
Mining The Most General Multidimensional Summarization of
“Probable Groups” in Data Warehouses∗

Hui Yu1 Jian Pei2 Shiwei Tang1 Dongqing Yang3
1 National Laboratory on Machine Perception, Peking University, Beijing, China,yuhui@db.pku.edu.cn, tsw@pku.edu.cn

2 Simon Fraser University, Burnaby, BC, Canada,jpei@cs.sfu.ca
3 Peking University, Beijing, China,dqyang@pku.edu.cn

Abstract

Data summarization is an important data analysis task
in data warehousing and online analytic processing. In this
paper, we consider a novel type of summarization queries,
probable group queries, such as “What are the groups of
patients that have a50% or more opportunity to get lung
cancer than the average?” An aggregate cell satisfying the
requirement is called aprobable group. To make the answer
succinct and effective, we propose that only the most gen-
eral probable groups should be mined. For example, if both
groups (smoking, drinking) and (smoking, *) are probable,
then the former groups should not be returned. The problem
of mining the most general probable groups is challenging
since the probable groups can be widely scattered in the
cube lattice, and do not present any monotonicity in group
containment order. We extend the state-of-the-art BUC al-
gorithm to tackle the problem, and develop techniques and
heuristics to speed up the search. An extensive performance
study is reported to illustrate the effect of our approach.

1 Introduction

Data summarization is an important data analysis task
in data warehousing and online analytic processing. For
example, an insurance company may want to summarize
the common features of low-risk customers based on a data
warehouse of customers’ claims. High accuracy and good
understandability are the major requirements for high qual-
ity summarization.

Summarization from large databases, including multidi-
mensional databases and data warehouses, has been studied

∗This research is supported in part by National Natural Science Founda-
tions of China Grant NSFC 60473072, NSERC Grant RGPIN312194-05,
NSF (US) Grant IIS-0308001, a President’s Research Grant and an En-
dowed Research Fellowship Award in Simon Fraser University. All opin-
ions, findings, conclusions and recommendations in this paper are those of
the authors and do not necessarily reflect the views of the funding agencies.

extensively in previous work. For example, as a major re-
search field in machine learning and data mining, accurate
classification has been investigated intensively. A classifier
for a target class can be viewed as the summarization. Ac-
curate classifiers with good understandability, such as deci-
sion trees [16] and Bayesian networks [6], are often used as
summarization of concepts in data analysis. As another ex-
ample, the attribute-oriented induction [4] method is one of
the pioneering database-oriented methods for concept sum-
marization and generalization.

Although previous studies developed effective and effi-
cient methods for summarization, most of them only work
for large classes. That is, the previous methods implicitly
or explicitly assume that the data (e.g., the training data set
or the base table in a data warehouse) contains sufficient at-
tributes and enough instances to support the summarization
of the target class. However, this assumption may not be
honored in some applications.

Example 1 (Motivation) In practice, more often than not
a minor class may not be accurately characterized using the
available attributes and cases. For example, although it is
well known that smoking may lead to lung cancer, fortu-
nately, more than90% of smokers will not end up getting
lung cancer. Generally, lung cancer happens in less than
0.1% of average population. In other words, lung cancer
patients form a minor class. The available attributes in con-
sensus data may not be sufficient to characterize the class
of lung cancer patients. Therefore, it is often impossible to
build an accurate classification model for lung cancer pa-
tients on consensus data sets. Instead, it would be more
practical to identify the combinations of attributes, such as
“smoking” and “family history of lung cancer”, that have
a much higher probability to lead to lung cancer than the
average cases. For example, the statistics identifying the
high-risk groups that have50% or more opportunities to get
lung cancer than the average might be very interesting and
helpful in health-informatics research.

As another example, in security-informatics, it is gener-

ally very hard, if not impossible at all, to construct an accu-
rate model for terrorists, since the class terrorists is a very
minor class in population. Instead, it is more practical to
identify the suspicious groups and then follow-up investi-
gations can be conducted.

From the above example, we obtain the motivating ob-
servations as follows. There are real applications where the
task is to summarize some minor classes that might not be
accurately characterized using the available attributes and
instances. In such cases, it is often useful to query the
groups of instances that have a much higher probability to
belong to the target minor classes. Such groups are called
probable groups.

In this paper, we tackle the problem ofmultidimensional
summarization of probable groups in data warehouses, and
make the following contributions.

• We identify a novel type of data summarization queries
– probable group queries. We illustrate that the prob-
able group summarization queries are useful for sum-
marization of minor classes. We also show that the
problem of multidimensional summarization of proba-
ble groups in data warehouses is challenging since the
probable groups may be widely scattered in the data
cube lattice as the search space, and they do not present
any monotonicity in group containment order.

• We propose mining the most general multidimensional
summarization. We show that finding all probable
groups can be ineffective and computational costly. In-
stead, we propose mining the most general probable
groups as the succinct summarization.

• We develop efficient algorithms. We extend the sate-
of-the-art cubing algorithm BUC [3] to compute all
the most general probable groups. To make the mining
more efficient, we further develop a heuristic dynamic-
ordering method with smart techniques to prune un-
promising recursive search. The new method is up to
3 times faster than the simple extension of BUC.

• We report an extensive performance study. The exper-
imental results strongly suggest that our approach is
efficient and scalable.

The rest of the paper is organized as follows. The prob-
lem is defined in Section 2. We develop algorithms for the
problem in Section 3. An extensive performance study is
presented in Section 4. We review related work in Section 5.
The paper is concluded in Section 6.

2 Problem Description

In this section, we first introduce the preliminaries.
Then, we present the probable group queries. Last, we ex-

amine how such queries should be answered effectively.

2.1 Preliminaries

Consider abase tableB = (D1, . . . , Dn, C), whereD1,
. . . ,Dn are then dimensionsandC is the attribute ofclass
labels. We assume that all dimensions are in categorical
domains. For any tuplet, the value oft on attributeA is
denoted byt.A.

An (aggregate) cell is a tuplew = (w1, . . . , wn), where
wi ∈ Di ∪ {∗} (1 ≤ i ≤ n). Whenwi = ∗, the dimension
Di is generalized inw. That is,∗ matches any value in a
dimension. Thecoverof an aggregate cellw, denoted by
cov(w), is the set of tuples inB that have the same values
asw in all dimensions thatwi 6= ∗. That is,

cov(w) = {t|(t ∈ B)∧(t.Di = w.Di for anyw.Di 6= ∗)}.
A cell w is called abase cellif for any dimensionDi,

w.Di 6= ∗. A base cell is a group-by of all dimensions in
the base table.

For aggregate cellsw1 andw2, w1 is anancestorof w2

andw2 is a descendantof w1, denoted byw1 Â w2, pro-
vided (1) for every dimensionDi such thatw1.Di 6= ∗,
w2.Di = w1.Di; and (2) there exists some dimensionDi0

such thatw1.Di0 = ∗ andw2.Di0 6= ∗. Particularly, ifw2

is a descendent ofw1 and agrees withw1 on(n−1) dimen-
sions, thenw1 is called aparent cellof w2, andw2 is achild
cell of w1. It is easy to show the following.

Lemma 1 (Cover containment [12]) For any cellsw1 and
w2 such thatw1 Â w2, cov(w1) ⊇ cov(w2).

However, the reverse direction of Lemma 1 is not true.
That is, generally, we cannot derivew1 Â w2 based on the
fact cov(w1) ⊇ cov(w2) [12].

2.2 Probable Group Queries

For a giventarget classc ∈ C and an aggregate cellw,
theprobabilityof c in w, denoted byprob(w, c), is the ratio
of tuples incov(w) that belong to classc. That is,

prob(w, c) =
|{t|(t ∈ cov(w)) ∧ (t.C = c)}|

|cov(w)| .

When the target classc is fixed and clear from context,
we omitc and writeprob(w, c) asprob(w).

An aggregate cellw is called aprobable groupor aprob-
able cellprovided thatprob(w, c) ≥ min prob, wherec is
the target class andmin prob is theminimum probability
thresholdspecified by a user.

Problem definition 1 (Probable group queries) Given a
base table, a target class and a minimum probability thresh-
old, a probable group queryis to retrieve the complete set
of probable groups.

A B C # tuples # tuples inP prob

a1 b1 c1 7 1 14.29%
a1 b1 c2 9 2 22.22%
a1 b2 c1 4 1 25.00%
a1 b2 c2 7 3 42.86%
a1 b3 c1 10 2 20.00%
a1 b3 c2 8 3 37.50%
a2 b1 c1 5 0 0.00%
a2 b1 c2 11 1 9.09%
a2 b2 c1 7 2 28.57%
a2 b2 c2 15 3 20.00%
a2 b3 c1 4 0 0.00%
a2 b3 c2 12 3 25.00%

Table 1. The base table as our running exam-
ple.

As shown in Example 1, probable group queries are use-
ful in summarization of minor classes, such as “What are
the groups of patients that have a50% or more opportunity
to get lung cancer than the average?”

Now, the problem becomes searching all probable
groups in a data warehouse. A nice property of data ware-
house is that all aggregate cells in data warehouse can be
organized in a lattice (calledcube lattice) by the cell cover
containment order [9, 12].

Example 2 (Cube lattice) Consider the base tableB in Ta-
ble 1 as our running example. The table has3 dimen-
sions, namelyA = {a1, a2}, B = {b1, b2, b3}, andC =
{c1, c2, c3}. The number of tuples in every group-by on di-
mensionsA, B andC is also shown in the table (column “#
tuples”). Let classP be the target minor class. The number
of tuples of classP in every group-by is also shown in the
column “# tuples inP ”. prob(w, P) is also shown for every
base cellw.

The set of all possible aggregate cells has|A∪{∗}|· |B∪
{∗}| · |C ∪{∗}| = 3×4×3 = 36 cells. The aggregate cells
form a lattice as shown in Figure 1.

Suppose we are interested in the aggregate cells that have
a ratio of25% or up. Those aggregate cells are highlighted
in Figure 1. There are in total13 probable groups (cells).

Probable cells are scattered in the cube lattice, as demon-
strated in Figure 1. If the probable cells have some
monotonic properties in the cube lattice, the search can be
facilitated substantially. Unfortunately, probable cells do
not carry such a nice property.

Example 3 (Probable cells have no monotonic property)
For aggregate cellsw1 = (a1, b2, c1), w2 = (a1, ∗, c1), and
w3 = (a1, ∗, ∗) in Figure 1,w1 ≺ w2 ≺ w3. As shown

in the figure,w1 andw3 are probable cells, butw2 is not.
Therefore, probable cells are not monotonic. That is, a
probable cellw does not imply that the ancestors or the
descendants ofw must be probable cells.

2.3 Most General Probable Cells: Succinct Sum-
marization

Although probable cells are not monotonic, as shown in
Example 3, fortunately, they have a weak monotonic prop-
erty as follows.

Lemma 2 (Weak monotonicity) If w is a probable cell,
then at least one child ofw must also be a probable cell.
Proof sketch.Letw′ be a child cell ofw such thatprob(w′)
is the maximum among all children cells ofw. It can be
shown thatprob(w) ≤ prob(w′). Sincew is a probable
cell, w′ is also a probable cell.

Example 4 (Weak monotonicity) It is easy to verify that,
in Figure 1, every probable cell has at least a child that is
also a probable cells. In fact, for any probable cellc that is
not a base cell, there is a path from some base probable cell
to c such that each cell on the path is a probable cell.

The weak monotonicity gives us two important hints.

• All probable cells stem from base probable cells. In
other words, although there can be many probable cells
in a data warehouse, the base cells that have much
higher ratio of the target class enable the more gen-
eral aggregate probable cells. They are the “roots” of
those probable cells.

• The most general probable cells summarize the prob-
able cells. For any probable cella, if it has some an-
cestor cell that is also a probable cell, it still can be
generalized. A cell ismost generalif every ancestor
cell of it is not a probable cell. The set of most gen-
eral probable cells describe the most general extent of
probable cells. Each probable cell is either most gen-
eral, or is summarized by some most general probable
cell.

Based on the above discussion, we can use the set of base
probable cells and the set of most general probable cells to
succinctly summarize a minor class.

Example 5 (Most general probable cells)In our running
example, there are in total13 probable cells.5 of them are
base probable cells. There are3 most general probable cells,
namely(a1, ∗, ∗), (∗, b2, ∗) and(∗, b3, c2). In other words,
only 3

13 = 23.08% of probable cells are most general, and
another 5

13 = 38.46% of probable cells are base cells. If
only the base probable cells and the most general probable

(a1, b1, c1)

(a2, b2, *) (a2, b3, *)

(a1, b1, c2) (a1, b2, c1):25%

(a1, *, *):26.67%

(a2, b3, c2):25%(a2, b3, c1)(a2, b2, c2)

(a1, b1, *)(a1,b2,*):36%(a1,b3,*):28%(a2, b1, *) (a1,*,c2):33%(a1, *, c1) (*, b3, c1)(*, b1, c1) (*, b1, c2)(*,b2,c1):27%(*,b2,c2):27%

(*, *, c1)

(a1, b2, c2):42.9% (a1, b3, c1) (a1, b3, c2):37.5% (a2, b1, c1) (a2, b1, c2) (a2, b2, c1):28.6%

(a2, *, c1) (a2, *, c2) (*, b3, c2):30%

(*, b2, *):27.27%

(*, *, *)

(*, b3, *)(*, b1, *)(a2, *, *) (*, *, c2)

Figure 1. The cube lattice.

cells are used for the succinct summarization, we only need
to record8 probable cells, or813 = 61.54% of all probable
cells. There is a considerable saving.

As shown in our experimental results, using the base
probable cells and the most general probable cells can
achieve good saving in summarizing probable cells.

Clearly, the set of base probable cells can be computed
as the group-by on all dimensions. Since the dimensions
are categorical, we can use counting sort1 to compute them
efficient. As will be shown later, computing the set of base
probable cells can be a byproduct of computing the set of
most general probable cells.

Now, the problem becomes whether we can compute the
set of most general probable cells efficiently. In the rest of
the paper, we will focus on this issue.

Problem definition 2 (Succinct Summarization) Given a
base table, a target class, and a minimum probability
threshold, the problem ofsuccinct summarization of the tar-
get classis to compute the complete set of base probable
cells and the complete set of most general probable cells.

3 Algorithms

In this section, we first review BUC [3], a state-of-the-
art algorithm for computing complete data cubes. Then,
we discuss how BUC can be extended to mine the set of
most general probable cells. We further develop a heuristic
algorithm that can be much faster.

3.1 BUC: Bottom-up Cubing

In [3], Beyer and Ramakrishnan developed algorithm
BUC, which computes the complete cube for a given base
table, i.e., the complete set of aggregate cells. Extensive
performance studies [3, 15] showed that BUC is efficient,
scalable and moderate in main memory usage.

1According to Knuth, counting sort was invented by H.H. Seward in
1954. It is explained in many text books on algorithms, such as [5].

BUC conducts bottom-up computation and can use the
monotonic iceberg conditions to prune. To compute a data
cube on a base tableT (A,B, C, D), BUC first partitions the
table according to dimensionA, i.e., computing group-bys
(A, ∗, ∗, ∗). Then, BUC recursively searches the partition
of cov(a, ∗, ∗, ∗), wherea ∈ A, and computes the descen-
dant aggregate cells in depth-first search manner, such as
(a, b1, ∗, ∗), (a, b2, ∗, ∗), and so on. The computation order
is summarized in Figure 2. It also employs counting sort to
make partitioning and group-by operations efficient.

(A, *, C, *) (A, *, *, D) (*, B, C, *) (*, B, *, D) (*, *, C, D)

(A, *, *, *) (*, B, *, *) (*, *, C, *) (*, *, *, D)

(*, *, *, *)

(A, B, C, *) (A, B, *, D) (A, *, C, D) (*, B, C, D)

(A, B, C, D)

(A, B, *, *)

Figure 2. Bottom-up computation in BUC.

BUC can also efficiently incorporate monotonic condi-
tions to compute iceberg cubes. A monotonic condition
says that if an aggregate cell fails an iceberg condition,
any descendants of it must also fail. If an aggregate cell
(a, ∗, ∗, ∗) fails the monotonic iceberg condition, any de-
scendant of it, such as(a, b, ∗, ∗), (a, ∗, c, ∗) must also fail
the condition and thus does not need to be computed in the
depth-first search of BUC.

3.2 eBUC: Extending BUC to Mine Most General
Probable Cells

Although BUC is efficient to compute the complete data
cube, it cannot be directly used to compute the most gen-
eral probable cells – it cannot use the weak monotonicity
of probable cells to prune in a depth-first search. Here, we
propose eBUC (for extended BUC), an extension of BUC
to use the weak monotonicity in the mining.

The central idea of eBUC is the following observation.

Theorem 1 An aggregate cellw is a probable cell only if
w is a base probable cell or it is an ancestor of some base
probable cell.
Proof sketch. The theorem can be proved by induction on
the number of∗-dimensions inw. Lemma 2 can be applied
repeatedly in the induction.

eBuc conducts depth-first search just like BUC. At the
beginning of eBUC, by sorting all tuples in the base table
using counting sort, eBUC computes the complete set of
base cells as a byproduct. It stores those base cells that are
probable.

During the rest of the depth-first search, when a new ag-
gregate cellw is encountered, eBUC “looks ahead”. That
is, it checks whetherw is an ancestor of some base proba-
ble cells. If not, then following Theorem 1,w cannot be a
probable cell. Moreover, any descendant ofw cannot be an
ancestor of a base probable cell, either. Thus, the recursive
search starting atw cannot find any probable cells and thus
can be pruned.

When the search encounters a probable cellw, it does not
need to search any descendants ofw, since they cannot be
most general.w is stored and checked after the search. Ifw
is not a descendant of any other probable cells encountered
by the search, thenw is one of the most general probable
cells.

Example 6 (Extended BUC) Let us run eBUC on the run-
ning example (Table 1). The search is shown in Figure 3.
Only the cells connect by a directed edge are searched. The
isolated cells are not searched.

eBUC starts from the most general cell(∗, ∗, ∗). It is not
a probable cell, but it is an ancestor of some base proba-
ble cells. Thus, eBUC searches its children recursively in
depth-first manner. The children are sorted in the dimen-
sions orderA-B-C, and within each dimension, the alpha-
betical order is used.

The first child,(a1, ∗, ∗), is probable. Thus, no descen-
dants of(a1, ∗, ∗) are searched.

The second child,(a2, ∗, ∗), is not a probable cell, but
it is an ancestor of base probable cells(a2, b2, c1) and
(a2, b3, c2). Thus, eBUC recursively searches its children.
The first child,(a2, b1, ∗), is not a probable cell, and it is
not an ancestor of any base probable cells. Thus, as sug-
gested by Theorem 1, the search of(a2, b1, ∗) as well as its
descendants can be pruned. eBUC moves to the sibling of
(a2, b1, ∗) and search recursively.

The rest of the search is conducted similarly. Limited by
space, we omit the details here.

After the search, eBUC checks all the probable cells en-
countered. For example, although probable cells(a2, b2, c1)
and(a2, b3, c2) are encountered by eBUC, they are not the
most general since they are descendants of probable cells

(∗, b2, ∗) and(∗, b3, c2), respectively, and thus will not be
output.

As shown in Figure 3, eBUC can find the complete set
of most general probable cells.

From Example 6, we can see that the most general prob-
able cells and the weak monotonicity of probable cells can
prune the search substantially. In this running example,
only 17 of the 36 aggregate cells are searched. In other
words, summarization takes only1736 = 47.22% of the cost
of computing the complete cube.

3.3 DYNO: Heuristic Search by Dynamic Order-
ing

Algorithm eBUC shows good progress on mining the
most general probable cells. It can be further improved
based on the following two observations.

• In depth-first search, when an aggregate cell has multi-
ple children to be searched, the search from the left-
most child covers the largest number of descendant
cells. The search from a child cell always covers more
descendant cells than that from its right sibling. If a
child cell is probable, then all its descendants do not
need to be searched. Thus, if we can order the cells
dynamically such that the more promising a cell or its
descendants are probable, the more left the cell is put,
then sharper pruning is likely accomplished.

• As indicated by Theorem 1, only aggregate cells that
are ancestors of some base probable cells should be
considered. Thus, when expanding the search to chil-
dren cells, only the dimension values that appear in
some base probable cells that are descendants of the
current cell should be used to expand the children of
the current cell. All other children of the current cell
are not promising.

Based on the above two observations, we develop algo-
rithm DYNO (for DYNamic Ordering). DYNO follows the
framework of eBUC and has the major improvements as
follows.

In the depth-first search, if the current cellw is not a
probable cell but is an ancestor of some base probable cell,
then DYNO dynamically generates and orders the children
cells.

DYNO does not expand all children cells ofw. Instead,
DYNO collects all base probable cells that are descendants
of w. Only dimension values of those base probable cells
are used to assemble children cells ofw. The correctness
of this improvement follows the second observation above.
Moreover, to guarantee the completeness of the search and
avoid searching a cell more than once in the depth-first

(*, *, c1) (*, *, c2)(a2, *, *) (*, b1, *) (*, b3, *)

(*, *, *)

(*, b2, *):27.27%

(*, b3, c2):30%(a2, *, c2)(a2, *, c1)

(a2, b2, c1):28.6%(a2, b1, c2)(a2, b1, c1)(a1, b3, c2):37.5%(a1, b3, c1)

(a1, *, *):26.67%

(a2, b3, *)(a2, b2, *)(a2, b1, *)(a1,*,c2):33%(a1, *, c1) (*,b2,c2):27%(*,b2,c1):27%(*, b1, c2)(*, b1, c1) (*, b3, c1)(a1,b3,*):28%(a1,b2,*):36%(a1, b1, *)

(a2, b2, c2) (a2, b3, c1) (a2, b3, c2):25%(a1, b2, c2):42.9%(a1, b2, c1):25%(a1, b1, c2)(a1, b1, c1)

Figure 3. Search using eBUC.

search, DYNO joinsw with the right siblings ofw to gen-
erate its children cells, where the join is defined as follows.

For a pair of sibling cellsw1 and w2, two cases may
arise.

• w1 andw2 agree on all dimensions except for one di-
mensionD. That is,w1.D 6= w2.D and both do not
take∗ on dimensionD. In this case, the join is not
defined. In other words,w1 andw2 cannot be joined.

• w1 andw2 agree on all dimensions except for two di-
mensionsD andD′. That is,w1.D = ∗, w2.D 6= ∗,
w1.D

′ 6= ∗ andw2.D
′ = ∗. In this case, the join is

defined asw3 such thatw3 take values as its parent
except for dimensionsD andD′, w3.D = w2.D and
w3.D

′ = w1.D
′.

The current cellw may have multiple children. Then, ac-
cording to the first observation discussed above, we should
search them in the order of likelihood that they are probable
cells. Heuristically, we can search them in their probabil-
ity descending order – the higher the probability, the better
chance that it or some of its descendants are a probable cell.

We need to show that the above dynamic generation
and ordering of children retains the completeness and non-
redundancy of depth-first search.

Theorem 2 (Dynamic generation and ordering)A
depth-first search with the dynamic generation and order-
ing of children cells visits each aggregate cell once and
only once if no pruning is taken.
Proof sketch. The theorem can be proved by induction on
the number of non-∗ dimensions in aggregate cells. For
each cellw, it can be shown thatw will be generated once
and only once. Limited by space, we only show the essen-
tial idea here.

Example 7 (DYNO) Let us apply algorithm DYNO on our
running example. The search is illustrated in Figure 4.

DYNO starts from the most general cell(∗, ∗, ∗). Since
it is not a probable cell, but it is an ancestor of some base
probable cells, we need to search its children.

(*, b2, *):27.27% (a1, *, *):26.67%

(a2, *, c1)(a2, b3, *)(a2, *, c2)(*, b3, c2: 30%)

(*, *, *)

(*, *, c1)(a2, *, *)(*, b3, *)(*, *, c2)

Figure 4. Search using DYNO.

When generating the children cells of(∗, ∗, ∗), DYNO
notices thatb1 never appears in any base probable cell.
Thus, any aggregate cells havingb1 cannot be a proba-
ble cell. Although(∗, b1, ∗) is a child of (∗, ∗, ∗), it is
unpromising and thus should not be generated. The chil-
dren cells of(∗, ∗, ∗) generated by DYNO are(∗, b2, ∗),
(a1, ∗, ∗), (∗, ∗, c2), (∗, b3, ∗), (a2, ∗, ∗), and(∗, ∗, c1), in
the probability descending order.

(a1, ∗, ∗) and (∗, b2, ∗) are probable cells. They are
stored for postprocessing. The descendants of the two cells
will not be searched.

DYNO recursively searches cell(∗, ∗, c2). By joining
the right siblings, two children cells are generated, namely
(∗, b3, c2) and(a2, ∗, c2). The mining can be conducted re-
cursively. Limited by space, we omit the details here.

After the search, for each probable cellw encountered
in the search, DYNO checks whetherw is a descendant of
some other encountered probable cells. If not, then cellw
is output as a most general probable cell.

It can be verified that DYNO can find the three most gen-
eral probable cells.

From the above example, we can see that DYNO can find
the complete set of most general probable cells. Moreover,
DYNO searches much fewer cells than eBUC. In this ex-
ample, DYNO searches11 cells, while eBUC searches17
cells. DYNO searches617 = 35.29% less cells than eBUC.
Our experimental results show that DYNO can search over
50% less cells than eBUC. This is a major saving in the min-
ing. To summarize, algorithm DYNO is shown in Figure 5.

Algorithm DYNO
Input: a base tableB, a target classc, and a minimum

probability thresholdδ;
Output: the set of base probable cells and the set of most

general probable cells;
Method:
1. sort tuples inB, compute and output the base probable

cells, also computeprob(∗, . . . , ∗);
2. letW = ∅;
3. conduct depth-first search from cell(∗, . . . , ∗), for

each current cellw, do
4. if w is not an ancestor of any base probable cell

then return;
5. if prob(w) ≥ δ thenW = W ∪ {w}, return;
6. generate children ofw by joiningw with the right

siblings ofw, using only the dimension values that
appear in descendant base probable cells ofw

7. compute probability for children cells;
8. sort the children ofw in the probability descending

order;
9. search the children recursively in depth-first

manner;

// Postprocessing
10. remove cellsw from W such thatw has an ancestorw′

in W ;
11. outputW ;

Figure 5. Algorithm DYNO.

4 Experimental Results

We conducted extensive experiments using synthetic
data sets. The results are consistent. Limited by space, we
only reported some results in this section.

All the algorithms are implemented using Microsoft Vi-
sual C++ V6.0. The experiments are conducted on a PC
with a P4 1.5G Hz CPU and 512 MB main memory. The
operating system is Microsoft Windows XP.

By default, a base table has10 dimensions. The cardinal-
ity of each dimension is100. There are100 thousand tuples
in the base table. Each tuple is a base cell with a popula-
tion and a probability of the target class. The probability of
the target class in base cells follows the Half-Normal Dis-
tribution in [0, 1], i.e., a normal distribution with mean0
and standard deviation1θ limited to the domain[0, 1]. In the
results reported in this section, we setθ = 1.

First of all, it is interesting to examine the change of the
number of probable cells and the number of most general
probable cells with respect to the probable threshold, which
is shown in Figure 6. As the minimum probability thresh-

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

N
um

be
r

Probability threshold

Dimension=6 Cardinality=100

of most gen prob cells
of prob cells

Figure 6. Number of probable cells with re-
spect to minimum probability threshold.

old goes down, the number of probable cells keeps growing.
However, the number of most general probable cells does
not monotonically change. When the minimum probability
threshold is high, there are only a small number of prob-
able cells, and the number of most general probable cells
is also small. As the minimum probability threshold goes
down, both the number of probable cells and the number of
most general probable cells increase. When the minimum
probability threshold is lower than50% in our experiments,
there are many probable cells. They can be summarized by
some quite general probable cells. The strong capability of
high level aggregate cells to summarize the low level cells
brings down the number of most general aggregate cells. In
the extreme case, when the most general cell in the cube,
(∗, . . . , ∗), is probable, there is only one most general prob-
able cell.

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

 7e+006

 8e+006

 4 5 6 7 8 9 10

N
um

be
r

of
 c

el
ls

Dimensions

Cardinality=100,minsup=1,threshold=0.3

Most general probable cells
All probable cells

Base probable cells

Figure 7. The number of probable cells with
respect to dimensionality.

The number of probable cells and the number of most
general probable cells also increase as the dimensionality
increases, as shown in Figure 7. However, the number of
most general probable cells has a much more moderate in-
crease rate.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

T
im

e(
se

c)

Probability threshold

Dimension=10,Cardinality=100

eBUC
DYNO

Figure 8. The scalability with respect to mini-
mum probability threshold.

In Figure 8, we tested the scalability of eBUC and
DYNO with respect to the probability threshold. When
the probability threshold is set high, the number of prob-
able cells and the number of most general probable cells
are small. Thus, both algorithms are fast and the differ-
ence between the two algorithms is minor. However, when
the probability threshold is low, there can be many probable
cells. DYNO has a much better scalability than eBUC.

 10

 15

 20

 25

 30

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

T
im

e(
se

c)

Probability threshold

Dimension=10 Cardinality=100

eBUC
DYNO

Figure 9. The depth-first search runtime with
respect to minimum probability threshold.

The runtime of both DYNO and eBUC can be divided
into two parts: the time for depth-first search and the time
for postprocessing. An interesting observation is that the
depth-first searches in DYNO and eBUC only take a small
part in the total runtime. The runtime for depth-first search
is shown in Figure 9. As can be seen, when the minimum
probability threshold is low and the number of most general
probable cells decreases, DYNO and eBUC become more
efficient in the depth-first search. In other words, the curves
of depth-first search runtime of DYNO and eBUC in Fig-
ures 9 are consistent with the curve of number of most gen-
eral probable cells in Figure 6. In terms of search time per
cell, eBUC is shorter than DYNO since DYNO needs to

collect more information than eBUC. However, the major
advantage of DYNO is that it generates much less candi-
date cells than eBUC, which makes the postprocessing of
DYNO clearly faster.

 0

 200

 400

 600

 800

 1000

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

T
im

e(
se

c)

Probability threshold

Dimension=10 Cardinality=100

eBUC
DYNO

Figure 10. The postprocessing runtime with
respect to minimum probability threshold.

Figure 10 shows the postprocessing runtime. Both
DYNO and eBUC use the same method in postprocessing
to remove the non-most general probable cells. Since the
heuristic search in DYNO (dynamic generation and order-
ing of children cells) can effectively reduce the number of
probable cells searched, the postprocessing cost in DYNO
is substantially smaller than that in eBUC.

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

N
um

be
r

of
 V

is
ite

d
C

el
ls

Probability threshold

Dimension=10 Cardinality=100

eBUC
DYNO

Figure 11. The number of aggregate cells
searched with respect to minimum probability
threshold.

Figure 11 supports the claim that DYNO visits substan-
tially less aggregate cells in finding the most general prob-
able cells. DYNO also encounters much less probable cells
in the depth-first search than eBUC. The numbers of prob-
able cells encountered by DYNO and eBUC, respectively,
follow the trends similar to the results in Figure 10. Lim-
ited by space, we omit the details here. It shows that the
pruning techniques in DYNO are effective.

To test the scalability of our methods, we ranged the di-

mensionality from4 to 10. The results are shown in Fig-
ure 12. DYNO has a better scalability. Moreover, the re-
sults are consistent with the number of most general scal-
able cells shown in Figure 7.

 0

 50

 100

 150

 200

 250

 300

 4 5 6 7 8 9 10

T
im

e(
se

c)

Dimension

Cardinality=100

eBUC
DYNO

Figure 12. The runtime with respect to dimen-
sionality.

We also tested the runtime of DYNO and eBUC on the
number of tuples in the base table. Both are linearly scal-
able, and DYNO has a better scalability. Limited by space,
we omit the details here.

In summary, the extensive experimental results strongly
suggest that using the most general aggregate cells can ef-
fectively summarize the probable cells. DYNO is an effi-
cient method to compute the most general probable cells.

5 Related Work

The data cube operator [9] is one of the most influential
operators in OLAP. Many approaches have been proposed
to compute data cubes efficiently from scratch (e.g., [24, 17,
18, 3]). In general, they speed up the cube computation by
sharing partitions, sorts, or partial sorts for group-bys with
common dimensions.

It is well recognized that the space requirements of data
cubes in practice are often huge. Some studies investigate
partial materialization of data cubes, e.g., [11, 3]. Example
methods to compress data cubes are [19, 20, 12, 13]. More-
over, [1, 2, 21] investigate various approximation methods
for data cubes.

There are several major methods on computing (ice-
berg) cubes. MultiWay [24] is an array-based top-down
approach to computing complete data cube. The basic
idea is that a high level aggregate cell can be computed
from its descendants instead of the base table. To com-
pute a data cube on a base tableT (A, B,C, D), Multi-
Way first scans the base table once and computes group-bys
(A,B, C, D), (∗, B, C,D), (∗, ∗, C, D), (∗, ∗, ∗, D) and
(∗, ∗, ∗, ∗). These group-bys can be computed simultane-
ously without resorting the tuples in the base table. Once

these group-bys are computed, we do not need to scan the
base table any more. MultiWay may not be efficient in com-
puting iceberg cubes with monotonic iceberg conditions,
since the top-down search cannot use the monotonic iceberg
condition to prune.

Fang et al. [7] proposed the concept of iceberg queries
and developed some sampling algorithms to answer such
queries. An iceber cube is the set of aggregate cells in a
cube that satisfy some user-specified condition. Beyer and
Ramakrishnan [3] introduced the problem of iceberg cube
computation in the spirit of [7] and developed algorithm
BUC, which is revisited in Section 3.1. Often, monotonic
iceberg conditions are used to prune in the computation of
iceberg cubes.

H-cubing [10] uses a hyper-tree data structure called
H-tree to compress the base table. Then, the H-tree can
be traversed bottom-up to compute iceberg cubes. It also
can prune unpromising branches of search using monotonic
iceberg conditions. Moreover, a strategy was developed
in [10] to use weakened but monotonic conditions to ap-
proximate non-monotonic conditions to compute iceberg
cubes. The strategies of pushing non-monotonic conditions
into bottom-up iceberg cube computation were further im-
proved by Wang et al. [22]. A new strategy, divide-and-
approximate, was developed. The general idea is that the
weakened but monotonic condition can be made up for each
search sub-branch and thus the approximation and pruning
power ca be stronger.

In [23], Xin et al. developed Star-Cubing by extend-
ing H-tree to Star-Tree and integrating the top-down and
bottom-up search strategies. Feng et al. [8] proposed an-
other interesting cubing algorithm, Range Cube, which uses
a data structure called range trie to compress data and iden-
tify correlation in attribute values. On the other hand, since
iceberg cube computation is often expensive in both time
and space, parallel and distributed iceberg cube computa-
tion has been investigated. For example, Ng et al. [15] stud-
ied how to compute iceberg cubes efficiently using PC clus-
ters.

In all the previous studies, either the complete cube or
the complete iceberg cube is computed. None of them con-
sider the problem of computing a summarization of the cells
that satisfy some user-specified condition. None of them ei-
ther deal with mining the most general aggregate cells. To
the best of our knowledge, this paper is the first one that
addresses the issue.

On the other hand, this paper is also related to previ-
ous work on concept summarization [4], generalization and
learning [14]. However, different from those approaches,
we use the most general aggregate cells to summarize prob-
able groups, which have not been discussed in those previ-
ous studies.

6 Conclusions

Data summarization is an important data analysis task
in data warehousing and online analytic processing. In this
paper, we identified a new type of summarization queries,
probable group queries, and proposed a succinct summa-
rization answer to the queries using the base probable cells
and the most general probable cells. The problem of min-
ing the most general probable cells is challenging since the
probable cells can be widely scattered in the cube lattice,
and do not present any monotonicity in cover containment
order. We extended the state-of-the-art BUC algorithm to
tackle the problem, and developed techniques and heuris-
tics to speed up the search. An extensive performance study
verified that our approach is effective and efficient.

This study raises several interesting problems for future
studies. For example, it is interesting to improve the per-
formance of DYNO further, especially reducing the cost of
ancestor-descendant checking in the postprocessing. More-
over, summarization and understanding of minor classes are
important for data analysis and applications. Theoretical
framework as well as practical mining methods should be
explored further.

References

[1] D. Barbara and M. Sullivan. Quasi-cubes: Exploiting
approximation in multidimensional databases.SIGMOD
Record, 26:12–17, 1997.

[2] D. Barbara and X. Wu. Using loglinear models to compress
datacube. InWAIM’2000, pages 311–322, 2000.

[3] K. Beyer and R. Ramakrishnan. Bottom-up computation of
sparse and iceberg cubes. InProc. 1999 ACM-SIGMOD Int.
Conf. Management of Data (SIGMOD’99), pages 359–370,
Philadelphia, PA, June 1999.

[4] Y. Cai, N. Cercone, and J. Han. An attribute-oriented ap-
proach for learning classification rules from relational data-
bases. InProc. 1990 IEEE Int. Conf. Data Engineering
(ICDE’90), pages 281–288, Los Angeles, CA, Feb. 1990.

[5] T. Cormen, C. Leiserson, and R. Rivest.Introduction to Al-
gorithms. The MIT Press, Cambridge, MA, 1990.

[6] R. Duda and P. Hart.Pattern Classification and Scene Analy-
sis. John Wiley & Sons, 1973.

[7] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani,
and J. D. Ullman. Computing iceberg queries efficiently.
In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB’98),
pages 299–310, New York, NY, Aug. 1998.

[8] Y. Feng, D. Agrawal, A. E. Abbadi, and A. Metwally. Range
Cube: Efficient cube computation by exploiting data correla-
tion. In Proc. 2004 Int. Conf. Data Engineering (ICDE’04),
pages 658–669, Boston, MA, April 2004.

[9] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
cube: A relational operator generalizing group-by, cross-tab
and sub-totals. InProc. 1996 Int. Conf. Data Engineering
(ICDE’96), pages 152–159, New Orleans, Louisiana, Feb.
1996.

[10] J. Han, J. Pei, G. Dong, and K. Wang. Efficient compu-
tation of iceberg cubes with complex measures. InProc.
2001 ACM-SIGMOD Int. Conf. Management of Data (SIG-
MOD’01), pages 1–12, Santa Barbara, CA, May 2001.

[11] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Imple-
menting data cubes efficiently. InProc. 1996 ACM-SIGMOD
Int. Conf. Management of Data (SIGMOD’96), pages 205–
216, Montreal, Canada, June 1996.

[12] L. Lakshmanan, J. Pei, and J. Han. Quotient cube: How
to summarize the semantics of a data cube. InProc. 2002
Int. Conf. Very Large Data Bases (VLDB’02), Hong Kong,
China, Aug. 2002.

[13] L.V.S. Lashmanan, J. Pei, and Y. Zhao. QC-Trees: An effi-
cient summary structure for semantic OLAP. InProc. 2003
ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’03), San Diego, California, June 2003.

[14] T. M. Mitchell. Generalization as search.Artificial Intelli-
gence, 18:203–226, 1982.

[15] Raymond T. Ng, Alan S. Wagner, and Yu Yin. Iceberg-cube
computation with PC clusters. InProc. 2001 ACM-SIGMOD
Int. Conf. Management of Data (SIGMOD’01), Santa Bar-
bara, CA, May 2001.

[16] J. R. Quinlan. Induction of decision trees.Machine Learn-
ing, 1:81–106, 1986.

[17] K. Ross and D. Srivastava. Fast computation of sparse dat-
acubes. InProc. 1997 Int. Conf. Very Large Data Bases
(VLDB’97), pages 116–125, Athens, Greece, Aug. 1997.

[18] Kenneth A. Ross and Kazi A. Zaman. Optimizing selections
over datacubes. InStatistical and Scientific Database Man-
agement, pages 139–152, 2000.

[19] Jayavel Shanmugasundaram, Usama Fayyad, and P. S.
Bradley. Compressed data cubes for olap aggregate query
approximation on continuous dimensions. InProceedings of
the fifth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 223–232, San Diego,
California, United States, 1999. ACM Press.

[20] Yannis Sismanis, Nick Roussopoulos, Antonios Deligian-
nakis, and Yannis Kotidis. Dwarf: Shrinking the petacube. In
Proc. 2002 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’02), Madison, Wisconsin, June 2002.

[21] J. S. Vitter, M. Wang, and B. R. Iyer. Data cube approxima-
tion and historgrams via wavelets. InProc. 1998 Int. Conf.
Information and Knowledge Management (CIKM’98), pages
96–104, Washington DC, Nov. 1998.

[22] K. Wang, Y. Jiang, J. X. Yu, G. Dong, and J. Han. Pushing
aggregate constraints by divide-and-approximate. InProc.
2003 Int. Conf. Data Engineering (ICDE’03), pages 291–
302, Bangalore, India, March 2003.

[23] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Comput-
ing iceberg cubes by top-down and bottom-up integration. In
Proc. 2003 Int. Conf. on Very Large Data Bases (VLDB’02),
pages 476–487, Berlin, Germany, Sept. 2003.

[24] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-
based algorithm for simultaneous multidimensional aggre-
gates. InProc. 1997 ACM-SIGMOD Int. Conf. Management
of Data (SIGMOD’97), pages 159–170, Tucson, Arizona,
May 1997.

