
Classification Spanning Correlated Data Streams
Yabo Xu, Ke Wang

Computer Science School
Simon Fraser University

{yxu,wangk}@cs.sfu.ca

Ada Wai-Chee Fu
Department of Computer Science and

Engineering,
The Chinese University of Hong Kong

adafu@cse.cuhk.edu.hk

Rong She, Jian Pei
Computer Science School
Simon Fraser University

{rshe, jpei}@cs.sfu.ca

ABSTRACT
In many applications, classifiers need to be built based on
multiple related data streams. For example, stock streams and
news streams are related, where the classification patterns may
involve features from both streams. Thus instead of mining on a
single isolated stream, we need to examine multiple related data
streams in order to find such patterns and build an accurate
classifier. Other examples of related streams include traffic
reports and car accidents, sensor readings of different types or at
different locations, etc. In this paper, we consider the
classification problem defined over sliding-window join of
several input data streams. As the data streams arrive in fast pace
and the many-to-many join relationship blows up the data arrival
rate even more, it is impractical to compute the join and then
build the classifier each time the window slides forward. We
present an efficient algorithm to build a Naïve Bayesian classifier
in such context. Our method does not need to perform the join
operations but is still able to build exactly the same classifier as if
built on the joined result. It only examines each input tuple twice,
independent of the number of tuples it joins in other streams,
therefore, is able to keep pace with the fast arriving data streams
in the presence of many-to-many join relationships. The
experiments confirmed that our classification algorithm is more
efficient than conventional methods while maintaining good
classification accuracy.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms: algorithms, management, performance

Keywords: algorithm, stream data, join, classification, Naïve
Bayesian model

1. INTRODUCTION
At a time of information explosion, we see that data not only are
stored in large amounts, but also keep growing quickly over time.
Every day millions of bank transactions are recorded, telephone
calls are registered, emails are stored, all of which keep being
appended to existing databases. Such databases are therefore

called data streams, as data continuously flow in and there is no
particular order in which the data items arrive. Data streams are
characterized as being in high volume, unbounded in size,
dynamically changing and require fast response time [2]. As data
are continuously evolving, so are the embedded trends and
patterns. Since it is impossible to store the complete stream before
the mining starts, quickly detecting evolving data characteristics
is important for decision making. Any algorithm designed for data
streams must have a very low computation time per input tuple in
order to keep pace with the high data arrival rate.

Moreover, there are often situations in stream mining where
multiple related data streams need to be examined at the same
time in order to discover trends or patterns that involve features
from different data streams. Indeed, there are many applications
where the classification patterns span across multiple streams. For
example, stock streams and news streams are related, traffic
report streams and car-accident streams are related, sensor
readings of different types are related. In such applications, co-
occurrence of certain conditions in several related streams may
jointly determine the class label, therefore related streams should
be examined together to build the classifier.

To illustrate this, let us consider a simplified example. In the
stock market, “favorable trading” refers to stock transactions that
are favorable to the engaging party, i.e., selling before a stock
plunges or buying before a stock goes up. In order to build
classification models that identify patterns for “favorable trading”,
the stock trading stream that records all trading transactions must
be examined. However, stock transactions are not isolated or
independent events; they are related to many other data streams,
e.g., phone calls between dealers and managers/staffs of public
companies. Thus it is necessary to mine on multiple related data
streams.

For example, the classification algorithm may need to look at all
following correlated data:

Trading stream: T (τ, Dealer, Type, Stock, Class)
Phone call stream: P (τ, Caller, Callee)
Company table: C (Company, Stock)
Person table: S (Name, Org)

where τ is the timestamp, “Type” is either “sell” or “buy”,
“Class” (“yes”/“no”) refers to the class label of being favorable
trading or not. To compute the complete training set, a SQL query
can be used to extract information from the above data as follows:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

 SELECT *
 FROM P, S, T, C
 WHERE S.Name=P.Caller AND P.Callee=T.Dealer
 AND P.τ<T.τ AND T.Stock=C.Stock

CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-433-2/06/0011...$5.00.

BBBRay

CCCDennis

AAAAdams

OrgName

S
AlbertRay15:31
AlbertDennis14:19
SelinaAdams12:01

PeterDennis15:36

JackAdams9:30

CalleeCallerτ

P

YesCBuyAlbert15:57
NoCSellPeter16:42

No
Yes
Yes

Class

BSellAlbert15:40
A
A

Stock

SellSelina12:30
SellJack9:38

TypeDealerτ

T

CCCB

BBBC

AAAA

CompanyStock

C

BBBCBuyAlbertAlbertCCCDennisNo

BBBCSellPeterPeterCCCDennisNo

CCCBSellAlbertAlbertBBBRayYes

CCCBSellAlbertAlbertCCCDennisNo

Albert

Selina
Jack

Callee

Albert

Selina
Jack

Dealer

Buy

Sell
Sell

Type

C

A
A

Stock

BBB

AAA
AAA

Company

AAAAdamsYes
AAAAdamsYes

BBB

Org

Yes

Class

Ray

Caller

Table 1. Related streams / tables Table 2. The join stream

Essentially, this query performs a join on all related data and the
joined result is the training set used to build the classifier.

Table 1 shows a snapshot of such data. The join relationship is
indicated by the arrows connecting the join attributes. Note that
the join relationship between P and T is “many-to-many”, which
is the most general case. For example, “Albert” was called twice
and traded twice, generating four tuples in the join stream in
Table 2 (The timestamps for each join record are ignored because
of the space.), the rule “Org=Company → Class=Yes” holds in 3
out of 4 tuples that have “Org=Company”, i.e., with 75%
confidence. It suggests that after getting a call, the trading on the
caller’s company stock tends to be more favorable. A classifier
bearing rules that utilize information from multiple correlated
streams/tables is likely more accurate than those built on the
trading stream alone.

Motivated by the above discussions, in this paper, we will
consider the problem of classification over multiple data streams
with general join relationships. Such a problem is common in
practice. Actually, in the later section, our experiments on a real-
life dataset (UK road accident dataset) confirmed that classifiers
built on multiple streams are much more accurate than those built
only on a single target stream.

For such applications, the demand on efficiency of the stream
applications is even more challenging. Since the size of the data
stream is unbounded and new data continuously flow in, it is
impossible to store the entire data stream first before the mining
starts. Instead, stream applications only deal with the current part
of a stream (called a window) which may look like a static table.
As new tuples flow in, the window also slides forward to include
the latest tuples while some old tuples are expired from the
window. For conventional static relations, join is a natural
operation to link related relations by data semantics. For online
and unbounded data streams, joining the entirety of the data is
impossible. Instead, a join can be defined on stream windows,
called sliding-window join [2], which generates a new stream,
called the “join stream”, representing the join of all related

streams in their current windows. When the window of any input
stream slides forward, the join stream also evolves to include new
joined tuples and invalidate expired joined tuples. The problem
we are addressing in this paper is to build the classifier based on
such a join stream, referred to as the join stream classification
problem hereinafter. Note static tables are also allowed (as in
Table 1) in the same classification problem by considering them
as “streams” that never change. For join stream classification, the
classifier must be updated each time any stream window is
updated. The sliding of the window can be tuple-based or time-
based. When the gap between two consecutive windows is small,
the classifier must be rebuilt at very fast pace, i.e. the algorithm
that builds the classifier must be very efficient.

For such join stream classification, a tempting straightforward
solution may be to compute the join each time a window slides
forward and then build the classifier based on the current join
stream. Unfortunately, this is unrealistic for data streams. As the
input streams are arriving in fast pace and the tuples in related
streams arrive in no particular order, it is difficult to optimize the
join operations, i.e. the join operations are expensive. Yet the
classifier must evolve quickly each time the window slides
forward, thus there may be no time to perform the join [20][6][23].
Furthermore, the join relationship can be “many-to-many” as
shown in the sample data in Table 1, therefore, there are far more
tuples in the join stream than in the input streams. Any method
that explicitly generates the join stream will suffer from the blow-
up of data arrival rates and is unlikely to be able to keep pace with
the incoming data.

Some previous works have dealt with challenges in the single-
stream classification problem [11][14][24][5]. To the best of our
knowledge, there has been no work on such join stream
classification problem. Although there have been many
classification algorithms that work well on static tables, it is very
difficult to adapt them to join stream classification. For example,
support vector machines (SVM) require explicit generation of the
training set, i.e. the join stream, in order to build the classifier. On
the other hand, we notice that Naïve Bayesian Classifier (NBC)

[13] has some unique properties which can be explored to avoid
the join. NBC is one of the most widely used and successful
classification methods. Although it assumes variables are
independent given the class label, researches show that NBC is
still reliable even when this assumption is violated [12][22][19].
Thus we believe that the NBC presents a best opportunity in order
to deal with the join stream classification problem. By taking
advantage of the unique properties of the NBC classifier, we can
efficiently address this problem.

To keep pace with the fast input streams, we propose a NBC
method that does not need to join the input streams, while still
producing the exact same NBC as produced on the join stream.
Our insight is that the information required by NBC for the join
stream can be obtained by computing “blow-up counts” directly
from the input streams in linear time. Our main achievement lies
in the fact that computing the blow-up counts is much cheaper
than computing the sliding-window join itself. Our approach
examines each input tuple in the current window twice,
independent of the number of tuples it joins in the other stream
windows. Note since the stream window can be held in main
memory, scanning each tuple in the current window in linear time
is very efficient. Thus it is highly suitable to handle high-speed
streams in the presence of many-to-many join. Note the idea of
computing such “blow-up counts” to avoid the expensive join
operations is also applicable to some other classification
algorithms that require similar statistics, for example, decision
trees.

The rest of this paper is organized as follows. In Section 2, we
review related works. In Section 3, we define the problem and
discuss core concepts of NBC. In Section 4, we present our
algorithm. We evaluate our method in Section 5. Section 6
concludes the paper.

2. RELATED WORKS
In data stream management [2], sliding-window join is proposed
to answer queries involving the join of multiple data streams, such
as the join size, sum [1][10], join-distinct [15]. Their focus was on
how to compute these joined results under resource constraints
and used techniques such as sampling [7][14] or load-shedding
[6][20][23]. However, in the join stream classification problem, as
we explained in the previous section, it is undesirable to first
compute the join of multiple streams and then build the classifier.
Thus these techniques cannot be applied.

Most stream mining algorithms consider a single stream and
simple statistics such as average and standard deviation.
Classification on data streams was considered in [11][14][24][5].
Other mining problems that involve multiple streams are
clustering [18][4], correlation analysis [25], sequential patterns
[8]. However, none of these works involves a general join among
streams; thus, they do not deal with the blow-up of data arrival
rates caused by a many-to-many join. For example, the
correlation analysis in [25] computes the correlation coefficient of
two time series, which aligns the two streams by a common key
such as the timestamp. To our knowledge, the classification
problem over a general sliding-window join has not been studied.

On the other hand, there have been works on classification
over multiple static relations. For example, [2] presented a multi-
relational decision tree, [20] and [25] studied rule inductions. In a

relational learner, the training set cannot be defined by the join of
multiple tables, making the problem very different from ours. In
[28], a secure construction of decision tree classifiers from
vertically partitioned data was presented, where the join is given
by the one-to-one relationship implied by the common key
identifier for all partitions. That work is not applicable to the
general many-to-many join relationship. Recently, [27] proposed
a secure construction for decision tree classifiers over distributed
tables with the general many-to-many join relationship.
Nevertheless, the work focuses on the privacy preserving aspect,
not the data stream requirement. [29] proposed an efficient
algorithm for building decision tree classifiers for the data given
by a collection of tables related by a hierarchical structure of
foreign key references, motivated by those found in relational
databases, data warehouses, XML data, and biological databases.
It examines the same performance issue caused by the blow-up of
join. Unlike [29], this work deals with the arbitrary join
relationship that is not necessarily represented by foreign key
references, and focuses on stream data.

3. PROBLEM STATEMENT
In this section, we formally define the problem of join stream
classification and briefly review the standard naïve Bayesian
classification.

3.1 Join Stream Classification
Join stream classification refers to the problem when
classification involves several related data streams S1, …, Sn, and
the classifier needs to be built on the join stream as defined by a
sliding-window join. The specification of the sliding-window join
over S1, …, Sn includes the join condition, the window
specification and update frequency of each input stream [2][17].

We consider the join condition that is a conjunction of equality
predicates Si.A=Sj.B (i≠j), where Si.A and Sj.B, called join
attributes, represent one or more attributes from Si and Sj. By
allowing Si.A and Sj.B to contain more than one attribute, we
need at most one predicate Si.A=Sj.B between each stream pair Si
and Sj. The join graph is constructed in a way such that there is an
edge between Si and Sj if there is a predicate Si.A=Sj.B in the join
condition. We consider connected and acyclic joins, that is, the
join graph is well connected and contains no cycle. This is not a
serious limitation since many joins in practice are in fact acyclic,
i.e., chain joins and star joins over the commonly used
star/snowflake schemas.

The window and update specification in join stream classification
can be time-based or tuple-based. The term “window” refers to
the collection of current windows of all streams. One of S1,…,Sn,
called the target stream, contains the class column. The task is to
build a classifier each time the window updates. This means that
the classifier must be rebuilt whenever the window on any input
stream slides forward. The speed of fastest-sliding window
determines the rate of classifier updates. For the current window,

the training set is the set of tuples defined by the sliding-window
join. Note that the training set is not explicitly given, but specified
by the input streams and the sliding-window join. This distinction
is important because the training set is significantly larger than

∏
=

=
nj

iji CxPCxP
..1

)|()|(

the input streams and being able to work on the latter directly has
performance advantages.

3.2 Naïve Bayesian Classifiers
Consider a single table T (X1,…, Xn, Class), where “Class”
denotes the class column whose domain is [C1,…, Cm]. To
classify a tuple x=(x1 ,…, xn), the Naïve Bayesian Classifier (NBC)
assigns x to class Ci that maximizes the conditional class
probability P(Ci|x) based on the following maximum a posteriori
(MAP) hypothesis:

where P(Ci) is the class probability and P(x|Ci) is the conditional
probability of x given the class label Ci. Under the assumption
that variables X1, …, Xn are independent given the class label,
NBC estimates P(x|Ci) by
Once P(xj|Ci) and P(Ci) are collected from the training data, NBC
is able to assign a class label to a new tuple x.

To compute P(xj|Ci) and P(Ci), we only need to compute the class
count matrix of the form (xk, <N1,…, Nm>) for each distinct value

)()|(maxarg)|(maxarg ii
ClassC

i
ClassC

CPCxPxCP
ii ∈∈

=

1
1
1

Count

C1

C2

C1

Class

<1,0>
<0,1>
<1,0>
Cls

a3
b2
c1

J1τ

1

1

1
Count

e

d

e
J2

<0,0>

<0,0>

<0,0>
Cls

c3

b2

a1
J1τ

Stream S1

Stream S3

1
1
1

Count

<0,0>
<0,0>
<0,0>
Cls

d3
d2
e1

J2τ

Stream S2
1
1
1

Count

C1

C2

C1

Class

<1,0>
<0,1>
<1,0>
Cls

a3
b2
c1

J1τ

1
2
1

Count

e
d
e

J2

<1,0>
<0,2>
<1,0>
Cls

c3
b2
a1

J1τ

Stream S1

Stream S3

1
1
1

Count

<0,0>
<0,0>
<0,0>

Cls

d3
d2
e1

J2τ

Stream S2

c
b
a

J1

<1,0>
<0,1>
<1,0>
ClsAgg

Summary
from S1 to S3

d
e

J2

2
1

CountAgg

Summary
from S2 to S3

Figure 1. Example with 3 streams at initialization Figure 2. After bottom-up propagations

xk of Xj, where Nj (1≤j≤m) is the number of tuples that has the
value xk and the class label Cj. This data structure has a size
proportional to the number of distinct values in Xj. Note NBC
requires attributes to be categorical (having a small number of
distinct values). Continuous attributes can be first discretized
(such as equi-width or equi-depth binning) into a small number of
intervals before applying NBC.

The above discussion assumes a single table T. For join stream
classification, T will be the join result of the input streams in the
current window. Since such T is much larger than the input
streams, the challenge is to compute the class count matrix for T
without generating T. In the next section, we present such a
method.

4. OUR APPROACH
We assume the current windows of all input streams are held in
memory. The join relationships among streams form an acyclic
join graph, which is in fact a rooted tree. Any stream may be
regarded as the root and the target stream may be at any position
in the tree. As our method involves propagation of information
along the edges of the tree, we will call this tree as the
propagation tree.
Instead of generating the join stream, we maintain a data structure
of (Cls, Count) for each tuple t in the input streams, where Cls is a
class vector in the form of <N1,…, Nm> (m is the number of
classes, Ni records the count of occurrences of t with class label i
in the join stream) and Count is a counter that keeps track of the
total occurrences of t in the join stream. Note this data structure

stores all information about a tuple t in the join stream, but with
the size proportional to the size of the input stream. The class
vectors (Cls) correspond to the class count matrix as mentioned in
section 3.2, which is the only information required to build a NBC
classifier. The challenge is how to compute such class vectors for
each tuple in the input streams without performing the join.
We compute the class vectors by propagating the blow-up effect
of the join. The propagation proceeds in two phases. In the phase
of bottom-up propagations, all Cls’s and Counts are propagated
from the leaf nodes to the root. On reaching the root, the Cls’s in
the root reflect the join of all streams. Next, in the phase of top-
down propagations, we propagate Cls’s from the root to all leaf
nodes. When reaching all leaf nodes, the class vectors (Cls’s) in
each stream have reflected the join effect of all streams. Our main
achievement lies in the fact that computing the blow-up ratios
through propagations is much cheaper than computing the sliding-
window join itself.
The detailed process of computing such data structures is
explained in the following subsections. To correctly carry out
computations during propagations, we first define the arithmetic
operations on Cls as follows: given an operator “○” and two Cls’s
(V1: <a1,…,am> and V2: <b1,…,bm>), V1○V2= <a1○b1,…,am○bm>.
For example, <4,3>/<2,3>=<2,1>.

4.1 Initialization
Initially, for any tuple in the target stream, its Cls (<N1, …, Nm>)
is determined by its class label Ci such that, Ni=1 and Nj=0 where
i≠j. The Count is always initialized to 1.

For any tuple in all other streams, its Cls is initialized to all zeros
(<0,…,0>) and Count is always 1.
Figure 1 gives an example with 3 streams with initial Cls’s and
Counts values shown. The join relationships are specified by the
arrows: S1 and S3 join on J1, and S2 and S3 join on J2. S1 is the
target stream containing two classes. S3 is the root of the
propagation tree. Note the root of the tree can be arbitrarily
selected. We will show later that choosing the input stream with
largest window size (i.e. the most number of tuples in a window)
as the root can optimize the cost of scan on input streams.
Note that such initialization does not require a separate scan on
the input streams and can be combined with the bottom-up
propagation process as discussed in the following subsection.

4.2 Bottom-Up Propagation
This is the phase where the information of Cls and Count are
propagated from leaf nodes to the root in a bottom-up order.
Consider a parent node P and a child node C with join predicate
P.J1=C.J2.

Observation 1: Given a tuple t in P, if t joins with k tuples in C, t
will occur k times in the join between P and C. These occurrences
can be reflected directly in P by blowing up the Cls and Count of t
using the aggregated Cls and Count, denoted as ClsAgg and
CountAgg, of the k joining tuples in C.

Formally, we define blow-up summary from C to P as the set {(v,
ClsAgg, CountAgg)}, where v is a join value in C. It has the size
that is proportional to the number of distinct join values in C and
can be collected by one scan of C.

Observation 2: If P has n child nodes (n>1), the Cls and Count of
t in P will be blown up by all children as in Observation 1, to
reflect the join with all children streams. Note in this phase, as we
propagate only in the bottom-up order, at most one of the children
contains non-zero ClsAgg’s (the branch containing the target
stream).

The following lemma follows from the above observations:

Lemma 1. With a parent node P and its n child nodes, for each
tuple t in P with join values (v1,…,vn), where each vi corresponds
to the join attribute between P and the ith child, let (v1, ClsAgg1,
CountAgg1), …, (vn, ClsAggn, CountAggn) denote the n
corresponding summary entries from all children, t’s Count is
blown up as:

if there’s some entry ClsAggi (1≤i≤n) being non-zero (by
Observation 2, there’s at most one such entry), t’s Cls is updated
as:

Now we can propagate the blow-up summaries from child nodes
to the parent node P. After receiving all children’s blow-up
summaries, we scan P once and update its Count’s and Cls’s as in
Lemma 1. We also create the blow-up summary from P to its own
parent (if any) in the same scan.

Figure 2 shows the bottom-up propagation following the example
in Figure 1, where S1 and S2 are scanned to produce blow-up
summaries to propagate to S3. Note trivial aggregated counts

(ClsAgg is all zeros or CountAgg=1) are ignored and not shown in
summaries. On receiving the summaries, S3 blows up Cls and
Count of its tuples. For example, consider the tuple t in S3 as
grayscaled in Figure 2 (with J1=b, J2=d). It has two corresponding
summary entries: (b,<0,1>,1) from S1 and (d,<0,0>,2) from S2,
each containing all information on t’s joining tuples in that child.
The blow-up of t by these entries in fact represents the effect of
join: t.Count is blown up by 1*2=2, t.Cls is blown up by
<0,1>*2=<0,2>. These results indicate that t occurs in the join
twice, both having the class label C2, which is exactly the same
information as in the join stream.

In general, the target stream can be anywhere in the tree, thus
there are two cases in the bottom-up propagation from children to
a parent node P:

- If the target stream is not in P’s subtree, we blow up only
Count at P since ClsAgg is always empty; Cls will be blown
up later at some ancestor node of P;

- If the target stream is in P’s subtree, we blow up both Cls
and Count at P; in this case either P is the target stream or
one of its child nodes has non-empty ClsAgg’s.

4.3 Top-Down Propagation
At the end of bottom-up propagation, the Cls in the root stream
reflects the effect of join of all streams. However, the Cls’s in all
other streams have not reflected the joins performed at their
ancestors. Thus we need to propagate in the top-down fashion to
push the correct join information to all non-root streams. The
propagation is based on the following observations.

Observation 3: For a parent node P and a child node C, if a tuple
t in C joins with some tuple in P that has the join value v, so do all
tuples in C that have this join value v. We can view all such tuples
as an “equivalence class” on the join value v in C, denoted as C[v].
Similarly, P[v] is defined as the corresponding tuples in P that
share the same join value v. The Cls’s of C[v] tuples must be
updated by redistributing the aggregated count of P[v] tuples with
following two properties: (1) the share of any tuple in its own
equivalence class remains constant; (2) the aggregated counts in C
after redistribution must be the same as in P.

Thus, to perform the top-down propagations properly, we define
the distribution summary from P to C as the set {(v, ClsAgg)},
where v is a join value in P and ClsAgg is aggregated class counts
of all P[v] tuples. Note there’s one distribution summary from the
parent to each child, with the size proportional to the number of
distinct values of each join attribute. ;)(.

..1
∏
=

=
nj

jCountAggCountt

Lemma 2. Given a distribution summary entry (v,.ClsAgg) from
P, we redistribute the ClsAgg among C[v] tuples such that, for any
tuple t in C[v]:

∏
≠=

=
ijnj

ji CountAggClsAggClst
,..1

)(*)(. t.Cls= ClsAgg * (t.Count / C[v].CountAgg)

where C[v].CountAgg is the aggregation of Count’s of all C[v]
tuples prior to redistribution and as such, (t.Count /
C[v].CountAgg) represents t’s share in C[v]. ■

Hence, on receiving the distribution summary from P, the Cls’s in
C are updated as in Lemma 2, whereas the distribution summary
from C to its own children (if any) are computed in the same scan.

Figure 3 shows the top-down propagation. At the root S3, the
distribution summaries to S1 and S2 are generated while scanning

S3 in the bottom-up propagation. On receiving these summaries,
S1 and S2 redistribute their Cls’s. For example, for the tuple t in S1
as grayscaled in Figure 3 (with J1=b), t.Cls=<0,1> is redistributed
by <0,2>*(1/1)=<0,2>, where (b,<0,2>) is the summary entry
corresponding to b, and (1/1) is the share of t in its own
equivalence class (having J1=b). The result captures exactly the
same information about t as in the join stream: t occurs twice
having the class label C2.

1
2
1

Count

C1

C2

C1

Class

<1,0>
<0,2>
<1,0>
Cls

a3
b2
c1

J1τ

1
2
1

Count

e
d
e

J2

<1,0>
<0,2>
<1,0>
Cls

c3
b2
a1

J1τ

Stream S1

Stream S3

1
1
2

Count

<0,1>
<0,1>
<2,0>

Cls

d3
d2
e1

J2τ

Stream S2

c
b
a

J1

<1,0>
<0,2>
<1,0>
ClsAgg

Summary
from S3 to S1

d
e

J2

<0,2>
<2,0>

ClsAgg

Summary
from S3 to S2

Figure 3. After top-down propagations

4.4 Cost Analysis
In the bottom-up and top-down propagation, one summary is
passed between each parent/child pair and each stream (window)
is scanned once. At any time, only the summaries for current
parent/children are kept in memory. The size of a summary is
proportional to the number of distinct join values, not the number
of tuples. A summary lookup operation takes constant time in an
array or hash table implementation. Therefore, the whole
algorithm is linear in the stream window size, independent of the
join size. This property is important because the join size can be
arbitrarily large compared with the window size, due to the many-
to-many join relationships.

The algorithm scans each input stream twice, once at the bottom-
up propagation phase and once at the top-down propagation
process. The only exception is the root stream, where the bottom-
up and top-down propagations meet, two scans can be combined
into one. Therefore, choosing the input stream of the largest
window size (i.e., the most number of tuples) as the root will
minimize the cost of scans, as it saves one scan on the largest
stream window.

5. EMPIRICAL STUDIES
The objectives of our evaluations are two-folded: to verify that
the classifier built on the join stream is more accurate compared
with that built on a single stream; and to study the scalability of
our algorithm.

We denote our algorithm as NB_Join, as it builds a NBC classifier
whose training set is defined on the join of multiple streams. Note
our algorithm does not need to actually perform the join; instead,

the classification process is performed directly on the input
streams. We compared it with following alternatives:

- NB_Target: NBC based on the target stream alone. In this case,
all non-target streams are ignored.

- DT_Join: decision tree classifier (C4.5) on the join stream. To
build the decision tree, the join stream is first computed by
actually joining the input streams.

- DT_Target: decision tree classifier on the target stream alone.

To compare accuracy results, for each window, we train the
classifier on the first 80% of data tuples within this window. The
remaining 20% of data tuples in the same window are kept as
testing samples for testing the classification accuracy. Note that
the testing data are generated by a sliding-window join on the
testing samples from all streams and constitute one join stream.

To compare the scalability, we focus on the classifiers that are
built on the join stream and measure the scalability by computing
“time per input tuple”, i.e., time spent on each window divided by
the number of tuples in the window. It gives an idea about the
data arrival rate that an algorithm is able to handle. For DT_Join,
because it has to generate the join stream before building the
classifier, we measure the join time and ignore the classifier
construction time since the join cost is the most expensive part.

Most of slide-window join algorithms in literature are not suitable
for generating the join stream for DT_Join because they focus on
fast computing special aggregates [10][15], or producing
approximate join results [23] under resource constraints; not the
exact join result. Therefore, we have to implement the join
algorithm for slide window join. For simplicity, we implemented
the nested loop join algorithm. This choice should not have a
major performance effect because all tuples in the current window
are kept in memory.

All programs were coded in C++ and run on a PC with 2GHz
CPU, 512M memory and Windows XP.

5.1 Real-life Dataset
For experiments on real-life dataset, we obtained UK road
accident data from the UK data archive1. It collects information
about accidents, vehicles and casualties, in order to monitor road
safety and determine policies to reduce the road accident casualty
toll. It contains three tables: “Accident”, “Vehicle” and
“Casualty”. The characteristics of year-2001 data are shown in
Figure 4 where arrows indicate join relationships: each accident
involves one or more vehicles; each vehicle has zero or more
casualties. Each table can be regarded as a stream that is
timestamped by “date of accident”. In average, about 600
“Accident” tuples, 700 “Vehicle” tuples and 850 “Casualty”
tuples are added every day. The join stream is specified by
equality join on the common attributes among the streams.
“Casualty” is the target stream with two casualty classes --- class
1: “fatal/serious” (13% of all tuples) or class 2: “slight” (87% of
tuples).

1 http://www.data-archive.ac.uk/

Figure 4. UK road accident data (2001)

5.1.1 Accuracy
Figure 5 shows accuracies of all classifiers being compared. For
all methods, the window size is the same and ranges from 10 to 50
days with no window overlapping.

0.6

0.7

0.8

0.9

1

10 20 30 40 50
Window size (days)

A
ve

ra
ge

 a
cc

ur
ac

y

NB_Join NB_Target
DT_Join DT_Target

Figure 5. Classifier accuracy

It is immediately clear that classifiers built on multiple streams
are much more accurate, showing that examining correlated
streams is advantageous compared with building the classifier on
a single stream. In fact, the accuracy obtained by examining the
target stream alone is only about 80%, even lower than that
obtained by a naïve classifier which simply classifies every tuple
as belonging to class 2, since 87% of tuples belong to this class.

On the other hand, the results also show that, with the same
training set, naïve Bayesian classifier has comparable
performance as decision trees. Keep in mind that our method
NB_Join runs directly on the input streams, while the decision
tree is built on the join stream and thus is subject to the join cost.
We examine the efficiency of these two methods in the next set of
experiments.

5.1.2 Time per input tuple
Figure 6 compares the time per input tuple. For example, at the
window size of 20 days, the join takes about 9.83 seconds
whereas NB_Join takes only about 0.3 seconds. Therefore, the
join time per input tuple is 9.83*106/43,900=224 microseconds,
where 43,900 is the total number of tuples that arrived in the 20-
day window. In contrast, NB_Join takes only 0.3*106/43,900=6.8
microseconds per input tuple. Thus, any method that requires
computing the join will be at least 33 times slower than our
method NB_Join. As the window size increases, the join time
increases quickly due to the increased join cardinality in a larger

window; whereas the time per input tuple for NB_Join is almost
constant, indicating that our approach is linear to the window size.
Thus our method can handle a much higher speed of window
sliding than conventional methods.

(313309 tuples)
(size: 14.3MB)

VEH_ID
CS3_9 (class)
CAS_ID
Casualty

ACC_ID
VEH_ID
Vehicle

ACC_ID
Accident

(274109 tuples)
(size: 19.6MB) (250619 tuples)

(size: 20.6MB)
Therefore, while both NB_Join and DT_Join classifiers exhibit
similar classification accuracies, NB_Join is much more efficient
than DT_Join.

1

10

100

1000

10 20 30 40 50
Window size (days)

Ti
m

e
pe

r t
up

le
 (m

se
c.

)

NB_Join Join Time

Figure 6. Time per input tuple

5.2 Synthetic Datasets
To further verify our claims, we also used synthetic datasets with
various data characteristics. Similar to the experiments on real-life
datasets, we want to examine whether the correlation of multiple
streams yields benefits for classification under different data
characteristics. We also want to evaluate if NB_Join can deal with
streams with high data arrival rates.

As we are not aware of an existing data generator to evaluate
classification spanning several related streams, we designed our
own data generator.

5.2.1 Data Generator
To focus on important data characteristics, we make some
simplifying assumptions. We consider the chain join of k streams
S1, …, Sk, where S1 is the target stream, and each adjacent pair Si
and Si+1 have one join predicate. All join attributes are categorical
and have the same domain size D. All streams have the same
number of tuples |S|. All streams have N numerical and N
categorical attributes (excluding join attributes and the class
attribute). All numerical attributes have the ranked domain
{1,…,10}, i.e., values are treated as being discretized into 10
categorical intervals. Categorical values are drawn randomly from
a domain of size 20.

To verify our claim that classifiers built on the join stream are
more accurate when there are correlations among streams, we
need the dataset to contain certain structure rather than randomly
generating the data tuples. To this end, we construct datasets such
that the class label in the join stream is determined by whether at
least q numerical attributes have “high” values, where q is a
percentage parameter. A numerical value is “high” if it belongs to
the top half of its ranked domain. Since the numerical attributes
are distributed among multiple input streams, to ensure the

desired property on the join stream, the input streams S1,…,Sk are
constructed as follows.

- Join values. Each stream Si consists of D groups: from 1st to
Dth group. All tuples in the jth (1≤j≤D) group of Si join with
all tuples in the jth group of Si+1, but not any other tuples.
The jth join group refers to the set of join tuples produced by
the jth groups. The size Zj of the jth group is the same in all
streams S1,…,Sk, and follows Poisson distribution with the
mean λ=|S|/D. The jth join group has the size Zj

k, with λk

being the mean. The blow-up of the join is defined as
λk/λ=λk-1, i.e., the ratio between the mean of group size on
the join stream and that on input streams.

- Numerical values. We generate the numerical attributes such
that all join tuples in the jth join group have the same class
label, by having “high” values in the same number of
numerical attributes, say hj. To ensure this property, we
distribute the number hj among S1,…,Sk randomly, say
hj1,…,hjk, such that hj =hj1+…+hjk, and all tuples in the jth
group for Si are “high” in hji numerical attributes. hj follows
uniform distribution in the range [0,k*N], where k*N is the
total number of numerical attributes.

- Class labels. If hj≥q*k*N, for some percentage parameter q,
we assign the “Yes” class label to every tuple in the jth
group of S1, otherwise, assign the “No” class label.

Finally, to simulate the concept drifting in data streams, we
change the class distribution every time after generating W tuples.
This is done by varying the parameter q: let w be the window size,
for every W tuples (W>>w), we randomly determine a q value in
the range [0.25, 0.75) following the uniform distribution.

Thus a dataset generated as above can be characterized by the set
of parameters (N,|S|,D,λ,W), where λ=|S|/D is the mean of group
size and determines the blow-up ratio of join.

5.2.2 Accuracy
We generated three streams S1, S2 and S3 with parameters N=10,
|S|=1,000,000, D=200,000, λ=5, W=100,000. Figure 7 shows the
accuracy results with 50% window overlapping. DT_Join and
NB_Join are more accurate than their counterparts on the single
stream, while both having similar accuracies.
Figure 8 shows another experiment, where we fixed the window
size w at 20,000 and decreased W from 100,000 to 20,000, in
order to simulate situations where classification patterns change
more frequently. Since the previous experiments have confirmed
that classifiers built on the join stream have better accuracies, in
this experiment, we only show the accuracy results of NB_Join
and DT_Join. As expected, the accuracy drops slowly as W
decreases, since there are more windows spanning data with
different characteristics, making it difficult for a classifier to
correctly identify the classification pattern.

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30

Window size('000 tuples)

A
ve

ra
ge

 a
cc

ur
ac

y

NB_Join NB_Target
DT_Join DT_Target

Figure 7. Classifier accuracy

0.7

0.8

0.9

1

100 80 60 40 20
W ('000 tuples)

A
ve

ra
ge

 a
cc

ur
ac

y

NB_Join DT_Join

Figure 8. Classifier accuracy with changing data patterns

5.2.3 Time per input tuple
Figure 9 shows the time per tuple on the same dataset as in Figure
7. The join time is much larger than the time of NB_Join. As the
window size increases, the join time increases due to the blow-up
effect of join, while NB_Join spends almost constant time per
tuple for any window size.
Figure 10 shows the time per tuple vs. the blow-up of join. All
parameters are the same as previous except λ. For the join of three
streams, the blow-up ratio is λ2. By varying λ from 2 to 7, the
blow-up varies from 4 to 49. The window size is fixed at 20,000.
Again, NB_Join shows a much better performance and is flat with
respect to the blow-up of join. This is because it scans the window
exactly twice, independent of the blow-up ratio of the join. On the
other hand, the join takes more time per tuple with a larger blow-
up ratio because much more tuples are generated.
Figure 11 shows the time per tuple vs. the number of streams. All
parameters are still the same as in Figure 9. The window size is
fixed at 20,000 tuples. We vary the number of steams from 1 to 5.
The blow-up ratio for k-stream join is determined by 5(k-1). The
comparison of the results is similar to Figure 10.

1

10

100

1000

10000

5 10 15 20 25

Window size('000 tuples)

Ti
m

e
pe

r t
up

le
(m

ic
ro

se
co

nd
s)

NB_Join Join T ime

Figure 9. Time per input tuple vs. window size

1

10

100

1000

10000

0 20 40 60
Blowup

Ti
m

e
pe

r t
up

le
(m

ic
ro

se
co

nd
s)

NB_Join Join T ime

Figure 10. Time per input tuple vs. blow-up ratio

1

10

100

1000

10000

0 1 2 3 4 5

Number of streams

Ti
m

e
pe

r t
up

le
(m

ic
ro

se
co

nd
s)

NB_Join Join T ime

Figure 11. Time per input tuple vs. number of streams

5.3 Discussion
On both the real life and synthetic datasets, our empirical studies
showed that when the features for classification are contained in
several related streams, the proposed join stream classification has
significant accuracy advantage over the conventional method of
examining only the target stream. Thus a classification algorithm
should examine as much related information as possible.

The main challenge is how such classification can be performed
in pace with the high-speed input streams, given that the join
stream has an even higher data arrival rate than that of the input
streams, due to the arbitrary join blow-up ratios. To this end, our
experiments showed that our proposed algorithm has the cost
linear to the size of input streams, independent of the join size.
Thus our algorithm is scalable and superior to all other alternative
methods.

It is worthy of note that the classifier must be rebuilt each time
the window on any input stream slides forward. This is reasonable
when there is no overlap or only small overlaps between slide
windows. However, when windows are significantly overlapped,
this strategy tends to repeat the work on the overlapped data. In
this case, a more efficient strategy may be incrementally updating
the NBC by working only on the difference due to the window
sliding. We did not pursue in this direction further because even
overlapped tuples still need to be joined with new tuples in the
other streams, which means that the scan of overlapped tuples
cannot be avoided. Since our algorithm scans the current window
only twice, the benefit of being incremental is limited, especially
considering the overhead added.

6. CONCLUSIONS
Real life classification often involves multiple related data
streams. Due to the online and high volume nature of data streams,
with the join that blows up the data arrival rate on top of the
rapidly arriving streams, it is prohibitive to perform the sliding-
window join and then conduct classification analysis on the join.
To solve this problem, we explored the property of Naïve
Bayesian classifiers and proposed a novel technique for rapidly
obtaining the essential join statistics without actually computing
the join. With this technique, we can build exactly the same Naïve
Bayesian classifier as using the join stream, but with a processing
cost that is linear to the size of the input streams and independent
of the join size. Empirical studies supported our two claims:
examining several related streams indeed benefits the quality of
classification; and the proposed method has much lower
processing time per input tuple, thus, is able to handle much
higher data arrival rates, even in the presence of many-to-many
join relationships.

7. REFERENCES
[1] Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario

Szegedy. Tracking Join and Self-Join Sizes in Limited
Storage. In ACM PODS, Philadeplphia, Pennsylvania, 1999.

[2] A. Atramentov, H. Leiva and V. Honavar, A multi-relational
decision tree learning algorithm – implementation and
experiments. ILP 2003.

[3] B.Babcock, S. Babu, M. Datar, R. Motwani, J. Widom.
Model and issues in data stream systems. In ACM PODS,
Madison, Wisconsin, 2002.

[4] J. Beringer and E. Hullermeier. Online clustering of parallel
data streams. In press for Data & Knowledge Engineering,
2005.

[5] Y. D. Cai, D. Clutter, G. Pape, J. Han, M. Welge and L.
Auvil. MAIDS: Mining alarming incidents from data streams.
In Proc. SIGMOD, demonstration paper, 2004.

[18] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. In FOCS, 2000.

[6] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.
Monitoring streams - a new class of data management
applications. In Proc. VLDB, 2002.

[19] DJ. Hand and K. Yu, Idiot's Bayes - not so stupid after all?
International Statistical Review. 69(3), 385-399, 2001.

[7] S. Chaudhuri, R. Motwani, and V. R. Narasayya. On random
sampling over joins. In Proc. SIGMOD, 1999.

[20] G. Hulten, P. Domingos and Y. Abe, Mining massive
relational databases, 18th International Joint Conference on
AI - Workshop on Learning Statistical Models from
Relational Data, Acapulco, Mexico, 2003.

[8] G. Chen, X. Wu, X. Zhu. Sequential pattern mining in
multiple streams, In Proc. ICDM, 2005.

[21] J. Kang, J. Naughton, S.Viglas. Evaluating window joins
over unbounded streams. In Proc. ICDE, 2003.

[9] A. Das, J. Gehrke and M.Riedewald. Approximate join
processing over data streams. In Proc. SIGMOD, Madison,
Wisconsin, 2003. [22] Irina Rish. An empirical study of the naive Bayes classifier.

IJCAI 2001 Workshop on Empirical Methods in Artificial
Intelligence, 2001.

[10] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and
Rajeev Rastogi. Processing complex aggregate queries over
data streams. In Proc. SIGMOD, Madison, Wisconsin, 2002. [23] U. Srivastava, J. Widom. Memory-limited execution of

windowed stream joins. In Proc. VLDB, 2004. [11] P.Domingos and G. Hulten. Mining high-speed data streams.
In Proc. SIGKDD, 2000. [24] H. Wang, W. Fan, P. Yu and J. Han. Mining concept-drifting

data streams using ensemble classifiers. In Proc. SIGKDD,
Washington DC, USA, 2003.

[12] Pedro Domingos and Michael Pazzani. On the optimality of
the simple Bayesian classifier under zero-one loss. Machine
Learning, 29:103-130, 1997. [25] X. Yi, J. Han, J. Yang, and P. Yu. Crossmine: efficient

classification across multiple database relations. ICDE 2004. [13] R. O. Duda and P. E. Hart. Pattern classification and scene
analysis. New York: John Wiley & Sons, 1973. [26] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of

thousands of data streams in real time. In Proc. VLDB, 2002. [14] J. Gama, R. Racha, P.Medas. Accurate decision trees for
mining high-speed data streams. In Proc. SIGKDD, 2003. [27] K. Wang, Y. Xu, R. She, P. Yu. Classification Spanning

Private Databases. AAAI, 2006. [15] S. Ganguly, M. Garofalakis, A. Kumar and R. Rastogj. Join-
distinct aggregate estimation over update streams. In Proc.
ACM PODS, Baltimore, Maryland, 2005.

[28] W. Du and Z. Zhan. Building decision tree classifier on
private data. ICDM Workshop on Privacy, Security and Data
Mining, 2002 [16] J. Gehrke, R. Ramakrishnan and V. Ganti. Rainforest – A

framework for fast decision tree construction of large
datasets. In Proc. VLDB, San Francisco, 1998.

[29] K. Wang, Y. Xu, P. S. Yu, and R. She. Building decision
trees on records linked through key references. SIAM
International Conference on Data Mining (SDM), 2005. [17] L. Golab, M. Tamer Ozsu. Processing sliding window multi-

joins in continuous queries over data streams. In Proc. VLDB,
2003.

	1. INTRODUCTION
	2. RELATED WORKS
	3. PROBLEM STATEMENT
	3.1 Join Stream Classification
	3.2 Naïve Bayesian Classifiers
	4. OUR APPROACH
	4.1 Initialization
	4.2 Bottom-Up Propagation
	4.3 Top-Down Propagation
	4.4 Cost Analysis

	5. EMPIRICAL STUDIES
	5.1 Real-life Dataset
	5.1.1 Accuracy
	5.1.2 Time per input tuple

	5.2 Synthetic Datasets
	5.2.1 Data Generator
	5.2.2 Accuracy
	5.2.3 Time per input tuple

	5.3 Discussion

	6. CONCLUSIONS
	7. REFERENCES

