
Suppressing Model Overfitting in Mining Concept-Drifting
Data Streams

Haixun Wang†, Jian Yin†, Jian Pei‡, Philip S. Yu†, and Jeffrey Xu Yu††
†IBM T. J. Watson Research, {haixun, jianyin, psyu}@us.ibm.com

‡Simon Fraser University, Canada, jpei@cs.sfu.ca
††The Chinese University of Hong Kong, yu@se.cuhk.edu.hk

ABSTRACT
Mining data streams of changing class distributions is im-
portant for real-time business decision support. The stream
classifier must evolve to reflect the current class distribution.
This poses a serious challenge. On the one hand, relying on
historical data may increase the chances of learning obsolete
models. On the other hand, learning only from the latest
data may lead to biased classifiers, as the latest data is often
an unrepresentative sample of the current class distribution.
The problem is particularly acute in classifying rare events,
when, for example, instances of the rare class do not even
show up in the most recent training data. In this paper, we
use a stochastic model to describe the concept shifting pat-
terns and formulate this problem as an optimization one:
from the historical and the current training data that we
have observed, find the most-likely current distribution, and
learn a classifier based on the most-likely distribution. We
derive an analytic solution and approximate this solution
with an efficient algorithm, which calibrates the influence of
historical data carefully to create an accurate classifier. We
evaluate our algorithm with both synthetic and real-world
datasets. Our results show that our algorithm produces ac-
curate and efficient classification.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; I.2.6 [Artificial Intelligence]: Learning—
concept learning ; I.5.2 [Pattern Recognition]: Design Method-
ology—classifier design and evaluation

General Terms
Algorithms

Keywords
classifier, classifier ensemble, data streams, concept drift

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

Mining data streams for actionable insights in real time
has become an important and challenging task for a wide
range of applications [7, 14, 16, 3, 12]. Compared to tra-
ditional data mining, mining data streams poses new chal-
lenges as data are streaming through instead of being stat-
ically available [3, 7, 14, 17]. As the underlying data gen-
erating mechanism is evolving over time, so are the data
patterns that data mining systems intend to capture. This
is known as concept drifting in the stream mining litera-
ture. To cope with concept drifts, stream mining systems
must update their models continuously to track the changes.
Moreover, in order to make time-critical decisions for stream
ing data of huge volume and high speed, the stream mining
systems must be efficient enough in updating the models.

There are some näıve approaches for handling streams
with concept drifts. One is to incrementally maintain a
classifier that tracks patterns in the recent training data,
which is usually the data in the most recent sliding window.
The other is to use the most recent data to evaluate classi-
fiers learned from historical data and create an ensemble of
“good” classifiers. As we will reveal in detail in this paper,
both of the two approaches are subject to the same problem,
namely, model overfitting, which has been known to affect
the accuracy of a classifier.

Overfitting refers to the problem that models are too spe-
cific, or too sensitive to the particulars of the training dataset
used to build the model. We argue that the following known
issues that can lead to model overfitting have become more
prevalent in the data streaming environment.

• Insufficient training data. In a streaming environ-
ment, it is essential to avoid having conflicting con-
cepts in a training dataset. For this purpose, stream
classifiers, such as the two approaches discussed above,
enforce a constraint by learning models from data in
a small window, for small windows are less likely to
have conflicting concepts. However, a small window
usually contains only a small number of training in-
stances. Thus, the constraint makes the well-known
cause of overfitting more prevalent.

• Biased training data. Stream data has the nature of
being bursty. A large number of instances may arrive
within a very short time, which seems to give us suf-
ficient training data free of conflicting concepts. How-
ever, in many real-time applications, stream data that
arrive within a short time interval tends to be con-
centrated in parts of the feature space. For example,
a large amount of packets arrive in a bursty manner
may all have the same source IP. Models learned from

736

Research Track Poster

or validated by such data will not generalize well for
other data.

In mining static datasets, the problem of overfitting usu-
ally can be addressed by two approaches. First, we can
enlarge the training dataset to reduce the risk of overfitting
caused by insufficient training data. Second, we can use
an evaluation data set to detect overfitting caused by bi-
ased training data – if a classifier’s prediction accuracy relies
on particular characteristics in the training data (e.g. the
source IP address of the incoming packets), then the classi-
fier’s performance will be poor on an evaluation dataset as
long as the evaluation dataset does not share these idiosyn-
crasies. Unfortunately, in the streaming environment, these
methods are not applicable. When there are concept drifts,
the enlarged part of the training dataset or the evaluation
dataset may come from a different class distribution, which
undermines our purpose of reducing overfitting.

In this paper, we propose a general framework that ex-
ploits concept drifting patterns to solve the model overfitting
problem. It is generally impossible to capture concept drifts
using a deterministic model because they happen unexpect-
edly. Using a stochastic model, we relate the current class
distribution p with observations of the recent training data
Dn, Dn−1, · · · . Our problem of finding the most-likely cur-
rent class distribution p is essientially the problem of finding
the class distribution p that maximizes the probability of ob-
serving Dn, Dn−1, · · · . Using standard optimization theory,
we derive a solution for the most likely current class distribu-
tion. We then approximate this solution with an algorithm
that combines the results of a set of classifiers trained over
windows of historical training data. Our algorithm is very
efficient – as concepts evolve over time, we only need to ad-
just the weights assigned to each of the historical classifiers.

2. OUR APPROACH
Given an ensemble of historical classifiers, we need to de-

cide the weights of the classifiers in a meaningful way so that
the ensemble can model the current class distribution. For
simplicity, in our analysis, we assume that there are only
two classes, positive and negative. Note that it is straight-
forward to generalize our analysis to multi-class cases.

2.1 Overview
Historical data should be leveraged to improve the esti-

mation of the current class distribution. However, giving
historical data the same weight as the current data hurts
classification accuracy when there is a concept drift between
the time the historical data is delivered and the current time.
The task of this section is to derive a model that balances the
influences of historical data so that we can derive a model
that reflects the most likely current class distribution.

The timestamp of a historical dataset is an important
piece of information to determine its influence to the cur-
rent class distribution. The possibility of class distribution
change increases monotonically as the length of time be-
tween the current time and the time when historical data
is collected increases. However, it is generally impossible
to model concept drift in a deterministic manner as con-
cept drifts can happen at any point of the time between the
current time and the time of the historical data. We use
stochastic models to account for the uncertainty of the oc-
currences of concept drifts. Hidden Markov models (HMMs)
are particularly promising because I) HMMs have been used

in many fields to model uncertainty [15] and have demon-
strated success in practice; II) HMMs allow us to decouple
the observed outcome of training samples from the posterior
class distribution. In a hidden Markov model, the states rep-
resent the posterior class distribution rather than observed
training sample distributions. Training sample distributions
follow the class distribution of the hidden state; III) HMMs
allow us to make minimum assumptions as the stochastic
process is embedded in the structure of the hidden Markov
chain.

Another important piece of information is the density of
historical data in different regions of the feature space. A
classifier is less likely to be overfitted in regions where there
are a large number of training records. It means predictions
for samples in regions of high training data density should
have a high weight. It follows that we should divide the fea-
ture space into regions and model each region with a Markov
chain. In other words, a classifier will be weighted by both
the time of its training data, and by their regions in the
feature space.

Given the two pieces of information, our task is to find
the most-likely current class distribution. It is tantamount
to finding the current class distribution that maximizes the
probability that we observe the data in the history. In this
paper, we focus on the first issue, that is, what is the optimal
way of weighting classifiers by time, and assume the feature
space has already been partitioned. We leave the discussion
on optimal feature space partition to a future paper.

The notations we use are summarized by Table 1.

2.2 Time and Space
First, we partition a stream into a sequence of windows,

W1, W2, · · · , Wn, of fixed time interval t, with Wn being
the most recent window. Note that previous approaches
partitioned the stream into windows of fixed number of in-
stances [17]. We argue that the occurrence of concept drifts
is more likely to be a function of time instead of the number
of arriving instances. A bursty arrival of a large number of
instances does not mean the underlying class distribution
is changing at a fast rate. Thus, time windows are more
natural in modeling concept drifts.

Second, we assume the feature space V has been parti-
tioned into a set of non-overlapping regions, S1, S2, · · · , Sm.
The regions are aligned across all time windows. The trust-
worthiness of a classifier learned from data in a particular
window may be different in different regions of the feature
space. In the stream environment, a training dataset may
have certain idiosyncrasies. For example, a burst of pack-
ets that arrive within a short time interval may all have the
same source IP. The classifier learned from such a training
data may have low authority in classifying records in other
regions of the feature space. By giving different weights
to classifiers in different regions, we can avoid overfitting
caused by biased sampling.

In practice, there are many different ways to partition the
feature space into multiple regions. We leave the discus-
sion of optimal feature space partitioning to a future paper.
To simplify our analysis, the partition method ensures that
for records of the same region, a classifier always make the
same prediction. For instance, in a decision tree, each leaf
node in fact represents a region in the feature space. The
class prediction for a test case that falls into a leaf node is
n1/(n1+n2), where n1 and n2 are the number of positive and
negative cases that belong to this leaf node in the training

737

Research Track Poster

t size of time window
Wi time window i
Wn current time window
V feature vector space
Sj a region in the feature vector space, V =

⋃
Sj

Ni total number of instances observed in time window Wi (of a given region)
fi observed class distribution in time window Wi (of a given region)
qi posterior class distribution in window Wi (of a given region)
qn posterior class distribution in the current window Wn (of a given region)
λ the rate of concept drifts
Ci the event that the latest concept drift occurs between time window Wi−1 and Wi

Yi(x) the probability of the observation in time window Wi given that the class distribution is x
Li the probability of the observation across all time windows given Ci

Table 1: Notation

data. This means all cases that fall into the same leaf node
will share the same prediction. We also align regions across
all time windows. This is done by subdividing a region until
it is contained in a certain leaf node of all classifiers.

For two-class data, the class distribution in any region can
be sufficiently captured by a value in [0, 1], which represents
the probability that a test case in that region is positive. We
use fi to denote the positive class distribution in a region
according to the classifier learned from data in Wi. In other
words, fi is the prediction given by the classifier to test cases
that fall in the region. Given that there are Ni training
cases in a region, we know there are Nifi positive samples
and Ni − Nifi negative samples in the region.

2.3 Finding the most likely distribution
We leverage concept drift patterns to make a better use

of historical data. To capture the non-deterministic nature
of concept drifts in a region, we model the concept drift
process as a continuous time Markov chain. Each state in
the Markov chain represents a posterior class distribution
at a particular point of time. The instances we observe at
the time is a sample from the distribution. Concept drifts
are modeled by change of states. A state can have mul-
tiple ingress edges. Assume for a given state there are m
such edges representing transitions of rates λ1, · · · , λm re-
spectively. We use λ to denote the aggregated ingress tran-
sition rate, λ =

∑m
i=1 λi. An example is shown in Figure 1,

where state A has three ingress edges with aggregated rate
λ = λ1 + λ2 + λ3.

λ1

λ2

λ3

A

B

C

D

Figure 1: Markov Model

In the data stream environment, learning the structure
of the Hidden Markov Model is tantamount to decoding the
underlying data generation mechanism. This is itself a time-
consuming task (to say the least), which makes it unrealistic
for high volume, fast speed data streams. In our analysis,
we assume the aggregate ingress rate of each state is the

same. This actually means that the possibility of having
concept drifts is distributed uniformly across the time axis.
In other words, we assume that concept drifts are identically
and independently distributed across the continuous time.
Standard probability theory tells us that the only distribu-
tion satisfying this property is a Poisson process.

i n

time

i+1 n-1

time of
most recent
concept drift

i-1

a region in a
time window

Figure 2: Concept drifts within a region across time
windows

Figure 2 shows a region that is undergoing concept drifts
across time. We model the most recent concept drift that
has occurred. Let n be the timestamp of the current window.
Let Ci represent the event that the most recent concept drift
occurs between time i and time i + 1. Given the aggregated
rate of transition into the current state in the Markov model
is λ, the probability that no concept drift occurs during
an x time window internal is 1 − e−λxt. Thus, the most
recent state transition occurs between time window i and
time window i + 1 is

P (Ci) = e−λ(n−i)t − e−λ(n−i+1)t (1)

Furthermore, if the posterior class distribution in the re-
gion at time i is x, the probability that we observe Nifi

positive instances out of the Ni total instances in the region
is:

Yi(x) =

(
Ni

Nifi

)
xNifi(1 − x)(Ni−Nifi) (2)

Let qi be the event that a random instance drawn from
the region at time i is positive. Then, P (qi), the probabil-
ity that a random instance is positive, is the positive class
distribution at time i. If Ci is true, that is, no concept drift
occurs after time i + 1, we have P (qi+1|Ci) = P (qi+2|Ci) =
· · · = P (qn|Ci). Finally, given Ci, the probability that we
observe the training samples across all the windows from

738

Research Track Poster

W−∞ to Wn is

Li =

n∏
j=−∞

Yj(P (qj |Ci))

=
i∏

j=−∞
Yj(P (qj |Ci)) ×

n∏
j=i+1

Yj(P (qn|Ci)) (3)

We assume that the states before the transition Ci are
independent of the current state. This obviates the need
for considering the structure of the whole Markov chain and
allows us to focus our analysis on the current state instead.
With this simplification, the first term

∏i
j=−∞ Yj(P (qj |Cj))

in Eq 3 is a constant with respect to P (qn|Ci).
Based on the standard optimization theory, Li is maxi-

mized when dLi
dP (qn|Ci)

= 0 or at the boundary of P (qn|Ci),

that is, when P (qn|Ci) equals 0 or 1. It is obvious that
Li = 0 when P (qn|Ci) equals 0 or 1 unless the training sam-
ples are either all positive or all negative. For all other cases,
Li is maximized when dLi

dP (qn|Ci)
= 0. We have

dLi

dP (qn|Ci)
= Li

n∑
j=i

(
Njfj

P (qn|Ci)
− Nj − Njfj

1 − P (qn|Ci)
) = 0

As Li �= 0, dLi
dP (qn|Ci)

= 0 can occur only when

n∑
j=i+1

(
Njfj

P (qn|Ci)
− Nj − Njfj

1 − P (qn|Ci)
) = 0

Solve the equation for P (qn|Ci), we conclude that when

P (qn|Ci) =

∑n
j=i+1 Njfj∑n

j=i+1 Nj
(4)

Li in Eq 3 is maximized. In other words, given the observa-
tions in each window Wi and the assumption that the most
recent concept drift occurs between time i and i + 1, the
most likely current class distribution is computed by Eq 4.

Since P (
⋃

i Ci) = 1 and Ci

⋂
Ci′ = ∅ when i �= i′, we have

P (qn) =
∑

i

P (qn|Ci)P (Ci)

Substituting P (Ci) with Eq 1 , we get

P (qn) =
∑

i

(

∑n
j=i Njfj∑n

j=i Nj
(e−λ(n−i)t − e−λ(n−i+1)t))(5)

This shows that for any region, historical classifiers should
be combined in the following manner. For class c, a classifier
is weighted by the number of cases of class c in that region.
In addition, its weight has an exponential time decay of
parameter λ.

2.4 Algorithm
Our algorithm keeps k classifiers Cn, · · · , Cn−k+1 trained

from data in recent time windows. The user also provides
parameter λ, the exponential decay rate. A larger λ dis-
counts historical data more heavily and is used for streams
of frequently changing class distributions.

We assume that the feature space has been partitioned
into a set of non-overlapping regions. We leave the discus-
sion of the optimal way of feature space partitioning to a fu-
ture paper. Given a test case x, we consult the k classifiers.

Input: x: a test case
k: the total number of classifiers
λ: user defined exponential decay rate

Output: p: a probabilistic prediction of x

for each classifier Ci ∈ {Cn, Cn−1, · · · , Cn−k+1} do
invoke Ci(x) to get the region Si that contains x;

for each region Si do
let ni0 be the positive cases in region Si;
let ni1 be the negative cases in region Si;
pi = ni0/(ni0 + ni1);

wi = ni0/(ni0 + ni1)(e
−λ(n−i)t − e−λ(n−i+1)t);

p =
∑

wipi/
∑

wi;
return p;

Algorithm 1: A region-based ensemble stream classifier

In addition to a probabilistic prediction for x, each classi-
fier Ci returns the number of negative and positive training
cases in the region where x falls into. Finally, we derive the
probabilistic prediction and the weight based on the num-
bers.

Note that it is not necessary to consult every classifier.
An improvement is to stop consulting classifiers back in the
history once we are sure that they are unlikely to change final
prediction (positive or negative). Since historical classifiers
are heavily discounted, it can improve runtime performance.
We omit detailed discussion here for lack of space.

3. EXPERIMENTS
We compare the performance of our approach, including

time efficiency and classification accuracy, with previous ap-
proaches. The tests are conducted on a Linux machine with
a 1.7 GHz CPU and 1 Gb main memory.

3.1 Data Sets
We create synthetic data whose concept drifting follows

Poisson distribution. The class distribution is modeled by
a hyperplane, which is denoted by the following equation in
d-dimensional space.

d∑
i=1

aixi = a0 (6)

We label examples satisfying
∑d

i=1 aixi ≥ a0 as positive,

and examples satisfying
∑d

i=1 aixi < a0 as negative. Hy-
perplanes have been used to simulate time-changing con-
cepts [14, 17]. However, previous approaches assume that
the underlying concepts evolve in a smooth manner, while
our testbeds simulate real life environment where abrupt
changes can occur at any moment.

We generate random examples uniformly distributed in
multi-dimensional space [0, 1]d. Weights ai (1 ≤ i ≤ d)
in Eq (6) are initialized randomly in the range of [0, 1]. We
choose the value of a0 so that the hyperplane cuts the multi-
dimensional space in two parts of the same volume, that is,
a0 = 1

2

∑d
i=1 ai. Thus, roughly half of the space is positive,

and the other half negative. Noise is introduced by ran-
domly switching the labels of p% of the examples. In our
experiments, the noise level p% is set to 5%.

Number of records generated within a time unit follows a
normal distribution with user provided mean and variance.

739

Research Track Poster

We study situations where data in each time unit may rep-
resent biased samples from the same class distribution T .
However, it is not easy to quantify such a bias. In this
study, we create biased class distributions in neighboring
data units as a simulation. We generate a dataset wherein
s% records are sampled from the positive class in T , and
1 − s% are sampled from the negative class in T . The next
dataset will have 1 − s% positive records from T , and s%
negative records from T . We denote such a stream as having
a sampling bias s%.

The rate of occurrence of concept drifting in the synthetic
data is λ. To create such a change, we set certain weights ai

in Eq. 6 to random values within [0, 1], which is tantamount
to randomly moving the hyperplane to a new position. Fur-
thermore, the users can also give a parameter k to specify
the total number of dimensions whose weights are changing.

3.2 Performance Analysis
We study the time complexity of our stream classifica-

tion algorithm and compare it with the incrementally up-
dated classifier approach [14], and the weight-by-accuray ap-
proach [17]. We generate synthetic data streams where each
data unit is of different average sizes. Note that both our
approach and the weight-by-accuray approach train classi-
fiers from each data unit. However, our approach does not
apply historical classifiers on new training records in order
to get weights for the classifiers.

20

40

60

80

100

120

140

160

180

200 400 600 800 1000

T
ra

in
in

g
T

im
e

(s
)

Average # of records in a time unit

Incrementally-Updated
Weight-by-Accuracy

Our Approach

Figure 3: Training time and average partition size

Fig. 3 shows the time complexity of the three approaches.
The tests are performed on a stream of 32 data units, and
the X axis shows the average size of each partition. The
incrementally updated classifier is trained from the entire
32 data units, and it is the most costly approach with re-
gard to training time, as training a classifier (e.g., a C4.5
decisoin tree) is of superlinear complexity. Fig. 3 does not
take into consideration the cost of model updating, which
means in reality, the incrementally updated classifier is even
more time consuming. The weight-by-accuray approach im-
proves the single classifier by using the divide-and-conquer
approach, however, it is still quite costly in comparison with
our approach, which does not weight classifiers by their per-
formance on the most recent training data.

From Fig. 3, it is clear that when the average partition
size is small, all of the three approaches use less training
time. Unfortunately, for ensemble-based approaches, using
smaller partitions often results in lower classification quality.
Fig. 4 shows this phenomena.

0

5

10

15

20

25

30

1 2 3 4 5

E
rr

or
 R

at
e

(%
)

of time units to train a classifier

weight-by-accuracy
our approach

Figure 4: Error and average partition size

In Fig. 4, we see that the rate of classification error in-
creases when partitions become larger. This is so because in
a concept drifting environment, large partitions may contain
conflicting concepts, and classifiers trained on a partition ba-
sis will have reduced quality. When a partition is small, the
weight-by-accuray approach suffers because data in a small
partition is often a biased sample from the true underly-
ing class distribution. The experiment shown in Fig. 4 is
conducted on synthetic data with a concept drifting rate of
(λ = 5). We also introduce a 20% sampling bias in each unit
data, which contains an average of 500 records.

Next, we study the change of data arrival rate on the
accuracy of ensemble-based classifiers. Since a classifier is
trained on data addrived during the same time unit, the
variance in training data size may lead to some siginificant
classification error. Furthermore, for the weight-by-accuray
approach, the scarcity of the training data in the latest time
unit may create erroneous weights for historical classifiers.
In the experiment, we generate synthetic data with a con-
cept drifting rate of (λ = 5), and we introduce a 20% sam-
pling bias in each unit, which contains an average of 500
records. The weight-by-accuray approach uses an ensem-
ble consisting 10 classifiers, and our approach uses a decay
factor of 0.2. In Fig. 5, the X axis denotes the standard
deviation in unit data size, and the Y axis denotes the rate
of classification error. It indicates that our approach has
advantage over the weight-by-accuray approach when devi-
ation is high, although our approach uses much less training
time.

0

5

10

15

20

25

30

35

40

0 50 100 150 200

A
ve

ra
ge

 E
rr

or
 R

at
e

(%
)

Standard deviation of unit data size (average size is 500)

weight-by-accuracy
our approach

Figure 5: Error and deviation of unit data size

740

Research Track Poster

In Fig. 6, we study the effect of sampling bias on classi-
fication accuracy. The X axis represents the sampling bias,
which ranges from 10% to 40%. The avarage size of each
data unit is 500, and the standard deviation is 30. The
other settings are the same as that of Fig. 5. The results
indicate that data in each unit, which is very likely a to be
biased sample from the true data distribution, may have a
strong impact on the effectiveness of the weight-by-accuray
approach. Our approach is able to reduce its effect.

0

20

40

60

80

100

10 20 30 40

A
ve

ra
ge

 e
rr

or
 r

at
e

(%
)

Sampling bias (%)

weight-by-accuracy
our approach

Figure 6: Error and sampling bias

4. RELATED WORK
Data stream processing has attracted much attention re-

cently due to the explosive growth of many new classes of
data stream applications. There is much work in this area
including modeling, querying, and mining [1, 9, 11, 7, 14, 3,
12, 6, 13, 19, 18, 5, 4].

Traditional algorithms that require multiple scans of the
training samples are inappropriate for our applications be-
cause our applications require real-time predications. Sev-
eral incremental algorithm [10, 7, 14] refine models by con-
tinuously incorporating the influence of the new training
samples and eliminating that of old ones. However, it is
generally difficult to determine how fast the old data should
be forgotten. Yang, et. al. [19] also proposed to use con-
cept drifting patterns to improve classification accuracy. We
model concept drifting differently and get different results.

There are also extensive studies on using classifier ensem-
bles for traditional data mining including techniques such as
Bagging [2], Boosting [8]. Unlike data stream mining, the
model does not change in traditional data mining.

Our previous work [17] studies how to select a set of clas-
sifiers trained with data in previous time windows. In that
work, we select and boost the previous classifiers based on
their accuracy when they are applied to the training set in
the current time window. It does not leverage concept drift-
ing pattern and thus are not as accurate as the algorithm
proposed in this paper.

5. CONCLUSION
This paper advocates exploiting concept drifting patterns

to improve accuracy and efficiency of data stream classi-
fiers. With stochastic models of concept drifting, we are
able to formulate the classification problem as an optimiza-
tion problem and derive a theoretical optimal solution. We
then approximate the solution of the optimization problem

by combining a set of traditional classifier. Our experimen-
tal results show that this approach results in significant im-
provement in terms of classification accuracy and efficiency
compared to previous approaches that do not exploit con-
cept drifting patterns.

6. REFERENCES
[1] B. Babcock, S. Babu, M. Datar, R. Motawani, and

J. Widom. Models and issues in data stream systems.
In PODS, 2002.

[2] Eric Bauer and Ron Kohavi. An empirical comparison
of voting classification algorithms: Bagging, boosting,
and variants. Machine Learning, 36(1-2):105–139,
1999.

[3] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang.
Multi-dimensional regression analysis of time-series
data streams. In VLDB, Hongkong, China, 2002.

[4] Yun Chi, Haixun Wang, Philip S. Yu, and Richard R.
Muntz. Moment: Maintaining closed frequent itemsets
over a stream sliding window data streams. In ICDM,
2004.

[5] Yun Chi, Philip S. Yu, Haixun Wang, and Richard
Muntz. Loadstar: A load shedding scheme for
classifying data streams. In SIAM Data Mining, 2005.

[6] Graham Cormode and S. Muthukrishnan.
Summarizing and mining skewed data streams. In
SDM, 2005.

[7] P. Domingos and G. Hulten. Mining high-speed data
streams. In SIGKDD, pages 71–80, Boston, MA, 2000.
ACM Press.

[8] Yoav Freund and Robert E. Schapire. Experiments
with a new boosting algorithm. In ICML, pages
148–156, 1996.

[9] L. Gao and X. Wang. Continually evaluating
similarity-based pattern queries on a streaming time
series. In SIGMOD, Madison, Wisconsin, June 2002.

[10] J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh.
BOAT– optimistic decision tree construction. In
SIGMOD, 1999.

[11] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In SIGMOD,
pages 58–66, Santa Barbara, CA, May 2001.

[12] S. Guha, N. Milshra, R. Motwani, and
L. O’Callaghan. Clustering data streams. In FOCS,
pages 359–366, 2000.

[13] Sudipto Guha and Boulos Harb. Wavelet synopsis for
data streams: minimizing non-euclidean error. In
KDD, pages 88–97, 2005.

[14] G. Hulten, L. Spencer, and P. Domingos. Mining
time-changing data streams. In SIGKDD, pages
97–106, San Francisco, CA, 2001. ACM Press.

[15] Lawrence R. Rabiner. A tutorial on hidden markov
models and selected applications in speech
recognition. In Readings in speech recognition, pages
267–296. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1990.

[16] W. Nick Street and YongSeog Kim. A streaming
ensemble algorithm (SEA) for large-scale
classification. In SIGKDD, 2001.

[17] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han.
Mining concept-drifting data streams using ensemble
classifiers. In SIGKDD, 2003.

[18] Peng Wang, Haixun Wang, Xiaochen Wu, Wei Wang,
and Baile Shi. On reducing classifier granularity in
mining concept-drifting data streams. In ICDM, 2005.

[19] Ying Yang, Xindong Wu, and Xingquan Zhu.
Combining proactive and reactive predictions for data
streams. In SIGKDD, pages 710–715, 2005.

741

Research Track Poster

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

