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ABSTRACT
Recently, a technique called quotient cube was proposed
as a summary structure for a data cube that preserves
its semantics, with applications for online exploration
and visualization. The authors showed that a quotient
cube can be constructed very efficiently and it leads to
a significant reduction in the cube size. While it is an
interesting proposal, that paper leaves many issues un-
addressed. Firstly, a direct representation of a quotient
cube is not as compact as possible and thus still wastes
space. Secondly, while a quotient cube can in principle
be used for answering queries, no specific algorithms
were given in the paper. Thirdly, maintaining any sum-
mary structure incrementally against updates is an im-
portant task, a topic not addressed there. In this paper,
we propose an efficient data structure called QC-tree
and an efficient algorithm for directly constructing it
from a base table, solving the first problem. We give ef-
ficient algorithms that address the remaining questions.
We report results from an extensive performance study
that illustrate the space and time savings achieved by
our algorithms over previous ones (wherever they ex-
ist).

1. INTRODUCTION
The data cube [8] is an essential facility for data

warehousing and OLAP. Conceptually, a data cube is
a multi-level, multi-dimensional database with various
multiple granularity aggregates. It is a generalization
of the group-by operator, and contains group-bys corre-
sponding to all possible combinations of a list of dimen-
sions.

Example 1 (Data cube). In a marketing manage-
ment data warehouse, data are collected under the schema
sales(Store, Product, Season, Sale). The base table, which

∗Research supported by a grant from NSERC (Canada).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM ...$5.00.

holds the sales records, is shown in Figure 1. Attributes
Store, Product and Season are called dimensions, while
attribute Sale is called a measure.

Store Product Season Sale

S1 P1 s(spring) 6
S1 P2 s(spring) 12
S2 P1 f(fall) 9

Figure 1: Base table sales for a data warehouse.

A data cube grouped by Store, Product, Season using
an aggregate function such as AVG(Sale) is the set of
results returned from the 8 group-by queries, with each
subset of {Store, Product, Season} forming a group-by.
Each group-by corresponds to a set of cells, described as
tuples over the group-by dimensions. The cells in the
data cube CubeSales are shown in Figure 2(a). Here,
symbol “∗” in a dimension means that the dimension is
generalized such that it matches any value in its domain.

Two basic semantic relations among cells of a data
cube are the drill-down relation and its dual, the roll-
up. A cell c1 rolls up to cell c2 (c2 drills down to c1), if c2

generalizes c1 in some dimensions, i.e., in all dimensions
where c1 and c2 have different values, c2 has value “∗”.
E.g., in the data cube in Figure 2(a), cell (S1, P1, s)
rolls up to (S1, ∗, s). Cell (S1, ∗, s) represents a higher
level aggregate (i.e., the sales of ALL products in store
S1 and in spring) than cell (S1, P1, s) (i.e, the sales of
product P1 in store S1 and in spring). A cube’s cells
together with the drill-down (or roll-up) relation form a
lattice. Figure 2(b) shows the lattice for the data cube
cells in Figure 2(a), where the top element, false, is not
shown.

Because of their importance for efficient query an-
swering and support for exploration and analysis, there
have been numerous works on computing data cubes
efficiently from a base table [1, 5, 20, 30], construct-
ing a cube with various constraints [5], compressing [24,
25, 27] and approximating a data cube [3, 4, 26], etc.
However, there are some inherent problems that current
techniques cannot handle well.

(1) Many kinds of critical semantic relationships among
aggregate cells in a data cube are not captured. E.g.,
in Figure 2, tuple (S2, P1, f) is the only contributor to
the aggregates in cells (S2, ∗, f), (S2, P1, ∗), (∗, P1, f),
(∗, ∗, f), and (S2, ∗, ∗). A one-step roll-up from cell



Store Product Season AVG(Sale)

S1 P1 s 6
S1 P2 s 12
S2 P1 f 9
S1 ∗ s 9
S1 P1 ∗ 6
∗ P1 s 6

. . . . . . . . . . . .
∗ ∗ f 9

S2 ∗ ∗ 9
∗ ∗ ∗ 9

(S1,*,s):9 (S1,P1,*):6 (*,P1,s):6 (S1,P2,*):12 (*,P2,s):12 (S2,*,f):9 (S2,P1,*):9 (*,P1,f):9

(S1,P1,s):6 (S2,P1,f):9

(S1,*,*):9 (*,*,s):9 (*,P2,*):12 (*,*,f):9 (S2,*,*):9

C3C2

C4

C5

C1(*,*,*):9

(S1,P2,s):12

(*,P1,*):7.5

C6

(a) Cells in data cube CubeSales. (b) Lattice of cells. (Cover equivalence) Classes shown in different colors,
and as maximal sets of cells connected by solid lines for black and white copies;
upper bounds circled; C1 = {(∗, ∗, ∗)} & C6 = {(∗, P1, ∗)} – singleton classes;

false cell not shown.

Figure 2: Data cube CubeSales

(S2, P1, f) along any dimension will not give the user
any new fruitful aggregate information. This kind of
semantic relationships among aggregate cells is critical
for achieving effective OLAP services.

(2) In practice, a data cube lattice is often huge. E.g.,
even without any hierarchy in any dimension, a 10-
dimension data cube with a cardinality of 100 in each
dimension leads to a lattice with 10110 ≈ 1.1×1020 cells.
Assuming a sparsity of 1 out of a million, we still have a
lattice with 1.1×1014 non-empty cells! Suppose a man-
ager wants to identify exceptions by browsing the data.
The manager has no idea on which dimensions to roll-
up or drill-down. Many steps in her exploration may be
just fruitless, because they solely rely on roll-up/drill-
down. To provide an effective navigation service, a more
powerful metaphor is needed.

(3) Compression techniques should help since they cut
down the size. However, almost all approaches proposed
previously are syntactic, in that even the roll-up/drill-
down relation is lost in the compressed representation.
For both query answering and browsing the cube, it may
need to be uncompressed, causing significant overhead.

In summary, one needs a summary structure on the
data cube that captures the cube lattice’s inherent roll-
up/drill-down links as well as interesting regularities
that will help cut down the size. Conventional tech-
niques do not meet these goals. Without a proper se-
mantic summarization, users may not be able to fully
understand and make use of the information from a huge
data cube. This motivates our study on the effective se-
mantic summarization in a data cube to support OLAP.

Recently, a study [14] proposed a novel conceptual
structure called quotient cube, for semantic summariza-
tion of data cubes. The idea is to partition the cube
cells by grouping cells with identical aggregate values
(and satisfying some additional conditions) into (equiv-
alence) classes while keeping the cube’s drill-down links
and lattice structure.

A quotient cube is a representation of a cube lattice
in terms of classes of cells. The drill-down is captured as
a partial order among classes. Each class contains cells
that have the same aggregate value(s). Thus, each class
captures a regularity – group of adjacent cells having
the same aggregates. In addition, whereas a user drills
down from a cell to another in the cube lattice, in a

quotient cube, he drills down from a class to another!
Conceptually, one can also drill down into a class, asking
to open it up and inspect its internal structure. For ex-
ample, one quotient cube w.r.t. the data cube in Figure
2(a) is highlighted in Figure 2(b) and shown in Figure 3.
It has 6 classes. Every cell in a class has the same ag-
gregate value. Figure 3 also demonstrates a drill-down
into class C3 in the quotient cube.

(S2,*,f):9 (*,P1,f):9(S2,P1,*):9

(*,*,f):9 (S2,*,*):9

C3 (S2,P1,f):9

C1

C5

C6C4

C2

Figure 3: Quotient cube showing drill-down into
a class’ internal structure.

Compression comes from having to store only the
lower and upper bound cells for each class. E.g., (∗, ∗, f),
(S2, ∗, ∗) are the lower bounds and (S2, P1, f) is the up-
per bound of class C3 (see Figure 2(b)). Semantics is
preserved since classes form a lattice with a drill-down
consistent with the cell drill-down. [14] proposed a num-
ber of ways of constructing quotient cubes based on the
partitioning method used.

We can answer various queries and conduct various
browsing and exploration operations using a quotient
cube directly. E.g., we have found that it can support
advanced analysis such as intelligent roll-up (i.e., find-
ing the most general contexts under which the observed
patterns occur) [23] and what-if queries [2]. For brevity,
we only give the intelligent roll-up example.

For example, a manager may ask an intelligent roll-
up query “in the data cube in Figure 2, starting from
(S2, P1, f), what are the most general circumstances
where the average sales is still 9?” The answer should
be (∗, ∗, ∗) except for (∗, P1, ∗) and (∗, P2, ∗). If we
search the lattice in Figure 2(b), we may have to search
the 7 descendent cells of (S2, P1, f). However, if we
search in the class lattice in Figure 3, we only need to
search at most 2 classes, and not any specific cell in any
class. Thus, semantic compression reduces the search



space for analysis and exploration. Furthermore, pre-
senting the answer in the form of classes also facilitates
understandability.

Finally, drill-down from apparently unrelated cells may
lead to the same class of cells. E.g., in Figure 2, a drill-
down from cell (∗, ∗, ∗) as well as one from (∗, P1, ∗) (in
both cases, by setting dimension 3 to f) both lead to the
same class of cells, C3. This means first drilling down
from (∗, ∗, ∗) to (∗, P1, ∗) and from there to (∗, P1, f)
versus drilling down from (∗, ∗, ∗) to (∗, ∗, f) both yield
equivalent cells. This may suggest an interesting pat-
tern for the user.

While the quotient cube is an interesting idea, the
study in [14] leaves many problems unanswered. In par-
ticular, the following important questions remain.

• Given that quotient cubes can be constructed in
more than one way, what kind of quotient cubes
should be used to construct a general purpose data
warehouse?

Our contributions. In this paper, we recom-
mend using cover partition (Section 2.2) for con-
structing a quotient cube-based data warehouse.
We show that such a data warehouse can support
a variety of OLAP queries effectively and compress
the data cube substantially.

• How to implement a quotient cube-based data ware-
house efficiently? How to store and index data in
a quotient cube and how to use them to answer
various queries efficiently?

Our contributions. We devise (Section 3) QC-
tree, an effective data structure to compress and
index quotient cubes w.r.t. coverage partitions. We
give an efficient algorithm (Section 3.2) for con-
structing a QC-tree directly from the base table.
We develop efficient algorithms (Section 4) for an-
swering point queries, range queries, and iceberg
queries.

• How to incrementally maintain a quotient cube-
based data warehouse?

Our contributions. We develop scalable algo-
rithms (Section 3.3) to incrementally maintain a
QC-tree, and establish their correctness. We ran
extensive tests (Section 5) for (i) comparing the
time and space efficiency, as well as query an-
swering speed of our QC-tree algorithm with the
recently proposed Dwarf Cube [25], and (ii) for
measuring the extent of savings of our incremen-
tal maintenance algorithms over a recompute, as
well as demonstrating their scalability. We discuss
our experiments and explain our results.

In Section 2.1, we review the main concepts and im-
portant properties of quotient cubes. We discuss related
work in Section 6. Section 7 summarizes and concludes
the paper.

2. QUOTIENT CUBES
In this section, we briefly review the concepts and im-

portant properties of quotient cubes proposed in [14],

to which we refer the reader for details. Then, we con-
sider a specific kind of quotient cubes, cover quotient
cubes. They have some nice properties enabling them
to be used as a general purpose summary structure for
answering various aggregate queries.

2.1 Quotient cubes and their properties
The key idea behind a quotient cube is to create a

summary structure by carefully partitioning the set of
cells of a cube into classes such that cells in a class all
have the same aggregate measure value and in addition,
satisfy some desirable properties. We wish to use each
class as a concise summary for all its cells. In addition, a
quotient cube captures the roll-up/drill-down semantics
between cells, present in the original cube, between its
classes. Summary structures obtained from arbitrary
partitions do not achieve this.

As an example, suppose in Figure 2(b), we partition
cells solely on the basis of equality of aggregate values
(ignore the colors for now). Let C be the class of all cells
with aggregate value 9 and D contain the only cell with
aggregate 7.5. We can drill down from cell (∗, ∗, ∗) in C
to cell (∗, P1, ∗) in D, and then again drill down from
(∗, P1, ∗) in D to (∗, P1, f) in C! What went wrong
here is that cells (∗, ∗, ∗) and (∗, P1, f) belong to the
same class (C), but not (∗, P1, ∗) that lies in between
these two cells. Let ≺ be the cube lattice partial order.
A class that contains cells c, d but not e, where e is
some cell such that c ≺ e ≺ d, is said to have a hole.
Classes without holes are called convex and a partition
all of whose classes are convex is a convex partition.
The partition in the above example is non-convex. The
partition illustrated in Figure 2(b) is convex.

One of the main results of [14] is that convex parti-
tions on cube lattices lead to a set of classes that them-
selves form a lattice, called the quotient lattice. The
ordering among classes is defined as follows: for classes
C, D, C ≺ D whenever there are cells c ∈ C and d ∈ D
such that c ≺ d in the original cube lattice. Thus, the
use of a quotient lattice in place of the original cube
lattice leads to a summary structure, the quotient cube,
that captures the roll-up/drill-down semantics of the
original cube, in terms of this partial order among its
classes.

In [14], techniques were developed for defining parti-
tions for various aggregate functions. They define two
cells c, d to be equivalent w.r.t. to an aggregate func-
tion f , denoted c ≡f d, whenever they satisfy one of the
following conditions: (i) c and d have the same f -value
and c is a parent or child of d, or (ii) there is a cell e
such that c and d are both equivalent to e.

2.2 Quotient cubes w.r.t. cover partitions
Among other things, [14] proposed a generic way of

partitioning cells without reference to any particular
aggregate function, based on the so-called notion of
“cover”. A cell c covers a base table tuple t whenever
there exists a roll-up path from t to c, i.e., c ≺ t in the
cube lattice. The cover set of c is the set of tuples in
the base table covered by c. E.g., in Figure 1, the first
two tuples both can be rolled up to cell (S1, ∗, s), since
they both agree with this cell on every dimension where



its value is not “∗”. Indeed, the cover set of (S1, ∗, s)
is {(S1, P1, s), (S1, P2, s)}. Two cells c and d are cover
equivalent, denoted c ≡cov d, whenever their cover sets
are the same. E.g., in Figures 1 and 2(b), the cells
(S1, ∗, s) and (S1, ∗, ∗) have identical cover sets and are
cover equivalent. In fact, the (cover equivalence) class
containing these cells is {(S1, ∗, s), (S1, ∗, ∗), (∗, ∗, s)}.
We define a class upper (lower) bound to be any max-
imal (minimal) element in the class. We have the fol-
lowing.

Lemma 1 (Cover Partitions). [14] The partition
induced by cover equivalence is convex. Cover equiva-
lent cells necessarily have the same value for any aggre-
gate on any measure. Each class in a cover partition
has a unique upper bound.

The quotient cube of a data cube w.r.t. the cover par-
tition is called cover quotient cube. Figure 3 shows the
cover quotient cube of the cube lattice of Figure 2(b),
where the class associated with false is not shown. There
are 6 classes besides it. They are shown along with their
upper bounds (circled in Figure 2(b)). E.g., the upper
bound of class C3 is (S2, P1, f). We refer to immediate
successors (predecessors) w.r.t. ≺ in the quotient lat-
tice as parents (children). E.g., C6 is a child of C3 and
C5 in Figure 3. In the rest of the paper, we mainly fo-
cus on cover partitions, and cover quotient cubes, unless
otherwise specified.

3. QC-TREES
In this section, we develop QC-tree, a compact data

structure to store and search a quotient cube efficiently
as well as algorithms for constructing a QC-tree directly
from the base table and for incrementally maintaining
it under base table updates.

3.1 The QC-tree structure
We seek a compact data structure for representing

and implementing quotient cube. Such a data structure
should (a) retain all the essential information in a quo-
tient lattice, yet be concise; (b) enable efficient answer-
ing of various kinds of queries including point, range,
and iceberg queries; and (c) afford efficient maintenance
against updates. QC-tree (short for quotient cube tree)
developed here meets all the requirements.

The key intuition, which will be established in stages
in the rest of the paper, is that the set of class upper
bounds in a quotient cube w.r.t. cover partition captures
all essential information about classes in the quotient
cube. We represent this information compactly as a
tree by prefix sharing, where bounds are represented as
strings. We then add links for capturing some additional
drill-down relations.

Figure 4 shows the QC-tree associated with the quo-
tient lattice of Figure 3. Let Q be a quotient cube and
B its set of class upper bounds. Each bound can be rep-
resented as a string w.r.t. a given dimension order, by
omitting all “∗” values. E.g., (S1, P1, f) and (∗, P2, ∗)
would be represented as S1 ·P1 ·f and P2, respectively,
w.r.t. the dimension order Store-Product-Season.1 In

1Strictly speaking, we should represent each value v as

Class Upper Bound

C1 (∗, ∗, ∗)
C2 (S1, P2, s)
C3 (S2, P1, f)
C4 (S1, ∗, s)
C5 (S1, P1, s)
C6 (∗, P1, ∗)

S1

Root:9

P1P1

s:6

P2

s:12

s:9

S2

f:9

P1:7.5

P2 f

f s

s

2

3

64

75

8

9

10

11

1

Figure 4: Classes and QC-tree for the quotient
cube of Figure 2.

the sequel, we shall assume an arbitrary fixed dimension
ordering and identify a bound with its string represen-
tation.2 Given a sequence of values z1 · . . . · zk, some
of which may be “∗”, we use 〈z1, . . . , zk〉 to denote the
node in the QC-tree which corresponds to the string
representation of this sequence, omitting “∗”s. E.g., for
∗ · P1 · ∗, 〈∗, P1, ∗〉 is node 11 in Figure 4, while for
S1 · ∗ · s, 〈S1, ∗, s〉 is node 7.

Definition 1 (QC-trees). The QC-tree for a quo-
tient cube Q is a directed graph (V, E) such that:

1. E = E′ ∪ E′′ consists of tree edges E′ and links
E′′ such that (V, E′) is a rooted tree.

2. each node has a (dimension) value as its label.

3. for each class upper bound b, there is a unique
node v ∈ V such that the string representation of
b coincides with the sequence of node labels on the
path from the root to v in the tree (V, E′). This
node stores the aggregate value associated with b.

4. suppose C, D are classes in Q, b1 = (x1, . . . , xn)
and b2 = (y1, . . . , yn) are their class upper bounds,
and that C is a child of D (i.e., C directly drills
down to D) in Q. Then for every dimension Dimi

on which b1 and b2 differ, there is either a tree
edge or a link (labeled yi), but not both, from
node 〈x1, . . . , xi−1〉 to node 〈y1, . . . , yi〉.

Definition 1 is self-explanatory, except that the last
condition looks technical: it says whenever class C di-
rectly drills down to class D in the quotient cube, one
can drill down either via a tree edge or a link from some
prefix of the path representing C’s upper bound to a
node which will eventually lead to D’s upper bound.

In Figure 4, there is a node representing every class
upper bound of the quotient lattice of Figure 2(b). E.g.,
node 7 represents (S1, ∗, s) and stores the corresponding
aggregate value 9. One can drill down from C6 (whose
upper bound is (∗, P1, ∗)) to C5 (whose upper bound
is (S1, P1, s)) in the quotient lattice. The two upper
bounds differ in two dimensions: Store and Season.

D = v, D being the dimension name. We omit this
obvious formality for simplicity.
2Heuristically, dimensions can be sorted in the cardi-
nality ascending order, so that more sharing is likely
achieved at the upper part of the tree. However, there
is no guarantee this order will minimize the tree size.



The first difference (i.e., a drill-down from class C6 to
class C5 by specifying S1 in dimension Store) is in-
dicated by a tree edge from node 1 = 〈∗〉 to node
2 = 〈S1〉 in the QC-tree. The second difference (i.e.,
a drill-down from C6 to C5 by specifying s in dimension
Season) is denoted by a link from node 11 = 〈∗, P1〉 to
4 = 〈S1, P1, s〉 with label s. There is no link from node
11 to 6 or 7 since there is no drill-down relationship
there. In Figure 3, there are certain direct drill-down
relationships between classes that are not a child-parent
pair: e.g., we can drill down from C1 to C2 by specifying
Product=P2. Such drill-downs exactly correspond to
the drill-down links in the QC-tree (e.g., the link from
node 1 to node 5 labeled P2). Note that the parent-
child relationship in a quotient lattice is reversed in a
QC-tree: e.g., C1 is a child of C6 in the lattice (Fig-
ure 3) while C1 is the root of the tree (Figure 4) and
has child C6. For consistency, we always refer to the
lattice relationship and speak lattice child and lattice
parent.

Theorem 1 (Uniqueness of a QC-tree). Let Q
be a data cube and QC be the corresponding cover quo-
tient cube. Let R : D1, . . . , Dn be any order of dimen-
sions. Then: (1) for each class C, there is a unique path
P from the root in the QC-tree (in order R) such that
the sequence of the node labels on P is exactly the non-
∗ dimension values in ub, where ub is the upper bound
of C; and (2) the QC-tree is unique.

For any cell in a data cube, we can quickly obtain
its aggregate values by simply following the path in the
QC-tree corresponding to its class upper bound. We
defer the details of this to Section 4.

3.2 Construction of a QC-tree
The construction of a QC-tree is in two steps. First,

a variant of the Depth-First Search algorithm in [14]
is used to identify all classes in a quotient cube. For
each class C, two pieces of information are maintained:
the upper bound and the ids of C’s lattice child classes.
Compared to algorithm Depth-First Search, a key ad-
vantage of QC-tree construction algorithm is that it
only maintains the upper bounds. No information about
lower bounds is ever needed. Depth-First Search gen-
erates a list of temporary classes. Some of them could
be “redundant”, i.e., they share the same upper bound
as previous ones. Instead of pursuing a post-processing
to merge the redundant classes and obtain the (real)
classes, we identify the redundant temporary classes in
the next step. If the upper bound of a temporary class
exists in the tree when the upper bound is inserted, the
redundancy is identified and removed.

As the second step, we sort all the upper bounds in
dictionary order, where a user-specified order of dimen-
sions is used. Within each dimension, we assume values
are ordered arbitrarily except “∗” precedes other values.
Then, the upper bounds are inserted into the QC-tree,
and drill-down links are built whenever necessary, ac-
cording to Definition 1. Figure 5 shows the algorithm
for QC-tree construction, which the following example
illustrates.

Algorithm 1. [Construct QC-tree]
Input: base table B .
Output: QC-tree for cover quotient cube of B.
Method:
1. b = (∗, . . . , ∗);
2. call DFS(b, B, 0,−1); //(∗, ..., ∗) has no lattice child;
3. Sort the temp classes w.r.t. upper bounds

in dictionary order (‘‘∗’’ precedes other values)
//Insert the temp classes one by one into QC-tree

4. Create a node for the first temp class as the root;
5. last = first temp class’s upper bound;
6. while not all temp classes have been processed

current = next class’s upper bound;
if (current 6= last)
insert nodes for current;
last = current;

else
Let ub be the current’s child class’s upper bound,

lb be the lower bound of current;
Find the first dim D s.t.ub.D = ∗ && lb.D 6= ∗;
Add a drill-down link with label D from ub to last;

7. return ;

Function DFS(c, Bc, k, chdID)
// c is a cell and Bc is the corresponding partition of the
base table;
1. Compute aggregate of cell c;
2. Compute the upper bound d of the class containing c, by

‘‘jumping’’ to the appropriate upper bounds;
3. Record a temp class with lower bound c,upper

bound d and child chdID. Let clsID be its class ID;
4. if there is some j < k s.t. c[j] = all and d[j] 6= all

return; //such a bound has been examined before
5. else for each k < j < n s.t. d[j] = all do

for each value x in dimension j of base table
let d[j] = x;
form partition Bd;
if Bd is not empty, call DFS(d, Bd, j, clsID);

6. return;

Figure 5: QC-tree Construction.

Example 2 (QC-tree construction). Let us
build the QC-tree for the base table in Figure 1. In the
first step, we identify all (temporary) classes by a depth-
first search starting from cell (∗, ∗, ∗). We calculate the
aggregate of cell (∗, ∗, ∗). Since there is no single di-
mension value appearing in all tuples in the base table,
(∗, ∗, ∗) forms a class with itself as the upper bound.
Then, the search explores the first dimension, Store.
The tuples in the base table are sorted on this dimen-
sion. There are two stores. Thus two partitions are
generated. In the first partition, i.e., the tuples about
sales in store S1, dimension value s appears in every
tuple, so we identify (S1, ∗, s) as an upper bound. The
search recurs by exploring various products.

class ID Upper Bound Lower Bound Lattice Child Agg

i0 (*,*,*) (*,*,*) -1 9
i5 (∗, P1, ∗) (∗, P1, ∗) i0 7.5
i1 (S1, ∗, s) (S1, ∗, ∗) i0 9
i9 (S1, ∗, s) (∗, ∗, s) i0 9
i2 (S1, P1, s) (S1, P1, s) i1 6
i6 (S1, P1, s) (∗, P1, s) i5 6
i3 (S1, P2, s) (S1, P2, s) i1 12
i8 (S1, P2, s) (∗, P2, ∗) i0 12
i4 (S2, P1, f) (S2, ∗, ∗) i0 9
i7 (S2, P1, f) (∗, P1, f) i5 9
i10 (S2, P1, f) (∗, ∗, f) i0 9

Figure 6: Temporary classes returned by a depth-

first search.

The temporary classes returned from the depth-first
search are shown in Figure 6. They are sorted in dic-



tionary order and inserted into a tree. First, we process
classes i0, i5, i1 and create the corresponding nodes in
the QC-tree (nodes 1, 11, and 7 in Figure 4). Then,
class i9 comes in. Its upper bound has already been in-
serted (see class i1). We only need to build a drill-down
link. Class i0 is its lattice child, so we compare the
upper bounds of classes i9 and i0 to get the drill-down
link label, s, and so add a drill-down link with label s
from (∗, ∗, ∗) (node 1) to (S1, ∗, s) (node 7). Similarly,
a link labeled f from node 11 (class i5) to 10 (class i7)
is added.

3.3 Incremental maintenance of a QC-tree
Many applications encounter frequent updates to base

data. Thus, fast maintenance of QC-tree is important.
In this section, we discuss algorithms for incremental
maintenance against insertions and deletions. Modifi-
cations can be simulated by deletions and insertions.

3.3.1 Insertions
In a cover quotient cube, an insertion of a base table

tuple may cause updating of the measure of an existing
class, splitting of some classes, or creating of a new class,
never merging of classes.

First, consider inserting one tuple into the base table.
Let QC be the quotient cube, t be the new tuple. Two
situations may happen.

Case 1: t has the same dimension values as an existing
tuple in the base table. Each class, all of whose member
cells cover this tuple, should have its aggregate measure
updated to reflect the insertion of the new tuple.

Case 2: there is no tuple in the original base table
such that it has the same dimension values as the newly
inserted tuple. E.g., let the newly inserted tuple be
t = (S2, P2, f). What are the cells whose cover set
is changed by t? Clearly, they are generalizations of
(S2, P2, f), e.g., (∗, P2, f), (S2, ∗, f), . . . , (∗, ∗, ∗). Let
C be a class in the QC, let ub = (x1, . . . , xn) be its up-
per bound, and t = (y1, . . . , yn) be the newly inserted
tuple. Let t ∧ ub = (z1, . . . , zn) be the greatest lower
bound of t and ub, defined as zi = xi if xi = yi, and
zi = ∗ otherwise, (1 ≤ i ≤ n), i.e., t ∧ ub agrees with ub
on every dimension that ub and t agree on, and is “∗”
otherwise. All the classes in QC can be divided into
three categories based on whether a class has a member
cell that covers t.

Category 1: the class does not contain any member
cell that covers t. Class C is in category 1 iff t ∧ ub
is not in C. For class C5 in our running example, t ∧
ub = (∗, ∗, ∗) which is not in C5. Since the cover set
of its member cells does not change, this class remains
unchanged.

Category 2: the upper bound of the class covers t,i.e.,
every member cell of the class covers t. Class C is in this
category iff t ∧ ub = ub, e.g., C1 in QC. Then the only
change is that the tuple t is added to the cover set of
every member cell of this class, signifying an update to
the measure. No other change to the class is necessary.

Category 3: the upper bound of the class does not
cover t, but some member cell in the class does. A class
C is in this category iff ub ∧ t 6= ub but ub ∧ t belongs
to the class C, e.g., for class C3 in QC, the member cell

(S2, ∗, f) and all its descendants in C3 cover (S2, P2, f),
while the upper bound (S2, P1, f) of C3 doesn’t.

Since tuple t is added to the cover set of some but
not all member cells, the class C should then be split
into two classes. First, we form a new class with up-
per bound ub ∧ t and all its descendants inside C as
member cells. The remaining cells in C form a sec-
ond class, with the same upper bound as the old C.
For example, (S2, ∗, f), (∗, ∗, f), and (S2, ∗, ∗) in class
C3 form a separate class C′ with upper bound ub ∧ t =
(S2, ∗, f). All other member cells (whose cover sets have
not been changed) form another class, C′′, which con-
tains (S2, P1, f), (S2, P1, ∗), and (∗, P1, f), whose up-
per bound is still (S2, P1, f). Parent child relationships
are then easily established by merely inspecting the up-
per bounds of classes C′, C′′ as well as all parent and
child classes of the old class C in the original QC lattice.

Finally, we need to create a new class for t. The
member cells of the new class are those aggregate cells
whose cover sets contain only t.

It is worth noting that we can show that new classes
created by our strategy are always convex and are max-
imal.

So far, our discussion considered only the quotient
cube, not the QC-tree. Besides, when we have multi-
ple insertions, updating the quotient cube one by one
is inefficient. We next propose a batch insertion algo-
rithm for QC-trees which directly updates the QC-tree.
The idea is that during a depth-first generation of temp
classes on the set of inserted tuples 4DB, a process
henceforth refered as 4DFS, we simultaneously record
the classes to be updated on the original QC-tree QC
and the new classes to be created (or split) as necessary
(see Figure 7).

Algorithm 2 (Insertion in QC-tree).
Input: a QC-tree T , base table ∆DB;
Output: new QC-tree;
Method:
1. Let b = (∗, . . . , ∗); call 4DFS(b, ∆DB);
2. Sort the temp classes s.t. the upper bounds are

in the dictionary order,* goes to the first
3. last = NULL;
4. while not all temp classes have been processed

current = next class;
if (current’s upper bound 6= last’s upper bound)

if (current is an updated class)
update the corresponding node in QC-tree;

if (current is a new class)
insert current’s upper bound into QC-tree

if (current is a split class)
split current’s upper bound from the old class;

last = current;
else

Let ub be the current’s lattice child class’s

upper bound,ub′ be the upper bound of current;
Find the first dim D s.t.ub.D = ∗ && ub′.D 6= ∗;
Add a link with label D from ub to last;

6. return;

Figure 7: Batch Insertion.

Recall that in the DFS function of Algorithm Con-
struct QC-tree, for a given cell c, its upper bound c′ is
found based on repeating values in the partition table
(step 2 of Function DFS). However, in 4DFS, instead
of recording c′ as an upper bound, several steps need to
be done:



1. find the upper bound ub of the class containing c in
QC
2. if ub cannot be found ( c does not exist), then record
a new temporary class with upper bound c′.
3. else, find ub∧c′. Three possible results of ub∧c′ lead
to three cases:
Case 1: ub ∧ c′ = ub. Record ub and its corresponding
node for measure update.
Case 2: ub ∧ c′ = c′. That means c′ itself is an upper
bound. We need to split the class C in QC that ub falls
in. Record a split class with upper bound c′, containing
all cells of C that are below c′. The remainder of C
forms another class, with ub as its upper bound.
Case 3: Neither of these two situations happen, i.e., c′

and ub are incomparable. Then let c′′ = ub ∧ c′, and
record a new temporary class with upper bound c′′.

The batch insertion algorithm is given in Figure 7.

clsID Upr Bnd Lwr Bnd Lattice Status Old Upr
child Bnd

0 (*,*,*) (*,*,*) -1 Update (*,*,*)
4 (*,P2,*) (*,P2,*) 0 Split (S1,P2,s)
1 (S2,*,f) (S2,*,*) 0 Split (S2,P1,f)
7 (S2,*,f) (*,*,f) 0 Split (S2,P1,f)
2 (S2,P2,f) (S2,P2,f) 1 Insert –
5 (S2,P2,f) (*,P2,f) 4 Insert –
3 (S2,P3,f) (S2,P3,f) 1 Insert –
6 (S2,P3,f) (*,P3,*) 0 Insert –

Figure 8: Temporary Classes Created by ∆DFS.
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Figure 9: The QC-tree after the updates.

Example 3 (Batch update of a QC-tree).
Suppose we want to update the QC-tree w.r.t. the inser-
tion of two tuples ∆DB = {(S2, P2, f), (S2, P3, f)} to
the base table. We apply the ∆DFS on ∆DB. Figure 8
shows the temporary classes created by the ∆DFS. Fig-
ure 9 shows the updated quotient lattice and QC-tree.

Both tuple insertion and batch insertion involve check-
ing whether a cell c belongs to the original quotient
cube, and possibly to a class whose upper bound is
given. This amounts to asking a point query using QC-
trees. While we discuss algorithms for query answering
in Section 4, here it suffices to bear in mind that, even
though our query answering algorithms are very effi-
cient, it pays to minimize the number of such “query
invocations”. From this standpoint, tuple-by-tuple in-
sertion makes repeated invocations of certain queries,
so intuitively batch insertion ought to be more efficient.
We quantify this intuition empirically in Section 5.

3.3.2 Deletions
In a cover quotient cube, deletion will not create any

new classes, but it may cause classes to merge, or cause
an outright deletion of a whole class. We assume all
the tuples in ∆DB exist in the base table. If not, it is
easy to check and remove from ∆DB any tuple that is
not in the base table. A frequent operation we need to
perform in the deletion algorithm is checking whether
the cover set of a cell is empty, and whether the cover
sets of a parent-child pair of cells is the same. Owing to
the property of cover partitions, we can perform both
checks efficiently by simply maintaining a count for each
cell.

Since the algorithm for maintenance under deletion
is similar to that for insertion, we illustrate the ideas
via the following example, and omit the algorithm for
brevity.

Example 4 (Deletion). Let QC be a cover quo-
tient cube for the set of tuples {(S1, P1, s), (S1, P2, s),
(S2, P1, f), (S2, P2, f), (S2, P3, f)}. Suppose ∆DB =
{(S2, P2, f), (S2, P3, f)}.

First, we call ∆DB to compute the classes and upper
bounds of ∆DB, and order them in the reverse dictio-
nary order (”*” appears last). We delete the classes
(with upper bounds) (S2, P2, f), (S2, P3, f) from the
original QC, since their cover set will be empty after
the base table update (i.e., their count is zero). We will
update classes (S2, ∗, f), (∗, P2, ∗), but their cover sets
do not become empty. So we have to see whether they
can be merged. Drill down from the class of (S2, ∗, f)
to the class of (S2, P1, f) (which is in the original quo-
tient cube lattice). (S2, P1, f) has the same cover set
(i.e., count) as (S2, ∗, f), so we will merge the classes
of (S2, ∗, f) and (S2, P1, f). Drill down from the class
of (∗, P2, ∗) to the class of (S1, P2, ∗). (S1, P2, ∗) falls
into the class with upper bound (S1, P2, s) whose count
is exact the same as (∗, P2, ∗). So merge (∗, P2, ∗) into
(S1, P2, s). During the merge, we need to add a link
labelled P2 from (∗, ∗, ∗) to (S1, P2, s).

One of the key properties of our algorithms for inser-
tion and deletion is that they yield the correct QC-tree
reflecting the update and do so efficiently.

Theorem 2. (Correctness) Let DB be a base ta-
ble and T be the QC-tree associated with the cover quo-
tient cube of DB. Let ∆DB be a set of tuples that is
inserted into DB. Then the QC-tree produced by our
batch insertion algorithm is identical to the QC-tree ob-
tained by running the QC-tree construction algorithm
outlined in Section 3.2 on DB ∪∆DB. A similar state-
ment holds for deletion.

4. QUERY ANSWERING
Fundamentally, queries over a data warehouse can

be classified into three basic categories – point queries,
range queries, and iceberg queries (or boolean combina-
tions thereof). We propose efficient algorithms to an-
swer various queries using QC-trees.

The key idea for an efficient use of QC-trees in query
answering comes from the fact that for every cell c with



a non-empty cover set, the QC-tree is guaranteed to
have a path representing the class upper bound of c (see
Theorem 1). We can trace this path very fast and the
last node, being a class node, will contain the aggregate
measure associated with c. But we may not know the
class upper bound of c, so how to find this path fast?

4.1 Point queries
A point query is given a cell c (called the query cell),

find its aggregate value(s). We assume c is presented
in the dimension order used to build the QC-tree. Let
c = (∗, . . . , v1, . . . , ∗, . . . , v2, ∗, . . . , vk, . . . , ∗), where the
values vi 6= ‘∗′ appear in dimensions `i, i = 1, . . . , k.
First consider the case where the cover set of c is non-
empty so the answer to the point query is not null. Con-
sider the following procedure.

Start at the root and set the current value to v1.
At any current node N , look for a tree edge or
link labeled by the current value, say vi; if it exists
set current value to vi+1 and current node to the
child of N using the edge found; repeat as long as
possible.

Lemma 2 (Point query answering). Let c be as
above and let N be any current node such that there is
no tree edge or link out of N labeled by the current value
vi. Suppose c has a non-empty cover set. Then there is
a dimension j < `i such that: (i) j is the last dimension
for which N has a child, and (ii) there is exactly one
child of N for dimension j.

The above lemma suggests an efficient method for an-
swering point queries. Follow the iterative procedure
above. Whenever we cannot proceed further, check the
last dimension j for which the current node N has a
child. If j ≥ `i, c cannot appear in the cube. If j < `i,
then move to the unique child of N corresponding to
the last dimension j and repeat the procedure above.
While the algorithmic details will be given shortly, note
that this scheme never visits more than one path. And
whenever the query has a non-null answer, this path
corresponds to the class upper bound of the query cell.
Intuitively, this makes the method very efficient, regard-
less of the size of the base table.

We next give the algorithm and illustrate it on the
QC-tree of Figure 4.

Example 5 (Illustrating Algorithm 3). Using
our running example QC-tree of Figure 4, suppose we
want to answer a query (S2, ∗, f). From the root node,
we find there is a child labelled S2, node 8. From node
8, we cannot find any tree edges or links labelled f . So
we pick the child on the last (in this case, only) dimen-
sion, which is P1, node 9. From node 9, we can find a
child labelled f , node 10, and being a class node, it has
aggregate value in it. So this value is returned. As an-
other example, consider the query (S2, ∗, s). From the
root node, we find there is a child labelled S2, node 8.
From node 8, we cannot find any tree edges or links la-
belled s. so pick the child on the last dimension, which
is P1, node 9. from node 9, we cannot reach a node
labelled s. Then pick the child on the last dimension,
which is f , node 10. But f ’s dimension is not later than

Algorithm 3. [Point query answering]
Input: a point query q = (∗, .., v1, ., ∗, .., vk, .., ∗) where
v1 . . . vk are the only non-* values and QC-tree T .
Output: aggregate value(s) of q.
Method:
// process the dimension values in q one by one. find a
route in QC-tree by calling a function searchRoute.
1. Initialize newRoot. newRoot=the root node of T
2. for each value vi in q && newRoot 6= NULL

// reach for the next node with label vi

newRoot = searchRoute(newRoot, vi);
3. if newRoot = NULL, return null;

else if it has aggregate value(s)
return its aggregate(s);

else
Keep picking the child corresponding to the last
dimension of the current node, until we reach a
node with aggregate values, and return them;

Function searchRoute(newRoot, vi)
// find a route from newRoot to a node labeled vi:

if newRoot has a child or link pointing to N labeled vi

newRoot = N;
else
Pick the last child N of newRoot labeled by a value

in the last dimension, say j;
if (j < the dimension of vi) call searchRoute(N, vi);
else return null;

Figure 10: Point query answering.

s’s dimension. So query fails, and we return NULL. As
a last example, consider the query (∗, P2, ∗). From the
root node, we find there is a link labelled P2. We have
examined all non-* values in the query. But P2 has no
aggregate value. So we pick the child on the last di-
mension, which is s. s has aggregate value, so return it.

4.2 Range queries
A range query is of the form (∗, . . . , v1, ∗, . . ., {uP1, . . .,

upr}, . . ., vi, ∗, . . . , {wq1 , . . . , wqs}, ∗, . . . , vk, ∗, . . .). We
need to find the aggregates associated with each point
(cell) falling in the given range. Note that we have cho-
sen to enumerate each range as a set. This way, we can
handle both numerical and hierarchical ranges.

An obvious method to answer such queries is to com-
pile the range query into a set of point queries and an-
swer them one by one. We can do much better by dy-
namically expanding one range at a time, while at once
exploring whether each partial cell we have expanded
thus far has a chance of being in the cube. E.g., if we
determine that based on what we have seen so far cells
with value vi dimension i do not exist, we can prune the
search space dramatically.

The algorithm of answering range query is given in
Figure 11 and is illustrated in the following example.
Experimental evaluation of point and range query an-
swering algorithms compared with those for Dwarf can
be found in Section 5.

Example 6 (Range Queries). Suppose we want
to answer a range query ({S1, S2, S3}, {P1, P3}, f) in
the QC-tree shown in Figure 4.
(1) We begin from root (∗, ∗, ∗). We find the S3 cannot
be reached from (*,*,*), the cells that begin with S3
will be pruned immediately.
(2) From node S1, only node P1 exists. Since P3 does



Algorithm 4. [Range query answering]
Input: a range query q = (∗, . . . , v1, ∗, . . . , {uP1, . . . , upr},
. . . , vi, ∗, . . . , {wq1 , . . . , wqs}, ∗, . . . , vk, ∗, . . .) and QC-tree
T .
Output: Set of answers.
Method:

//initialization.
1. Let newRoot be the root node of T, results be Ø;
2. results = rangeQuery(q, newRoot, 0);
3. return results;

Function rangeQuery(q, newRoot, i)
// base case;
if i > the last non-* dimension in q,

if newRoot = NULL. do nothing;
if newRoot has aggregate value
Add its aggregate to results

else
Keep picking the child with a value on the last
dimension until we reach a node with aggregate value,
add its aggregate to results.

return;
//recursion;
if in q, i is not a range dimension

Call searchRoute(newRoot, vi),
Let newRoot be the return node
if newRoot is not NULL

Call rangeQuery(q, newRoot, i + 1)
else, for each value vim in the range

Call searchRoute(newRoot, vim ),
Let newRoot be the return node
if newRoot is not NULL

Call rangeQuery(q, newRoot, i + 1)

Figure 11: Range query answering.

not exist, we do not care about this branch any more.
Then we try to reach f from P1, but fail. Nothing would
be returned for the branch.
(3) From node S2, again, no node with label P3 can
be expanded. Only P1 can be reached. Continuing to
search f is successful. A query result with aggregate
value is thus returned.

4.3 Iceberg queries
Iceberg queries are queries that ask for all cells with

an aggregate measure greater than a user-specified thresh-
old. These queries may arise either in isolation or in
combination with constraints on dimensions, which have
a range query flavor in the general case. E.g., one can
ask “for all stores in the northeast, and for every day
in [4-1-02, 6-1-02] find all cells with SUM > 100,000”.
First, let us consider pure iceberg queries, which leave
dimensions unconstrained. For handling them, we can
build an index (e.g., B+tree) on the measure attribute
into the QC-tree. Then the pure iceberg query can be
answered very quickly: read all (class) node id’s from
the index and fetch the nodes.

Suppose now we have a constrained iceberg query (as
in the example above). We have two choices. (1) Pro-
cess the range query ignoring the iceberg condition and
for each class node fetched, simply verify the iceberg
condition. (2) Use the measure attribute index to mark
all class nodes satisfying the iceberg condition. Retain
only these nodes and their ancestors, to get a subtree of
the QC-tree.3 Process the range query on this subtree.
For brevity, we suppress further details.

3Since the root is retained, this will be a tree.

5. EMPIRICAL EVALUATION
In this section, we present an extensive empirical eval-

uation to examine the algorithms we developed in this
paper. All experiments are running on a Pentium 4
PC with 512MB main memory and running windows
2000. We used both synthetic and real data sets to
evaluate the algorithms. Issues, such as compression ra-
tio, queries performance and incremental maintenance
are concerned. We compared QC-tree to QC-table and
Dwarf4 on various algorithms wherever they exist. For
the limitation of space, we only present representative
results.

5.1 About the datasets
In order to examine the effects of various factors on

the performance of the algorithms, we generated syn-
thetic data sets with Zipf distribution. All synthetic
data are generated with a Zipf factor 2.

In addition, we also used the real dataset contain-
ing weather conditions at various weather stations on
land for September 1985 [10]. It contains 1, 015, 367 tu-
ples (∼ 27.1MB) and 9 dimensions. The attributes with
cardinalities of each dimension are as follows: station-
id (7,037), longitude (352), solar-altitude (179), latitude
(152), present-weather (101), day (30), weather-change-
code (10), hour (8), and brightness (2).

5.2 Compression ratio and time
In this experiment, we explore the compression ben-

efits as well as the construction time of QC-trees. To
show the compression ratio, we compare the storage size
of QC-trees, QC-table and Dwarf according to the pro-
portion of the original data cube generated by algorithm
BUC [5], where QC-table is to store all upper bounds
plainly in a relational table.

Figure 12(a)-(c) illustrate the compression ratio ver-
sus the major factors data sets, namely the number of
tuples in the base table, the cardinality, and the number
of dimensions. The results show that Dwarf and QC-
table can achieve comparable compression ratio. That
is, even a quotient cube itself can compress the data
cube effectively. A QC-tree compresses the data cube
better in most of the cases. Only in data cubes with
very a small number of dimensions or a very low cardi-
nality, Dwarf may be better. In such cases, on average
the number of cells per class is very close to 1 and thus
not much compression can be achieved.

From Figure 12(a) and (b), one can see that the three
compression methods are insensitive to the number of
tuples in base table and the cardinality, in terms of com-
pression ratio. That indicates these compression meth-
ods are good for various applications. Interestingly, Fig-
ure 12(c) shows that the higher the dimensionality, the
better the compression ratio. This happens because the
data gets sparser when dimensionality increases while
the number of tuples remains the same. This illustrates
all three methods have the potential to scale well for
large number of dimensions. Consistent compression ef-
fects can also be observed on real data sets, as shown in

4Since the original Dwarf code was unavailable, we im-
plemented it as efficiently as possible.



#Dim 4 5 6 7 8 9

Cube 31.9 111.0 440.3 1,005.9 2,716.4 5,990.2
QC-Tab 11.4 30.4 90.5 130.3 223.0 305.8
QC-Tree 12.5 27.8 67.5 103.4 170.2 241.2
Dwarf 16.4 33.0 91.6 163.7 300.4 423.8

Figure 15: Experiment Result of Storage Size(MB)

on Weather Data

Figure 15, where the real size of the data cube and the
compressions are given.

As shown in Figure 12, all three methods are scalable
on the base table size in terms of construction time. QC-
table and QC-tree are consistently better than Dwarf.
That can be explained by the fact that (1) a quotient
cube is substantially smaller than the complete cube, so
constructing QC-tables and QC-trees access less data;
and (2) the depth-first search computation of classes
and upper bounds is effective and efficient.

5.3 Query answering performance
In this experiment, we compared query answering per-

formance using QC-tree and Dwarf. First, we randomly
generated 10, 000 different point queries based on the
synthetic data set. Figure 13(a) shows that the increase
of cardinality reduces the efficiency of Dwarf. But QC-
tree is insensitive to the increase. Then, we generated
1,000 point queries based on the weather data. Figure
13(b) shows the result.

To test the effect of range query, we randomly gener-
ated 100 range queries. On the synthetic dataset, a
range query contains 1-3 range dimensions and each
range dimensions has 30 range values. So the maxi-
mum case is that a range query would be equivalent to
27, 000 point queries. In the weather dataset experi-
ment, a range query contains 1-3 range dimensions and
each range dimensions has range values exactly the same
as the cardinality of that dimension. Figure 13(c) and
(d) show the performance.

From these results, one can see that both methods
are scalable for query answering, and QC-tree is clearly
better. The main reason why we are faster than Dwarf
is because: (i) when we query a cell c with n dimensions,
Dwarf needs to access exactly n nodes. In the QC-tree,
typically fewer than n would be accessed. For a simple
example. if we query (∗, P1, ∗), in Dwarf, 3 nodes have
to be traversed. In QC-tree, only root node and node
P1 are visited; (ii) since the size of QC-tree is smaller
than dwarf, less I/O is needed in a QC-tree.

5.4 Incremental Maintenance
To test the scalability of the incremental maintenance

of QC-trees, we fixed the base table size and varied the
size of incremental part. Only the results on insertions
into both synthetic and real data sets are reported in
Figure 14. The results on deletions are similar. Limited
by space, they are omitted.

We compare three methods: (1) recomputing the QC-
tree; (2) inserting tuples one by one; and (3) inserting
in batch. Clearly, the incremental maintenance algo-
rithms are much better than the reamputation. More-
over, maintenance in batch is more scalable than main-

tenance tuple by tuple. The main work of our incremen-
tal maintenance algorithm is locating upper bounds,
which means doing point queries, in the original QC-
tree to decide if we need to update, split, or create new
classes. The previous experiments have shown that an-
swering point queries in QC-tree is extremely efficient.
Therefore, these savings are passed on for the case of
incremental maintenance.

6. DISCUSSION

6.1 Related work
Three categories of previous researches are related,

namely the foundation of data cubes and OLAP, the im-
plementation and maintenance of data cubes, and query
answering and advanced analysis using data cubes.

The data cube operator was firstly proposed by Gray
et al. in [8]. The quotient cube notion [14] can be re-
garded as applying the Galois closure operators and for-
mal concept analysis [6] to the data cube lattice.

Many approaches (e.g., [1, 5, 20, 30]) have been pro-
posed to compute data cubes efficiently from scratch. In
general, the algorithms speed up the cube computation
by sharing partitions, sorts, or partial sorts for group-
bys with common dimensions. In [11], Harinarayan et
al. study the problem of choosing views to materialize
data cubes under space constraints. [5] proposes com-
puting iceberg cube and use BUC to handle monotonic
constraints. Methods to compress data cubes are stud-
ied in [24, 25, 27]. Moreover, [3, 4, 26] investigated
various approximation methods for data cubes.

How to implement and index data cubes efficiently is
a critical problem. In [21, 25], two important methods,
Cubetree and Dwarf, are proposed. The general idea is
to explore the sharing among dimension values of ag-
gregate cells, so that the required storage space can be
reduced substantially, while the performance of query-
answering still retains.

A data cube may need to be updated timely to re-
flect the changes of the base table. The possible up-
dates include insertions and deletions of data records,
and changes of the schema (e.g., changes of the domains
and hierarchies in some dimensions). [9, 17, 18, 19]
study the maintenance of views in a data warehouse.
In [12, 13], Hurtado et al. study the problem of data
cube maintenance under dimension updates. Moreover,
In [28, 29], the problem of temporal view maintenance
is explored.

Various methods have been proposed to answer aggre-
gate queries efficiently. Some typical examples include
[7, 15, 16]. To facilitate the query answering, various
indexes have been proposed. In [22], Sarawagi provides
an excellent survey on related methods.

Some recent studies aim at supporting advanced anal-
ysis in data warehouses and data cubes. [23, 2] are some
interesting examples.

6.2 Comparison with Dwarf
Recently, a compact data structure, Dwarf, was pro-

posed in [25] to store a data cube efficiently. The main
strengths of Dwarf are (a) sharing of prefixes among
cells is exploited to compress the cube substantially and



(b) rows from the same group-by view are clustered to-
gether to speed up query answering. In this section,
we outline the main differences between Dwarf and QC-
trees.

First, the two data structure store different data. Dwarf
stores the complete data cube (albeit in a highly com-
pressed form) while QC-tree only stores the upper bounds
of a quotient cube (again in compressed form). Since a
quotient cube is often much smaller than the complete
cube, a QC-tree is expected more efficient than Dwarf.
This is also verified by our empirical evaluations on both
synthetic and real data sets. A QC-tree consistently
achieves better compression ratio than Dwarf.

Second, the query answering mechanisms in Dwarf
and QC-tree are different. In Dwarf, the query answer-
ing requires exact matches of the query points and the
cells stored. In QC-tree, once the upper bound of the
query point is identified, the query is answered. Since
the QC-tree structure only records the upper bounds,
its average fan-out (i.e., average number of children per
node) is expected to be substantially smaller than that
of Dwarf. Thus, the query answering in QC-tree is
faster. The advantage is even clearer when the data
cube is larger (i.e., larger cardinality, more dimensions
and more tuples.)

Third, the QC-tree supports more complicated OLAP
operations efficiently. For example, since the directed
links for drill-down between classes are stored explicitly
in a QC-tree, the user can directly browse the classes of
quotient cube efficiently. Moreover, since the QC-tree
has efficient incremental maintenance algorithms, it is
efficient to populate a hypothetical sub-cube and answer
the “what-if” queries efficiently.

7. CONCLUSIONS
The technique of quotient cube as a compact sum-

mary structure that preserves the essential semantics of
a data cube was recently proposed in [14]. However, a
straightforward implementation of quotient cube is not
as efficient and compact as it can be. Besides, issues
of efficient query answering using quotient cubes and
their incremental maintenance were not addressed. In
this paper, we proposed using the cover quotient cube
as it caters for all aggregate functions, and showed some
nice properties for them. We proposed a very com-
pact data structure called QC-tree, which compresses
the size of a quotient cube even further. It is elegant
and lean in that the only information it keeps on classes
are their upper bound and measure(s). We provided fast
algorithms for query answering and incremental mainte-
nance. Our empirical evaluations show that under many
circumstances, QC-trees lead to a better compression
and construction time than Dwarf. Our query answer-
ing algorithms really outperform Dwarf in most cases.
For view maintenance, our incremental algorithms are
typically an order of magnitude, or more, faster than re-
computation. We are currently developing a prototype
system building on our research results.
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Figure 12: Evaluating compression ratio and running time on synthetic data
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Figure 13: Query performance
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Figure 14: Performance of Batch Incremental Maintenance


