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ABSTRACT
We study how to resolve entities that contain a group of
related elements in them (e.g., an author entity with a list of
citations or an intermediate result by GROUP BY SQL query).
Such entities, named as grouped-entities, frequently occur
in many applications. By exploiting contextual information
mined from the group of elements per entity in addition
to syntactic similarity, we show that our approach, Quasi-
Clique, improves precision and recall unto 91% when used
together with a variety of existing entity resolution solutions,
but never worsens them.
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1. INTRODUCTION
Since the existence of duplicate or variant entities de-

grades the quality of data collection severely, it is important
to de-duplicate them. Such a problem is, in general, known
as the Entity Resolution (ER) problem. In particular, we
focus on the Grouped-Entity Resolution (GER) prob-
lem, where each grouped-entity has “a group of elements” in
it. Examples include authors with a paper list or actors with
a movie list. Note that this problem cannot be completely
avoided since not all entities in data collections carry a
unique ID system. By and large, previous approaches to the
ER problem (e.g., [1, 3]) work as follows: (1) the information
of an entity, e, is captured in a data structure, D(e), such
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as a multi-attribute tuple or an entropy vector; (2) a binary
distance function, f , such as the edit distance is prepared;
(3) the distance of two entities, e1 and e2, is measured as
that of the corresponding data structures, D(e1) and D(e2),
using function f : dist(e1, e2) = f(D(e1), D(e2)); and (4) fi-
nally, if the result, dist(e1, e2), is less than certain threshold,
φ, then the two entities are variants: r < φ → e1 ∼ e2. Al-
though working well in many scenarios, this approach often
suffers from a large number of false positives (i.e., an entity
determined to be a variant when it is not). Consequently,
the overall recall and precision suffer. If a user asks for top-k
answers, such false positives can even override correct vari-
ants out of the answer window of |k|, degrading the precision
substantially. Therefore, in this paper, we aim at devising
an algorithm that resolves grouped-entities effectively.

2. THE TWO-STEP ALGORITHM
To exploit a wealth of information hidden in a group of

elements per grouped-entity, we capture “contextual infor-
mation” in context graphs through superimposition (step 1),
and measure their contextual similarity in terms of Quasi-
Clique (step 2).

(Step 1) Suppose we mine a context graph out of an author
entity A’s co-author tokens: B, C, D, and E. First, a ver-
tex is prepared for tokens, A through E, referred to as V (A)
through V (E). Then, four co-author vertices, V (B) through
V (E), are connected to the main vertex V (A), forming a
graph, ga. Next, ga is “superimposed” to the base graph
G, a collaboration graph pre-built using the entire set of
co-authors from all entities. For instance, if an author C
had co-authored with an author D elsewhere, then now ga

will have an edge connecting V (C) and V (D). The final ga,
then, is the context graph. At the end, if all neighboring co-
authors of A have co-authored each other, then ga becomes
a clique. Similarly, for venue information, once we create an
initial graph, ga, we can superimpose it against a base graph.
For instance, one may use, as a base graph, a venue relation
graph where an edge between two venue vertices represents
the “semantic” similarity of two venues (e.g., how many au-
thors have published in both venues). The superimposition
works as long as there is a base graph (e.g., collaboration
graph, venue relation graph) onto which an entity’s graph
can be superimposed. For more general cases, a base graph
can be also constructed using the co-occurrence relationship
among tokens.

(Step 2) Once the contexts of entities are captured and rep-
resented as context graphs, their similarity can be properly
modeled using Quasi-Clique [4]. A connected graph G is a



Algorithm 1: distQC

Input: A grouped-entity e, an ER methodM, and
three parameters (α, γ and S).

Output: k variant grouped-entities, ev (∈ E), such
that ev ∼ e.

UsingM, find top α× k candidate entities, eX ;1

Gc(e) ← context graph of e;2

forall ei (∈ eX) do3

Gc(ei) ← context graph of ei;4

gi ←QC(Gc(e), Gc(ei), γ, S);5

Sort ei (∈ eX) by |gi|, and return top-k;6

γ-quasi-complete graph (0 < γ ≤ 1) if every vertex in the
graph has a degree at least γ · (|V (G)| − 1). In a graph G, a
subset of vertices S ⊆ V (G) is a γ-Quasi-Clique (0 < γ ≤ 1)
if G(S) is a γ-quasi-complete graph, and no proper superset
of S has this property. Clearly, a 1-Quasi-Clique is a clique.
In a network (e.g., a social network or a citation network)
scenario, a Quasi-Clique is a set of objects that are highly
interactive with each other. Therefore, a Quasi-Clique in
a graph may strongly indicate the existence of a potential
community. Since a Quasi-Clique contains a group of highly
interacting (and thus likely highly similar in role) objects,
it may be more reliable in representing relationships than
individual objects.

While γ value indicates the compactness of Quasi-Clique,
another parameter that is of interest is the number of ver-
tices of Quasi-Clique. We denote this parameter as S. For
a graph G, therefore, functions: (1) QC(G, γ, S) returns a
γ-Quasi-Clique graph g from G with |V (g)| ≥ S if it exists,
and (2) QC(G1, G2, γ, S) returns a common γ-Quasi-Clique
graph g of G1 and G2 with |V (g)| ≥ S. Then, |g| indicates
how strongly two graphs G1 and G2 are related, and can
be used as a “distance.” Our two-step GER algorithm, dis-
tQC, is shown in Algorithm 1. Given an entity e (∈ E),
to locate matching k variant entities, the distQC algorithm
first relies on any existing ER solutions, and selects α (e.g.,
2 ≤ α ≤ 3) times more number of candidates than k as an
extra. Since we try to improve precisions by reducing false
positives, once we get more candidates, if we can boost up
those correct variants up into higher ranks in subsequent
steps, then our aim can be met. γ value controls the “quasi-
ness” of the graph, and S works as the minimum filter.

3. DISCUSSION
For validating our proposal, we used one real data set

(ACM) and four synthetic data sets (ACM , BioMed, Econ-
Papers, and IMDB). Each data set has solution sets to check
correctness of our proposal (due to space constraint, we omit
details here). As evaluation metrics, we used the Ranked
Precision (measuring precision at different cut-off points).

Formally, Ranked Precision =
P

i∈C precisioni

r
, where precisioni

is the precision at a cut off of i, and C is the window size. Fi-
nally, the Average Ranked Precision (ARP) are the averages
of recall and ranked precision over all cases.

Due to space constraint, we only report two ARP re-
sults here (others show similar pattern). We first ran and
measured the performance of three distance metrics – Jac-
card (JC), TFIDF (TI) and IntelliClean (IC) [2] – which
showed good performance in [3]. Then, to each, Quasi-
Clique is applied in step 2, and the performance is measured

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coauthors titles venues

Attributes

A
ve

ra
ge

 ra
nk

ed
 p

re
ci

si
on

JC
JC+QC
TI
TI+QC
IC
IC+QC

 

 

0.5

0.6

0.7

0.8

0.9

1

location date production

Attributes

A
ve

ra
g
e
 r
a
n
k
e
d
 p

re
c
is

io
n

JC

JC+QC

TI

TI+QC

 
Figure 1: (Top) Real test case for ACM; (Bottom)
Synthetic test case of IMDB.

as JC+QC, TI+QC, and IC+QC (i.e., “before” and “after”
Quasi-Clique-based metric is applied). Figure 1 (Top) illus-
trates ARP of these six schemes. Note that Quasi-Clique
improved the precision visibly. For instance, the precision
of JC+QC (resp. TI+QC) significantly improves from JC
(resp. TI) on co-authors. On average, precision improves
by 63%, 83%, and 46% for three attributes, respectively. In
general, JC and TI are simple distance metrics, measuring
distances based on the occurrences of common tokens. Since
some authors have name initials and common first names on
co-author data, therefore, these metrics tend to generate a
large number of false positives as shown in Figure 1. Since
Quasi-Clique uses additional information as to how closely
co-authors of the authors are correlated each other on graph
representation, it overcomes the limitations of the simple
metrics.

Figure 1 (Bottom) shows the ARP of IMDB data set.
Compared with citation data sets, distQC performs only
slightly better than string distance metrics because: (1)
records and attribute values of an actor and her variant en-
tities have no strong relationships unlike those of citations;
and (2) attribute values of citations are long while those of
IMDB data set are short, carrying less meaningful informa-
tion. Nevertheless, distQC never worsens the ARP.

Conclusion. Toward the GER problem, we presented a
graph partition based approach using Quasi-Clique. Unlike
conventional ER solutions, our approach examined contex-
tual relationships hidden under the grouped-entities, and
showed promising results.
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