Mining Access Patterns Efficiently from Web
Logs *

Jian Pei, Jiawei Han, Behzad Mortazavi-asl, and Hua Zhu

School of Computing Science, Simon Fraser University, Canada
{peijian, han, mortazav, hzhua}@cs.sfu.ca

Abstract. With the explosive growth of data available on the World
Wide Web, discovery and analysis of useful information from the World
Wide Web becomes a practical necessity. Web access pattern, which is the
sequence of accesses pursued by users frequently, is a kind of interesting
and useful knowledge in practice.

In this paper, we study the problem of mining access patterns from Web
logs efficiently. A novel data structure, called Web access pattern
tree, or WAP-tree in short, is developed for efficient mining of access
patterns from pieces of logs. The Web access pattern tree stores highly
compressed, critical information for access pattern mining and facilitates
the development of novel algorithms for mining access patterns in large
set of log pieces. Our algorithm can find access patterns from Web logs
quite efficiently. The experimental and performance studies show that
our method is in general an order of magnitude faster than conventional
methods.

1 Introduction

With the explosive growth of data available on the World Wide Web, discovery
and analysis of useful information from the World Wide Web becomes a practical
necessity. Web muning is the application of data mining technologies to huge
Web data repositories. Basically, there are two domains that pertain to Web
mining: Web content mining and Web usage mining. The former is the process
of extracting knowledge from the content of Web sites, whereas the latter, also
known as Web log mining, is the process of extracting interesting patterns in
Web access logs.

Web servers register a Web log entry for every single access they get, in which
important pieces of information about accessing are recorded, including the URL
requested, the TP address from which the request originated, and a timestamp.
A fragment of log file 1s shown as follows.

pm21s15.intergate .bc.ca - - [06/0ct/1999:00:00:09 -0700] “GET / HTTP/1.1" 200 5258 “http://www.sfu.ca/academic_programs.htm"
“"Hozilla/4.0 (compatible; MSIE 4.01; Windows 95)"

pm21s15.intergate .bc.ca - - [06/0ct/1999:00:00:11 -0700] “GET /images/bullets/bsqs.gif HTTP/1.1" 200 489 “http://www.cs.sfu.ca/"
“"Hozilla/4.0 (compatible; MSIE 4.01; Windows 95)"

* The work was supported in part by the Natural Sciences and Engineering Research
Council of Canada (grant NSERC-A3723), the Networks of Centres of Excellence of
Canada (grant NCE/IRIS-3), and the Hewlett-Packard Lab.

There are many efforts towards mining various patterns from Web logs, e.g.
[4,11,15]. Web access patterns mined from Web logs are interesting and use-
ful knowledge in practice. Examples of applications of such knowledge include
improving designs of web sites, analyzing system performance as well as net-
work communications, understanding user reaction and motivation, and building
adaptive Web sites [5, 10,13, 14].

Essentially, a Web access pattern is a sequential pattern in a large set of
pieces of Web logs, which is pursued frequently by users. Some research efforts
try to employ techniques of sequential pattern mining [2], which is mostly based
on association rule mining [1], for discovering Web access patterns from Web
logs.

Sequential pattern mining, which discovers frequent patterns in a sequence
database, was first introduced by Agrawal and Srikant [2] as follows: given a
sequence database where each sequence is a list of transactions ordered by trans-
action time and each transaction consists of a set of items, find all sequential
patterns with a user-specified minimum support, where the support is the number
of data sequences that contain the pattern.

Since its introduction, there have been many studies on efficient mining tech-
niques and extensions of sequential pattern mining method to mining other time-
related frequent patterns [2,12,8,7,3,9,6].

Srikant and Agrawal [12] generalized their definition of sequential patterns in
[2] to include time constraints, sliding time window, and user-defined taxonomy
and developed a generalized sequential pattern mining algorithm, GSP, which
outperforms their AprioriAll algorithm [2]. GSP mines sequential patterns by
scanning the sequence database multiple times. In the first scan, it finds all
frequent 1-items and forms a set of 1-element frequent sequences. In the following
scans, it generates (step-wise longer) candidate sequences from the set of frequent
sequences and check their supports. GSP is efficient when the sequences are
not long as well as the transactions are not large. However, when the length
of sequences increase and/or when the transactions are large, the number of
candidate sequences generated may grow exponentially, and GSP will encounter
difficulties.

All of the above studies on time-related (sequential or periodic) frequent
pattern mining adopt an Apriori like paradigm, which promotes a generate-and-
test method: first generate a set of candidate patterns and then test whether
each candidate may have sufficient support in the database (i.e., passing the
minimum support threshold test). The Apriori heuristic is on how to generate a
reduced set of candidates at each iteration.

However, as these algorithms are level-wise, Apriori -like in nature, they en-
counter the same difficulty when the length of the pattern grows long, which is
exactly the case in Web access pattern mining. In Web log mining, the length of
Web log pieces can be pretty long, while the number of such pieces can be quite
huge in practice.

In this paper, we investigate the issues related to efficiently mining Web access
from large set of pieces of Web log. The main contributions are as follows. First,

a concise, highly compressed WAP-tree structure is designed and implemented
which handles the sequences elegantly. Second, an efficient mining algorithm,
WAP-mine , is developed for mining the complete (but nonredundant) Web access
patterns from large set of pieces of Web log. Third, a performance study has
been conducted which demonstrates that the WAP-mine algorithm is an order
of magnitude faster than its Apriori -based counterpart for mining Web access
patterns.

The remaining of the paper is organized as follows. The problem is defined in
Section 2, while the general idea of our novel method is presented in Section 3.
Section 4 and 5 focus on construction WAP-tree and mining the tree, respectively.
We show the experimental results and conclude the paper in Section 6.

2 Problem Statement

In this paper, we focus on mining Web access patterns. In general, a Web log
can be regarded as a sequence of pairs of user identifier and event. In this inves-
tigation, Web log files are divided into pieces per mining purpose. Preprocessing
can be applied to the original Web log files, so that pieces of Web logs can be
obtained. Each piece of Web log is a sequence of events from one user or session
in timestamp ascending order, i.e. event happened early goes first. We model
pieces of Web logs as sequences of events, and mine the sequential patterns over
certain support threshold.

Let E be a set of events. A Web log piece or (Web) access sequence
S = ejex---e, (6 € E) for (1 < i < n)is a sequence of events, while n is
called the length of the access sequence. An access sequence with length n is
also called an n-sequence. Please note that it is not necessary that e; # ¢; for
(¢ # j) in an access sequence S. Repetition is allowed. For example, aab and ab
are two different access sequences, in which a and b are two events.

Access sequence S' = efel, - -¢] is called a subsequence of access sequence
S =-ejey---e,,and S a super-sequence of S’, denoted as S’ C S, if and only if
there exist 1 <1y < iz <--- <4 < n,such that e =¢;; for (1 <j <I). Access
sequence S’ is a proper subsequence of sequence S, denoted as S’ C S, if and
only if S’ is a subsequence of S and S’ # S.

In access sequence S = eje€3 - - -€xep41 - - - €p, if subsequence Ssyf iz = €py1 - - -

is a super sequence of pattern P = efe) -- -}, and ex41 = €, the subsequence
of S, Sprefiz = €1€2 - - e, is called the prefix of S with respect to pattern P.

Given a set of access sequence WAS = {S51,53,...,5n}, called Web ac-
cess sequence database, in which S; (1 < ¢ < m) are access sequences. The
support of access sequence S in WAS is defined as supwas(S) = H‘q’lili’}l
supwas(S) is also denoted as sup(S) if WAS is clear from the context. A se-
quence S is said a &-pattern or simply (Web) access pattern of WAS, if
supwas(S) > €. Please note that the access sequences in a Web access sequence
database need not be of the same length. Although events can be repeated in an
access sequence or pattern, any pattern can get support at most once from one
access sequence.

Problem Statement. The problem of Web access pattern mining is: given
Web access sequence database W.AS and a support threshold &, mine the complete
set of &-patterns of WAS.

Ezample 1. Let {a,b,c,d, e, f} be a set of events, and 100, 200, 300, and 400 are
identifiers of users. A fragment of Web log records the information as follows.

(100, a)(100, bY(200, a)(300, 6)(200, 6)(400, a)(100, a){400, b)(300, a)(100,)

(200, ¢)(400, a){200, a)(300, b)(200, ¢)(400, ¢)(400, c)(300, a)(300, c)

A preprocessing which divides the log file into access sequences of individual
users is applied to the log file, while the resulting access sequence database,
denoted as WAS, is shown in the first two columns in Table 1.

There are totally 4 access sequences in the database. They are not with same
length. The first access sequence, abdac, is a 5-sequence, while ab is a subsequence
of it. In access sequence of user 200, both e and eaebc are prefixes with respect
to ac. fcis a 50%-pattern because it gets supports from access sequence of user
300 and 400. Please note that even fc appears twice in the access sequence of
user 400, afbacfc, but the sequence contributes only one to the count of fe.

|User ID|Web Access Sequence|Frequent subsequence|

100 abdac abac
200 eaebcac abcac
300 bab faec babac
400 afbacfc abacc
Table 1. A database of Web access sequences.

3 WAP-mine : Mining Access Patterns Efficiently from
Web Logs

Access patterns can be mined using sequential pattern mining techniques. Al-
most all previously proposed methods for sequential pattern mining are based
on a sequential pattern version of Apriori heuristic [1], stated as follows.

Property 1. (Sequential Pattern Apriori) Let SEQ be a sequence database,
if a sequence G is not a £-pattern of SEQ, any super-sequence of GG cannot be a

¢-pattern of SEQ.

For example, “f” is not a 75%-pattern of WAS in Example 1, thus any access
sequence containing “f”, cannot be a 75%-pattern.

The sequential pattern Apriori property may substantially reduce the size of
candidate sets. However, because of the combinatorial nature of the sequential

pattern mining, it may still generate a huge set of candidate patterns, especially
when the sequential pattern is long, which is exactly the case of Web access
pattern mining.

This motivates us to study alternative structures and methods for Web access
pattern mining. The key consideration is how to facilitate the tedious support
counting and candidate generating operations in the mining procedure.

Our novel approach for mining Web access patterns is called WAP-mine . It
is based on the following heuristic, which follows Property 1.

Property 2. (Suffix heuristic) If e is a frequent event in the set of prefixes of
sequences in WAS, w.r.t. pattern P, sequence eP is an access pattern of WAS.

For example, b is a frequent event within the set of prefixes w.r.t. ac in
Example 1, so we can claim that bac is an access pattern.
Basically, the general idea of our method can be summarized as follows.

— A nice data structure, WAP-tree , is devised to register access sequences and
corresponding counts compactly, so that the tedious support counting can
be avoided. It also maintains linkages for traversing prefixes with respect
to the same suffix pattern efficiently. A WAP-tree registers all and only all
information needed by the rest of mining. Once such a data structure is
built, all the remaining mining processing is based on the WAP-tree . The
original access sequence database is not needed any more. Because the size
of WAP-tree is usually much smaller than that of the original access sequence
database, as shown later, the mining becomes easier. As shown in Section 4,
the construction of WAP-tree is quite efficient by simply scanning the access
sequence database twice.

— An efficient recursive algorithm is proposed to enumerate access patterns
from WAP-tree . No candidate generation is required in the mining proce-
dure, and only the patterns with enough support will be under considera-
tion. The philosophy of this mining algorithm is conditional search. Instead
of searching patterns level-wise as Apriori , conditional search narrows the
search space by looking for patterns with the same suffix, and count frequent
events in the set of prefixes with respect to condition as suffix. Conditional
search is a partition-based divide-and-conquer method instead of bottom-up
generation of combinations. It avoids generating large candidate sets.

The essential structure of the WAP-mine algorithm 1s as follows. The algo-
rithm scans the access sequence database twice. In the first pass, it determines
the set of frequent events. An event is called a frequent event if and only if
it appears in at least (€ - [W.AS]) access sequences of WAS, in which |WAS|
and ¢ denotes the number of access sequences in W.AS and the support thresh-
old, respectively. In the next scan, WAP-mine builds a tree data structure, called
WAP-tree , using frequent events, to register all count information for further
mining. Then, WAP-mine recursively mine the WAP-tree using conditional search
to find all Web access patterns. An overview of the algorithm is given in Algo-
rithm 1.

Algorithm 1 (WAP-mine: mining access patterns in Web access se-
quence database)

Input: access sequence database W.AS and support threshold & (0 < ¢ < 1).
Output: the complete set of &-patterns in WAS.

Method:

1. Scan WAS once, find all frequent events.

2. Scan WAS again, construct a WAP-tree over the set of frequent events for
using Algorithm 2, presented in Section 4;

3. Recursively mine the WAP-tree using conditional search, which will be pre-
sented in Section 5.

There are two key techniques in our method, constructing WAP-tree and min-
ing access patterns from WAP-tree . They are explored in detail in the following
two sections. Section 4 focuses on the concept and the construction of WAP-tree |
while Section 5 investigates the mining of access patterns from WAP-tree .

4 Construction of WAP-tree

The following observations may help us design a highly condensed Web access
pattern tree.

1. Of all the 1-sequences, only the frequent ones will be useful in the construc-
tion of frequent k-sequences for any k > 1. Thus, if an event e is not in the
set of frequent 1-sequences, there is no need to include e in the construction
of a Web access pattern tree.

2. If two access sequences share a common prefix P, the prefix P can be shared
in the WAP-tree . Such sharing can bring some advantages. It saves some
space for storing access sequences and facilitates the support counting of
any subsequence of the prefix P.

Based on the above observations, a Web access pattern tree structure, or
WAP-tree in short, can be defined as follows.

1. Each node in a WAP-tree registers two pieces of information: label and count,
denoted as label : count. The root of the tree is a special virtual node with
an empty label and count 0. Every other node is labeled by an event in the
event set F, and is associated with a count which registers the number of
occurrences of the corresponding prefix ended with that event in the Web
access sequence database.

2. The WAP-tree is constructed as follows: for each access sequence in the
database, filter out any nonfrequent events, and then insert the resulting
frequent subsequence into WAP-tree . The insertion of frequent subsequence
is started from the root of WAP-tree . Considering the first event, denoted
as e, increment the count of child node with label e by 1 if there exists one;
otherwise create a child labeled by e and set the count to 1. Then, recur-
sively insert the rest of the frequent subsequence to the subtree rooted at

that child labeled e.

3. Auxiliary node linkage structures are constructed to assist node traversal in
a WAP-tree as follows. All the nodes in the tree with the same label are linked
by shared-label linkages into a queue, called event-node queue, The event-
node queue of with label e; is also called e;-queue. There 1s one header
table H for a WAP-tree , and the head of each event-node queue is registered
in H.

Ezample 2. Let’s consider the access sequence database in Example 1. Suppose
the support threshold is set to 75%, i.e. it is required to find all Web access
patterns supported by at least three access sequences in the database.

One scan of the database derives the set of frequent 1-events: {a, b, c}. For
convenience, the frequent subsequences are listed in the rightmost column of

Table 1.

Header Tabel

Header Tabel @
@ T
R
g Conditional WAP-treelac
‘

Conditional WAP-treejc
Fig. 1. The WAP-tree and conditional WAP-tree for frequent subsequences in Table 1.

The WAP-tree is shown in Figure 1, which is constructed as follows. First,
insert the sequence abac into the initial tree with only one virtual root. It creates
a new node (a : 1) (i.e., labeled as a, with count set to 1) as the child of the
root, and then derives the a-branch “(a: 1) = (b:1) = (a:1) = (e:1)”,
in which arrows point from parent nodes to children ones. Second, insert the
second sequence abcac. It starts at the root. Since the root has a child labeled
a, a’s count is increased by 1, i.e., (@ : 2) now. Similarly, we have (b : 2). The
next event, ¢, does not match the existing node a, and a new child node ¢ : 1 is
created and inserted. The remaining sequence insertion process can be derived
accordingly.

The algorithm for constructing a WAP-tree for Web access sequences is given
in Algorithm 2.

Algorithm 2 (WAP-tree Construction for Web access sequences)
Input: A Web access sequence database W.AS and the set of frequent events
FE (which is obtained by scanning W.AS once).

Output: an WAP-tree 7.

Method:

1. Create a root node for 7T
2. For each access sequence S in the access sequence database WAS do

(a) Extract frequent subsequence S’ from S by removing all events appearing
in S but not in FE. Let S" = s159 - sp, where s; (1 <1 < n) are events
in S’. Let current_node point to the root of 7.

(b) For ¢ = 1 to n do, if current_node has a child labeled s;, increase the
count of s; by 1 and make current_node point to s;, else create a new
child node (s; : 1), make current_node point to the new node, and insert
it into the s;-queue.

3. Return(7);

Analysis: The WAP-tree registers all access sequence counts. As will be shown
in later sections, the mining process for all Web access patterns needs to work
on the WAP-tree only, instead of on the original database any more. Therefore,
WAP-mine needs to scan the access sequence database only twice. It is easy to
show that the height of the WAP-tree is one plus the maximum length of the
frequent subsequences in the database. The width of the WAP-tree , i.e. the
number of leaves of the tree, is bounded by the number of access sequences in
the database. Therefore, WAP-tree may not generate explosive number of nodes.
Access sequences with same prefix will share some upper part of path from root.
Statistically, considering the factor of prefix sharing, the size of WAP-tree is much
smaller than the size of access sequence database.

From Algorithm 2, the construction of WAP-tree , one can observe an impor-
tant property of WAP-tree stated as follows.

Lemma 1. For any access sequence in an access sequence database WAS, there
erists a unique path in the WAP-tree starting from the root such that all labels
of nodes in the path in order is exactly the same as the events in the sequence.

This lemma ensures that the number of distinct leaf nodes as well as paths in
an WAP-tree cannot be more than the number of distinct frequent subsequences
in the access sequence database, and the height of the WAP-tree is bounded by
one (for the root) plus the maximal number of instances of frequent 1-events in
an access sequence.

It is easy to show that a WAP-tree can be partitioned and structured in the
form similar to B+-tree, and can be implemented even in pure SQL. Therefore,
WAP-tree as well as mining using WAP-tree are highly scalable.

5 Mining Web Access Patterns from WAP-tree

The WAP-tree structure constructed by Algorithm 2 provides some interesting
properties which facilitate mining Web access patterns.

Property 3. (Node-link property) For any frequent event e;, all the frequent
subsequences contain e; can be visited by following the e;-queue, starting from
the record for e; in the header table of WAP-tree .

The property facilitates the access of all the pattern information related to
frequent event e; by following the all branches in WAP-tree linked by e;-queue
only once. For any node labeled e; in an WAP-tree ;| all nodes in the path from
root of the tree to this node (excluded) form a prefix sequence of ¢;, The count
of this node labeled e; is called the count of the prefix sequence.

Please note that a path from root may have more than one node labeled
e;, thus a prefix sequence of e; may contain another prefix sequence of e;. For
example, sequence aba is a prefix sequence of “b” in abab, it contains another
prefix sequence of “b” | a. when counting ab in sequence abab, we must make sure
no double counting, i.e. abab contributes only 1 to the count of ab. It is achieved
by the concept of unsubsumed count as follows.

Let G and H be two prefix sequences of e;, and G is also formed by the sub-
path from root of that H is formed by, H is called a super-prefix sequence
of G, and G is a sub-prefix sequence of H. For instance, aba is a super-prefix
sequence of a.

For a prefix sequence of e; without any super-prefix sequences, we define the
unsubsumed count of that sequence as the count of it. For a prefix sequence
of e; with some super-prefix sequences, the unsubsumed count of it is the count
of that sequence minus unsubsumed counts of all its super-prefix sequences. For
example, let S=(a:6) — (b:5) = (a:2) — (b:2) be one path from root,
the unsubsumed count of the first a, a prefix sequence of b, in the path should
be 3 instead of 5, since two of the totally five counts in the first b node devotes
to the super-prefix sequence aba of a.

Property J. (Prefix sequence unsubsumed count property) The count of a
sequence G ended with e; s the sum of unsubsumed counts of all prefix sequences
of e; which is a super-sequence of G.

Based on the above two properties, we can apply conditional search to
mine all Web access patterns using WAP-tree . What “conditional search” means,
instead of searching all Web access patterns at a time, it turns to search Web
access patterns with same suffix. Suffix is used as the condition to narrow the
search space. As the suffix becomes longer, the remaining search space becomes
smaller potentially.

The conditional search paradigm has some advantages against Apriori -like
ones. The node-link property of WAP-tree ensures that, for any frequent event
e;, all sequences with suffix e; can be visited efficiently using the e;-queue of the
tree. On the other hand, the prefiz sequence unsubsumed count property makes
sure that to count all frequent events in the set of sequences with same suffix,
only caring the unsubsumed count is sufficient. That simplifies the counting op-
erations. These two properties of WAP-tree make the conditional search efficient.

The basic structure of mining all Web access patterns in WAP-tree is as fol-
lows. If the WAP-tree has only one branch, all (ordered) combinations events
in the branch are all the Web access patterns in the tree. So what needs to
be done is just to return the complete set of such combinations. Otherwise, for
each frequent event e; in the WAP-tree , by following the e;-queue started from

header table, an e;-conditional access sequence base is constructed, denoted
as PS | e;, which contains all and only all prefix sequences of ¢;. Each prefix
sequence in PS | e; carries its count from the WAP-tree . For each prefix se-
quence of e; with count ¢, when it is inserted into PS | ¢;, all of its sub-prefix
sequences of e; are inserted into PS | e; with count —c. It is easy to show that
by accumulating counts of prefix sequences, a prefix sequence in PS | ¢; holds
its unsubsumed count. Then, the complete set of Web access patterns which are
prefix sequence of e; can be mined by concatenating e; to all Web access patterns
returned from mining the conditional WAP-tree , and e; itself.
The algorithm is given as follows.

Algorithm 3 (Mining all Web access patterns in a WAP-tree)
Input: a WAP-tree 7 and support threshold &.

Output: the complete set of {-patterns.

Method:

1. if the WAP-tree 7 has only one branch, return all the unique combinations
of nodes in that branch.

2. initialize Web access pattern set WAP = (). Every event in WAP-tree T itself
is a Web access pattern, insert them into WAP.

3. for each event ¢; in WAP-tree T,

(a) construct a conditional sequence base of ¢;, i.e. PS | e;, by following the
e;-queue, count conditional frequent events at the same time.

(b) if the the set of conditional frequent events is not empty, build a condi-
tional WAP-tree for e; over PS | ¢; using algorithm 2. Recursively mine
the conditional WAP-tree

(c) for each Web access pattern returned from mining the conditional WAP-tree |
concatenate e; to it and insert it into W.AP

4. return WAP.

Ezample 3. Let us mine the Web access patterns in the WAP-tree in Figure 1.
Suppose the support threshold is set to 75%. We start the conditional search
from frequent event ¢. The conditional sequence base of ¢ is listed as follows.

aba :2,ab:1,abca:1,ab: —1,baba : 1,abac: 1,aba: —1

To be qualified as a conditional frequent event, one event must have count 3.
Therefore, the conditional frequent events are a(4) and b(4). Then, a conditional
WAP-tree , WAP-tree | ¢, is built, as also shown in Figure 1.

Recursively, the conditional sequence base of ca is built. It isab : 3,b:1,ab:
1,6 : —1. The WAP-tree | a is built, also shown in Figure 1. There is only one
branch in the conditional tree, so all combinations are generated. Thus, the Web
access patterns with suffix ac are aac, bac, abac, ac.

Then, we can construct the conditional sequence base for b in WAP-tree | ¢,
and mine the conditional WAP-tree . The frequent patterns abe, be can be found.

At this point, the conditional search of ¢ is finished. We can use other frequent
events in turn, to find all the other Web access patterns.

Following the properties presented ahead and considering the enumerating
of access patterns in Algorithm 3, the correctness of WAP-mine can be shown.

Theorem 1. WAP-mine returns the complete set of access patterns without re-
dundancy.

As can be seen in the example, and shown in our experiments, mining Web
access patterns using WAP-tree has significant advantages. First, the WAP-tree is
an effective data structure. It registers all count information for pattern mining,
and frees the mining process from counting candidates by pattern matching.
Secondly, the conditional search strategies narrow the search space efficiently,
and make best uses of WAP-tree structure. It avoids the overwhelming problems
of generating explosive candidates in Apriori -like algorithms.

6 Performance Evaluation and Conclusions

Experiments are pursued to compare the efficiency of WAP-mine and GSP, the
algorithm proposed in [12]. The dataset for experiment is generated based on
the principle introduced in [2]. All experiments are conducted on a 450-MHz
Pentium PC machine with 64 megabytes main memory, running Microsoft Win-
dows/NT. All the programs are written in Microsoft/Visual C++ 6.0.

Run time (sec.) Run time (sec.)
WAP-mine 1 —— wAPmine
fffff GsP - GsP
300 — 200 |-
200 — 200 |-

L L L L L
0 200 400 600 800 1000

Number of access sequencesin Web access sequence database (k)

Support threshold (%)

Fig. 2. Experimental results.

The experimental results are shown in Figure 2. We compare the scalabilities
of our WAP-mine and GSP, with threshold as well as the number of access se-
quences in the database. The experimental result shows that WAP-mine outperforms
GSP in quite significant margin, and WAP-mine has better scalability than GSP.
Both WAP-mine and GSP show linear scalability with the number of access se-
quences in the database. However, WAP-mine outperforms GSP.

In conclusion, WAP-tree is an effective structure facilitating Web access pat-
tern mining, and WAP-mine outperforms GSP based solution in a wide margin.

The success of WAP-tree and WAP-mine can be credited to the compact structure
of WAP-tree and the novel conditional search strategies.

We believe that, with certain extensions, the methodology of WAP-tree and
WAP-mine can be applied to attack many data mining tasks efficiently such as
sequential pattern mining and episode mining.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
1994 Int. Conf. Very Large Data Bases, pages 487-499, Santiago, Chile, September
1994.

2. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 1995 Int. Conf.
Data Engineering, pages 3-14, Taipei, Taiwan, March 1995.

3. C. Bettini, X. Sean Wang, and S. Jajodia. Mining temporal relationships with
multiple granularities in time sequences. Data Engineering Bulletin, 21:32-38, 1998.

4. R. Cooley, B. Mobasher, and J. Srivastava. Data preparation for mining World
Wide Web browsing patterns. In Journal of Knowledge & Information Systems,
Vol.1, No.1, 1999.

5. J. Graham-Cumming. Hits and misses: A year watching the Web. In Proc. 6th Int’l
World Wide Web Conf., Santa Clara, California, April 1997.

6. J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time
series database. In Proc. 1999 Int. Conf. Data Engineering (ICDE’99), pages 106—
115, Sydney, Australia, April 1999.

7. H. Lu, J. Han, and L. Feng. Stock movement and n-dimensional inter-transaction
association rules. In Proc. 1998 SIGMOD Workshop on Research Issues on Data
Mining and Knowledge Discovery (DMKD’98), pages 12:1-12:7, Seattle, Washing-
ton, June 1998.

8. H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1:259-289, 1997.

9. B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In Proc.
1998 Int. Conf. Data Engineering (ICDE’98), pages 412-421, Orlando, FL, Feb.
1998.

10. M. Perkowitz and O. Etzioni. Adaptive sites: Automatically learning from user
access patterns. In Proc. 6th Int’l World Wide Web Conf., Santa Clara, California,
April 1997.

11. M. Spiliopoulou and L. Faulstich. WUM: A tool for Web utilization analysis.
In Proc. 6th Int’l Conf. on Extending Database Technology (EDBT’98), Valencia,
Spain, March 1998.

12. R. Srikant and R. Agrawal. Mining quantitative association rules in large relational
tables. In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data, pages 1-12,
Montreal, Canada, June 1996.

13. T. Sullivan. Reading reader reaction: A proposal for inferential analysis of Web
server log files. In Proc. 8rd Conf. Human Factors & The Web, Denver, Colorado,
June 1997.

14. L. Tauscher and S. Greeberg. How people revisit Web pages: Empirical findings and
implications for the design of history systems. In Int’l Journal of Human Computer
Studies, Special Issue on World Wide Web Usability, 47:97-138, 1997.

15. O. Zaiane, M. Xin, and J. Han. Discovering Web access patterns and trends by
applying OLAP and data mining technology on Web logs. In Proc. Advances in
Digital Libraries Conf. (ADL’98), Melbourne, Australia, pages 144-158, April 1998.

