
On Privacy Preservation against Adversarial Data Mining∗

Charu C. Aggarwal
IBM T. J. Watson Research

Center, USA

charu@us.ibm.com

Jian Pei
Simon Fraser University,

Canada
jpei@cs.sfu.ca

Bo Zhang
Zhejiang University, China

tczbzb@gmail.com

ABSTRACT
Privacy preserving data processing has become an importanttopic
recently because of advances in hardware technology which have
lead to widespread proliferation of demographic and sensitive data.
A rudimentary way to preserve privacy is to simply hide the infor-
mation in some of the sensitive fields picked by a user. However,
such a method is far from satisfactory in its ability to prevent adver-
sarial data mining. Real data records are not randomly distributed.
As a result, some fields in the records may be correlated with one
another. If the correlation is sufficiently high, it may be possible
for an adversary to predict some of the sensitive fields usingother
fields.

In this paper, we study the problem ofprivacy preservation against
adversarial data mining, which is to hide a minimal set of entries so
that the privacy of the sensitive fields are satisfactorily preserved.
In other words, even by data mining, an adversary still cannot ac-
curately recover the hidden data entries. We model the problem
concisely and develop an efficient heuristic algorithm which can
find good solutions in practice. An extensive performance study
is conducted on both synthetic and real data sets to examine the
effectiveness of our approach.

Categories and Subject Descriptors:H.2.8 [Database Applica-
tions]: [Data Mining]

General Terms: Security, Algorithms, Performancekeywords:
Privacy preservation, data mining, association rules

1. INTRODUCTION
In recent years, large amounts of data about individuals have be-

come available with corporations as well as public entities. This
has led to serious concerns about the misuse and privacy of such
data. Some interesting discourses on the nature of privacy in the
context of recent trends in information technology may be found
in [6]. This has led to a considerable amount of research on the

∗The research of Jian Pei and Bo Zhang was partially supportedby NSERC
Grants 312194-05 and 614067, and NSF Grant IIS-0308001. Allopinions,
findings, conclusions and recommendations in this paper arethose of the
authors and do not necessarily reflect the views of the funding agencies.
This work was done in 2004 when the third author was an exchange student
at Simon Fraser University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20--23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

Name Title Gdr MStatus Edu. Sal-lvl
Alice Assistant F Unmarr. Coll. SL-3
Bob Assistant M Married Coll. SL-3

Cathy Assistant F Married Univ. SL-3
Daniel Manager F Unmarr. Univ. SL-5
Elena Manager F Married Univ. SL-5
Frank Manager M Married Univ. SL-5
Grace Manager F Married MBA SL-7
Helen Manager F Married Ph.D. SL-5

Ian Accountant F Unmarr. MBA SL-5
Janet Accountant M Married Univ. SL-4

Table 1: TableEmployee.
Id Title Gdr. MStatus Educat. Sal-lvl
1 Manager F Married Univ. SL-5
2 Assistant F Unmarr. Coll. SL-3
3 Manager F Married Ph.D. SL-5
4 Assistant M Married Coll. SL-3
5 Manager M Married # SL-5
6 Accountant # Unmarr. MBA SL-5
7 Manager F Unmarr. Univ. SL-5
8 Assistant F Married Univ. #
9 Manager F # MBA SL-7
10 Accountant # Married Univ. SL-4

Table 2: TableEmployee after hiding some sensitive entries.

subject, such as [1, 2, 3, 4, 8, 9, 10, 13].
The most basic model of privacy preserving data processing is

one in which we erase the sensitive entries in data. These erased
entries are usually particular fields which are decided by the user,
who may either be the owner or the contributor of the data. Thead-
vantage of this approach is that it is extremely simple to implement
in practice, and can be tailored easily to a variety of user prefer-
ences. As a result, many current applications use this straightfor-
ward method for privacy preservation. A variety of methods such
as conceptual reconstruction [5] can be used to apply existing data
mining algorithms on such data with missing values. A key weak-
ness of this approach is that a data mining proficient adversary may
use the correlations among the fields in the data to guess the sensi-
tive fields from other (non-sensitive) fields.

EXAMPLE 1 (MOTIVATION ). Consider a tableEmployees
in Table 1. Suppose some users want to hide some information as
follows. (1) Cathy wants to hide her salary level; (2) Frank wants
to hide his education background; (3) Grace wants to hide hermar-
riage status; (4) Ian wants to hide his gender; (5) Janet wants to
hide her gender as well; and (6) All names should be hidden and
replaced by random row-ids. The table after hiding is shown in
Table 2.



However, it is possible to generate the following association rules
from Table 2:

R1: Assistant→ SL-3(support:2, confidence100%),
R2: Manager∧SL-5→University(support:3, confidence66.7%),

and
R3: Manager∧ Female→Married (support:3, confidence66.7%).
These rules have a revealing effect on the values of the individual

records. For example, one may accurately predict that (1) the miss-
ing value in tuple5 is “University” (by rule R2); (2) the missing
value in tuple8 is “SL-3” (by rule R1); and (3) the missing value
in tuple9 is “Married” (by ruleR3). However, the missing values
in tuples6 and10 cannot be predicted accurately.

The inference of sensitive fields with the use of correlations is
undesirable from a privacy preservation perspective. Therefore, in
order to prevent such inference, it may be desirable to also hide
some of the non-sensitive entries. The corresponding tradeoff here
is that unnecessary hiding of entries loses information forthe pur-
pose of data analysis applications. Therefore, it is important to hide
aminimalset of entries (i.e. a set of minimum size) in order to pre-
vent such privacy violations.

We define the problem ofprivacy preservation against adversar-
ial data miningas that of hiding a minimal set of entries so that the
privacy of the sensitive fields are satisfactorily preserved.

Our study is critically different from the currently activestudies
on privacy-preserving data mining, such as [1, 2, 3, 8, 10, 13]. Pri-
vacy preserving data mining tries to transform the data in some way
such that a certain types of data mining tasks can still be conducted
with guaranteed privacy. Therefore, the focus is on effective min-
ing using partially hidden or distorted data. In privacy preservation
against adversarial data mining, we do not aim at any specificdata
mining tasks. Instead, we generally want to preserve the privacy
against any attacks by abuse of data mining. Therefore, the hidden
data cannot be recovered by data mining. Our study is also different
from [14], which investigates how to hide a set of association rules.
In particular, the method in [14] can only hide rules supported by
disjoint frequent itemsets. This is done by decreasing their support
or confidence, and can hide only a rule at a time.

We make several contributions. First,we model the problem
of privacy preservation against adversarial data mining concisely.
Our model is general and is independent of specific adversarial data
mining techniques.We also point out that finding an optimal so-
lution to the problem of privacy preservation against adversarial
data mining is NP-hard.Second,we develop an effective and ef-
ficient heuristic algorithmto find practically effective solutions to
the problem of privacy preservation against adversarial data min-
ing. Last,we conduct an extensive empirical evaluation on both
real data sets and synthetic data sets to examine the performance
of our method. The results show that our method is effective and
efficient in practice.

The remainder of the paper is organized as follows. We formu-
late the problem in Section 2. In Section 3, we overview the proce-
dure of privacy preservation against adversarial data mining. The
details of the proposed approach are developed in Sections 4and 5.
An empirical evaluation is reported in Section 6.

2. PROBLEM STATEMENT
Consider a databaseT of n recordst1, . . . , tn andm attributes

D1, . . . , Dm. Without loss of generality, we assume that the do-
mains of dimensions are exclusive.

The value of recordti on attributeDj is denoted byti,j . We
also refer toti,j as anentry. We note that an entry is aspecific
value in a tuple, instead of an attribute value appearing in the ta-
ble. At this moment, we assume that all attributes are categorical.
We note that any continuous attribute can be transformed to acat-
egorical domain by using the process of discretization. After the

process of discretization, the methods discussed in this paper can
be utilized for deciding which entries to remove. At the end of this
process, the discretized attributes are replaced by themid-pointsof
the corresponding ranges. The process of discretization results is
an additional level of approximation of the attribute values. All
results in this paper will continue to hold for this discretized con-
tinuous case, except that these results need to be expressedin terms
of the discretized attributes.

A set of entries in one record is called anentry-set. The set of
privacy sensitive entries in the data is called thedirectly private set,
denoted byP . In the most general case, the sensitivity of the data
may be defined not only by the fields, but also by a combination of
the data records as well as their attributes. For example, one user
may wish to be private about his or her education level, whereas
another user may be private about the age attribute. Furthermore,
there may be other fields (such as salary) which may be defined as
globally sensitive at the administrator level. Therefore,the directly
private set is defined at theentry levelrather than at theattribute
level.

For the sake of simplicity, we call a value in an attribute anitem,
and a combination of multiple items anitemset. Clearly, an item or
an itemset can appear in multiple tuples. In other words, an item
can match multiple entries and an itemset can match multipleentry-
sets. The use of this terminology helps us to leverage on existing
machinery for association rules and large itemset generation.

It is further assumed that the information hiding is done at the
server end. Thus, while the administrator at the server end is privy
to the entire set of records, they do not make the entire data set
publicly available. The advantage of information hiding atthe
server end is thatit is possible to use the inter-attribute correla-
tions among the different records in order to decide which entries
should be masked.

The primary question in the problem of privacy preservation
against adversarial data mining isthe choice of entries which should
be hidden. While it is clear that the entries inP should be hidden,
it is also important to remove other entries which have predictive
power. We useti,j = # to denote that the value is hidden. The ta-
ble in which the privacy sensitive entries are blanked out isdenoted
by (T − P ).

An itemsetX is said toappearin a tuplet if X matches a set of
entries int. Moreover, for a tableT and a directly private setP ,
X is said topublicly appearin a tuplet if the entries int match-
ing X are not inP (i.e., not blanked out in(T − P )). Consider
tableEmployee in Table 2. The set of sensitive entries isP =
{t

5,Education, t6,Gender, t8,Salary-level, t9,Married-or-not, t10,Gender}.
As shown in Example 1, if we publicly publish Table 2, i.e.,

(T − P ), it may not preserve the privacy sufficiently. Therefore,
only blanking out the sensitive entries is inadequate. If some of the
fields have known correlations to the other fields, they may beused
to predict the sensitive entries in the data. In other words,entries
which have strong predictive power to any entry in setP need to
be removed from the data. Therefore, the first step is to determine
the entries which have strong predictive power to entries insetP .

A user may find correlation/association rules from(T − P ) and
use the rules to predict the values in the blank entries. The problem
of privacy preservation against adversarial data miningis to find a
set of entriesK such that predictive methods using only the infor-
mation in(T −P −K) cannot have an accuracy at leastδ to predict
the values of any entries inP , whereδ ∈ (0, 1] is a user-specified
parameter. To make the information loss as little as possible, we
want to minimize the size ofK. We will refer to the setK as the
derived private set.

One way to select entries for the derived private set is to usethose
entries to invalidate confident rules.

EXAMPLE 2 (RULE INVALIDATION ). Consider ruleR2: Man-
ager∧ SL-5→ Universitydiscussed in Example 1. In order to in-



validate this rule, we can blank some occurrences of “Manager”,
“SL-5” and/or “University” in tuples5 and7. Note that wedo not
have to blankall those occurrences. For example, ift

1,Education=
University is removed, then the confidence of the ruleR2: Manager
∧ SL-5→ Universityis lowered down to50%.

Moreover, we note that removingt
1,Title = Manager is more ad-

vantageous than removingt
1,Education= University sincet

1,Title
affects two rulesR2 andR3 rather than just one.

If the minimum support of a rule is2 and the confidence thresh-
old is60%, then by blanking out only the entryt

1,Title, we can hide
both rulesR2 andR3.

The process of removing derived private entries in order to re-
duce the confidence level of the rules in the data is calledrule in-
validation.

A second way of protecting the sensitive entries is toprevent
rules from being firedby blanking out the entries in the sensitive
records corresponding to the antecedents of the rules. In such a
case, even though the rules may continue to have high relevance
(confidence level), the entries in the antecedents of the rules may
get blanked out for the sensitive records only. This processis re-
ferred to asrule marginalization.

EXAMPLE 3 (RULE MARGINALIZATION ). Consider ruleR1:
Assistant→ SL-3 in Example 1. In Table 2, only sensitive entry
t
8,Salary-levelcan be predicted using this rule. Therefore, instead

of invalidating the rule, we can simply blank out entryt
8,Title =

Assistant. Then, sensitive entryt
8,Salary-levelcannot be predicted

accurately.

Rule marginalization refers to the fact that the rules may continue
to have high confidence level, but get marginalized because they are
no longer relevant to any sensitive entry in the data. Therefore, the
predictive power of the rule is effectively removed. Rule marginal-
ization is especially useful when only a small number of users have
chosen to keep their records private for a particular column. In such
a case, it is possible to block a small number of antecedents from
the rules in order to keep the entries private.

Generally, it is a tricky question to determine whether it ismore
useful to remove entries in order to prevent rules from beingfired
or whether it is more useful to aim for reducing the confidence
level of rules. Moreover, blanking out an entry may simultaneously
prevent some rules from firing and reduce the confidence levelof
some other rules. In a later section, we will explore this tradeoff,
and discuss an effective strategy for balancing rule invalidation and
marginalization.

We note that the predictive nature of the problem has some simi-
larity to the problem of adversarial classification [7], butwith some
critical differences. First, while the adversarial classification prob-
lem concentrates on the prediction of a single field,the problem of
privacy preservation against adversarial data mining studied here
may involve prediction of any sensitive field in the data. This makes
the problem much more general and more difficult to solve thana
standard classification problem. At the same time, it is alsomore
difficult for an adversary who may need to be able to make pre-
diction on multiple fields in the data from an incomplete dataset.
Second, while the adversarial classification problem concentrates
on the method of data perturbation as an adversarial measure, the
problem of privacy preservation against adversarial data mining
concentrates on the issue of information hiding as a measureto
thwart privacy attacks.

In this paper, we utilize association rules to construct themodel
which decides the entries to be hidden. This is because association
based methods are easy to generalize to the case where the predic-
tion may be performed over any fields in the data. Furthermore,
such methods are relatively robust for a large number of applica-
tions in which the data records have high dimensionality. Insuch

cases, there exist an exponential number of subspaces that such a
predictor can explore over the data. The related work in [15]com-
pares the effects of different schemes for creating privacyleakage
in the context of learning based systems. This is orthogonalto the
goal of our paper, which uses attribute suppression in orderto pre-
serve privacy in a more general setting.

3. OVERVIEW OF THE APPROACH
We want to determine association rules with strong predictive

power. However, in this case it is more important to find asso-
ciation rules with a high confidence level than those with a high
support level. In fact, it is important to be exhaustive in the asso-
ciation rule generation process in order to ensure that noneof the
sensitive fields are divulged. The overall algorithm for adversarial
data suppression is in the following two steps:

Step 1: Mining adversarial rules. We mine all association rules
from (T − P ) in the form ofX → y whereX is a set of attribute
values andy is a value on an attributeY such that (1) the confidence
of the rule is no less thanδ in (T − P ); and (2) for tuplest where
X publicly appears and the value oft on attributeY is blanked out,
t has valuey on Y with a probability of at leastδ. Such confident
association rules related to the adversarial data mining are called
adversarial rules.

Step 2: Determining derived private set. We select a set of en-
triesK ⊆ (T −P ) such that by deleting the entries corresponding
to P ∪ K, no adversarial rules can be fired to predict any value in
P accurately. We note that the process of blanking out entriesin
K reduces the amount of information available in the data. This
is an unfortunate consequence of the privacy preservation process.
These effects need to be minimized. Therefore, we would liketo
minimize the cardinality of the derived private setK.

We establish the correctness of the above algorithm as follows.
For a tableT and a directly private setP , consider a ruleR : X →
y, whereX is an itemset andy is a value on attributeY . All tuples
t in which X publicly appears and the attribute value onY is not
blanked out form thepublic setof R, denoted bypub(R). That is,
pub(R) = {t|t ∈ T, X publicly appears int, t.Y 6∈ P}. A user
can derive the confidence ofR from its public set. The confidence
of R in the public set is called thepublic confidenceof R.

On the other hand,X may publicly appear in some tuples inT
but theY attribute values in those tuples are blanked out. Then,R
can be used to predict the value ofY in those tuples. Such tuples are
called thehidden setof R, denoted byhid(R). That is,hid(R) =
{t|t ∈ T, X publicly appears int, t.Y ∈ P}. The confidence ofR
in the hidden set is called thehidden confidenceof R. Clearly, an
external user can only calculate the public confidence from(T −
P ). Since we assume that information hiding is done at the server
end, only the owner/administrator of the original data can calculate
the hidden confidence.

Generally, letδ be a user specified confidence threshold. For
a tableT and a directly private setP , an adversarial rule(with
respect toδ) is an association ruleR : X → y such that both the
public and hidden confidence ofR are at leastδ.

An adversarial rule is potentially revealing when it has high pub-
lic confidence and high hidden confidence. Otherwise, it cannot be
used to predict accurately. That is, if a rule has high publicconfi-
dence but low hidden confidence, then it cannot accurately predict
the blanked entries. On the other hand, if a rule has high hidden
confidence but low public confidence, then a user who can only
read(T − P ) cannot identify the rule from the public data.

THEOREM 1 (CORRECTNESS). For a tableT and a directly
private setP , any entryz ∈ P on attributeY cannot be predicted
with a confidenceδ or higher using only the information from(T −
P ) if and only if there exists no adversarial ruleR : X → y in
(T − P ) such thaty is on attributeY andX publicly appears in



the tuplet containingz.

4. MINING ALL ADVERSARIAL RULES
We will mine all adversarial rules in a depth-first search frame-

work. The complete set of itemsets can be enumerated using a set
enumeration tree [11]. A set enumeration tree employs a total order
on the set of all items. Each itemset is treated as a string such that
all items in the itemset are sorted in the total order. Then, an item-
setX is an ancestor of another itemsetY in the set enumeration
tree ifX is a prefix ofY .

The general idea of our algorithm to mine the complete set of
adversarial rules is to conduct a depth-first search of the set enu-
meration tree. The nodes in the tree are the itemsets publicly ap-
pearing in some tuples. We check whether such itemsets can bean
antecedent of some adversarial rules.

Clearly, for any adversarial ruleR : X → y, X must publicly
appear in some tuples. Hence, the search of adversarial rules is
complete if all the itemsets publicly appearing in some tuples can
be enumerated completely. The correctness and the completeness
of the mining of adversarial rules by a depth-first search of aset
enumeration tree immediately follow the following property.

THEOREM 2 (ANTI-MONOTONICITY). If an itemsetX does
not publicly appear in any tuple, then any superset ofX cannot
publicly appear in any tuple.

Often, a complete set enumeration tree can be huge in real ap-
plications, when there are hundreds or even thousands of items.
Therefore, it is important to prune significant portions of the set
enumeration tree.

First of all, we can prune all those itemsets that do not publicly
appear in a data set.

PRUNING RULE 1. (PRUNING NOT PUBLICLY APPEARED ITEM-
SETS) In the depth-first search of the set enumeration tree, an item-
setX which does not publicly appear in any tuple, as well as all
the supersets ofX can be pruned.

Not every itemset publicly appearing in some tuples is an an-
tecedent of some adversarial rule. This fact can be used to improve
the effectiveness of the depth-first search algorithm. Thismeans
that if we can determine that all nodes in a subtree cannot be an-
tecedents of any adversarial rule, then the subtree can be pruned and
the search space is narrowed. We can examine whether an itemset
and its supersets are antecedents of some adversarial rulesfrom the
projected databases.

Let X be an itemset,T be a table, andP be a directly private set.
For a tuplet in T , if X publicly appears int, then theprojectionof
t with respect toX, denoted byt|X , is the set of entries int that
are not matched byX. If X does not publicly appear int, then
t|X = ∅.

Theprojected databasewith respect toX is the set of nonempty
projections with respect toX in T .

The concept of projected databases and its utilization are illus-
trated in the following example.

EXAMPLE 4 (PROJECTED DATABASE). Consider the example
illustrated in Table 2. The projected database for itemsetX1 =
{College} is T |X1

= {(Assistant, Female, Unmarried, SL-3), (As-
sistant, Male, Married, SL-3)}. The projected database for itemset
X2 = {Accountant} is T |X2

= {(#, Unmarried, MBA, SL-5),
(#, Married, University, SL-4)}. The projected database for item-
setX3 = {Unmarried, SL-5} is T |X3

= {(Accountant, #, MBA),
(Manager, Female, University)}. The projected database for item-
setX4 = {Manager, Female} is T |X4

= {(Married, University,
SL-5), (Married, Ph.D., SL-5), (Unmarried, University, SL-5), (#,
MBA, SL-7)}.

The itemsets can be divided into five categories according tothe
projected databases of the itemsets. The categorization ofitemsets
is very useful from the perspective of rule pruning. For somecate-
gories of itemsets, it is possible to design efficient pruning rules by
using specific properties of those categories.

An itemset isprivacy-freeif its projected database does not con-
tain any directly private entry at all.

EXAMPLE 5 (PRIVACY-FREE ITEMSETS). Consider itemset
X1 = {College} from Example 4. Since its projected database
contains no directly private entry,X1 cannot be the antecedent
of any adversarial rule. Moreover, any superset ofX1, such as
{Assistant, College} and{Assistant, Male, College}, cannot be the
antecedent of any adversarial rule, either.

PRUNING RULE 2 (PRUNING PRIVACY-FREE ITEMSETS). In
the depth-first search of the set enumeration tree, a privacy-free
itemset and all supersets of it can be pruned.

An itemsetX is non-discriminativeif every tuple in the pro-
jected database ofX contains directly private entries in the same
attribute(s).

EXAMPLE 6 (NON-DISCRIMINATIVE ITEMSETS). Consider
itemsetX2 in Example 4. Every tuple inT |X2

has a blanked value
in attributeGender. Therefore, any association rule havingX2 or
any superset ofX2 cannot make an accurate prediction of the gen-
der of accountants. In other words, those itemsets cannot bethe
antecedents of any adversarial rules with respect to gender.

PRUNING RULE 3. (PRUNING NON-DISCRIMINATIVE ITEM -
SETS) In the depth-first search of the set enumeration tree, if an
itemsetX is non-discriminative with respect toY , then any super-
set ofX is also non-discriminative with respect toY . Y can be
pruned from the projected databases ofX and any superset ofX.
Moreover, if an itemsetX is non-discriminative with respect to all
other attributes that contain some entries in the directly private set,
thenX and its supersets can be pruned.

An itemsetX is said to be acontrast itemsetif for any entry
y ∈ P such thatX ∪ y appears in some tuples inT , X → y has
a public confidence of0. Clearly,X as well as any supersets ofX
cannot be used to accurately predicty.

EXAMPLE 7 (CONTRAST ITEMSETS). Consider itemsetX3

in Example 4. In the projected database, there is one blankeden-
try in attributeGender, whose value is “Female”. However, in the
public set ofX3, rule “X3 → Male” has a public confidence of
100%. Thus,X3 or any of its supersets cannot be used to predict
the gender accurately.

PRUNING RULE 4 (PRUNING CONTRAST ITEMSETS). In the
depth-first search of the set enumeration tree, a contrast itemset and
all supersets of it can be pruned.

An itemsetX is discriminativeif X is the antecedent of some
adversarial rules. This can be determined by checking the projected
database ofX. Technically, if there is a valuey such thatX → y
has public and hidden confidence of at leastδ with respect to the
projected database ofX, thenX is discriminative.

EXAMPLE 8 (DISCRIMINATIVE ITEMSETS). Consider item-
setX4 in Example 4. In the projected database, there is one blanked
entry in attributeMarried-or-not, whose value is “Married”. More-
over, two out of the three tuples in the projected database have non-
blanked value “Married” in attributeMarried-or-not. Thus, we can
generate a confident association ruleManager∧ Female→ Mar-
ried, which is the adversarial ruleR3 discussed in Example 1.



Input: a tableT , a directly private setP , a confidence thresholdδ,
and an optional minimum support thresholdγ (defaultγ = 1)

Output: the complete set of adversarial rules;
Method:
1: letA1, . . . ,An be an order of attributes, extend the order to an

order over all items: itemx in Ai is after itemy in Aj if i ≤ j;
items from the same attributes are sorted alphabetically;

2: conduct a depth-first search on the set enumeration tree of
itemsets, for each itemsetX (i.e., at each node of the tree);

3: if the support ofX is less thanγ then return;
4: create the projected database forX;
5: // applying Pruning Rules 2, 3 and 4

if X is privacy-free, non-discriminative or contrast then return;
6: if X is discriminative then output an adversarial rule;
7: remove unpredictable attributes with respect toX;
8: for each itemz appearing in the projected database in any

attribute that has not been considered yet, form itemset
X ∪ {z} and recursively call the depth-first search procedure.

Figure 1: Algorithm FAiR.

Input: a tableT , a directly private setP , a confidence thresholdδ,
and a setR of adversarial rules

Output: a set of derived entry sets;
Method:
1: setci,j = 0 for all entries;
2: while rule setR is not emptydo
3: for each ruler ∈ R and entryti,j ∈ T do
4: compute the contribution of blankingti,j to invalidation

or marginalization of ruleR;
5: add the contribution toci,j ;
6: blank a fractionf of the original number of entries with the

largest weight;
7: remove the rules invalidated or marginalized;

Figure 2: Algorithm GraDeS.

We note that an itemset may be the antecedent of more than
one adversarial rule. However, all adversarial rules having the
same antecedent can be generated by only one scan of the projected
database. We only have to maintain a set of counters which track
the number of occurrences of different attribute values in their pub-
lic and hidden sets respectively. During the scan the counters can
be updated by examining each record sequentially.

The supersets of discriminative itemsets should still be checked.
This is because we may find confident adversarial rules among
these supersets. Note that we have to either invalidate or marginal-
ize all adversarial rules.

An itemset isundeterminedif it is not in any of the previous
four categories. For such an itemset, we can neither prune it, nor
generate adversarial rules. Therefore, the depth-first search needs
to be continued at such nodes in order to make judgements about
the itemsets in the corresponding subtrees.

The efficiency of the depth-first search method can be improved
further by utilizing the following observation.If the support of an
adversarial rule is very low, then the adversarial rule can be statis-
tically insignificant. In a real application, a user may often specify
a minimum support threshold. We only determine adversarialrules
whose support is at least equal to this threshold. Therefore, any
itemset whose support is less than this threshold can be pruned, and
so can its supersets. The corresponding algorithmFAiR (Finding
Adversarial Rules) is illustrated in Figure 1.

5. DETERMINING OPTIMAL DERIVED PRI-
VATE SET

We can use the set of adversarial rules to determine the set of
entries which need to be removed from the data. Unfortunately,
the problem of finding the smallest derived private set is NP-hard
(limited by space, we omit the formal result here). Thus, we need to
design a heuristic algorithm to find practically effective solutions.

We need to find a good tradeoff between rule invalidation and
rule marginalization. we can construct an effective solution for the
task by quantifying the level of information revealed by thediffer-
ent entries. The greater the level of information revealed by an en-
try, the greater the weight of the corresponding entry. Thisweight
is denoted byci,j for entryti,j .

Initially, we set ci,j = 0 for all the entries. Let us consider
a database containingN entries. We note that when an entry is
deleted, it could either prevent a rule from beingfired because of
rule marginalization, or it could prevent a rule from beingfound
because of rule invalidation.

Consider an entryti,j and a ruleR : X → y wherey ∈ Y .
Three cases may arise: tupleti (the tuple containing entryti,j) is
in the public setpub(R), ti is in the hidden sethid(R), or ti is
irrelevant toR. We will compute the contribution of blanking out
the entryti,j in each case as follows.

First, if tupleti is in pub(R), i.e.,X ∪ {y} publicly appears in
ti, then blanking outti,j will reduce either the public confidence
of R (whenti,j ∈ Y ) or the size of the public set ofR (whenti,j

matches an item inX) by 1/|pub(R)|. This is the contribution of
blankingti,j to the invalidation ofR.

Second, if tupleti is in hid(R), i.e., X publicly appears inti

but ti.Y ∈ P (ti has a blanked value on the attribute thaty may
appear), then blanking outti,j marginalizesR in one instance (i.e.,
this tuple). In order to fully marginalize all instances ofR, we need
to blank out a total of|hid(R)| entries. Thus, the contribution of
blanking outti,j to the marginalization ofR is 1/|hid(R)|.

Last, if ti is not inpub(R) orhid(R), then blanking outti,j does
not make any contribution to the invalidation or marginalization of
R.

Therefore, the weightci,j can be calculated as the sum of con-
tributions of blanking outti,j to all adversarial rules. The entries
with the highest weights should be blanked out. Once an entryis
blanked out, the weights of other entries should be adjusted. The
blanking process can be conducted iteratively.

The process of blanking the entries can turn out to be cumber-
some if the weights need to be re-computed at each step. Therefore,
we batch the process of blanking out the entries after computing the
corresponding weights. The process of computing weights ofthe
different entries is done using a single pass in which all rules are
iterated over the entries of a given record in order to determine the
corresponding weights. The weights are then stored, and then the
batch process of blanking out is started. In the process of batching
the blanking of entries, we blank outk sensitive entries (i.e., the
entries withci,j > 0) in each pass. This ensures that a maximum
of at mostm/k passes need to be performed on the data, wherem
is the total number of sensitive entries. We note that the process of
batching leads to some reduction in accuracy, but this is a natural
tradeoff with the efficiency of the entire process. The parameter
k is called theblanking factor, and can correspondingly be tuned
in order to achieve the desired tradeoff between accuracy and ef-
ficiency. The algorithmGraDeS(for Generating Derived Set) is
shown in Figure 2.

6. EMPIRICAL EVALUATION
All algorithms were implemented in Microsoft Visual C++ V6.0.

All experiments were run on an IBM ThinkPad T42 laptop com-
puter which has one Intel Pentium M 1.5 GHz processor and 768
M main memory, and runs Microsoft Windows XP operating sys-
tem. We used both synthetic and real data sets in our experiments.



 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0  1  2  3  4  5

# 
of

 a
dv

er
sa

ria
l r

ul
es

/s
en

si
tiv

e 
en

tr
ie

s

Zipf factor

Dim=10,Card=10
Dim=10,Card=20
Dim=15,Card=10

# sensitive entries D=10,C=10

Figure 3: Zipf factor vs. num-
ber of adversarial rules.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  5  10  15  20N
um

be
r 

of
 r

ul
es

/s
en

si
tiv

e 
en

tr
ie

s

Support threshold (%)

# adversarial rules
# sensitive entries

Figure 4: # of adversarial rules/
sensitive entries vs. support.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 60  65  70  75  80  85  90  95  100N
um

be
r 

of
 r

ul
es

/s
en

si
tiv

e 
en

tr
ie

s

Confidence threshold (%)

# adversarial rules
# sensitive entries

Figure 5: # of adversarial rules/
sensitive entries vs. confidence.

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000

 0  2  4  6  8  10N
um

be
r 

of
 r

ul
es

/s
en

si
tiv

e 
en

tr
ie

s

Size of directly private set / size of table (%)

Figure 6: # of adversarial rules
vs. directly private set size.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  200  400  600  800  1000

N
um

be
r 

of
 e

nt
rie

s

Number of sensitive entries blanked in a round

Figure 7: Derived private set
size vs. blanking factor.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  200  400  600  800  1000

R
un

tim
e 

(s
ec

on
d)

Number of sensitive entries blanked in a round

Figure 8: Runtime vs. blanking
factor.

 10

 100

 1000

 10000

 100000

 1e+06

 0  20000  40000  60000  80000  100000

N
um

be
r 

of
 e

nt
rie

s

Number of tuples

# adversarial rules
# sensitive entries

Figure 9: # of adversarial rules/
sensitive entries vs. db size.

 0

 100000

 200000

 300000

 400000

 500000

 10000  20000  30000  40000  50000

N
um

be
r 

of
 e

nt
rie

s

Number of directly private entries

Size of derived private set
# sensitive entries

Figure 10: Derived private set
and sensitive entries (Adult)

6.1 Results on Synthetic Data Sets
We generated synthetic data sets using the Zipf distribution to

determine the tuple values on each dimension. The data generator
uses the following parameters (default values in brackets): (1) di-
mensionality (10); (2) cardinality (10); (3) Zipf factor (2.0); and (4)
number of tuples in the table (10, 000). We generated the directly
private sets so that ap% of randomly selected entries are hidden.
The parameterp is chosen to be1% by default. This means that
a table containing10, 000 tuples and10 dimensions will contain
1, 000 entries in the directly private set.

Figure 3 shows the variation in the number of adversarial rules
with varying Zipf factor for different dimensionalities and cardinal-
ities of the data set. The number of tuples was set at10, 000, the
confidence threshold was set at60%, the minimum support thresh-
old was set at0.05%, and the directly private set randomly hid1%
of entries in the table. We tested different cases of data setdimen-
sionality and cardinality. The data becomes much more correlated
when the Zipf factor increases. When the Zipf factor is in therange
of 2 to 3, the number of adversarial rules is large. When the Zipf
factor keeps increasing to5, the number of adversarial rules de-
creases. The reason is that when Zipf factor is large, there are some
strong rules with high support across many tuples. However,there
are not many such rules. In the same figure, we also show the num-
ber of sensitive entries (the entries not in directly private set, but
which are relevant to at least one adversarial rule). It goesup as the
Zipf factor increases, but is bounded by the total number of non-
blanked entries in the table. Interestingly, the number of sensitive
entries does not drop with high Zipf factor, whereas the number of
adversarial rules decreases. In such situations, the support of rules
increases and the number of tuples affected by the adversarial rules
remains stable. This helps in containing the final number of values
in the derived private set.

The major observation is that the number of rules increases with
dimensionality, but reduces with increasing cardinality on each cat-
egorical attribute. This is because increasing cardinality makes the
data set more diverse whereas increasing dimensionality increases
the number of possibilities for finding adversarial rules.

In Figure 4, we tested the effect of support threshold on the num-
ber of adversarial rules and the number of sensitive entries. The
parameters of the data set were set to default, and the confidence
threshold was set to60%. As can be seen, the number of adver-
sarial rules increases exponentially as the support threshold goes
down, which is similar to the well-known effect in frequent pattern
mining. However, the number of sensitive entries changes linearly,
since the Zipf distribution embeds some correlations with high sup-

port, which affects many tuples. The number of entries sensitive to
adversarial rules with low support is limited. This is an encourag-
ing observation since a reduced number of sensitive entrieswould
indicate a modest size of the derived private set. We will examine
this issue in more detail in the next section.

The effect of confidence threshold on the number of adversar-
ial rules and the number of sensitive entries was tested using the
same synthetic data set, as shown Figure 5. The support threshold
was set to0.05%. As expected, a lower confidence threshold intro-
duces more adversarial rules and sensitive entries. An interesting
observation is that the data set following a Zipf distribution has a
non-trivial number of adversarial rules of100% confidence, which
affect about20% of the tuples in the table. We note that the cor-
responding entries are very valuable from the point of view of an
adversary.

Using the same synthetic data set, we tested the effect of size
of directly private set on the number of adversarial rules, as shown
in Figure 6. The support threshold and confidence threshold were
fixed to 0.05% and60%, respectively. When the directly private
set is small, the number of adversarial rules is also small since the
rules must be associated with some directly private entries. When
the directly private set becomes large, the number of adversarial
rules increases linearly. The relatively modest increase in the num-
ber of adversarial rules with increasing direct private setsize is an
encouraging observation, since it tends to indicate that the derived
private set is also likely to increase modestly.

The cost of our approach consists of two parts: mining the adver-
sarial rules and computing the derived private set. The firststep is
quite efficient. In our experiments, it takes less than5 seconds for
data sets with10, 000 tuples and is linearly scalable with respect
to database size. This is only a very minor component of the total
cost. Limited by space, we omit these details and concentrate on
the more computationally challenging issue of finding the derived
private set from the rules. In our heuristic approach (Section 5), the
blanking factor can be leveraged as a useful parameter to control
the tradeoff between the size of derived private set and efficiency.

Figure 7 plots the size of derived private set with respect tothe
blanking factor. As a reference, the total number of sensitive en-
tries in this test is61, 964. The support threshold and the confi-
dence threshold were set to0.1% and80%, respectively. The cor-
responding running time is shown in Figure 8. We note that the
running time is quite modest for most practical settings.

From Figures 7 and 8, we observe the following. First, the pri-
vacy can be preserved by blanking out only a very small subsetof
sensitive entries. In the setting of this experiment, if we blank one



 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

N
um

be
r 

of
 e

nt
rie

s

Support threshold (%)

Size of derived private set
# sensitive entries
# adversarial rules

Figure 11: # of sensitive en-
tries/adverserial rules/derived
private set size vs. support
(Adult).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  0.5  1  1.5  2

R
un

tim
e 

(s
ec

on
d)

Support threshold (%)

Figure 12: Runtime vs. sup-
port (Adult).

entry at a time, we only need to blank545 entries in the derived
private set, which is less than1% of the set of all sensitive entries.
Blanking out less than600 entries to preserve the privacy of1, 000
directly private entries allows the approach to remain practical from
the point of view of information preservation.

In general, the less entries we blank out in a round, the smaller
the derived private set we get. On the other hand, it increases the
running time. We show that the tradeoff is such that a minor in-
crease of the derived private set can lead to a substantial gain in
efficiency. For example, by increasing the blanking factor from 1
to 30 the runtime was drastically reduced from1, 988 seconds to
157 seconds, while the derived private set size only modestly in-
creased from546 entries to1, 320 entries. The iterative use of a
blanking factor helps in substantially improving the efficiency of
the algorithm with only a modest loss in the data entries.

We tested the scalability of privacy preservation against adver-
sarial data mining with respect to the number of tuples in thetable.
The results are shown in Figure 9. The data sets took the default
parameters except that the number of tuples ranged from10, 000
to 100, 000. The directly private set randomly hid1% entries in
the table. We fixed the confidence and support threshold to80%
and0.05%, respectively. Interestingly, the number of adversarial
rules decreases as the size of table increases. In a data set follow-
ing the Zipf distribution, as the database size goes up, the rules
about the bias values in dimensions gain support much more than
the other rules. Since we kept the support threshold constant in
percentage, those rules whose support do not grow in the samerate
became infrequent. This resulted in fewer rules in large table of
high support. This phenomenon matches the scenarios in realap-
plications. In small tables, we can often observe many occasional
correlations. However, in large tables, only the strong correlations
become statistically meaningful and affect the privacy preservation
against adversarial data mining.

The number of sensitive entries relies on two factors: the number
of adversarial rules and the size of directly private set. Weobserved
from our experiments that the runtime of our method is mainlypro-
portional to the number of sensitive entries, since the determination
of derived private set dominates the cost. Since the number of sen-
sitive entries show more modest scalability behavior, thisalso helps
to contain the running time of our method.

6.2 Experiments on Real Data Set (Adult)
To examine the effectiveness of our approach in real applica-

tions, here we report the experimental results on real data set Adult
from the UCI Machine Learning Repository
(http://www.ics.uci.edu/∼mlearn/). It was extracted from the cen-
sus bureau database in year 1994. It has48, 842 tuples and14
dimensions,6 of which are continuous and8 are nominal. We re-
moved tuples containing missing values. After removal, thedata
set still has45, 222 tuples. We also removed4 attributes in which
most tuples have the same value. We discretized continuous at-
tributesages, fnlwgtandeducation-num. After discretization, those
attributes have cardinality10, 150 and17, respectively.

Figure 10 shows the number of sensitive entries and size of de-

rived private set as the size of directly private set changesfrom
10, 000 to50, 000. The support threshold and the confidence thresh-
old were set to2% and80%, respectively. The blanking factor was
fixed to10, 000. The number of sensitive entries is not very sen-
sitive to the change of private set, since it is bounded by thetotal
number of non-blanked entries. On the other hand, the numberof
derived private entries increases with the size of directlyprivate set.
If we want to hide more entries, we likely have to blank out more
entries as well. However, when we hide more entries in the directly
private set, some rules may also be hidden. Consequently, one in-
teresting observation from Figure 10 is that the number of derived
private entries increases quite slowly with increasing number of di-
rectly private entries. This tends to indicate that the (proportionate)
loss in entries with increasing level of incompleteness of the data
set is likely to be lower. The running time with increasing size of
the directly private set roughly follows a similar trend in Figure 10.
Limited by space, we omit the curves.

Figure 11 shows the numbers of adversarial rules and sensitive
entries, as well as the size of derived private set on the support
threshold. The directly private set has30, 000 entries and the con-
fidence threshold was set to80%. The blanking factor was set to
10, 000. All three measures go up as the support threshold goes
down. They follow similar trends. The running time is shown in
Figure 12. Again, we observe that the size of the derived private set
is within a small factor of the directly private set over all ranges of
the support parameter. This tends to indicate only a modest level of
information loss. In fact, these results show that the derived private
set does not change very much for different values of user-specified
support.

In summary, the empirical study on both synthetic and real data
sets strongly suggests that privacy preservation against adversar-
ial data mining is practical from an information-loss perspective.
This is because the results seem to indicate that the derivedprivate
set does not increase as fast as the directly private set, andtends
to be quite stable over a wide range of user parameters. At the
same time, our heuristic approach is also efficient from a computa-
tional perspective and requires a few seconds over many practical
settings on data sets containing thousands of records. In addition,
the scheme scales modestly over a wide range of user-specified pa-
rameters. This contributes to the practicality and usability of the
approach.

7. REFERENCES
[1] Aggarwal C. C. and Yu P. S. A Condensation Based Approach to Privacy

Preserving Data Mining.EDBT Conference, 2004.
[2] Agrawal R. and Srikant R. Privacy Preserving Data Mining. Proceedings of the

ACM SIGMOD Conference, 2000.
[3] Agrawal D. and Aggarwal C. C. On the Design and Quantification of Privacy

Preserving Data Mining Algorithms.ACM PODS Conference, 2002.
[4] Agrawal R. and Bayardo R. J. Data Privacy through Optimalk-anonymization.

ICDE Conference, 2005.
[5] Aggarwal C. and Parthasarathy S. Mining Massively Incomplete Data Sets by

Conceptual Reconstruction.ACM KDD Conference, 2001.
[6] Clifton C. and Marks D. Security and Privacy Implications of Data Mining.ACM

SIGMOD DMKD Workshop, 1996.
[7] Dalvi N. et al. Adversarial classification. KDD Conference, pp. 99-108 , 2004
[8] Evfimievski A. et al. Privacy Preserving Mining Of Association Rules.ACM

KDD Conference, 2002.
[9] Liew C. K. et al. A data distortion by probability distribution.ACM TODS,

10(3):395-411, 1985.
[10] Rizvi S. and Haritsa J. Maintaining Data Privacy in Association Rule Mining.

VLDB Conference, 2002.
[11] Rymon R. Search through systematic set enumeration. InProceedings of

KR’92, 1992.
[12] Samarati P. and Sweeney L. Protecting Privacy when Disclosing Information:

k-Anonymity and its Enforcement Through Generalization andSuppression.
Proc. of the IEEE Symposium on Research in Security and Privacy, May 1998.

[13] Vaidya J. and Clifton C. Privacy Preserving Association Rule Mining in
Vertically Partitioned Data.ACM KDD Conference, 2002.

[14] Verykios V. S. et al. Association Rule Hiding,IEEE TKDE, 16(4), 2004.
[15] Xiong H. et al. Privacy Leakage in Multi-relational Databases via Pattern based

Semi-Supervised Learning.Univ. of Minnesotta, Technical Report 04-23, 2004.


