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ABSTRACT 
In many applications, classifiers need to be built based on 
multiple related data streams. For example, stock streams and 
news streams are related, where the classification patterns may 
involve features from both streams. Thus instead of mining on a 
single isolated stream, we need to examine multiple related data 
streams in order to find such patterns and build an accurate 
classifier. Other examples of related streams include traffic 
reports and car accidents, sensor readings of different types or at 
different locations, etc. In this paper, we consider the 
classification problem defined over sliding-window join of 
several input data streams. As the data streams arrive in fast pace 
and the many-to-many join relationship blows up the data arrival 
rate even more, it is impractical to compute the join and then 
build the classifier each time the window slides forward. We 
present an efficient algorithm to build a Naïve Bayesian classifier 
in such context. Our method does not need to perform the join 
operations but is still able to build exactly the same classifier as if 
built on the joined result. It only examines each input tuple twice, 
independent of the number of tuples it joins in other streams, 
therefore, is able to keep pace with the fast arriving data streams 
in the presence of many-to-many join relationships. The 
experiments confirmed that our classification algorithm is more 
efficient than conventional methods while maintaining good 
classification accuracy. 

Categories and Subject Descriptors 
H.2.8 [Database Applications]: Data mining 

General Terms: algorithms, management, performance 

Keywords: algorithm, stream data, join, classification, Naïve 
Bayesian model  

1. INTRODUCTION 
At a time of information explosion, we see that data not only are 
stored in large amounts, but also keep growing quickly over time. 
Every day millions of bank transactions are recorded, telephone 
calls are registered, emails are stored, all of which keep being 
appended to existing databases. Such databases are therefore 

called data streams, as data continuously flow in and there is no 
particular order in which the data items arrive. Data streams are 
characterized as being in high volume, unbounded in size, 
dynamically changing and require fast response time [2]. As data 
are continuously evolving, so are the embedded trends and 
patterns. Since it is impossible to store the complete stream before 
the mining starts, quickly detecting evolving data characteristics 
is important for decision making. Any algorithm designed for data 
streams must have a very low computation time per input tuple in 
order to keep pace with the high data arrival rate. 

Moreover, there are often situations in stream mining where 
multiple related data streams need to be examined at the same 
time in order to discover trends or patterns that involve features 
from different data streams. Indeed, there are many applications 
where the classification patterns span across multiple streams. For 
example, stock streams and news streams are related, traffic 
report streams and car-accident streams are related, sensor 
readings of different types are related. In such applications, co-
occurrence of certain conditions in several related streams may 
jointly determine the class label, therefore related streams should 
be examined together to build the classifier. 

To illustrate this, let us consider a simplified example. In the 
stock market, “favorable trading” refers to stock transactions that 
are favorable to the engaging party, i.e., selling before a stock 
plunges or buying before a stock goes up. In order to build 
classification models that identify patterns for “favorable trading”, 
the stock trading stream that records all trading transactions must 
be examined. However, stock transactions are not isolated or 
independent events; they are related to many other data streams, 
e.g., phone calls between dealers and managers/staffs of public 
companies. Thus it is necessary to mine on multiple related data 
streams. 

For example, the classification algorithm may need to look at all 
following correlated data: 

Trading stream: T (τ, Dealer, Type, Stock, Class) 
Phone call stream:  P (τ, Caller, Callee) 
Company table:  C (Company, Stock) 
Person table:  S (Name, Org) 

where τ is the timestamp, “Type” is either “sell” or “buy”, 
“Class” (“yes”/“no”) refers to the class label of being favorable 
trading or not. To compute the complete training set, a SQL query 
can be used to extract information from the above data as follows: 
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 SELECT  * 
 FROM  P, S, T, C 
 WHERE  S.Name=P.Caller AND P.Callee=T.Dealer 
  AND P.τ<T.τ AND T.Stock=C.Stock 
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Essentially, this query performs a join on all related data and the 
joined result is the training set used to build the classifier. 

Table 1 shows a snapshot of such data. The join relationship is 
indicated by the arrows connecting the join attributes. Note that 
the join relationship between P and T is “many-to-many”, which 
is the most general case. For example, “Albert” was called twice 
and traded twice, generating four tuples in the join stream in 
Table 2 (The timestamps for each join record are ignored because 
of the space.), the rule “Org=Company → Class=Yes” holds in 3 
out of 4 tuples that have “Org=Company”, i.e., with 75% 
confidence. It suggests that after getting a call, the trading on the 
caller’s company stock tends to be more favorable. A classifier 
bearing rules that utilize information from multiple correlated 
streams/tables is likely more accurate than those built on the 
trading stream alone. 

Motivated by the above discussions, in this paper, we will 
consider the problem of classification over multiple data streams 
with general join relationships. Such a problem is common in 
practice. Actually, in the later section, our experiments on a real-
life dataset (UK road accident dataset) confirmed that classifiers 
built on multiple streams are much more accurate than those built 
only on a single target stream. 

For such applications, the demand on efficiency of the stream 
applications is even more challenging. Since the size of the data 
stream is unbounded and new data continuously flow in, it is 
impossible to store the entire data stream first before the mining 
starts. Instead, stream applications only deal with the current part 
of a stream (called a window) which may look like a static table. 
As new tuples flow in, the window also slides forward to include 
the latest tuples while some old tuples are expired from the 
window. For conventional static relations, join is a natural 
operation to link related relations by data semantics. For online 
and unbounded data streams, joining the entirety of the data is 
impossible. Instead, a join can be defined on stream windows, 
called sliding-window join [2], which generates a new stream, 
called the “join stream”, representing the join of all related 

streams in their current windows. When the window of any input 
stream slides forward, the join stream also evolves to include new 
joined tuples and invalidate expired joined tuples. The problem 
we are addressing in this paper is to build the classifier based on 
such a join stream, referred to as the join stream classification 
problem hereinafter. Note static tables are also allowed (as in 
Table 1) in the same classification problem by considering them 
as “streams” that never change. For join stream classification, the 
classifier must be updated each time any stream window is 
updated. The sliding of the window can be tuple-based or time-
based. When the gap between two consecutive windows is small, 
the classifier must be rebuilt at very fast pace, i.e. the algorithm 
that builds the classifier must be very efficient. 

For such join stream classification, a tempting straightforward 
solution may be to compute the join each time a window slides 
forward and then build the classifier based on the current join 
stream. Unfortunately, this is unrealistic for data streams. As the 
input streams are arriving in fast pace and the tuples in related 
streams arrive in no particular order, it is difficult to optimize the 
join operations, i.e. the join operations are expensive. Yet the 
classifier must evolve quickly each time the window slides 
forward, thus there may be no time to perform the join [20][6][23]. 
Furthermore, the join relationship can be “many-to-many” as 
shown in the sample data in Table 1, therefore, there are far more 
tuples in the join stream than in the input streams. Any method 
that explicitly generates the join stream will suffer from the blow-
up of data arrival rates and is unlikely to be able to keep pace with 
the incoming data. 

Some previous works have dealt with challenges in the single-
stream classification problem [11][14][24][5]. To the best of our 
knowledge, there has been no work on such join stream 
classification problem. Although there have been many 
classification algorithms that work well on static tables, it is very 
difficult to adapt them to join stream classification. For example, 
support vector machines (SVM) require explicit generation of the 
training set, i.e. the join stream, in order to build the classifier. On 
the other hand, we notice that Naïve Bayesian Classifier (NBC) 

   



[13] has some unique properties which can be explored to avoid 
the join. NBC is one of the most widely used and successful 
classification methods. Although it assumes variables are 
independent given the class label, researches show that NBC is 
still reliable even when this assumption is violated [12][22][19]. 
Thus we believe that the NBC presents a best opportunity in order 
to deal with the join stream classification problem. By taking 
advantage of the unique properties of the NBC classifier, we can 
efficiently address this problem. 

To keep pace with the fast input streams, we propose a NBC 
method that does not need to join the input streams, while still 
producing the exact same NBC as produced on the join stream. 
Our insight is that the information required by NBC for the join 
stream can be obtained by computing “blow-up counts” directly 
from the input streams in linear time. Our main achievement lies 
in the fact that computing the blow-up counts is much cheaper 
than computing the sliding-window join itself. Our approach 
examines each input tuple in the current window twice, 
independent of the number of tuples it joins in the other stream 
windows. Note since the stream window can be held in main 
memory, scanning each tuple in the current window in linear time 
is very efficient. Thus it is highly suitable to handle high-speed 
streams in the presence of many-to-many join. Note the idea of 
computing such “blow-up counts” to avoid the expensive join 
operations is also applicable to some other classification 
algorithms that require similar statistics, for example, decision 
trees. 

The rest of this paper is organized as follows. In Section 2, we 
review related works. In Section 3, we define the problem and 
discuss core concepts of NBC. In Section 4, we present our 
algorithm. We evaluate our method in Section 5. Section 6 
concludes the paper. 

2. RELATED WORKS 
In data stream management [2], sliding-window join is proposed 
to answer queries involving the join of multiple data streams, such 
as the join size, sum [1][10], join-distinct [15]. Their focus was on 
how to compute these joined results under resource constraints 
and used techniques such as sampling [7][14] or load-shedding 
[6][20][23]. However, in the join stream classification problem, as 
we explained in the previous section, it is undesirable to first 
compute the join of multiple streams and then build the classifier. 
Thus these techniques cannot be applied. 

Most stream mining algorithms consider a single stream and 
simple statistics such as average and standard deviation. 
Classification on data streams was considered in [11][14][24][5]. 
Other mining problems that involve multiple streams are 
clustering [18][4], correlation analysis [25], sequential patterns 
[8]. However, none of these works involves a general join among 
streams; thus, they do not deal with the blow-up of data arrival 
rates caused by a many-to-many join. For example, the 
correlation analysis in [25] computes the correlation coefficient of 
two time series, which aligns the two streams by a common key 
such as the timestamp. To our knowledge, the classification 
problem over a general sliding-window join has not been studied. 

On the other hand, there have been works on classification 
over multiple static relations. For example, [2] presented a multi-
relational decision tree, [20] and [25] studied rule inductions. In a 

relational learner, the training set cannot be defined by the join of 
multiple tables, making the problem very different from ours.  In 
[28], a secure construction of decision tree classifiers from 
vertically partitioned data was presented, where the join is given 
by the one-to-one relationship implied by the common key 
identifier for all partitions. That work is not applicable to the 
general many-to-many join relationship. Recently, [27] proposed 
a secure construction for decision tree classifiers over distributed 
tables with the general many-to-many join relationship. 
Nevertheless, the work focuses on the privacy preserving aspect, 
not the data stream requirement. [29] proposed an efficient 
algorithm for building decision tree classifiers for the data given 
by a collection of tables related by a hierarchical structure of 
foreign key references, motivated by those found in relational 
databases, data warehouses, XML data, and biological databases. 
It examines the same performance issue caused by the blow-up of 
join. Unlike [29], this work deals with the arbitrary join 
relationship that is not necessarily represented by foreign key 
references, and focuses on stream data.  

3. PROBLEM STATEMENT 
In this section, we formally define the problem of join stream 
classification and briefly review the standard naïve Bayesian 
classification. 

3.1 Join Stream Classification 
Join stream classification refers to the problem when 
classification involves several related data streams S1, …, Sn, and 
the classifier needs to be built on the join stream as defined by a 
sliding-window join. The specification of the sliding-window join 
over S1, …, Sn includes the join condition, the window 
specification and update frequency of each input stream [2][17]. 

We consider the join condition that is a conjunction of equality 
predicates Si.A=Sj.B (i≠j), where Si.A and Sj.B, called join 
attributes, represent one or more attributes from Si and Sj. By 
allowing Si.A and Sj.B to contain more than one attribute, we 
need at most one predicate Si.A=Sj.B between each stream pair Si 
and Sj. The join graph is constructed in a way such that there is an 
edge between Si and Sj if there is a predicate Si.A=Sj.B in the join 
condition. We consider connected and acyclic joins, that is, the 
join graph is well connected and contains no cycle. This is not a 
serious limitation since many joins in practice are in fact acyclic, 
i.e., chain joins and star joins over the commonly used 
star/snowflake schemas. 

The window and update specification in join stream classification 
can be time-based or tuple-based. The term “window” refers to 
the collection of current windows of all streams. One of S1,…,Sn, 
called the target stream, contains the class column. The task is to 
build a classifier each time the window updates. This means that 
the classifier must be rebuilt whenever the window on any input 
stream slides forward. The speed of fastest-sliding window 
determines the rate of classifier updates. For the current window, 

the training set is the set of tuples defined by the sliding-window 
join. Note that the training set is not explicitly given, but specified 
by the input streams and the sliding-window join. This distinction 
is important because the training set is significantly larger than 
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the input streams and being able to work on the latter directly has 
performance advantages. 

3.2 Naïve Bayesian Classifiers 
Consider a single table T (X1,…, Xn, Class), where “Class” 
denotes the class column whose domain is [C1,…, Cm]. To 
classify a tuple x=(x1 ,…, xn), the Naïve Bayesian Classifier (NBC) 
assigns x to class Ci that maximizes the conditional class 
probability P(Ci|x) based on the following maximum a posteriori 
(MAP) hypothesis: 

where P(Ci) is the class probability and P(x|Ci) is the conditional 
probability of x given the class label Ci. Under the assumption 
that variables X1, …, Xn are independent given the class label, 
NBC estimates P(x|Ci) by 
Once P(xj|Ci) and P(Ci) are collected from the training data, NBC 
is able to assign a class label to a new tuple x. 

To compute P(xj|Ci) and P(Ci), we only need to compute the class 
count matrix of the form (xk, <N1,…, Nm>) for each distinct value  
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Figure 1. Example with 3 streams at initialization Figure 2. After bottom-up propagations 
 
xk of Xj, where Nj (1≤j≤m) is the number of tuples that has the 
value xk and the class label Cj. This data structure has a size 
proportional to the number of distinct values in Xj. Note NBC 
requires attributes to be categorical (having a small number of 
distinct values). Continuous attributes can be first discretized 
(such as equi-width or equi-depth binning) into a small number of 
intervals before applying NBC. 

The above discussion assumes a single table T. For join stream 
classification, T will be the join result of the input streams in the 
current window. Since such T is much larger than the input 
streams, the challenge is to compute the class count matrix for T 
without generating T. In the next section, we present such a 
method. 

4. OUR APPROACH 
We assume the current windows of all input streams are held in 
memory. The join relationships among streams form an acyclic 
join graph, which is in fact a rooted tree. Any stream may be 
regarded as the root and the target stream may be at any position 
in the tree. As our method involves propagation of information 
along the edges of the tree, we will call this tree as the 
propagation tree. 
Instead of generating the join stream, we maintain a data structure 
of (Cls, Count) for each tuple t in the input streams, where Cls is a 
class vector in the form of <N1,…, Nm> (m is the number of 
classes, Ni records the count of occurrences of t with class label i 
in the join stream) and Count is a counter that keeps track of the 
total occurrences of t in the join stream. Note this data structure 

stores all information about a tuple t in the join stream, but with 
the size proportional to the size of the input stream. The class 
vectors (Cls) correspond to the class count matrix as mentioned in 
section 3.2, which is the only information required to build a NBC 
classifier. The challenge is how to compute such class vectors for 
each tuple in the input streams without performing the join. 
We compute the class vectors by propagating the blow-up effect 
of the join. The propagation proceeds in two phases. In the phase 
of bottom-up propagations, all Cls’s and Counts are propagated 
from the leaf nodes to the root. On reaching the root, the Cls’s in 
the root reflect the join of all streams. Next, in the phase of top-
down propagations, we propagate Cls’s from the root to all leaf 
nodes. When reaching all leaf nodes, the class vectors (Cls’s) in 
each stream have reflected the join effect of all streams. Our main 
achievement lies in the fact that computing the blow-up ratios 
through propagations is much cheaper than computing the sliding-
window join itself. 
The detailed process of computing such data structures is 
explained in the following subsections. To correctly carry out 
computations during propagations, we first define the arithmetic 
operations on Cls as follows: given an operator “○” and two Cls’s 
(V1: <a1,…,am> and V2: <b1,…,bm>), V1○V2= <a1○b1,…,am○bm>. 
For example, <4,3>/<2,3>=<2,1>. 

4.1 Initialization 
Initially, for any tuple in the target stream, its Cls (<N1, …, Nm>) 
is determined by its class label Ci such that, Ni=1 and Nj=0 where 
i≠j. The Count is always initialized to 1. 

   



For any tuple in all other streams, its Cls is initialized to all zeros 
(<0,…,0>) and Count is always 1. 
Figure 1 gives an example with 3 streams with initial Cls’s and 
Counts values shown. The join relationships are specified by the 
arrows: S1 and S3 join on J1, and S2 and S3 join on J2. S1 is the 
target stream containing two classes. S3 is the root of the 
propagation tree. Note the root of the tree can be arbitrarily 
selected. We will show later that choosing the input stream with 
largest window size (i.e. the most number of tuples in a window) 
as the root can optimize the cost of scan on input streams. 
Note that such initialization does not require a separate scan on 
the input streams and can be combined with the bottom-up 
propagation process as discussed in the following subsection. 

4.2 Bottom-Up Propagation 
This is the phase where the information of Cls and Count are 
propagated from leaf nodes to the root in a bottom-up order. 
Consider a parent node P and a child node C with join predicate 
P.J1=C.J2. 

Observation 1: Given a tuple t in P, if t joins with k tuples in C, t 
will occur k times in the join between P and C. These occurrences 
can be reflected directly in P by blowing up the Cls and Count of t 
using the aggregated Cls and Count, denoted as ClsAgg and 
CountAgg, of the k joining tuples in C. 

Formally, we define blow-up summary from C to P as the set {(v, 
ClsAgg, CountAgg)}, where v is a join value in C. It has the size 
that is proportional to the number of distinct join values in C and 
can be collected by one scan of C. 

Observation 2: If P has n child nodes (n>1), the Cls and Count of 
t in P will be blown up by all children as in Observation 1, to 
reflect the join with all children streams. Note in this phase, as we 
propagate only in the bottom-up order, at most one of the children 
contains non-zero ClsAgg’s (the branch containing the target 
stream). 

The following lemma follows from the above observations: 

Lemma 1. With a parent node P and its n child nodes, for each 
tuple t in P with join values (v1,…,vn), where each vi corresponds 
to the join attribute between P and the ith child, let (v1, ClsAgg1, 
CountAgg1), …, (vn, ClsAggn, CountAggn) denote the n 
corresponding summary entries from all children, t’s Count is 
blown up as: 

if there’s some entry ClsAggi (1≤i≤n) being non-zero (by 
Observation 2, there’s at most one such entry), t’s Cls is updated 
as: 

Now we can propagate the blow-up summaries from child nodes 
to the parent node P. After receiving all children’s blow-up 
summaries, we scan P once and update its Count’s and Cls’s as in 
Lemma 1. We also create the blow-up summary from P to its own 
parent (if any) in the same scan. 

Figure 2 shows the bottom-up propagation following the example 
in Figure 1, where S1 and S2 are scanned to produce blow-up 
summaries to propagate to S3. Note trivial aggregated counts 

(ClsAgg is all zeros or CountAgg=1) are ignored and not shown in 
summaries. On receiving the summaries, S3 blows up Cls and 
Count of its tuples. For example, consider the tuple t in S3 as 
grayscaled in Figure 2 (with J1=b, J2=d). It has two corresponding 
summary entries: (b,<0,1>,1) from S1 and (d,<0,0>,2) from S2, 
each containing all information on t’s joining tuples in that child. 
The blow-up of t by these entries in fact represents the effect of 
join: t.Count is blown up by 1*2=2, t.Cls is blown up by 
<0,1>*2=<0,2>. These results indicate that t occurs in the join 
twice, both having the class label C2, which is exactly the same 
information as in the join stream. 

In general, the target stream can be anywhere in the tree, thus 
there are two cases in the bottom-up propagation from children to 
a parent node P: 

- If the target stream is not in P’s subtree, we blow up only 
Count at P since ClsAgg is always empty; Cls will be blown 
up later at some ancestor node of P; 

- If the target stream is in P’s subtree, we blow up both Cls 
and Count at P; in this case either P is the target stream or 
one of its child nodes has non-empty ClsAgg’s. 

4.3 Top-Down Propagation 
At the end of bottom-up propagation, the Cls in the root stream 
reflects the effect of join of all streams. However, the Cls’s in all 
other streams have not reflected the joins performed at their 
ancestors. Thus we need to propagate in the top-down fashion to 
push the correct join information to all non-root streams. The 
propagation is based on the following observations. 

Observation 3: For a parent node P and a child node C, if a tuple 
t in C joins with some tuple in P that has the join value v, so do all 
tuples in C that have this join value v. We can view all such tuples 
as an “equivalence class” on the join value v in C, denoted as C[v]. 
Similarly, P[v] is defined as the corresponding tuples in P that 
share the same join value v. The Cls’s of C[v] tuples must be 
updated by redistributing the aggregated count of P[v] tuples with 
following two properties: (1) the share of any tuple in its own 
equivalence class remains constant; (2) the aggregated counts in C 
after redistribution must be the same as in P. 

Thus, to perform the top-down propagations properly, we define 
the distribution summary from P to C as the set {(v, ClsAgg)}, 
where v is a join value in P and ClsAgg is aggregated class counts 
of all P[v] tuples. Note there’s one distribution summary from the 
parent to each child, with the size proportional to the number of 
distinct values of each join attribute. ;)(.

..1
∏
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=
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Lemma 2. Given a distribution summary entry (v,.ClsAgg) from 
P, we redistribute the ClsAgg among C[v] tuples such that, for any 
tuple t in C[v]: 

∏
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)(*)(.  t.Cls= ClsAgg * (t.Count / C[v].CountAgg) 

where C[v].CountAgg is the aggregation of Count’s of all C[v] 
tuples prior to redistribution and as such, (t.Count / 
C[v].CountAgg) represents t’s share in C[v]. ■ 

Hence, on receiving the distribution summary from P, the Cls’s in 
C are updated as in Lemma 2, whereas the distribution summary 
from C to its own children (if any) are computed in the same scan. 

Figure 3 shows the top-down propagation. At the root S3, the 
distribution summaries to S1 and S2 are generated while scanning 

   



S3 in the bottom-up propagation. On receiving these summaries, 
S1 and S2 redistribute their Cls’s. For example, for the tuple t in S1 
as grayscaled in Figure 3 (with J1=b), t.Cls=<0,1> is redistributed 
by <0,2>*(1/1)=<0,2>, where (b,<0,2>) is the summary entry 
corresponding to b, and (1/1) is the share of t in its own 
equivalence class (having J1=b). The result captures exactly the 
same information about t as in the join stream: t occurs twice 
having the class label C2. 
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Figure 3. After top-down propagations 

 

4.4 Cost Analysis 
In the bottom-up and top-down propagation, one summary is 
passed between each parent/child pair and each stream (window) 
is scanned once. At any time, only the summaries for current 
parent/children are kept in memory. The size of a summary is 
proportional to the number of distinct join values, not the number 
of tuples. A summary lookup operation takes constant time in an 
array or hash table implementation. Therefore, the whole 
algorithm is linear in the stream window size, independent of the 
join size. This property is important because the join size can be 
arbitrarily large compared with the window size, due to the many-
to-many join relationships. 

The algorithm scans each input stream twice, once at the bottom-
up propagation phase and once at the top-down propagation 
process. The only exception is the root stream, where the bottom-
up and top-down propagations meet, two scans can be combined 
into one. Therefore, choosing the input stream of the largest 
window size (i.e., the most number of tuples) as the root will 
minimize the cost of scans, as it saves one scan on the largest 
stream window. 

5. EMPIRICAL STUDIES 
The objectives of our evaluations are two-folded: to verify that 
the classifier built on the join stream is more accurate compared 
with that built on a single stream; and to study the scalability of 
our algorithm. 

We denote our algorithm as NB_Join, as it builds a NBC classifier 
whose training set is defined on the join of multiple streams. Note 
our algorithm does not need to actually perform the join; instead, 

the classification process is performed directly on the input 
streams. We compared it with following alternatives: 

- NB_Target: NBC based on the target stream alone. In this case, 
all non-target streams are ignored. 

- DT_Join: decision tree classifier (C4.5) on the join stream. To 
build the decision tree, the join stream is first computed by 
actually joining the input streams. 

- DT_Target: decision tree classifier on the target stream alone. 

To compare accuracy results, for each window, we train the 
classifier on the first 80% of data tuples within this window. The 
remaining 20% of data tuples in the same window are kept as 
testing samples for testing the classification accuracy. Note that 
the testing data are generated by a sliding-window join on the 
testing samples from all streams and constitute one join stream. 

To compare the scalability, we focus on the classifiers that are 
built on the join stream and measure the scalability by computing 
“time per input tuple”, i.e., time spent on each window divided by 
the number of tuples in the window. It gives an idea about the 
data arrival rate that an algorithm is able to handle. For DT_Join, 
because it has to generate the join stream before building the 
classifier, we measure the join time and ignore the classifier 
construction time since the join cost is the most expensive part. 

Most of slide-window join algorithms in literature are not suitable 
for generating the join stream for DT_Join because they focus on 
fast computing special aggregates [10][15], or producing 
approximate join results [23] under resource constraints; not the 
exact join result. Therefore, we have to implement the join 
algorithm for slide window join. For simplicity, we implemented 
the nested loop join algorithm. This choice should not have a 
major performance effect because all tuples in the current window 
are kept in memory.   

All programs were coded in C++ and run on a PC with 2GHz 
CPU, 512M memory and Windows XP. 

5.1 Real-life Dataset 
For experiments on real-life dataset, we obtained UK road 
accident data from the UK data archive1. It collects information 
about accidents, vehicles and casualties, in order to monitor road 
safety and determine policies to reduce the road accident casualty 
toll. It contains three tables: “Accident”, “Vehicle” and 
“Casualty”. The characteristics of year-2001 data are shown in 
Figure 4 where arrows indicate join relationships: each accident 
involves one or more vehicles; each vehicle has zero or more 
casualties. Each table can be regarded as a stream that is 
timestamped by “date of accident”. In average, about 600 
“Accident” tuples, 700 “Vehicle” tuples and 850 “Casualty” 
tuples are added every day. The join stream is specified by 
equality join on the common attributes among the streams. 
“Casualty” is the target stream with two casualty classes --- class 
1: “fatal/serious” (13% of all tuples) or class 2: “slight” (87% of 
tuples). 

                                                                 
1 http://www.data-archive.ac.uk/ 

   



 

Figure 4. UK road accident data (2001) 

5.1.1 Accuracy 
Figure 5 shows accuracies of all classifiers being compared. For 
all methods, the window size is the same and ranges from 10 to 50 
days with no window overlapping. 
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Figure 5. Classifier accuracy 

It is immediately clear that classifiers built on multiple streams 
are much more accurate, showing that examining correlated 
streams is advantageous compared with building the classifier on 
a single stream. In fact, the accuracy obtained by examining the 
target stream alone is only about 80%, even lower than that 
obtained by a naïve classifier which simply classifies every tuple 
as belonging to class 2, since 87% of tuples belong to this class. 

On the other hand, the results also show that, with the same 
training set, naïve Bayesian classifier has comparable 
performance as decision trees. Keep in mind that our method 
NB_Join runs directly on the input streams, while the decision 
tree is built on the join stream and thus is subject to the join cost. 
We examine the efficiency of these two methods in the next set of 
experiments. 

5.1.2 Time per input tuple 
Figure 6 compares the time per input tuple. For example, at the 
window size of 20 days, the join takes about 9.83 seconds 
whereas NB_Join takes only about 0.3 seconds. Therefore, the 
join time per input tuple is 9.83*106/43,900=224 microseconds, 
where 43,900 is the total number of tuples that arrived in the 20-
day window. In contrast, NB_Join takes only 0.3*106/43,900=6.8 
microseconds per input tuple. Thus, any method that requires 
computing the join will be at least 33 times slower than our 
method NB_Join. As the window size increases, the join time 
increases quickly due to the increased join cardinality in a larger 

window; whereas the time per input tuple for NB_Join is almost 
constant, indicating that our approach is linear to the window size. 
Thus our method can handle a much higher speed of window 
sliding than conventional methods. 
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Therefore, while both NB_Join and DT_Join classifiers exhibit 
similar classification accuracies, NB_Join is much more efficient 
than DT_Join. 
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Figure 6. Time per input tuple 

 

5.2 Synthetic Datasets 
To further verify our claims, we also used synthetic datasets with 
various data characteristics. Similar to the experiments on real-life 
datasets, we want to examine whether the correlation of multiple 
streams yields benefits for classification under different data 
characteristics. We also want to evaluate if NB_Join can deal with 
streams with high data arrival rates. 

As we are not aware of an existing data generator to evaluate 
classification spanning several related streams, we designed our 
own data generator. 

5.2.1 Data Generator 
To focus on important data characteristics, we make some 
simplifying assumptions. We consider the chain join of k streams 
S1, …, Sk, where S1 is the target stream, and each adjacent pair Si 
and Si+1 have one join predicate. All join attributes are categorical 
and have the same domain size D. All streams have the same 
number of tuples |S|. All streams have N numerical and N 
categorical attributes (excluding join attributes and the class 
attribute). All numerical attributes have the ranked domain 
{1,…,10}, i.e., values are treated as being discretized into 10 
categorical intervals. Categorical values are drawn randomly from 
a domain of size 20. 

To verify our claim that classifiers built on the join stream are 
more accurate when there are correlations among streams, we 
need the dataset to contain certain structure rather than randomly 
generating the data tuples. To this end, we construct datasets such 
that the class label in the join stream is determined by whether at 
least q numerical attributes have “high” values, where q is a 
percentage parameter. A numerical value is “high” if it belongs to 
the top half of its ranked domain. Since the numerical attributes 
are distributed among multiple input streams, to ensure the 

   



desired property on the join stream, the input streams S1,…,Sk are 
constructed as follows. 

- Join values. Each stream Si consists of D groups: from 1st to 
Dth group. All tuples in the jth (1≤j≤D) group of Si join with 
all tuples in the jth group of Si+1, but not any other tuples. 
The jth join group refers to the set of join tuples produced by 
the jth groups. The size Zj of the jth group is the same in all 
streams S1,…,Sk, and follows Poisson distribution with the 
mean λ=|S|/D. The jth join group has the size Zj

k, with λk 

being the mean. The blow-up of the join is defined as 
λk/λ=λk-1, i.e., the ratio between the mean of group size on 
the join stream and that on input streams. 

- Numerical values. We generate the numerical attributes such 
that all join tuples in the jth join group have the same class 
label, by having “high” values in the same number of 
numerical attributes, say hj. To ensure this property, we 
distribute the number hj among S1,…,Sk randomly, say 
hj1,…,hjk, such that hj =hj1+…+hjk, and all tuples in the jth 
group for Si are “high” in hji numerical attributes. hj follows 
uniform distribution in the range [0,k*N], where k*N is the 
total number of numerical attributes. 

- Class labels. If hj≥q*k*N, for some percentage parameter q, 
we assign the “Yes” class label to every tuple in the jth 
group of S1, otherwise, assign the “No” class label. 

Finally, to simulate the concept drifting in data streams, we 
change the class distribution every time after generating W tuples. 
This is done by varying the parameter q: let w be the window size, 
for every W tuples (W>>w), we randomly determine a q value in 
the range [0.25, 0.75) following the uniform distribution. 

Thus a dataset generated as above can be characterized by the set 
of parameters (N,|S|,D,λ,W), where λ=|S|/D is the mean of group 
size and determines the blow-up ratio of join. 

5.2.2 Accuracy 
We generated three streams S1, S2 and S3 with parameters N=10, 
|S|=1,000,000, D=200,000, λ=5, W=100,000. Figure 7 shows the 
accuracy results with 50% window overlapping. DT_Join and 
NB_Join are more accurate than their counterparts on the single 
stream, while both having similar accuracies. 
Figure 8 shows another experiment, where we fixed the window 
size w at 20,000 and decreased W from 100,000 to 20,000, in 
order to simulate situations where classification patterns change 
more frequently. Since the previous experiments have confirmed 
that classifiers built on the join stream have better accuracies, in 
this experiment, we only show the accuracy results of NB_Join 
and DT_Join. As expected, the accuracy drops slowly as W 
decreases, since there are more windows spanning data with 
different characteristics, making it difficult for a classifier to 
correctly identify the classification pattern. 
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Figure 7. Classifier accuracy 
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Figure 8. Classifier accuracy with changing data patterns 

 

5.2.3 Time per input tuple 
Figure 9 shows the time per tuple on the same dataset as in Figure 
7. The join time is much larger than the time of NB_Join. As the 
window size increases, the join time increases due to the blow-up 
effect of join, while NB_Join spends almost constant time per 
tuple for any window size. 
Figure 10 shows the time per tuple vs. the blow-up of join. All 
parameters are the same as previous except λ. For the join of three 
streams, the blow-up ratio is λ2. By varying λ from 2 to 7, the 
blow-up varies from 4 to 49. The window size is fixed at 20,000. 
Again, NB_Join shows a much better performance and is flat with 
respect to the blow-up of join. This is because it scans the window 
exactly twice, independent of the blow-up ratio of the join. On the 
other hand, the join takes more time per tuple with a larger blow-
up ratio because much more tuples are generated. 
Figure 11 shows the time per tuple vs. the number of streams. All 
parameters are still the same as in Figure 9. The window size is 
fixed at 20,000 tuples. We vary the number of steams from 1 to 5. 
The blow-up ratio for k-stream join is determined by 5(k-1). The 
comparison of the results is similar to Figure 10. 
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Figure 9. Time per input tuple vs. window size 
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Figure 10. Time per input tuple vs. blow-up ratio 
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Figure 11. Time per input tuple vs. number of streams 

 

5.3 Discussion 
On both the real life and synthetic datasets, our empirical studies 
showed that when the features for classification are contained in 
several related streams, the proposed join stream classification has 
significant accuracy advantage over the conventional method of 
examining only the target stream. Thus a classification algorithm 
should examine as much related information as possible. 

The main challenge is how such classification can be performed 
in pace with the high-speed input streams, given that the join 
stream has an even higher data arrival rate than that of the input 
streams, due to the arbitrary join blow-up ratios. To this end, our 
experiments showed that our proposed algorithm has the cost 
linear to the size of input streams, independent of the join size. 
Thus our algorithm is scalable and superior to all other alternative 
methods. 

It is worthy of note that the classifier must be rebuilt each time 
the window on any input stream slides forward. This is reasonable 
when there is no overlap or only small overlaps between slide 
windows. However, when windows are significantly overlapped, 
this strategy tends to repeat the work on the overlapped data. In 
this case, a more efficient strategy may be incrementally updating 
the NBC by working only on the difference due to the window 
sliding. We did not pursue in this direction further because even 
overlapped tuples still need to be joined with new tuples in the 
other streams, which means that the scan of overlapped tuples 
cannot be avoided. Since our algorithm scans the current window 
only twice, the benefit of being incremental is limited, especially 
considering the overhead added.  

6. CONCLUSIONS 
Real life classification often involves multiple related data 
streams. Due to the online and high volume nature of data streams, 
with the join that blows up the data arrival rate on top of the 
rapidly arriving streams, it is prohibitive to perform the sliding-
window join and then conduct classification analysis on the join. 
To solve this problem, we explored the property of Naïve 
Bayesian classifiers and proposed a novel technique for rapidly 
obtaining the essential join statistics without actually computing 
the join. With this technique, we can build exactly the same Naïve 
Bayesian classifier as using the join stream, but with a processing 
cost that is linear to the size of the input streams and independent 
of the join size. Empirical studies supported our two claims: 
examining several related streams indeed benefits the quality of 
classification; and the proposed method has much lower 
processing time per input tuple, thus, is able to handle much 
higher data arrival rates, even in the presence of many-to-many 
join relationships. 
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