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ABSTRACT
Mining microarray gene expression data is an important research
topic in bioinformatics with broad applications. While most of
the previous studies focus on clustering either genes or samples,
it is interesting to ask whether we can partition the complete set
of samples into exclusive groups (called phenotypes) and find a
set of informative genes that can manifest the phenotype structure.
In this paper, we propose a new problem of simultaneously min-
ing phenotypes and informative genes from gene expression data.
Some statistics-based metrics are proposed to measure the quality
of the mining results. Two interesting algorithms are developed:
the heuristic search and the mutual reinforcing adjustment method.
We present an extensive performance study on both real-world data
sets and synthetic data sets. The mining results from the two pro-
posed methods are clearly better than those from the previous meth-
ods. They are ready for the real-world applications. Between the
two methods, the mutual reinforcing adjustment method is in gen-
eral more scalable, more effective and with better quality of the
mining results.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing

General Terms
Algorithms, Experimentation

Keywords
Phenotype, informative genes, array data, bioinformatics

1. INTRODUCTION
The DNA microarray technology enables rapid, large-scale screen-

ing for patterns of gene expression. The raw microarray data are
transformed into gene expression matrices in which a row repre-
sents a gene and a column represents a sample. The numeric value
in each cell characterizes the expression level of a specific gene in
a particular sample.
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Effective and efficient analysis techniques are demanding as gene
expression data are accumulated rapidly. The gene expression ma-
trix can be analyzed in two ways. On the one hand, genes can
be clustered based on similar expression patterns [7]. In such a
gene-based method, the genes are treated as the objects, while the
samples are the attributes. On the other hand, the samples can be
partitioned into homogeneous groups. Each group may correspond
to some particular macroscopic phenotypes, such as clinical syn-
dromes or cancer types [8]. Such a sample-based method regards
the samples as the objects and the genes as the attributes.

While a gene expression matrix can be analyzed from orthogonal
angles, the gene-based and sample-based methods are facing very
different challenges. The number of genes and the number of sam-
ples are very different in a typical gene expression matrix. Usually,
we may have tens or hundreds of samples but thousands or tens
of thousands of genes. Thus, we may have to adopt very different
computational strategies in the two situations.

In this paper, we will focus on the sample-based analysis. In
particular, we are interested in mining phenotypes and informative
genes. Within a gene expression matrix, there are usually several
phenotypes of samples related to some diseases or drug effects,
such as diseased samples, normal samples or drug treated samples.
Figure 1 shows a gene expression matrix containing two pheno-
types of samples. Samples � � � are in one phenotype, while
samples � � � are in the other one. For the sake of simplicity,
the gene expression levels in the matrix are discretized into binary
values, i.e., either “on” or “off”.

Figure 1: A simplified example of a gene expression matrix.

Biologists are particularly interested in finding the informative
genes that manifest the phenotype structure of the samples. For
example, in Figure 1, ����� � ����� are informative genes, since
each gene shows all “on” signals for one phenotype of samples
and all “off” for the other phenotype. ����� � ����� provide



inconsistent signals for the samples in a phenotype, and thus cannot
be used to distinguish phenotypes. They are called non-informative
genes.

If phenotype information is known, the major task is to select the
informative genes that manifest the phenotypes of samples. This
can be achieved by supervised analysis methods such as the neigh-
borhood analysis [8] and the support vector machine [4].

Although the supervised methods are helpful, the initial identi-
fication of phenotypes over samples are usually slow, typically by
evolving through years of hypothesis-driven research [8]. There-
fore, it is natural to ask “Can we find both the phenotypes and the
informative genes automatically at the same time?” In other words,
we want to discover the phenotypes of the samples as well as to
identify a set of genes that manifests the phenotypes of the sam-
ples. For example, in Figure 1, if the seven samples’ phenotypes
are unknown, can we correctly distinguish samples � � � from
� � � as well as output ����� � ����� as informative genes?

Mining both the phenotypes and the informative genes at the
same time is challenging. First, the values in data matrices are all
real numbers such that there is usually no clear border between
informative genes and non-informative ones. Second, there are
many genes but only a small number of samples. There is no ex-
isting technique to correctly detect class structures from samples.
Last, most of the genes collected may not necessarily be of inter-
est. The experience shows that only less than ��� of all the genes
involved in a gene expression matrix are informative ones [8]. In
other words, the gene expression matrix is very noisy.

In this paper, we tackle the problem of mining phenotypes and
informative genes from gene expression data by developing novel
unsupervised learning methods. We claim the following contribu-
tions.

� We identify and formulate the problem of simultaneously
mining phenotypes and informative genes. The major differ-
ences between this novel problem and the previous studies
on clustering or subspace clustering are elaborated.

� A set of statistical measurements of quality of phenotypes
and informative genes are proposed. They coordinate and
compromise both the sample phenotype discovery and the
informative gene selection.

� A heuristic search method and a mutual reinforcing adjust-
ment approach are devised to find phenotypes and informa-
tive genes with high quality. Particularly, the mutual rein-
forcing adjustment method dynamically manipulates the re-
lationship between samples and genes while conducting an
iterative adjustment to detect the phenotypes and informative
genes.

� An extensive experimental evaluation over some real data
sets is presented. It shows that our methods are both effec-
tive and efficient and outperform the existing methods. The
mutual reinforcing method has the even better performance.

The remainder of this paper is organized as follows. Section 2
reviews the related work. The quality measurements are proposed
in Section 3, while the mining algorithms are developed in Section
4. Section 5 reports the experimental results and Section 6 gives
the conclusion.

2. RELATED WORK
Recently, some methods have been proposed to find macroscopic

phenotypes from samples [6, 14]. In these approaches, samples are
partitioned by conventional clustering methods, such as K-means,
self-organizing maps (SOM), hierarchical clustering (HC), or graph

based clustering. However, these traditional clustering techniques
cannot handle the heavy noise well in the gene expression data. Al-
though some approaches [16] filter out genes for partition samples,
the gene filtering processes are non-invertible. The deterministic
filtering will cause samples to be grouped based on the local deci-
sions.

Sub-space clustering have been studied extensively [1, 5, 17] to
find subsets of objects such that the objects appear as a cluster in a
sub-space formed by a subset of the attributes. Although the sub-
space clustering problem may appear similar to the phenotype and
informative gene mining problem at the first look, there are two
significant and inherent differences between these two. On the one
hand, in subspace clustering, the subsets of attributes for various
subspace clusters are different. However, in phenotypes and infor-
mative gene mining, we want to find a unique set of genes to man-
ifest a partition of all samples. On the other hand, two subspace
clusters can share some common objects and attributes. Some ob-
jects may not belong to any subspace cluster. Nevertheless, in phe-
notype and informative gene mining, a sample must be in a pheno-
type and the phenotypes are exclusive.

3. QUALITY MEASUREMENTS OF PHE-
NOTYPES AND INFORMATIVE GENES

The phenotypes of samples and informative genes should sat-
isfy two requirements simultaneously. On the one hand, the ex-
pression levels of each informative gene should be similar over the
samples within each phenotype. On the other hand, the expression
levels of each informative gene should display a clear dissimilar-
ity between each pair of phenotypes. To quantize how well the
phenotypes and informative genes meet the two requirements, we
introduce the intra-phenotype consistency and inter-phenotype di-
vergency measurements.

Let� � ���� � � � � ��� be a set of samples and� � ���� � � � � ���
be a set of genes. The corresponding gene expression matrix can
be represented as 	 � �
��� �� � � � �� � � � � �, where

��� is the expression level value of sample �� on gene ��. Given
a subset of samples �� � � and a subset of genes �� � �,
	����� � �
��� ��� � ��� �� � ��� is the corresponding sub-
matrix w.r.t. �� and ��.

Intra-phenotype consistency: The variance of each row mea-
sures whether a given gene has consistent expression level values
over all samples within the sub-matrix. A small variance value in-
dicates that the gene has consistent values on all the samples. Thus
we can measure whether every gene has good consistency on a set
of samples by the average of variance in the subset of genes. That
is, we define the intra-phenotype consistency as:
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Inter-phenotype divergency: The inter-phenotype divergency
quantizes how a subset of genes can distinguish two phenotypes of
samples. The inter-phenotype divergency of a set of genes �� on
two groups of samples (denoted as �� and ��) such that �� � �,
�� � �, and �� � �� �  is defined as
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The greater the inter-phenotype divergency, the better the genes dif-
ferentiate the phenotypes.

The quality of phenotypes and informative genes: Suppose a
set of samples � is partitioned into � exclusive groups, ��� � � � � �
.
Given a set of genes ��, the quality measure 
 quantizes how pure



the phenotypes are w.r.t. the genes and how well the genes differ-
entiate the phenotypes.
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The greater the quality value, the better the phenotypes and the
more informative the genes are.

Problem statement. Given a gene expression matrix 	 with 
samples and � genes, and the number of phenotypes �, the prob-
lem of mining phenotypes and informative genes is to find a �
partition of the samples as the phenotypes and a subset of genes as
informative genes such that the quality measure (
) is maximized.

4. ALGORITHMS
In this section, we will develop two methods. The first one is

a heuristic searching algorithm adopting the simulated annealing
technique [10]. Moreover, we will propose a novel mutual rein-
forcing adjustment algorithm to approximate the best solution.

Both algorithms maintain a set of genes as the candidates of in-
formative genes and a partition of samples as the candidates of phe-
notypes. The best quality will be approached by iteratively adjust-
ing the candidate sets.

Both algorithms maintain two basic elements, a state and the
corresponding adjustments. The state of the algorithm describes
the following items:

� A partition of samples ���� ��� � � � � �
�.
� A set of genes �� � �.
� The quality 
 of the state calculated based on the partition
���� ��� � � � � �
� on ��.

An adjustment of a state is one of the following.

� For a gene �� �� ��, insert �� into��;
� For a gene �� � ��, remove �� from ��;
� For a sample � in ��, move �� to ��� where �� �� ���.

To measure the effect of an adjustment to a state, we calculate
the quality gain of the adjustment as the change of the quality, i.e.,
�
 � 
� 

, where 
 and 
� are the quality of the states before
and after the adjustment, respectively.

Now, the problem becomes, given a starting state, we try to apply
a series of adjustments to reach a state such that the accumulated
quality gain is maximized. Both algorithms record the best state,
in which the highest quality so far is achieved.

4.1 A Heuristic Searching Algorithm
An immediate solution (shown in Figure 2) to the problem is

to start from a random state and iteratively conduct adjustments to
approach the optimal state.

The algorithm has two phases: initialization phase and iterative
adjusting phase. In the initialization phase, an initial state ��� is
generated randomly and the corresponding quality value, 
�, is
computed.

In the iterative adjusting phase, during each iteration, genes and
samples are examined one by one. The adjustment to a gene or sam-
ple will be conducted if the quality gain �
 is positive. Otherwise,

the adjustment will be conducted with a probability � � �
��

��� ��� ,
where � ��	 is a decreasing simulated annealing function [10] and �
is the iteration number.

The probability function � has two components. The first part,
�


, considers the quality gain in proportion. The more 
 reduces,

Algorithm 1 (Heuristic Searching)
Initialization phase:

adopt a random initialization and calculate the quality 
�

Iterative adjusting phase:
1) list a sequence of genes and samples randomly;

for each gene or sample along the sequence, do
1.1) if the entity is a gene,

compute �
 for the possible insert/remove;
else if the entity is a sample,

compute �
 for the largest quality gain move;
1.2) if �
 � �, then conduct the adjustment;

else if �
 � �, then conduct the adjustment
with probability � � ��� �

�� ��	 	;
2) goto 1), until no positive adjustment can be conducted;
3) output the best state;

Figure 2: The heuristic search algorithm.

the less probability the adjustment will be performed. The second
part, � ��	, is a decreasing simulated annealing function where � is
the iteration number. In our implementation, we set � ��	 � �, and
� ��	 � �

�
�
.

The heuristic algorithm is sensitive to the order of genes and
sample adjustments considered in each iteration. To give every
gene or sample a fair chance, all possible adjustments are sorted
randomly at the beginning of each iteration.

We set the termination criterion as whenever in an iteration, no
positive adjustment is conducted. Once the iteration stops, the par-
tition of samples and the candidate gene set in the best state will be
output.

4.2 The Mutual Reinforcing Adjustment Al-
gorithm

In the iteration phase of the heuristic searching algorithm, sam-
ples and genes are examined and adjusted with equal chances. How-
ever, since the number of samples is far less than the number of
genes, each sample should play a crucial role during the adjustment
process. As they are treated equally with all genes, the samples thus
have less chances to be adjusted. In addition, because the number
of samples is quite small, even one or two noise or outlier samples
may highly interfere the quality and the adjustment decisions. The
heuristic approach cannot detect or eliminate the influence of noise
or outliers in the samples effectively. Thus, we propose here a more
robust approach called mutual reinforcing adjustment algorithm.
The general idea is that we adopt a deterministic, noise-insensitive
method to adjust samples.

The algorithm is shown in Figure 3. Details of the algorithm will
be discussed in the following subsections.

4.2.1 Partitioning the matrix
The first step is to divide the complete set of samples and the

set of candidate informative genes into some smaller groups. At
the beginning of the first iteration, the set of candidate informative
genes contains all the genes.

The algorithm CAST (for cluster affinity search technique) [3]
is applied to group genes and samples and the Pearson’s Correla-
tion Coefficient is chosen to calculate the similarity matrix.1 CAST
is a method specially designed for grouping gene expression data
based on their pattern similarities. Thus the entities belonging to
the same group should have similar expression patterns while the

1The correlation coefficient between two vectors � �
���� ��� �����	 and � � ���� ��� �����	 is ���� �

��
��������	�����	��

�
��������	

�
��

�
��������	

�
�



Algorithm 2 (Mutual Reinforcing Adjustment)
start from �� � �, do the following iteration:
Iteration phase:

1) partitioning the matrix
1.1) group samples � into	 (	 � �) groups;
1.2) group genes in�� into �� groups.

2) identifying the reference partition
2.1) compute reference degree for each sample groups;
2.2) select � groups from	 groups of samples;
2.3) do partition adjustment.

3) adjusting the genes
3.1) compute 
 for reference partition on ��;
3.2) perform possible adjustment of each genes
3.3) update ��, go to step 1.

Until no positive adjustment can be conducted.
Refinement phase:

find the highest pattern quality state.
do state refinement.

Figure 3: The mutual reinforcing adjustment algorithm.

different groups should have different, well separated patterns. A
small amount of outliers will be filtered out without being assigned
to any groups. One advantage of CAST is that the number of groups
does not need to be pre-specified. Instead, a threshold has to be set
to approximate the size of each group. In biological applications,
the experiences show that genes associated with similar functions
always involve from several dozen to several hundred entities [8].
Thus, when grouping genes, the threshold should be set so that a
majority of groups will contain several dozen to several hundred
genes. For samples, the threshold can be chosen so that the number
of groups ranges within � � �� to maintain a good compromise
between the number of clusters and the separation among them.

4.2.2 Reference partition detection
Suppose that, after partitioning the matrix, we have 	 �	 �

�	 exclusive groups of samples and �� groups of genes in set�� of
candidate informative genes.

Among the	 sample groups, � groups of them will be selected
to “represent” the phenotypes of the samples. The set of represen-
tatives is called a reference partition. The reference partition is se-
lected among the sample groups which have small intra-phenotype
consistency value (i.e., being highly consistent) and large inter-
phenotype divergency among each other. The purpose of select-
ing such a reference partition is to approximate the phenotypes as
closely as possible and to eliminate noise interference caused by
outlier samples.

A reference degree is defined for each sample group�� by accu-
mulating its intra-phenotype consistency over the �� gene groups
generated from the last step. This reference degree measures the
likelihood of a given sample group to be included into the refer-
ence partition. That is,

������	 � ��� ��� �
�

����
�

�

������� ��	
� (3)

A high reference degree indicates that the group of the samples are
consistent on most of the genes. Such groups should have a high
probability to represent a phenotype of samples.

We first choose a sample group having the highest reference de-
gree, denoted by ��� . Then, we choose the second sample group
��� that has the lowest intra-phenotype consistency value and the
highest inter-phenotype divergency with respect to ��� among the
remaining groups. When it comes to the third group, the inter-

phenotype divergency with respect to both ��� and ��� will be
considered. Here we define a selection criterion for the �-th sam-
ple group ��� by combining its intra-phenotype consistency and
inter-phenotype divergency with respect to the sample groups al-
ready selected.

�������	 � ��� ���� �
�

����
�

����
��� ������� ��� � ���	

������� ���	
� (4)

We will calculate ��� values for the groups which have not been
selected. The group having the highest ��� value will be selected
as the �-th sample group. When there is a tie, we will choose the
group in which the number of samples is the largest. Totally ��
�	
sample groups, along with the fist group ��� , are selected to form
the reference partition.

The reference partition selected above is based on the phase par-
titioning the matrix. Some samples in other groups that may also be
good candidates to form the representative partition may be missed.
Thus, we need to conduct a “partition adjustment” step by adding
some other samples that can improve the quality of the reference
partition. For each sample � which is not yet included in the ref-
erence partition, its probability to be added into the reference par-
tition is determined as follows. We calculate the quality gains for
inserting � groups in the reference partition. The group with the
highest quality gain is called the matching group of �. If the quality
gain is positive, then �will be inserted into its matching group; oth-
erwise, � will be inserted into its matching group with a probability

� � �
� ��
��� ���

	.

4.2.3 Gene adjustment
In this step, the reference partition derived from the last step is

used to guide the gene adjustment. Notice that the quality in the
mutual reinforcing method is not computed based on the full parti-
tion of samples, but on the reference partition and the current can-
didate gene set ��. Thus the state and the best state maintained by
the algorithm are also based on the reference partition.

The gene adjustment process is similar to that in the heuristic
searching algorithm. All the genes will be examined one by one
in a random order. The possible adjustment is to “remove” genes
from �� or to “insert” genes into �� for genes not in the candidate
set. The adjustment of each gene will be conducted if the quality

gain is positive, or with a probability � � �
� ��
��� ���

	 if the quality
gain is negative.

After each iteration, the gene candidate set �� is changed. The
next iteration starts with the new gene candidate set �� and the
complete set of samples. In each iteration, we use the gene can-
didate set to improve the reference partition, and use the reference
partition to improve the gene candidate set. Therefore, it is a mutu-
ally reinforcing process.

4.2.4 Refinement phase
The iteration phase terminates when no positive adjustment is

conducted in the last iteration. The reference partition correspond-
ing to the best state may not cover all the samples. Therefore, a
refinement phase is conducted. We first add every sample not cov-
ered by the reference partition into its matching group. Thus, the
refined reference partition becomes a full partition. It will be output
as the phenotypes of the samples. Then, a gene adjustment phase is
conducted. We execute all adjustments with positive quality gain.
Then the genes in the candidate set of genes �� are output as infor-
mative genes.

It can be shown that time complexity of both the heuristic search-
ing and the mutual reinforcing adjustment algorithm is ��	� 	!	,



where ! is the number of iterations. Comparing to the random ad-
justments of samples in the heuristic searching approach, the mu-
tual reinforcing method has a more deterministic, more robust and
more noise-insensitive adjustment method for samples by improv-
ing the reference partition.

5. PERFORMANCE EVALUATION
In this section, we will report an extensive performance evalua-

tion on the effectiveness and efficiency of the proposed two meth-
ods using various real-world gene expression data sets. The ground-
truths of the partition, which includes the information such as how
many samples belong to each class and the class label for each sam-
ple, is used only to evaluate the experimental results.

Rand index [12], the measurement of “agreement” between the
ground-truths of macroscopic phenotypes of the samples and the
partition results, is adopted to evaluate the effectiveness of the al-
gorithm. The Rand index is between � and �. The higher the index
value, the better the algorithm performs.

Table 1 shows the data sets and the results obtained by apply-
ing our two algorithms and some unsupervised sample clustering
algorithms proposed previously. A recently developed effective
subspace clustering algorithm, Æ-cluster [17], is also included. As
shown, the two methods proposed in this paper consistently achieve
clearly better mining results than the previously proposed meth-
ods. In J-Express[13], CLUTO and SOTA, samples are partitioned
based on the complete set of genes. The mining results using these
methods suffer from the generally heavy noise in the gene expres-
sion data sets. Other approaches adopt some dimensionality reduc-
tion techniques, such as the principal component analysis (PCA).
However, the principal components in PCA do not necessarily cap-
ture the class structure of the data . Therefore the subspace clus-
tering methods may not find the phenotypes and informative genes
precisely.

Figure 4 shows the informative genes of the Leukemia-G1 data
set detected by the mutual reinforcing adjustment approach. ��
genes are output as the informative genes. In Figure 4, each column
represents a sample, while each row corresponds to an informative
gene. The description and probe for each gene are also listed. Dif-
ferent colors (grey degree in a black and white printout) in the ma-
trix indicates the different expression levels. Figure 4 shows that
the top �� genes distinguish ALL-AML phenotypes according to
“on-off” pattern while the rest �� genes follow “off-on” pattern.

We also apply two extensively accepted supervised methods, the
neighborhood analysis [8] and the statistical regression modeling
approach [15] to mine this data set. Both methods selected top ��
genes to distinguish ALL-AML classes. Among the two top ��-
gene sets, �� genes are overlapped.

The number in the column “match” in Figure 4 shows whether
the corresponding gene matches either of these two supervised meth-
ods. That is, a � here means that this gene is in the top �� genes
selected by both supervised methods, while a � means the gene
is selected by one of the above two methods. Interestingly, as
shown in Figure 4, �� out of the �� informative genes identified
by the mutual reinforcing adjustment method are either selected by
the neighborhood analysis or by the statistical regression modeling
approach. This strongly indicates that, even without supervision,
the mutual reinforcing method learns well from the real-world data
sets.

Table 2 reports the average number of iterations and the response
time (in second) of the above gene expression data sets. Each al-
gorithm is executed �� times with different parameters. The algo-

2Results are based on hierarchical clustering method.

rithms are implemented with MATLAB package and are executed
on SUN Ultra 80 workstation with 450 MHz CPU and 256 MB
main memory. The number of iterations are dominated by the simu-
late annealing function we used. We used a slow simulate annealing
function for effectiveness of the approaches. Since in reality, the
number of genes in the human genome is about ��� ��� � ��� ���,
efficiency is not a major concern.

Heuristic Searching Mutual Reinforcing
Data Size # of iterations runtime # of iterations runtime
����� �� 96 63 27 58
����� �� 102 68 27 59
����� �� 116 158 29 125
����� �� 117 155 29 120
����� �� 81 168 23 156
����� �� 94 57 26 52

Table 2: Number of iterations and response time (in second)
with respect to the matrix size.

6. CONCLUSIONS
In this paper, we identified the novel problem of mining phe-

notypes and informative genes simultaneously from gene expres-
sion data. A set of statistics-based metrics are proposed to coor-
dinate and compromise both the sample phenotype discovery and
the informative genes mining. We proposed two interesting min-
ing methods: the heuristic search and the mutual reinforcing ad-
justment approach. In particular, the mutual reinforcing adjust-
ment approach incorporates deterministic, robust techniques to dy-
namically manipulates the relationship between samples and genes
while conducting an iterative adjustment to detect the phenotypes
and informative genes. We demonstrated the performance of the
proposed approaches by extensive experiments on various real-world
gene expression data sets. The empirical evaluation shows that our
approaches are effective and scalable on mining large real-world
data sets. The mining results are consistently with good quality.
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