
A General Approach to Mining Quality
Pattern-Based Clusters from Microarray Data�

Daxin Jiang1, Jian Pei2, and Aidong Zhang1

1 State University of New York at Buffalo, USA

{djiang3, azhang}@cse.buffalo.edu
2 Simon Fraser University, Canada

jpei@cs.sfu.ca

Abstract. Pattern-based clustering has broad applications in microar-
ray data analysis, customer segmentation, e-business data analysis, etc.
However, pattern-based clustering often returns a large number of highly-
overlapping clusters, which makes it hard for users to identify interest-
ing patterns from the mining results. Moreover, there lacks of a general
model for pattern-based clustering. Different kinds of patterns or differ-
ent measures on the pattern coherence may require different algorithms.
In this paper, we address the above two problems by proposing a general
quality-driven approach to mining top-k quality pattern-based clusters.
We examine our quality-driven approach using real world microarray
data sets. The experimental results show that our method is general,
effective and efficient.

1 Introduction

Clustering is an important data mining problem. For a set of objects, a clustering
algorithm partitions the objects into a set of clusters, such that objects within a
cluster are similar to each other, and objects in different clusters are dissimilar.
While many traditional clustering methods often assume that the clusters are
mutually exclusive and rely on metric distance between objects, some recently
emerging applications, such as those in bio-informatics and e-business, post the
challenges of mining non-exclusive, non-distance-based clusters in various sub-
spaces from large databases.

As a typical application, a microarray data set can be modelled as a numerical
data matrix recording the expression levels of genes on samples. An important
task of analyzing microarray data is to find co-expressed genes and phenotypes.
A group of co-expressed genes are the ones that demonstrate similar expression

� This research is partly supported by NSF grants DBI-0234895 and IIS-0308001, NIH
grant 1 P20 GM067650-01A1, the Endowed Research Fellowship and the President
Research Grant from Simon Fraser University. All opinions, findings, conclusions
and recommendations in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 188–200, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A General Approach to Mining Quality Pattern-Based Clusters 189

patterns over a substantial subset of samples, and the subset of samples may
correspond to some phenotype.

Moreover, given a microarray data set, a gene can belong to more than one
co-expressed gene group, since it may correlate to more than one phenotype;
and a sample can manifest more than one phenotype, such as tumor vs. normal
tissues and male vs. female samples. To address the novel requirements, recently,
a new theme of pattern-based clustering, is being developed [1, 5, 6, 9, 10] (Please
see Section 2 for a brief review).

As indicated by the previous studies, pattern-based clustering is effective for
mining non-exclusive, non-distance-based clusters. However, the state-of-the-art
methods for pattern-based clustering are still facing the following two serious
challenges, which will be addressed in this paper.

Challenge 1: Pattern-based clustering may return a large number of
highly-overlapping clusters.
To filter out trivial clusters, most of the pattern-based clustering methods adopt
some thresholds, such as the minimum number of objects in a cluster, the min-
imum number of attributes in a cluster, and the minimum degree of coherence
of a cluster. Since too tight threshold values may prune out most of the clusters,
including those bearing interesting patterns, loose threshold values are usually
preferred.

However, pattern-based clustering will return the complete set of possible
combinations of objects and attributes that pass the thresholds. When loose
threshold values are specified, thousands or tens of thousands of clusters will be
reported. Moreover, since the microarray data are typically highly-connected [3],
the reported clusters may be often highly overlapping. For example, our empirical
study has shown that the average overlap among the clusters returned by a
representative pattern-based clustering algorithm may be as high as 79% (Please
see Section 5 for details). Clearly, it is hard for users to identify useful patterns
from such voluminous and redundant mining results.

Can we develop an effective method that can automatically focus on finding
a small set of representative clusters with respect to loose threshold values?

Our Contribution. In this paper, we propose a theme of mining top-k quality
pattern-based clusters, based on a user specified quality/utilization function. In
particular, the top-k clusters are sorted according to their quality, and the clus-
ters with higher quality are reported before those with lower quality. We show
that, by intuitive quality functions, highly overlapping clusters can be avoided.

Challenge 2: There are numerous pattern-based clustering models due
to various definitions of patterns and coherence measures.
For example, Cheng and Church [1] measured the coherence of clusters by the
mean squared residue score. Wang et al. [9] introduced the notion of pScore
to measure the similarity between the objects in clusters. Liu and Wang [5]
defined patterns by ordering attributes in value ascending order. Jiang et al. [4]
constrained the coherence within groups of samples by the minimum coherence
threshold. Different algorithms are proposed to handle specific models. Even

190 D. Jiang, J. Pei, and A. Zhang

with a minor change to the specific pattern-based clustering model, such as the
definition of coherence function, we may have to write a new algorithm.

Given that pattern-based clustering methods share essential intuitions and
principles, can we have a general approach such that many different pattern-
based clustering models can be handled consistently?

Our Contribution. In this paper, we develop a general model for pattern-
based clustering to address the above challenge. Our new pattern-base clustering
model is a generalization of several previous models, including bi-Cluster [1], δ-
pCluster [9], OP-Cluster [5] and coherent gene cluster [4]. We study how to mine
top-k quality pattern-based clusters under the general model, and give a general
and efficient algorithm.

The remainder of the paper is organized as follows. In Section 2, we review
the related work, and also clarify the novel progress that we make in this pa-
per comparing to our previous studies on mining microarray data. A general
quality-driven model is introduced in Section 3. A general approach to mining
top-k quality pattern-based clusters is presented in Section 4. We report the
experimental results in Section 5. Finally, we conclude this paper in Section 6.

2 Related Work

Our research is highly related to pattern-based clustering. Cheng and Church
[1] introduced bi-cluster model. Given a subset of objects I and a subset of
attributes J , the coherence of the submatrix (I, J) is measured by the mean
squared residue score.

rIJ =
1

|I||J |
∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)2, (1)

where aij is the value of object i on j, aiJ is the average value of row i, aIj is the
average value of column j, and aIJ is the average value of the submatrix (I, J).
The problem of bi-clustering is to mine submatrices with low mean squared
residue scores. Yang et al. [10] proposed a move-based algorithm to find biclusters
more efficiently. The algorithms in [1] and [10] adopt heuristic search strategies,
and thus cannot guarantee to find the optimal biclusters in a data set.

In [9], Wang et al. proposed the model of δ-pCluster. A subset of objects
O and a subset of attributes A form a pattern-based cluster if for any pair of
objects x, y ∈ O, and any pair of attributes a, b ∈ A, the difference of change of
values on attributes a and b between objects x and y is smaller than a threshold
δ, i.e., |(x.a − y.a) − (x.b − y.b)| ≤ δ. In a recent study [6], Pei et al. developed
MaPle, an efficient algorithm to mine the complete set of maximal pattern-based
clusters (i.e., non-redundant pattern-based clusters).

In [5], Liu and Wang presented the model of OP-Cluster. Under this model,
two objects gi, gj are similar on a subset of attributes S if the values of these two
objects induce the same relative order of those attributes. An efficient algorithm,
OPC-Tree, was developed.

A General Approach to Mining Quality Pattern-Based Clusters 191

2.1 New Progress in This Paper

Since 2002, we have been systematically developing pattern-based clustering
methods for mining microarray data, e.g., [6, 4, 3]. For example, we proposed a
model for coherent clusters, a specific type of pattern-based clusters, in the novel
gene-sample-time series microarray data sets, and developed algorithms Sample-
Gene Search and Gene-Sample Search [4]. Sample-Gene Search was shown more
efficient.

This paper is critically different from [4] and other previous studies on pattern-
based clustering in the following perspectives. First, the methods discussed
in [4] enumerate all pattern-based clusters. As discussed before, although MaPle,
OPC-Tree, Gene-Sample Search and Sample-Gene Search can find the complete
set of the pattern-based clusters in a data set, they may not be effective to
handle the two challenges discussed in Section 1. In this paper, we address the
challenges by proposing a general quality-driven pattern-based clustering frame-
work. Instead of enumerating all the pattern-based clusters, we mine only the
top-k clusters here according to a quality/utilization function specified by users.
All existing methods cannot mine such top-k clusters.

Second, [4] studies a specific type of microarray data stes. In this paper, we do
not focus on a specific model. Instead, we generalize several previously proposed
pattern-based clustering models and propose a general approach.

Last, [4] and this paper share the framework of pattern-growth approaches,
i.e., both methods conduct depth-first search. However, due to the quality-driven
mining requirements, in this paper, we develop techniques to prune futile search
subspaces using the quality criteria (e.g., Section 4.1 and Rule 3). The algorithm
developed in this paper inherits and generalizes the technical merits from [4, 6].

3 Mining Quality Pattern-Based Clusters

For a set of n genes G-Set = {g1, . . . , gn} and a set of m samples S-Set =
{s1, . . . , sm}, the expression levels of the genes on the samples form a matrix
M = {mi,j}, where mi,j is the expression level of gene gi (1 ≤ i ≤ n) on sample
sj (1 ≤ j ≤ m). A cluster is a submatrix C = (G,S) of M , i.e., G ⊆ G-Set
and S ⊆ S-Set, such that C is coherent. Here, the coherence of C describes how
coherently the genes in G exhibit expression patterns on the set of samples S.

The measure of coherence varies in different specific pattern-based clustering
models. In this paper, we are interested in constructing a general model instead
of proposing another measure of coherence. Thus, we assume that the coherence
of a submatrix is given by a function cScore such that (1) cScore(C) ≥ 0 for any
submatrix C; and (2) for submatrices C1 and C2, if cScore(C1) > cScore(C2),
then C1 is more coherent than C2.

For a specific model, it is easy to revise the coherence measure to satisfy the
above two requirements. For example, the bi-Cluster model [1] minimizes the
mean squared residue score rIJ (Equation 1). Since the score is always greater
than or equals to 0, minimizing rIJ is equivalent to maximizing 1

rIJ
. Thus, we

can use the following cScore() function.

192 D. Jiang, J. Pei, and A. Zhang

cScore(C) =
1∑

i∈I,j∈J(aij − aiJ − aIj + aIJ)2
(2)

For δ-pCluster, we can use the following function.

cScore(C) =
{

1 if pScore(X) ≤ δ for any 2 × 2 sumbmatrix X of C
0 otherwise (3)

For OP-Cluster, we have

cScore(C) =
{

1 if patterns in C follow the same ordering
0 otherwise (4)

Moreover, for coherent gene cluster [4], we can specify the cScore function as
follows.

cScore(C) =
{

1 if in C each gene is coherent across the samples
0 otherwise (5)

In real applications, users often have a preference among the clusters. For
example, in mining gene expression data, clusters with a high coherence score
and a large number of genes and samples are strongly preferred. Accordingly, we
define the quality measure of clusters as follows.

Definition 1 (Quality of a cluster). Let C = (G,S) be a submatrix of a
microarray data set M , the quality of C is defined as quality(C) = size(C) ·
cScore(C), where size(C) = |G| · |S| and cScore is the coherence function.

For a set of clusters that have no overlap, the quality of the set of clusters is
simply the sum of the quality of each cluster. However, when there exist some
overlaps, we have to make sure that each overlapping cell contributes to the
total quality only once, and the contribution goes to the most quality cluster
that contains the overlap.

Definition 2 (Quality of a set of clusters). Let Ω be a set of submatri-
ces. The quality of Ω is defined as quality(Ω) =

∑
mi,j∈∪C∈ΩC Q(mi,j), where

Q(mi,j) = max{cScore(C)|(C ∈ Ω) ∧ (mi,j ∈ C)}.
Suppose a user wants a set of k clusters that have the best quality, the problem

can be formulated as to compute a set Ω = {C1, . . . , Ck} of k submatrices
such that quality(Ω) is globally maximized. However, given different numbers of
clusters k and k′ such that k < k′, the corresponding optimized sets of clusters
Ω and Ω′ may not be consistent. In other words, since we maximize the quality
function on a global level, a quality cluster C ∈ Ω may not necessarily appear in
Ω′. The inconsistency among the mining results with respect to different numbers
of clusters is undesirable, since the number of clusters k is usually unknown a
priori.

A General Approach to Mining Quality Pattern-Based Clusters 193

To address this problem, we turn to a greedy framework. The main idea is
that we compute a series of k clusters Ω = {C1, . . . , Ck} such that (1) C1

is the cluster with the highest quality; and (2) for Ci (i ≥ 2), Ci is a cluster
maximizing the “quality improvement” with respect to C1, . . . , Ci−1. In this
way, for any two numbers of clusters k < k′, we have Ω ⊂ Ω′. Then the user can
choose the number of clusters in an incremental manner. At first, the user can
choose a small value of k, if all the clusters reported are with high quality, the
user can ask for more clusters until the quality of the latest reported cluster is
not satisfactory. We formulate the idea as follows.

Definition 3 (Quality gain). Let C = (G,S) be a submatrix of a gene ex-
pression matrix M , and cScore be a coherence function. For a set of sub-
matrices Ω = {C1, . . . , Ck}, the quality gain of C (against Ω) is defined as
quality(C|Ω) = |C−overlap(C,Ω)|·cScore(C), where function overlap(C,Ω) =
{mi,j |(mi,j ∈ C)∧ (∃C ′ ∈ Ω : mi,j ∈ C ′)} returns the set of cells in C that over-
lap with some clusters in Ω.

Problem of Mining Top-k Quality Clusters. Given a gene expression ma-
trix M , a coherence function cScore(·) and a positive integer k. The problem of
mining top-k quality pattern based clusters is to compute a series of k subma-
trices C1, . . . , Ck such that (1) quality(C1) is the maximum; and (2) for i ≥ 2,
quality(Ci|{C1, . . . , Ci−1}) is the maximum.

Our general model of mining quality pattern-based clusters has the follow-
ing distinct features. First, our model can generate a list of clusters in quality
descending order. Many previous approaches such as [4, 5, 6, 9] report all the
pattern-based clusters without any indication of the significance of the clusters.
It is often tedious to select the interesting clusters from those trivial ones. Sec-
ond, our model is a generalization of bi-cluster, δ-pCluster, OP-Cluster, and
coherent gene cluster. As shown before, we can easily assign coherence functions
to those specific models.

In many applications, a user has several basic constraints to avoid trivial
clusters. The constraints can be specified using the following three thresholds.
(1) Minimum number of genes ming; (2) Minimum number of samples mins; and
(3) Minimum coherence δ. A submatrix C = (G,S) will be reported as a cluster
only if it satisfies the constraints: |G| ≥ ming, |S| ≥ mins and cScore(C) ≥ δ.

Moreover, in some pattern-based clustering models, such as δ-pCluster, OP-
Cluster, and coherent gene cluster, an anti-monotonicity holds: a coherence
function cScore() is anti-monotonic if for any two clusters C1 = (G1, S1) and
C2 = (G2, S2) such that G1 ⊆ G2 and S1 ⊆ S2, cScore(C1) ≥ cScore(C2). The
anti-monotonicity captures a natural assumption: the coherence of a submatrix
monotonically decreases as more genes and/or more samples are included. In our
general model, we also assume that the anti-monotonicity holds for the coherence
function.

194 D. Jiang, J. Pei, and A. Zhang

4 The Mining Algorithm

In this section, we will present a general approach to mine top-k quality clusters
that satisfy the thresholds. Basically, we find the top-k clusters iteratively, one
at a time. We will address the following two issues.

– In the i-th iteration (1 ≤ i ≤ k), how can we find cluster Ci that maximizes
the quality gain against the set of clusters {C1, . . . , Ci−1}?

– How to search the huge space of all possible submatrices efficiently and prune
unpromising subspace sharply?

4.1 Mining a Cluster Maximizing Quality Gain

A näıve method to find a cluster that has the maximum quality gain is to test
every possible submatrix and its quality gain. A submatirx can be viewed as a
combination of genes and samples. Therefore, the problem can be reduced to
enumerating all possible combinations of genes and samples.

A systematic way to tackle an enumeration problem is to use enumeration
tree [7]. Figure 1 shows the enumeration tree of a four-element set {a, b, c, d}. It
provides a conceptual tool to enumerate all the subsets of {a, b, c, d} systemati-
cally.

{a,b,d}

{a,b} {a,c}

{a,c,d}

{a,b,c,d}

{a,d}

{a}

{b,c} {b,d}

{b,c,d}

{b} {c}

{c,d}

{d}

{}

{a,b,c}

Fig. 1. Enumeration of combinations of samples

Basically, we can enumerate all the subsets of samples first. For each subset
of samples S, we enumerate all subsets of genes G, and test the quality gain of
(G,S). We only need to keep the submatrix C = (G,S) that satisfies the thresh-
olds and achieves the best quality gain in the current iteration. This method is
called the Sample-Gene Search.1

Why do we enumerate subsets of samples first and then subsets of genes later,
but not in the reverse way?

In gene expression data, the number of genes is typically by far larger than
the number of samples. In other words, the number of combinations of genes

1 The initial idea of enumerating samples instead of genes in microarray data sets
to find pattern-based clusters was firstly proposed by Wang et al. [9], and further
systematically developed in [6].

A General Approach to Mining Quality Pattern-Based Clusters 195

is often dramatically larger than the number of combinations of samples. With
our pruning rules in Section 4.2, if the Sample-Gene Search is adopted, once a
subset of samples and its descendants are pruned, all searches of related subsets
of genes are pruned as well. Heuristically, the Sample-Gene Search may bring
a better chance to prune a more bushy search sub-tree than the Gene-Sample
Search for gene expression data.

When we enumerate the subsets of samples or genes, we can conduct a re-
cursive, depth-first search of the set enumeration tree. Given a data set of m
samples and n genes, the set enumeration tree has 2m+n nodes. However, we
never need to materialize such a tree. Instead, we only need to keep a path from
the root of the tree to the node we are searching as a working set, which contains
at most m + n + 1 nodes. Besides, proper pruning techniques will be developed
to prune unpromising branches as early as possible.

4.2 The Rules for Pruning

In this subsection, we develop efficient rules to prune unpromising subspaces
using the thresholds and/or the anti-monotonicity of the coherence function.

For the Sample-Gene Search, each node on the set enumeration tree contains
a unique submatrix. Thus we will use the submatrix to refer to the node. At
node C = (G,S) of the set enumeration tree, where G = {gi1 , . . . , gik

} (1 ≤
i1 < · · · < ik ≤ n), we keep a list gTail of genes. A gene gj ∈ G-Set is included
in list gTail if (1) j ≥ ik and (2) the coherence score of C ′ = (G ∪ {gj}, S)
is no less than minimum coherence threshold δ. We have the following result,
which generalized some of the pruning techniques in the existing pattern-based
clustering methods (e.g., [6, 4]).

Rule 1 (Pruning irrelevant genes). For a node C in the set enumeration
tree, only the genes in list gTail should be used to construct super clusters of C.

Rationale. Suppose gene gj /∈ gTail of C = (G,S), where G = {gi1 , . . . , gik
}

(1 ≤ i1 < · · · < ik ≤ n). Two situations may happen. First, j ≤ ik. Second,
C ′ = (G ∪ {gj}, S) violates the coherence constraint. For the first situation, gj

cannot be used to expand C according to the structure of the set enumeration
tree. For the second situation, since any descendant C ′′ of C ′ is a submatrix
of C ′, according to the anti-monotonic property, C ′′ also violates the coherence
constraint. Therefore, we can prune the genes not in the gTail list.

Similarly, we can maintain a list sTail of samples for node C, and prune the
samples not in sTail when we search the subtree of C. Due to the limit of space,
we omit the details here. Moreover, for any descendant node C ′ of C, the gTail
and sTail lists of C ′ are subsets of those lists of C, respectively.

Since the gTail and sTail lists of the current node C tell us which genes and
samples can be used to further expand the subtree of C, they actually provide
us the a priori information about the subtree of C. Based on such information,
we can prune the unpromising descendants of C early.

196 D. Jiang, J. Pei, and A. Zhang

Rule 2 (Pruning small submatrices). For a node C = (G,S), the subtree of
C can be pruned if (|G| + |gTail|) < ming or (|S| + |sTail|) < mins.

Rationale. Since we only use the genes and samples in gTail and sTail lists to
expand the subtree of C, for any descendant node C ′ = (G′, S′) of C, we have
|G′| ≤ (|G|+ |gTail|) and |S′| ≤ (|S|+ |sTail|). If for node C, (|G|+ |gTail|) <
ming or (|S| + |sTail|) < mins, then none of the descendants of C will satisfy
the size constraint. Therefore, the subtree of C can be pruned.

Rules 1 and 2 are essential for pattern-based clustering (as well as frequent
itemset mining). The similar idea has been studied before extensively (e.g., [4, 6]).
The quality mining inherits them. To push the quality requirement into the
mining, the following lemma gives the upper bound of the quality gain that can
be achieved in a subtree.

Input: the gene expression data set M
Output: the top-k clusters Ω
Method:

let Ω = ∅ // the set of top clusters already found
for num = 1 to k do

let maxQ = −1, maxCluster = null
for each subset of samples S

if |S| < mins continue

for i = 1 to (|G-Set| − ming) do

let G = {gi}, C = (G, S); compute gTail
call recursive-search(C, gTail)

end for // end the enumeration of genes
end for // end the enumerate of samples
let Ω = Ω ∪ {maxCluster}

end for

Procedure: recursive-search(C, gTail)
if (|G| + |gTail|) < ming then return

calculate the quality upper bound of C’s descendants according to Lemma 1
if C can be pruned by Pruning Rule 3 then return

while (gTail �= ∅) do

let i = min{j| gj ∈ gTail}
let C′ = (G ∪ {gi} × S); compute gTail′

call recursive-search(C′, gTail′)
end while

if ((|G| ≥ ming) && (|S| ≥ mins)) then

if (quality(C|Ω)) > maxQ
then let maxQ = quality(C|Ω), let maxCluster = C
end if

end if

Fig. 2. Algorithm Q-Clustering for mining top-k quality clusters

Lemma 1. Let Ω be a set of clusters. For any descendant C ′ of node C = (G,S)
in the set enumeration tree, a tight upper bound of quality(C ′|Ω) is given by
[(|G|+|gTail|)(|S+|sTail|)−|overlap(((G∪gTail), (S∪sTail)), Ω)|]·cScore(C).

A General Approach to Mining Quality Pattern-Based Clusters 197

Proof sketch. [(|G| + |gTail|) ∗ (|S + |sTail|) − overlap(((G ∪ gTail), (S ∪
sTail)), Ωk−1)] is the upper bound of the non-overlapping size of the descendants
of C. Given the anti-monotonicity of the coherence measure, cScore(C) is the
upper bound of the coherence score of the descendants of C. Therefore, Lemma 1
gives an upper bound of the quality of the descendants of C. The bound can be
shown tight. Limited by space, we omit the details here.

Based on Lemma 1, we have the following rule immediately.

Rule 3 (Pruning low quality submatrices). The subtree of C can be pruned
if the upper bound of the quality gain given by Lemma 1 is smaller than the best
quality gain that has got so far in the current iteration.

In summary, Figure 2 shows algorithm Q-Clustering to mine the top-k quality
clusters. Limited by space, we omit the details of pruning techniques using the
sTail list, which is basically symmetric to the case of gTail list.

5 Experimental Results

We tested algorithm Q-Clustering on both synthetic data sets and real gene
expression data sets. The system is implemented in Java. The tests are conducted
on a Sun Ultra 10 work station with a 440MHz CPU and 256 MB main memory.
The results are consistent. Limited by space, we only report the results on a real
data set here.

Spellman et al. [8] reported the genome-wide 6, 220 mRNA transcript levels
during the cell cycle of the budding yeast S. cerevisiae. The complete data set
consists of 3 independent time-series, namely, the αfactor (18 time points), the
elutriation (14 time points) and the cdc15 (24 time points). We choose the cdc15
data set since it contains the longest time-series. Out of the 6, 220 monitored
genes, only 800 genes are found cell-cycle-dependent. We call this subset of data
cdc 800. To test the performance of our algorithm extensively, we sample the
complete data set (6,220 genes and 56 time points) with various sizes.

To test the effectiveness of our general quality-driven approach, we chose a
representative pattern-based clustering model, the δ-pCluster [9], and compare
the mining results reported by our approach with those by a representative
pattern-based clustering algorithm, MaPle [6]. Given the cdc 800 data set, both
Q-Clustering and MaPle were invoked when mins = 5 and ming = 5, while the
δ value ranges from 0.3 to 0.4. For Q-Clustering, we only return the clusters with
a quality gain beyond mins ∗ming. According to Definition 3 and the semantic
meaning of mins and ming, such clusters may carry interesting patterns.

Figure 3(a) shows the number of clusters reported by the two algorithms.
Since MaPle finds the complete set of maximal δ-pClusters, we can see the
number of clusters increases dramatically when the threshold value increases.
However, Q-Clustering only returns the quality δ-pClusters, and the number of
clusters is much more stable.

198 D. Jiang, J. Pei, and A. Zhang

 10

 100

 1000

 0.3 0.32 0.34 0.36 0.38 0.4

N
u
m
b
e
r

o
f

c
l
u
s
t
e
r
s

δ

S-G Search
MaPle

 30

 35

 40

 45

 50

 55

 60

 65

 0.3 0.32 0.34 0.36 0.38 0.4

C
o
v
e
r
a
g
e

(
%
)

δ

(a) Number of clusters (b) Coverage of clusters

Fig. 3. Clusters reported by MaPle and Gene-Sample Search

δ quality clusters all maximal clusters

3.0 0.0% 69.4%

3.2 1.2% 70.0%

3.4 1.5% 73.8%

3.6 1.6% 75.5%

3.8 2.6% 77.6%

4.0 5.8% 79.3%

Fig. 4. Overlap between clusters

We then evaluate the correlation between the clusters reported by
Q-Clustering and MaPle. That is, we want to measure to which extent the qual-
ity clusters cover the set of δ-pClusters. We represent a cluster C by {(gi, sj)},
where gi and sj are the gene and sample in C, respectively. Given two sets of
clusters Ω = {C1, . . . , Cm} and Ω′ = {C ′

1, . . . , C
′
n}, the coverage of Ω on Ω′

is defined by (C1∪...∪Cm)∩(C′
1∪...∪C′

n)
C′

1∪...∪C′
n

. Figure 3 (b) illustrates the coverage of the
quality clusters on the complete set of clusters. We can see that when δ = 0.4, al-
though the number of quality clusters is only 3% of the total number of clusters,
the coverage of quality clusters is over 40%. That is, our quality-driven approach
focuses on finding a small set of clusters which can effectively represent the un-
derlying patterns in the data set. Please note that, to increase the coverage, users
can always ask more clusters from the system until no more interesting patterns
are identified.

Why the number of clusters reported by our quality-driven approach is much
smaller than that by MaPle?

The rationale is that, due to the high-connectivity of microarray data, the
pattern-based clusters usually highly overlap with each other. Figure 4 demon-
strates the average overlap among the clusters by MaPle and Sample-Gene
Sample, respectively. Given a set of clusters Ω, the average overlap of Ω is

A General Approach to Mining Quality Pattern-Based Clusters 199

∑
Ci∈Ω

overlap(Ci)

|Ω| , where the overlap of a cluster Ci is measured by overlap(Ci) =

max{Ci∩Cj

Ci
|Cj ∈ Ω, i
= j}. We can see that the average overlap among the com-

plete set of clusters is usually higher than 70%, while the average overlap among
the quality clusters is less than 6%. In practice, a gene may participate in mul-
tiple cellular processes or correlate to several phenotypes. Consequently, it may
belong to more than one cluster. However, such situation is not common and a
ratio of about 6% overlap is biologically plausible.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
u
n
t
i
m
e

(
s
e
c
)

Number of genes

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 15 20 25 30 35 40 45 50

R
u
n
t
i
m
e

(
s
e
c
)

Number of samples

(a) Runtime vs. number of genes (b) Runtime vs. number of samples

Fig. 5. Scalability with respect to the sizes of the data sets

Finally, we test the scalability of our algorithm. We set mins = 6,ming = 10
and δ = 0.2. We sample the cdc15 time-series (24 time points) when we test
the scalability with respect to the number of genes. To test the scalability with
respect the number of samples, we fix the number of genes to 3,000 and sample
the time points from the complete data set. The results are shown in Figure 5(a)
and (b). We can see that our algorithm scales well with respect to both the
number of genes and the number of samples.

6 Discussion and Conclusions

In this paper, we proposed a general approach to mining top-k quality pattern-
based clusters. The experimental results on gene expression data show that our
method is general, effective and efficient. Several interesting and important prob-
lems still remain open, such as how to find multiple quality clusters during a
single iteration, and how to handle non-anti-monotonic coherence functions.

Acknowledgements. We thank the reviewers for their comments and sugges-
tions which help to improve the presentation of the paper.

200 D. Jiang, J. Pei, and A. Zhang

References

1. Cheng, Y. and Church, G.M. Biclustering of expression data. ISMB’00.
2. Jain, A.K., Murty, M.N. and Flynn, P.J. Data clustering: a review. ACM Com-

puting Surveys, 31:264–323, 1999.
3. Jiang, D., Pei, J. and Zhang, A. Interactive Exploration of Coherent Patterns in

Time-Series Gene Expression Data. In KDD’03.
4. Jiang, D., Pei, J., Ramanathan, M., et al. Mining Coherent Gene Clusters from

Gene-Sample-Time Microarray Data. In KDD’04.
5. Liu, J., Wang, W. OP-Cluster: Clustering by Tendency in High Dimensional Space.

In ICDM’03.
6. Pei, J., Zhang, X., Cho, M., et al. MaPle: A Fast Algorithm for Maximal Pattern-

based Clustering. ICDM’03.
7. Rymon, R. Search through systematic set enumeration. In KR’92.
8. Spellman, P.T., Sherlock, G., Zhang, M.Q., et al. Comprehensive identification

of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization. Mol. Biol. Cell, 9:3272–3297, 1998.

9. Wang, H., Wang, W., Yang, J. et al. Clustering by Pattern Similarity in Large
Data Sets. In SIGMOD’02.

10. Yang, J., Wang, W., Wang, H. et al. δ-cluster: Capturing Subspace Correlation in
a Large Data Set. In ICDE’02.

	Introduction
	Related Work
	New Progress in This Paper

	Mining Quality Pattern-Based Clusters
	The Mining Algorithm
	Mining a Cluster Maximizing Quality Gain
	The Rules for Pruning

	Experimental Results
	Discussion and Conclusions

