 5 shows the trend of diameter gnwhere the number of ver-
tices is set ta00. We can observe the following. First, wheris
reasonably large, i.€,5 or up, they-quasi-complete graph is com-
pact, i.e., the diameter is very small, no more thaBecond, when
~ is small, the upper bound of the diameter of the quasi-cample
graph is approximately in portion IQ, which is intuitive. Third,
when+ is small, the quasi-complete graph can be a series of small
clusters. Wheny = ﬁ in the worst case, the quasi-complete
graph can be a path of vertices. Based on the above analysis, a
user may be often interested in quasi-complete graphs witla-a
sonably largey value, such as ~ 0.5 or larger. In such cases, the
diameter is bounded by a small integer.

2.2 Cross-Graph Quasi-Clique

Intuitively, a cross-graph quasi-clique is a maximal sevei-
tices whose induced graphs in all the graphs are quasi-eenpl
subgraphs.

DEFINITION 2.2 (CROSSGRAPH QUASFCLIQUE). LetU be
a set of vertices an€+, . .., G\, ben graphs such that (G;) = U
(1 <4 < n). For parameters, ...,7» (0 < v; < 1), a subset
S C U of vertices is called aross-graph quasi-cliquéCGQCfor
short) if G;(S) is a~y;-quasi-complete graph for all < i < n)
and there is no proper superset%has the property. [

Clearly, in Definition 2.2, whem = 1, a cross-graph quasi-
clique on asingle graph is simply a quasi-clique in the graptere-
fore, the concept of cross-graph quasi-clique is a geretadn of
quasi-clique crossing multiple graphs. However, when- 1, a
cross-graph quasi-clique may not be a quasi-clique in aaphyr
due to the maximality requirement.

EXAMPLE 5 (MAXIMALITY ). Consider graphs?; and G2
in Figure 6. Suppose; = 72 = 0.5. Then,S = {a,b,d} is a
cross-graph quasi-clique. Howevé,is not a0.5-quasi-clique in
eitherG, or G2. In G4, S is a proper subset dfa, b, d, e} which is
a0.5-quasi-clique. InG2, S is also a proper subset §&, b, ¢, d}
which is a0.5-quasi-clique. [

A cross-graph quasi-clique can be insignificant in datayemsl
if it contains a very small number of vertices. For examplengle

G1

Figure 6: A cross-graph quasi-clique may not be quasi-cliqas
in any individual graphs due to the maximality requirement.

vertex itself is a (trivial) quasi-complete graph for apyTo avoid
such a triviality, a user may specify a minimum number oficed
in the cross-graph quasi-cliques. Only cross-graph oelagies
large enough should be returned.

Problem Definition (Mining Cross-Graph Quasi-Cliques). For
a given set of graph&';, ..., G, on a set of verticed/ (i.e.,
V(Gy) =--- =V(Gyn) =U), parameters, ..., vn (0 < v <
1), and a minimum size thresholain,, the problem ofmining
cross-graph quasi-cliquds to find the complete set of cross-graph
quasi-cliques that each has at least: s vertices. [

In some cases, such as joint mining of gene expression ddta an
protein interaction data (Example 2), the sets of verticediffer-
ent graphs are different, and there exist mappings betwetsro$
vertices in different graphs. Our basic model of mining srgsaph
quasi-cliques can be extended to handle such cases.

DEFINITION 2.3. (OROSSGRAPH QUASFCLIQUE WITH MAP-
PING). LetG1, ...,G, ben graphs andf, ..., f. ben functions
such thatf; (2 < ¢ < n) is from V(G1) to V(G;). For pa-
rametersyy, ..., v (0 < v < 1), a subsetS C V(G,) of
vertices inG; is called across-graph quasi-clique with mapping
(CGQC(M)for short) if (1) G1(S) is a~yi1-quasi-complete graph;
(2) for S; = {fi(v)|v € S}, Gi(S:) is ay;-quasi-complete graph;
and (3) there is no proper supersethas properties (1) and (2).

|

Problem Definition (Mining Cross-Graph Quasi-Cliques with
Mapping). For a given set of graphs;, ...,G,, and functionsfz,
..., fa suchthatf; : V(G1) — V(G:) (2 < i < n), parameters
Y1,y (0 < 7 < 1), and a minimum size threshotdin.,
the problem ofmining cross-graph quasi-cliques with mappiisg
to find the complete set of CGQC(M)’s that each has at least;
vertices. n

THEOREM2 (COMPLEXITY). The problem of counting the
number of cross-graph quasi-cliques is in #P-Complete.
Proof sketch. We prove by restriction. That is, we show that the
problem of counting the number of cross-graph quasi-coqran-
tains a #P-Complete problem as a special case. In fact, tie pr
lem of counting the number of cliques from one graph is in #P-
Complete [14], and is a special case of the problem of cogritia
number of cross-graph quasi-cligues where- 1andy=1. =

Thus, the problem of mining (i.e., enumerating) the congpbett
of cross-graph quasi-cliques is NP-hard in the worst case.



Input: graphsGi, ...,Gn; 71, -..,V~; Mapping
functionsfs, ..., fn; minimum size thresholehin;
Output: the complete set of cross-graph quasi-cliques;
Method:
// Phase 1: mining=
1. in Gy, compute the complete setgf-quasi-complete
subgraphd{ that has at leashin vertices;
/l Phase 2: jointly mining
2. for eachy;-quasi-complete subgrag, in the
|V (H)| descending order

3: let cross-graph-quasi-clique true;

4: i f H has a proper superset as a cross-graph
quasi-cliquet hen conti nue;

5: fori=2ton

6: i f Gi(V(H)) is not ay;-quasi-complete graph

t hen cross-graph-quasi-clique false br eak;

end- f or

7: i f (cross-graph-quasi-clique=true) t hen
outputV (H) as a cross-graph quasi-clique;

end- f or

Figure 7: The rudimentary algorithm.

3. ALGORITHMS

In this section, we develop algorithms for mining crosspira
quasi-cliques. The algorithms target at the applicationsra there
are a small number of large graphs. We assume that the graphs c
be held into main memory.

We present two algorithms. The first algorithm is rudimentar
The second algorithn€rochet exploits several smart and effective
techniques to achieve efficient mining.

3.1 A Rudimentary Algorithm

As illustrated in Examples 4 and 5, a cross-graph quasiteliq
may not be a quasi-clique in any graph, and an induced sulbgrap
a subset of a quasi-clique may not even be a quasi-complapd gr
Hence, we cannot find the quasi-cliques in each graph andhake
intersection. Insteadye have to take a joint mining approach

By definition, a cross-graph quasi-clique must be a quasiptete
graph in every graph by the mapping. Thus, a rudimentary-algo
rithm works in two stepsmining G andjointly mining as shown
in Figure 7.

In the first step, we mine the complete setgfquasi-complete
graphs inG; which have at leastiins vertices. In other words, in
graphG,, we find the subsets of verticéssuch that the subgraph
induced onS is a~;-quasi-complete graph.

In the step of joint mining, for each subset of vertice®und in
the first step, we check whethét; (S) is still a~;-quasi-complete
graph for all(2 < 7 < n). Only maximal subsets passing the tests
are output as the cross-graph quasi-cliques.

Please note that the rudimentary algorithm never searttees t
complete set of quasi-complete subgraphs in all the grdpbtead,
to prune the search space, it exploits the fact that a cnegshg
quasi-clique must form a quasi-complete subgrapfirand must
be a maximal subset having the properties in Definition 2.2.

The rudimentary algorithm may not be efficient in mining krg
graphs due to two reasons. Firtstill has to compute the com-
plete set of quasi-complete subgraph<in, since it conducts the
joint mining as the second stepf G is large and dense (i.e., it
has many edges), then there can be many such quasi-comgiete s
graphs. Computing all of them can be expensi@an we compute
as less quasi-complete subgraphgin as possible?

{
{a B} ¢ {4
{ab} {acy {adt {bc} {bd} {cd}
{a,b.{ {a,b,d} {a,i,d} {b,i,d}
{a,b,c,d}

Figure 8: A set enumeration tree.

Secondthe rudimentary algorithm mines the whole graplis.
the graphs are large, it can be costly. A careful check can find
that, some vertices and edges in the graphs, such as theesgerti
with low degrees, cannot be a part of a cross-graph quagieli
or the induced subgraphs. Such parts should be pruned gsasarl
possible so that the graphs can be reduced. Mining smabghgr
can definitely improve the efficiency. In order to reduce trapfs,
we have to consider multiple graphs at the very beginnGan we
reduce the graphs aggressively to speed up the mining?

In summary, the major drawback of the rudimentary algorithm
thatit conducts the joint mining lateWe need to exploit “aggres-
sive” joint mining of multiple graphs.

3.2 Algorithm crochet

To make our presentation clear and easy to follow, we firshexa
ine a basic case of cross-graph quasi-clique mining — mifiorg
two graphs; andG2 such thaV’ (G1) = V(G2) = U. Then, we
discuss how to extend the basic case to mine multiple grapiis a
handle mapping functions other than bijections.

3.2.1 General Idea and Framework

In order to efficiently mine the complete set of cross-graypduwsit
cligues, we have to address two issues as follows. Firstdirect-
ness and completeneskhat is, how can we find a systematic way
to find all the cross-graph quasi-cliquasthout duplicate® Sec-
ond, theefficiency. That is, how can we find rules to prune futile
search subspaces (i.e., the subspaces where there is s@raph
quasi-clique at all) and heuristics to speed up the mining?

To address the issue of correctness and completeness, we com
pute the complete set of cross-graph quasi-cliques by ematme
ing the subsets of vertices systematically and pruning tifieiifful
subsets.

Given a setS of n elements and a total order on .S, the com-
plete set of various subsets §f(i.e., 2°) can be enumerated sys-
tematically using aet enumeration treR4]. For example, the set
enumeration tree for sét, b, ¢, d} with respect to ordes < b <
¢ < dis shown in Figure 8.

In a set enumeration tree of vertices, each node is a subset of
vertices. Some nodes are cross-graph quasi-cliques. ifkigor
Crochetconducts a depth-first search on the set enumeration tree
of vertices to find the cross-graph quasi-cliques, whichidantify
the complete set of answers.

To address the concern on efficiency, at each step of the-depth
first searchCrochetemploys the following techniques.

e Aggressively reducing graphs. Crochlremoves edges and
vertices, and even combines graphs as long as the correct
mining results are retained. By reducing gragbschetcan
work on smaller graphs and thus can mine cross-graph quasi-
cligues faster.

e Carefully choosing the order of searchin the depth-first
search of a set enumeration tree, a node in the tree may have



multiple children. The order that we use to search the chil-
dren may have a substantial effect on the efficie@pachet
uses an effective heuristic to dynamically determine tleor

of children based on the information from multiple graphs.

Sharply pruning futile subtree#f.a graph has many vertices,
the set enumeration tree can be hu@ochetactively de-

of vertices inG1 andGa, i.e.,V(G) = V(G1) = V(G2); (u,v)

is an edge irG if and only if (u, v) is an edge in botld7; andGs,
i.e., E(G) = E(G1)NE(Gz2). Then, the problem of mining cross-
graph quasi-cliques from the two graphs can be reduced tmgnin
cliques in the combined graph.

LEMMA 3.3 (COMBINING GRAPHS). Whenvy; = v = 1,

tects whether a subtree has the potential to have some crosslet G be a combined graph such thet(G) = V(G1) = V(G2)

graph cross-cliques before it really searches the nodéin t
subtree. If a subtree is futile, i.e., it is impossible to con
tain any node of cross-graph quasi-cliques, then the sabtre
should be pruned as early as possible.

3.2.2 Reducing Graphs

Reducing Vertices

Some vertices in the graphs can be removed if their degrees ar
too small or they are not connected to enough other verticism
a quasi-complete graph.

LEMMA 3.1 (REDUCING VERTICES. For vertexu in graph
G; (i = 1or2),if deg(u) < 7; - (mins — 1) or |[N*(u)| <
(mins —1), wherek is the upper bound afiam(G) in Theorem 1,
thenu and the edges havingas an endpoint can be removed from
both G; and G2 and all cross-graph quasi-cliques i&; and G-
are retained.
Proof. If deg(u) < ~; - (mins — 1), u fails the requirement on the
minimum degree in a quasi-complete graptdn If |[N*(u)| <
(mins — 1), u cannot be a vertex in any subgraph which has a
diameterk and also has at leastin; vertices. Hence, in either of
the two cases; cannot be a vertex in any quasi-complete subgraph
in G;. That means: cannot be a vertex in any cross-graph quasi-
cligue. Thusu as well as the edges havingas an endpoint can
be removed fronG; and G2, and the mining results will not be
affected. n

Lemma 3.1 can be applied iteratively to reduce the graphs, un

andE(G) = E(G1) N E(G2). A set of vertice$ is a cross-graph
quasi-clique inG; and G- if and only if S is a clique inG.

Proof. Intuitively, when~y, = ~v2 = 1, S is a cross-graph quasi-
clique means that the induced subgraptbdn G; andG» are both
complete sub-graphs. In other words, every edge in the aaluc
subgraph orb' in one graph (e.gG/1) must also appear in the other

graph (e.g.(2). u
3.2.3 Searching and Pruning

As discussed in Section 3.2.Crochetconducts a depth-first
search on a set enumeration tree of vertices. If a graph hag ma
vertices, the set enumeration tree can be huge. Therefoeeri-
ical part ofCrochetis to prune the futile subtrees as early as possi-
ble.

Basically, three issues have to be addressed.

e AtanodeX inthe set enumeration tree, what are the vertices
u € (V(G1) — X) that should be used to exterd to its
children and may likely lead to a cross-graph quasi-clique?

¢ In what situation is a subtree rooted at the current node in
the set enumeration tree futile (i.e., there is no crospfgra
quasi-clique in the subtree) and thus can be pruned?

e A node in the set enumeration tree may have multiple chil-
dren. In which order should the children be searched so as
the efficiency is likely high?

We answer the above three questions one by one.
Generating Children

no vertex or edge can be removed. The checking of degrees is Let us consider a nod¥ C V(G1) in the set enumeration tree

simple. However, dynamically maintainidg” () for every vertex

u can be costly ift is large. Fortunately, as shown in Theorem 1,
the upper bound of the diameter ofyaguasi-complete graph is
pretty small ify is not too small. Moreover, as discussed before,
a user is often interested in only the cross-graph quagiiet with
respect to reasonably largevalues, e.g.;y =~ 0.5 or larger. In
our experiments, whery > 0.5, Lemma 3.1 often improves the
efficiency by a factor of at leag0%.

Reducing Edges

BetweenG; andGa, if there is ay; = 1 (¢ = 1 or 2), then we
can remove some edges in the other graph according to the edge
in G,

LEMMA 3.2 (REDUCING EDGES. Wheny; = 1, an edge
(u,v) € E(Gs—;) can be removed ifu,v) ¢ E(G1), and all
cross-graph quasi-cliques frofd; and G are retained.

Proof. Supposey; = 1. If (u,v) ¢ E(G1), v andv cannot
be in a complete subgraph ., and thus cannot be in a cross-
graph quasi-clique. Removing:, v) from E(G2) will not affect
any cross-graph quasi-cliques. [

We can apply Lemma 3.2 to reduce the graphs by scanning the
edges of the two graphs once, if their edges are sorted tenttjs

Combining Graphs

Inthe case;; = v2 = 1, we can combine the two grapi§ and
G into one graplG as follows. The vertices it is the same set

such thatX # ). The following lemma indicates the set of vertices
which can be used to generate the childrenXothat may lead to
some cross-graph quasi-cliques.

LEMMA 3.4 (CANDIDATE VERTICES). Let X # () be a sub-
set of vertices. I O X is a cross-graph quasi-clique, then for
every vertex, € (C — X),

(N N&(),

veX,i=1,2

u e

where k; is the upper bound of diameter of completequasi-
complete graph ifi7; given by Theorem 1.

Proof sketch. Following Theorem 1, for any € (C'— X) andv €

X, d(u,v) in G; is bounded by the upper bound of the diameter.
Thus, we have the lemma. L]

For a nodeX in the set enumeration tree, Lemma 3.4 gives the
initial set of candidate verticesMoreover, as required by the set
enumeration tree, only the vertices behind the last verteX iin
the order of vertices should be taken.

Pruning Futile Children and Subtrees

The initial set of candidate vertices can be reduced furthibe
central idea is as follows. Lét be the initial set of candidate ver-
tices given by Lemma 3.4. If there is no cross-graph quagiselin
G1(X UY)andGz(X UY), thenX cannot be in any cross-graph
quasi-cliques. In other words, the verticesrirshould not be used
to generate children oX since they are futile.



LEMMA 3.5 (PROJECTION. Let X C V(G1) be a node in
the set enumeration tree aid be the initial set of candidate ver-
tices given by Lemma 3.4. For agysuch thatX ¢ C C (XUY),
C'is a cross-graph quasi-clique i&, and G- if and only ifC' is a
cross-graph quasi-clique i6"; (X UY) andG2(X UY).

Proof sketch. The necessity is straightforward. To show the suffi-
ciency, suppose€’ is a cross-graph quasi-clique@y (X UY') and
G2(X UY), but not inG1 andG». Thus, there must be@ > C
such that”’ is a cross-graph quasi-clique @ andG.. However,
according to the construction of andY, X ¢ ¢’ C (X UY).
Thus, C' must be a cross-graph quasi-cliqueGi (X U Y') and
G2(X UY), which leads to a contradiction. L]

Gi;(X UY) is called theprojectionof G; on X. Based on
Lemma 3.5, we can recursively apply the vertex reduction
(Lemma 3.1) to prune the projections. We denote the set of ver
tices in the projections after the pruning B X). Clearly, in the
set enumeration tree, only the children’ofin the form of X U{u}

u € (P(X) — X) should be considered.

Moreover, in some situations, the whole subtree rooted ean-
not contain any cross-graph quasi-cliques. The followemgrha
lists four cases.

LEMMA 3.6 (PRUNING RULES). Let X be a node in the set
enumeration tree. The subtree rooted)atdoes not contain any
cross-graph quasi-clique if (1P (X)| < mins; (2) X € P(X);

(3) P(X) C C where(C is a cross-graph quasi-clique already
found; or (4)X is not a clique inG; if y; = 1.

Proof sketch. The first pruning rule follows the requirement on the
minimum number of vertices in cross-graph quasi-cliqudsatTs,

if the sets of vertices in the subtree are too small, there isape

to find a significant cross-graph quasi-cligue and thus tixree
can be pruned.

The second rule follows the construction of the set enuriwerat
tree. That is, some vertex iN can be pruned by edge reduction
and vertex reduction. Then, there is no hope to get a cragsigr
quasi-clique from the subtrees which are superséf of

The third rule follows the requirement of maximality for sm
graph quasi-cliques. In other words, the cross-graph eplagies
containingX as a subset should be found in different branches of
the set enumeration tree instead of the subtree root&d at

The last rule follows Proposition 1. Singg = 1 and X is not a
clique inG;, X cannot be in any cross-graph quasi-clique. =

If one of the four conditions specified in Lemma 3.6 happens,
the subtree rooted & should be pruned.

Ordering Children and Identifying Cross-Graph Quasi-Cliq ues

Intuitively, a vertex with a high degree is likely a memberaof
cross-graph quasi-clique. Heuristically, we can &g = %
to measure how well a vertex satisfies theguasi-complete graph
requirement, wheréleg(v) is the degree of in the induced graph
on the current nod&X in the set enumeration tree. The vertices
can be sorted in thé(v) descending order. However, a vertex may
have differenty value in different graphs. An observation is that
how well a vertex is connected to the others crossing thehgrap
bounded by the minimurfi(v) value in the graphs. Therefore, we
have the following heuristic.

HEURISTIC1 (ORDERING VERTICES. The children vertices
of a node in the set enumeration tree can be explored if.the(v)
descending order, whefg,in(v) = ming, ¢, {0(v)}. L]

The experimental results in Section 4 show that the hearisti
accomplishes good performance in practice. However, strise

Input: graphsG1, Gz; v1, v2; minimum size
thresholdmin;
Output: the complete set of cross-graph quasi-cliques;
Method:
// graph reduction
1. apply edge reduction (Lemma 3.2), vertex
reduction (lemma 3.1), and combine graphs (Lemma 3.3)
if possible;
if graphs can be combined then compute the complete set
of cligues in the combined graph; exit;
let G, andG2 denote the reduced graphs;
/I depth-first search
4: for each vertexv € V(G1) in Omin(v) descending
order // Heuristic 1
5: letX = {z}
6: cal | recursive-minéX, G1, G2);
end for

N

Function recursive-minéX, G1, G2)
7: computeP(X) according to Lemma 3.4;
// graph reduction
o letGi = Gi(P(X)); /l Lemma 3.5

9: apply vertex reduction (lemma 3.1);
10: letG, andG2 denote the reduced graphs;
11: i f atleast one condition in Lemma 3.6 holds
t hen return(0);
/I depth-first search
letunsubsumesd 1;
for each vertexv € P(X) — X, in Oumin(v) descending
order // Heuristic 1

cal | recursive-minéX U {v}, G1, G2);

i f the returned value ist hen unsubsumesd 0;
end for
i f unsubsumeds 0 thenr et ur n(1);
el se /[ Lemma 3.7

i f Gi(X) is ay;-quasi-complete graphhen

outputX as a cross-graph quasi-clique aret ur n(1);
el se return(0);

12:
13:

14:
15:

16:

17:

Figure 9: Algorithm Crochet: the basic case.

a heuristic, there is no theoretical guarantee that the alweays
achieves the optimal efficiency.

After searching the subtree rooted*twe can determine thaf
is a cross-graph quasi-cliquedf; (X') andG2(X) are both quasi-
complete graphs and there is no cross-graph quasi-cligbe sub-
tree of X.

LEMMA 3.7 (DETERMINATION OF CGQC). LetX be anode
in the set enumeration tre&X is a cross-graph quasi-clique if and
only if G1(X) and G2(X) are both quasi-complete graphs and
there exists no cross-graph quasi-cligaesuch thatX c C C
P(X). L]

Algorithm Crochetis summarized in Figure 9.

3.2.4 Mining More Than Two Graphs

The basicCrochetalgorithm can be straightforwardly extended
to handle more than two graphs. If there are more than ondngrap
with v = 1, we can combine them into one graph according to
Lemma 3.3. The benefit of combining all the graphs having 1
into one is twofold. First, it reduces the number of graphec-S
ond, it can be shown that, for the combined graph|E(G)| <



mini<;<;{|E(G;)|}. In words, the combined graph reduces the
edges and thus may have a better chance to use the edgeaeduct
(Lemma 3.2) to further reduce edges in other graphs.

3.2.5 Handling Non-Bijective Functions

Now, let us consider the problem of mining cross-graph quasi
cliques with mapping, where the mapping fran{G1) to V(G;)

(# > 1) may not be bijectiveCrochetcan handle the non-bijective
functions with minor extensions.

Consider mining cross-graph quasi-cliques from graghsand
G2 such thaV' (G1) # V(G2). Let fo : V(G1) — V(G2) be the
mapping. For any vertex € V(G2), the pre-images af under f2
is denoted ag, ' (v) = {u|(u € V(G1)) A (f2(u) = v)}.

Clearly, a vertexv cannot be in any cross-graph quasi-clique if
f2(v) does not appear i&'>. Moreover, any vertex iz is irrel-
evant to any cross-graph quasi-clique if there exists ntexerin
G such thatf2(u) = v. Those vertices can be removed and the
mining results will not be affected.

LEMMA 3.8. (REMOVING VERTEX WITH NO IMAGE OR NO
PRE-IMAGE). A vertexu € V(G1) and the edges id/; having
u as an endpoint can be removedfif(u) ¢ V(G2). A vertex
v € V(G2) and the edges iG72 havingv as an endpoint can be
removed fromG5 if f;'(v) = (. The removal of those vertices
and edges will not affect the mining of cross-graph quaisjues.
u

For non-bijective mapping, all the above discussion al@&rot
chetstill holds by replacing: € V(G;) by fi(u), except for edge
reduction (Lemma 3.2) and combining graphs (Lemma 3.3).

For edge reduction (Lemma 3.2), there are two cases. Fifst, s
posey: = 1. For any edg€u,v) € E(G;) (1 > 1), if there
exists no edgdu’,v’) € E(G:) such thatu’ € f;7'(u) and
v' € f7'(v), then(u,v) can be safely removed fro; and all
cross-graph quasi-cliques are retained, since such ancathy®t
contribute to the construction of any cross-graph quasisel

Second, suppose;, = 1. For any edge(u,v) € E(Gh1),
if (fio(w), fio(v)) € E(Gi,), then(u,v) can be removed from
graph G and all cross-graph quasi-cliques are retained. More-
over, for any edgéu,v) € E(G;) (i > 1,i # 4o), if there ex-
ists no edgedw’,v') € E(G,) such that’ € f;,(f; *(u)) and
v € fio (f *(v)), then(u,v) can be removed from graph; and
the cross-graph quasi-cliques are retained. The ratiomaleilar.
Limited by space, we omit the formal proof here.

For combining graphs (Lemma 3.3), in order to handle non-
bijective mapping, we revise the definition of combined tras
follows. Suppose graphs;,, ..., G, are withy;; 1(1<
j <1). Then, we construct the combined gra@h= (V, E') such
thatV = V(G1) andE = {(u,v)|(u,v € V(G1)) A (Vj: 1 <
J <1 (fi;(u), fi;(v)) € E(Gy;))}- Itcan be shown that, with the
revision, Lemma 3.3 holds.

4. EXPERIMENTAL RESULTS

The CDC28 data set [8] records the mRNA transcript levels of
the budding yeas$. cerevisiagluring the cell cycle. It contains the
expression values d@f, 096 ORFs (genes) during a 17-point time-
series, and is publicly available at http://cellcycle-wstanford.edu.

The protein-protein interaction data DIP, which is pulyliaiail-
able at http://dip.doe-mbi.ucla.edu, is a database ofantig pro-
teins. We downloaded the version on June 6th, 2004, dbtlvere-
visiae subset (yeast20040606.Ist). This data set contEing09
pairs of interacting proteins identified in the ye&8sterevisiae

We found4, 668 matched gene-protein pairs between CDC28
and DIP. For CDC28 data set, we used the Pearson’s corretatio
efficient as the measure of coherence and set the cohereash-th
old p = 0.5. As the result, the gene grajghg contains865, 080
edges whose both endpoints (genes) appear in the matched gen
protein pairs. After removing the self-interacting proteairs, the
protein graphGp contains15, 115 edges whose both endpoints
(proteins) appear in the matched gene-protein pairs.

In our experiments, we found the complete set of quasi-ebqu
across the gene grafikz and the protein graptifr. Unless par-
ticularly specified, we sefz = 1 for Gg, vyp = 0.5 for Gp, and
mins = 5.

4.1.2 Synthetic Data Sets

We wrote a data generator for synthetic data sets, whichrgene
ates synthetic data sets as follows.

Given the number of graphisand a set of vertice¥®’, the data
generator first creatésgraphss, . . . , G, such that for each graph
Gi, V(Gi) = V andE(G;) = 0. Then, given the expected num-
ber of cross-graph quasi-cliquég, and the parameters, . . ., v,
the data generator randomly generatgscross-graph quasi-cliques
and embeds them into graphs, ..., Gix. The size of the cross-
graph quasi-cliques is uniformly distributed betwegiin and
gM azx that are specified by user. Finally, given the density value
for graphG;, the data generator keeps adding randomly generated
edges into the grapf¥; until the overall density o&7; reachess;.
Here, the density of a graph is defined as

EG)|
(\V(G)\'(\X(G)\*l))

2|E(G)|

density(G) V(@] (VG| -1)"

In the experiments reported in this section, the defaultesfor
the parameters were as follows:= 2, v; = 1 for G1, 2 = 0.5
for G2, mins = 5, gMin = 5 andgMax = 20.

The experimental results on real data sets and syntheticseiég
are consistent. Limited by space, we use the results frometile
data set to illustrate the effectiveness of the mining aedeffiect
of the pruning techniques, and use both the real data sethand t
synthetic data sets to examine the efficiency and the stigfabi

4.2 Results on the Genomic Data

We mined cross-graph quasi-cliques from the genomic data se
Figure 10 shows an example cross-graph quasi-ciguer = 1
andvp = 0.4), where the diameter is onB; The induced graph of
Gk (the gene expression graph) @ris a perfect clique, so we only
show the induced graph 6fp (the protein interaction graph) @p

We conducted an extensive performance study using both realhere. The cross-graph quasi-clique contains 11 verticesud&/'the

data sets and synthetic data sets. The algorithms werermapted
in Java and the experiments were run on a Sun Wiinaork station
with a 440MHz CPU and 256 MB main memory.

4.1 The Data Sets
4.1.1 The Genomic Data Set

ORF (Open Reading Frame) names to represent the correggondi
genes and proteins.

The cross-graph quasi-clique is interesting in biologgsithese
11 genes are highly coherent and the corresponlingroteins are
intensively interacting.

To compare the efficiency of the rudimentary algorithm (Sec-
tion 3.1) andCrochet we got subsets of genes and proteins in the

We used a real data set consisting of the gene expression datgyenomic data set by sampling. We used the induced graphson th

CDC28 and the protein-protein interaction data DIP.

samples to test both algorithms. The number of verticesdrsti-



Figure 10: A cross-graph quasi-clique of

11 proteins.
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sets ranges from, 000 to 6, 018 (the whole data set). The runtime
is shown in Figure 11(a). Please note that axiss in logarith-
mic scale. ClearlyCrochetis dramatically more efficient than the
rudimentary method. This strongly indicates that the teples in
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Crochetare effective.

To understand the huge difference between the efficiendyeof t
two algorithms, recall that the rudimentary algorithm caontgs the
complete set of quasi-complete subgraph&in. In Figure 11(b),
we plot the number of quasi-complete subgraph&rim and the
number of cross-graph quasi-cliques, respectively. Glgae num-
ber of cross-graph quasi-cliques is much smaller. Thatypax:
plains the saving irCrochet SinceCrochetis dramatically faster
and more scalable than the rudimentary algorithm, henmeafte

focus on analyzing the performance@ifochet

Figures 12 (a) and (b) show the number of cross-graph quasi-
cligues and the runtime @rochetwith respect to parametetin,
the minimum number of vertices in a cross-graph quasi-elig\s
can be seen, whenin, is large, the number of cross-graph quasi-
cliques is small and the runtime is short. Agns decreases, the
number of cross-graph quasi-cliques may increase sutztaand
the runtime also increases accordingly. The two curvesviothe

same trend.

We also tested the effect 9F andvyg, as shown in Figures 12(c)-
1 in Figures 12(c) and (d). The two curves
follow the same trend. Whenp > 0.5, the cross-graph quasi-
cligues are compact and the number of cross-graph quasiesliis

(f). We fixedyg
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Figure 11: Comparison between the rudimentary algorithm ard Crochet (yg = 1, yp =
0.5 and mins = 5).
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Technique Runtime Runtime | Speedup
w/o the tech.| w/ the tech.
Graph reduction 27.819 16.392 1.697
& projection
Heuristic 1 44.274 16.392 2.701
Rule (1), Lemma 3.§ 16.765 16.392 1.023
Rule (2), Lemma 3. 130.460 16.392 7.959
Rule (3), Lemma 3.§ 10.838 16.392 0.661
Rule (4), Lemma 3.4 338.916 16.392 20.676

Figure 13: The effect of various techniques inCrochet (vg
1.0, vp = 0.5, mins = 5).

small. Whemyp < 0.5, the number of cross-graph quasi-cliques
increases substantially and so does the runtime.

In Figures 12(e) and (f), we fixegp = 0.5 and variedyg from
0.5 to 1. Interestingly, the number of cross-graph quasi-cliques
does not decrease monotonically whegnincreases. The reason is
that whem g increases, some large cross-graph quasi-cliques may
split into several smaller ones. The runtime@bchetdecreases
consistently as/r increases.

To examine the effect of the techniquesGnocheton improv-
ing the efficiency, we tested the speedup of the specific tqubs.
That is, for a specific technique, we recorded the ratio ofrtime
time of Crochetwithout the technique against using the technique.
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Figure 16: Scalability with respect to the
number of graphs.

The results are shown in Figure 13. From the figure, we can see of density in the graph with the lowest density brings the nsas

that rules (2) and (4) in Lemma 3.6 are most effective in prgni
Interestingly, rule (3) in Lemma 3.6, checking whether aeptitl
quasi-complete subgraph is a subset of a cross-graph digass,
is expensive and costs more than it can save. However, td duei
plicates in output, this step cannot be removed from therilgo.

4.3 Scalability Results on Synthetic Data Sets

Using synthetic data sets, we tested the scalabili§rotheton
five aspects, namely (1)the number of cross-graph quagiediin
the data set; (2) the number of vertices in the graphs; (3)i¢me
sity of the graphs; (4) the maximal size of the cross-grapdsgu
cliques; and (5) the number of graphs. Among the five factoes,
observed that the number of cross-graph quasi-clique®ideter-
minant one. The reason is that the more cross-graph qugsesl

nificant effect on the runtime. Please note that, in our stithlata
sets, the noisy edges are randomly distributed to satisfdémsity
requirement. In real applications, the distribution of eslghay not
be even. Limited by space, we omit the details here.

Figure 15 shows the runtime Gfrochetand the number of cross-
graph quasi-cliques with respect to the maximal size ofsgyaph
quasi-cliques, respectively. As can be seen, the largeertitsed-
ded cross-graph quasi-cliques, the more skewed the edgeksar
tributed. Thus, the number of cross-graph quasi-cliquestha
runtime increase substantially.

Last, Figure 16 shows the scalability Gfochetwith respect to
the number of graphs. We fixed the number of vertices, @0
and generated multiple graphs with densi6f. Since the more
graphs, the less likely and the smaller cross-graph quigsies are
formed, and also the sharper the cross graph pruning (edge-re

in the graphs, the fewer nodes we can prune from the set eaumer tjon and vertex reduction) is, the runtime®fochetdrops dramat-

ate tree, and the longer the runtime. However, the otheorfact
may also influence the runtime. For example, the more edgésin
graphs, more cross-graph quasi-cliques may exist.

ically when the number of graphs increases.
From the above experiments, we can see@rathetis efficient
and scalable in mining large graphs. On the other hand, Ideala

We Created SynthetiC graphs W|th 1,000 Vertices and emUedde mining of dense graphs and graphs with |arge Cross_grapsi_qua

1,000-10,000 cross-graph quasi-cliques in the graphsir&itd(a)
illustrates the runtime with respect to the number of cigrsgph
quasi-cliques. With the graph reduction, graph projecéind other
pruning rules, we can see th@rochetis approximately linearly
scalable with respect to the number of cross-graph quigied.
We also tested the runtime @frochetwith respect to the num-
ber of vertices (Figure 14(b)). We fixed the density of bothpdns

at 2% and embedded 100 expected cross-graph quasi-cliques in.
the graphs. As the number of vertices increases, the nuniber o

cross-graph quasi-cligues as well as their sizes increasstan-
tially. That leads to the rapid increase of the runtime.

We explored the scalability @rochetwith respect to the density
of the graphs. The general trend is that the runtim€mfchetin-
creases as the density increases. Moreover, the incredsasify
in the graph with highey value brings more significant effect to the
increase ofCrochetruntime. This is because, likely, the number of
cross-graph quasi-cliques is bounded by the graphs witehig

cliques is still challenging.

5. RELATED WORK

To the best of our knowledge, [1] and [21] are the two previous
studies most related to this paper. In [1], Abello et al. defin~y-
clique in a graplG as a subset of vertices C V(G) such that the

induced graph ot%' is connected antEZ(G(S))| > ~ - |g| .

They also proposed a greedy randomized adaptive search algo

rithm, GRASRto find a~v-clique with the maximum size. In [21],
Matsuda et al. introduced a definition of quasi-clique samtib ours
in this paper. However, instead of finding the complete sqtiaki-
cliques in the graph, they proposed an approximation alyorio
cover all the vertices in the graghi with a minimum number of
p-quasi-complete subgraphs. However, both [1] and [&difher
find the complete set of quasi-cliques, nor address minirigpteu

values. When the values are set to be the same, then the increase graphs



To a more general extent, graph mining has become animportan 6. CONCLUSIONS

topic in data mining. For example, mining frequent subgtmes
and subgraph patterns from many graphs (i.e., a graph d&aba
has been studied intensively [4, 27, 16, 17, 20, 32, 31, 28n Y
et al. [33] used frequent graph patterns to index graphsquere
graph pattern mining in those previous studies focuses ah fin

In this paper, we proposed a novel and interesting problem, m
ing cross-graph quasi-cliques from multiple graphs, armivell
some promising application examples. The complexity aigly
showed that the problem is difficult. We developed an efficien
algorithm, Crochet which exploits several effective techniques to

ing the common embedded subgraphs that appear in many graphsmine the complete set of cross-graph quasi-cliques. Ameite

which is very different from the problem of mining cross-gina
quasi-cliques investigated in this study. For a crosstympeasi-
clique, the induced graphs on the clique can be very diffdrem
graph to graph. Therefore, those frequent graph pattermgai-
gorithms cannot be extended to mine cross-graph quasiediq

In addition to frequent graph pattern mining, Palmer et28] [
developed a fast and scalable tédlF to answer various complex
analytical queries from massive graphs that may not be alfié t
into main memory. Faloutsos et al. [13] investigated thebjenm
of fast discovery of connection subgraphs which nicely gagpthe
relationship between pairs of nodes in large social netsigrphs.
In [18], Jeh and Widom proposed the problem of mining the spac
of graph properties.

Besides graph mining, graph-based algorithms are apptied t

cluster large data sets. A data set can be modeled as a graph, [6]

and the problem of clustering can be converted to some imadit
graph problems, such as finding (quasi-)cliques or minimutrrc
the graph. For example, the spectral clustering approdatafdbe
viewed as finding the relaxed optimal normalized cuts in ayheid
graph. A spectral clustering algorithm that uses/hagenvectors
of the adjacency matrix simultaneously was presented ih [22

As another frontier of data mining research, mining from -mul
tiple sources has received more and more attention. Therpape
in [11] provided good examples for techniques and appboatiof
mining multiple relational tables.

On the application side, recent technical advances havdezha
collections of many different types of biological data atengme-
wide scale, such as DNA and protein sequences, gene expressi
measurements, and protein-protein interactions. Varghuster-
ing approaches, including the graph-based algorithmss baen
developed to explore interesting patterns in those data devr
example, Hartuv et al. [15] proposed an algorithdCS to find
groups of genes that have similar expression patteH€S re-
cursively splits the weighted gene graphinto a set of highly
connected components along the minimum cut. Each highly con
nected component is considered as a gene cluster. Motibgted
HCS Shamir et al. developed the algoritHBi.ICK [26]. In [5],
Ben-dor et al. presented a heuristic algorit@ASTto iteratively
identify the maximal cliques once at a time. Xu et al. [30] gen
erated aMinimum Spanning Tre@MST) from the weighted gene
graphG. By removing(K — 1) edges from the generated MST, the
data set is partitioned int& clusters. Moreover, Enright et al. [12]
developedTRIBE-MCLbased orMCL [10], a graph-based algo-
rithm using flow simulation, to efficiently detect proteimfdies
from large protein sequence databases. Bu et al. [6] usespte
tral clustering method [22] to analyze the topological ctive in
the protein interaction graphs. Moreover, Bader et al. f2ppsed
a heuristic approachMCODE, based on the concept of scale-free
networks [3] to find molecular complexes in large proteirerat-
tion graphs.

Recently, joint mining of multiple biological data sets has
ceived intense interest. As a pioneer work, Segal et al. (28]
posed a unified probabilistic model to learn the pathwaysfro
gene expression data and protein interaction data. Howtheir
method requires the users to input the number of pathwaysstha
often unknown in advance.

performance study using both real data sets and syntheticsdts
illustrated that the mining results are interesting anddigm Cro-
chetis efficient and scalable.
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