Mining The Most General Multidimensional Summarization of
“Probable Groups” in Data Warehouses

Hui Yu! Jian Péel Shiwei Tang Dongging Yang
! National Laboratory on Machine Perception, Peking University, Beijing, Clyimayi@db.pku.edu.cn, tsw@pku.edu.cn
2 Simon Fraser University, Burnaby, BC, Canajiej@cs.sfu.ca
3 Peking University, Beijing, Chinalgyang@pku.edu.cn

Abstract extensively in previous work. For example, as a major re-
search field in machine learning and data mining, accurate
Data summarization is an important data analysis task classification has been investigated intensively. A classifier
in data warehousing and online analytic processing. In this for a target class can be viewed as the summarization. Ac-
paper, we consider a novel type of summarization queries,curate classifiers with good understandability, such as deci-
probable group queriesuch as “What are the groups of sion trees [16] and Bayesian networks [6], are often used as
patients that have &0% or more opportunity to get lung summarization of concepts in data analysis. As another ex-
cancer than the average?” An aggregate cell satisfying the ample, the attribute-oriented induction [4] method is one of
requirement is called @robable groupTo make the answer the pioneering database-oriented methods for concept sum-
succinct and effective, we propose that only the most gen-marization and generalization.
eral probable groups should be mined. For example, if both Although previous studies developed effective and effi-
groups (smoking, drinking) and (smoking, *) are probable, cient methods for summarization, most of them only work
then the former groups should not be returned. The problemfor large classes. That is, the previous methods implicitly
of mining the most general probable groups is challenging or explicitly assume that the data (e.g., the training data set
since the probable groups can be widely scattered in the or the base table in a data warehouse) contains sufficient at-
cube lattice, and do not present any monotonicity in group tributes and enough instances to support the summarization
containment order. We extend the state-of-the-art BUC al- of the target class. However, this assumption may not be
gorithm to tackle the problem, and develop techniques andhonored in some applications.
heuristics to speed up the search. An extensive performance
study is reported to illustrate the effect of our approach. Example 1 (Motivation) In practice, more often than not
a minor class may not be accurately characterized using the
available attributes and cases. For example, although it is
1 Introduction well known that smoking may lead to lung cancer, fortu-
nately, more tha®0% of smokers will not end up getting
o : . lung cancer. Generally, lung cancer happens in less than
. Data summarlz_atmn IS-an _|mportant_data analysus taSk0.1% of average population. In other words, lung cancer
in data warehousing and online analytic processing. l:Orpatients form a minor class. The available attributes in con-

example, an insurance company may want to SUMMAnzeqq g s data may not be sufficient to characterize the class

the common features of low-risk customers based on a datebf lung cancer patients. Therefore, it is often impossible to

wa(;ehclusz otf).lc'tu stom{ehrs C"”?'ms- H|'gh acctur?cyhgng gooldbuild an accurate classification model for lung cancer pa-
l:n erstanca L' y aré the major requirements for nigh qual- ot on consensus data sets. Instead, it would be more
ity summarization. practical to identify the combinations of attributes, such as

Summarization from large databases, including multidi- “smoking” and “family history of lung cancer’, that have
mensional databases and data warehouses, has been StUdiSqnuch higher probability to lead to lung can'cer than the

*This research is supported in part by National Natural Science Founda-average cases. For example, the statistics identifying the
tions of China Grant NSFC 60473072, NSERC Grant RGPIN312194-05, high-risk groups that hav&% or more opportunities to get

NSF (US) Grant 11S-0308001, a President’s Research Grant and an En- ; ; ;
dowed Research Fellowship Award in Simon Fraser University. All opin- lung cancer than the average might be very interesting and

ions, findings, conclusions and recommendations in this paper are those ohEIprI n health-lnforma'_ucs resgargh.) L
the authors and do not necessarily reflect the views of the funding agencies. As another example, in security-informatics, it is gener-

ally very hard, if not impossible at all, to construct an accu- amine how such queries should be answered effectively.
rate model for terrorists, since the class terrorists is a very

minor class in population. Instead, it is more practical to 2.1 Preliminaries

identify the suspicious groups and then follow-up investi-

gations can be conducted. n Consider dase tableB = (D;, ..., D,,C), whereD;,

= he ab | btain th _ b ..., D,, are then dimensiongndC is the attribute otlass
rom the above example, we obtain the motivating ob- |ahe|s \We assume that all dimensions are in categorical
servations as follows. There are real applications where they, .« For any tuple, the value oft on attributeA is

task is to summarize some minor classes that might not be enoted by. A

accurately characterized using the available attributes andd An (aggrégéte cellis a tuplew = (w: wn), where

H A - sy n)y
mstances.. In such cases, it is often qseful to query thewi € D, U {+} (1 <i < n). Whenuw; = *, the dimension
groups of instances that have a much higher probability to D, is generalized inv. That is, matches any value in a

belong to the target minor classes. Such groups are calleqjiansion. Thecoverof an aggregate celb, denoted by

probal;)]!e groups ke th blemmiiltidi ional cov(w), is the set of tuples iB that have the same values
In this paper, we tackle the problemmiiltidimensional _<, “in all dimensions thaty; # +. That is,

summarization of probable groups in data warehousesl
make the following contributions. cov(w) = {t|(t € B)A(t.D; = w.D; foranyw.D; # *)}.

o We identify a novel type of data summarization queries A cell w is called abase cellif for any dimensionD;,
— probable group queriesWe illustrate that the prob- w.D; # *. A base cell is a group-by of all dimensions in
able group summarization queries are useful for sum-the base table.
marization of minor classes. We also show that the For aggregate cell®; andw,, w; is anancestorof w,
problem of multidimensional summarization of proba- andws, is adescendantf w,, denoted byw; > ws, pro-
ble groups in data warehouses is challenging since thevided (1) for every dimensiol; such thatw;.D; # =,
probable groups may be widely scattered in the dataw:.D; = wi.D;; and (2) there exists some dimensiby,
cube lattice as the search space, and they do not presergtuch thatw;.D;, = * andws.D;, # *. Particularly, ifw,
any monotonicity in group containment order. is a descendent af, and agrees withy; on(n — 1) dimen-
sions, thenw, is called gparent cellof w,, andw, is achild

e \We propose mining the most general multidimensional cell of w,. It is easy to show the following

summarization We show that finding all probable
groups can be ineffective and computational costly. In- Lemma 1 (Cover containment [12]) For any cellsw, and
stead, we propose mining the most general probablew: such thatw;, = ws, cov(w;) 2 cov(ws). "

roups as the succinct summarization. . . .
group However, the reverse direction of Lemma 1 is not true.

e We develop efficient algorithmaVe extend the sate- That is, generally, we cannot deriug - w, based on the
of-the-art cubing algorithm BUC [3] to compute all factcov(w:) 2 cov(wz) [12].
the most general probable groups. To make the mining
more efficient, we further develop a heuristic dynamic- 2.2 Probable Group Queries
ordering method with smart techniques to prune un-
promising recursive search. The new method is up to For a giventarget class: € C' and an aggregate cell,
3 times faster than the simple extension of BUC. the probability of ¢ in w, denoted byrob(w, c), is the ratio

of tuples incov(w) that belong to class That is,

prob(uw,c) = HILE |(w)2$> |(t'c =l

e \We report an extensive performance stutlge exper-
imental results strongly suggest that our approach is
efficient and scalable.

The rest of the paper is organized as follows. The prob- When the target classis fixed and clear from context,
lem is defined in Section 2. We develop algorithms for the We 0mitc and writeprob(w, c) asprob(w).
problem in Section 3. An extensive performance study is Anaggregate celb is called gprobable groupor aprob-
presented in Section 4. We review related work in Section 5. 8ble cellprovided thatrob(w, ¢) > min_prob, wherec is

The paper is concluded in Section 6. the target class andhin_prob is the minimum probability
thresholdspecified by a user.
2 Problem Description Problem definition 1 (Probable group queries) Given a

base table, a target class and a minimum probability thresh-
In this section, we first introduce the preliminaries. old, aprobable group queris to retrieve the complete set
Then, we present the probable group queries. Last, we ex-of probable groups. [

| A B[C |#tuples| #tuplesinP | prob |
aq b1 C1 7 1 1429%
a; | by | c2 9 2 22.22%
a1 b2 C1 4 1 2500%
al bg C2 7 3 4286%
ajq b3 C1 10 2 2000%
al b3 C2 8 3 3750%
ag b1 C1 5 0 OOO%
a9 bl C2 11 1 909%
as bQ C1 7 2 2857%
a9 b2 C2 15 3 20.00%
a2 bg C1 4 0 000%
a9 b3 C2 12 3 25.00%

Table 1. The base table as our running exam-
ple.

in the figure,w; andws are probable cells, but, is not.
Therefore, probable cells are not monotonic. That is, a
probable cellw does not imply that the ancestors or the
descendants ab must be probable cells. [

2.3 Most General Probable Cells: Succinct Sum-
marization

Although probable cells are not monotonic, as shown in
Example 3, fortunately, they have a weak monotonic prop-
erty as follows.

Lemma 2 (Weak monotonicity) If w is a probable cell,
then at least one child ab must also be a probable cell.
Proof sketch. Letw’ be a child cell ofw such thaprob(w’)
is the maximum among all children cells of It can be
shown thatprob(w) < prob(w’). Sincew is a probable
cell, v’ is also a probable cell. [

As shown in Example 1, probable group queries are use-Example 4 (Weak monotonicity) It is easy to verify that,

ful in summarization of minor classes, such &gHat are
the groups of patients that haveb8% or more opportunity
to get lung cancer than the average?

in Figure 1, every probable cell has at least a child that is
also a probable cells. In fact, for any probable edlat is
not a base cell, there is a path from some base probable cell

Now, the problem becomes searching all probable to c such that each cell on the path is a probable cell. m

groups in a data warehouse. A nice property of data ware-

house is that all aggregate cells in data warehouse can be 1h€ weak monotonicity gives us two important hints.

organized in a lattice (callecube latticg by the cell cover
containment order [9, 12].

Example 2 (Cube lattice) Consider the base tahlg¢in Ta-
ble 1 as our running example. The table I3aslimen-
sions, namelyd = {ay,a2}, B = {b1,b2,b3}, andC =

{¢1, ca, c3}. The number of tuples in every group-by on di-

mensions4, B andC' is also shown in the table (column “#

tuples”). Let classP be the target minor class. The number

of tuples of class” in every group-by is also shown in the
column “# tuples inP”. prob(w, P) is also shown for every
base celkw.

The set of all possible aggregate cells has {x}|-|BU
{x}|-|CU{x}| = 3 x4 x 3 = 36 cells. The aggregate cells
form a lattice as shown in Figure 1.

Suppose we are interested in the aggregate cells that have
a ratio of25% or up. Those aggregate cells are highlighted

in Figure 1. There are in totaB probable groups (cells)

e All probable cells stem from base probable cells
other words, although there can be many probable cells
in a data warehouse, the base cells that have much
higher ratio of the target class enable the more gen-
eral aggregate probable cells. They are the “roots” of
those probable cells.

e The most general probable cells summarize the prob-
able cells For any probable celt, if it has some an-
cestor cell that is also a probable cell, it still can be
generalized. A cell isnost generalf every ancestor
cell of it is not a probable cell. The set of most gen-
eral probable cells describe the most general extent of
probable cells. Each probable cell is either most gen-
eral, or is summarized by some most general probable
cell.

Based on the above discussion, we can use the set of base
probable cells and the set of most general probable cells to

Probable cells are scattered in the cube lattice, as demonsuccinctly summarize a minor class.

strated in Figure 1.

If the probable cells have some

monotonic properties in the cube lattice, the search can beExample 5 (Most general probable cells)in our running
facilitated substantially. Unfortunately, probable cells do example, there are in totaB probable cells5 of them are

not carry such a nice property.

Example 3 (Probable cells have no monotonic property)
For aggregate cells; = (ay, b2, ¢1), wa = (a1, *,¢1), and
ws = (a1,*,*) in Figure 1,w; < wy < ws. As shown

base probable cells. There @most general probable cells,
namely(ay, , *), (%, ba, *) and(x, bz, c2). In other words,
only 1% = 23.08% of probable cells are most general, and
another% = 38.46% of probable cells are base cells. If
only the base probable cells and the most general probable

—
B
o0
o
2
]
g
=
2
o
oo
o
=
B
o
oL
o,
D
w
=
<
=
i)
=%
o
=
R

(e, b 1) (o, b, c2) (at, b2, c1):25% b, c2) (2 b2, c1)286% | (2, b2, ©2) (a2, b6, ct) | (a2, b3, c2):25%

(al, b, *) (*, b3, €2):30%

(.02,):36%4(a 55,1 28%(2, b1, YY) (@203 @, e Q)

(al, *, *):26.67%

(*’*’*)

Figure 1. The cube lattice.

cells are used for the succinct summarization, we only need BUC conducts bottom-up computation and can use the
to record8 probable cells, o% = 61.54% of all probable monotonic iceberg conditions to prune. To compute a data
cells. There is a considerable saving. cube on abase tabl& A, B, C, D), BUC first partitions the

As shown in our experimental results, using the base table according to dimensiaA, i.e., computing group-bys
probable cells and the most general probable cells can(A, x,x*,). Then, BUC recursively searches the partition
achieve good saving in summarizing probable cells. = of cov(a, x, *,), wherea € A, and computes the descen-

dant aggregate cells in depth-first search manner, such as

Clearly, the set of base probable cells can be computed 4, «, %), (a, bs, *, *), and so on. The computation order

as the group-by on all dimensions. Since the dimensionsjs summarized in Figure 2. It also employs counting sort to

are categorical, we can use counting setcompute them make partitioning and group-by operations efficient.
efficient. As will be shown later, computing the set of base

probable cells can be a byproduct of computing the set of (A.B.C.D)
most general probable cells.

Now, the problem becomes whether we can compute the
set of most general probable cells efficiently. In the rest of A B30 (A.*C* A.*D) (.8C" (.§8*D) (%.2CD)

(A,BC*) (A,B.*,D) (AJ CD) (*,B.C D)

the paper, we will focus on this issue. AT (L BEr (LT (LE*.D)

Problem definition 2 (Succinct Summarization) Given a (%%

base table, a target class, and a minimum probability

threshold, the problem sluccinct summarization of the tar- Figure 2. Bottom-up computation in BUC.

get clasgs to compute the complete set of base probable

cells and the complete set of most general probable calls. BUC can also efficiently incorporate monotonic condi-

tions to compute iceberg cubes. A monotonic condition
says that if an aggregate cell fails an iceberg condition,
any descendants of it must also fail. If an aggregate cell
. . i . (a, *, %, *) fails the monotonic iceberg condition, any de-
In this section, we first review BUC [3], a state-of-the- scendant of it, such &, b, ,), (a, , ¢, *) must also fail

art al_gorithm for computing complete data c_ubes. Then, the condition and thus does not need to be computed in the
we discuss how BUC can be extended to mine the set Ofdepth-first search of BUC.

most general probable cells. We further develop a heuristic
algorithm that can be much faster. 3.2 eBUC: Extending BUC to Mine Most General

. Probable Cells
3.1 BUC: Bottom-up Cubing

3 Algorithms

Although BUC is efficient to compute the complete data
cube, it cannot be directly used to compute the most gen-
eral probable cells — it cannot use the weak monotonicity
e . .

of probable cells to prune in a depth-first search. Here, we
' propose eBUC (forx@ended BUGQ, an extension of BUC
to use the weak monotonicity in the mining.

1According to Knuth, counting sort was invented by H.H. Seward in The central idea of eBUC is the following observation.

1954. Itis explained in many text books on algorithms, such as [5].

In [3], Beyer and Ramakrishnan developed algorithm
BUC, which computes the complete cube for a given base
table, i.e., the complete set of aggregate cells. Extensiv
performance studies [3, 15] showed that BUC is efficient
scalable and moderate in main memory usage.

Theorem 1 An aggregate cellv is a probable cell only if

(%, ba, %) and (x, bs, c2), respectively, and thus will not be

w is a base probable cell or it is an ancestor of some base output.

probable cell.

As shown in Figure 3, eBUC can find the complete set

Proof sketch. The theorem can be proved by induction on of most general probable cells. n

the number of-dimensions inv. Lemma 2 can be applied
repeatedly in the induction. [

From Example 6, we can see that the most general prob-

able cells and the weak monotonicity of probable cells can
eBuc conducts depth-first search just like BUC. At the Prune the search substantially. In this running example,
beginning of eBUC, by sorting all tuples in the base table only 17 of the 36 aggregate cells are searched. In other
using counting sort, eBUC computes the complete set ofWords, summarization takes only = 47.22% of the cost
base cells as a byproduct. It stores those base cells that argf computing the complete cube.

probable.

During the rest of the depth-first search, when a new ag-3.3 DYNO: Heuristic Search by Dynamic Order-

gregate cellw is encountered, eBUC “looks ahead”. That
is, it checks whethew is an ancestor of some base proba-
ble cells. If not, then following Theorem 1y cannot be a
probable cell. Moreover, any descendantiofdannot be an

ing

Algorithm eBUC shows good progress on mining the
most general probable cells.

It can be further improved

ancestor of a base probable cell, either. Thus, the recursivébased on the following two observations.

search starting ab cannot find any probable cells and thus
can be pruned.

When the search encounters a probableweil does not
need to search any descendantsupkince they cannot be
most generalw is stored and checked after the searchw If
is not a descendant of any other probable cells encountered
by the search, thew is one of the most general probable
cells.

Example 6 (Extended BUC) Let us run eBUC on the run-
ning example (Table 1). The search is shown in Figure 3.
Only the cells connect by a directed edge are searched. The
isolated cells are not searched.

eBUC starts from the most general c@ll x, x). It is not
a probable cell, but it is an ancestor of some base proba-
ble cells. Thus, eBUC searches its children recursively in
depth-first manner. The children are sorted in the dimen-
sions ordetA-B-C, and within each dimension, the alpha-
betical order is used.

The first child, (a1, , %), is probable. Thus, no descen-
dants of(aq, *,) are searched.

The second child(as, *, %), is not a probable cell, but
it is an ancestor of base probable cells, b2, c;) and

¢ In depth-first search, when an aggregate cell has multi-

ple children to be searched, the search from the left-
most child covers the largest number of descendant
cells. The search from a child cell always covers more
descendant cells than that from its right sibling. If a
child cell is probable, then all its descendants do not
need to be searched. Thus, if we can order the cells
dynamically such that the more promising a cell or its
descendants are probable, the more left the cell is put,
then sharper pruning is likely accomplished.

e As indicated by Theorem 1, only aggregate cells that

are ancestors of some base probable cells should be
considered. Thus, when expanding the search to chil-
dren cells, only the dimension values that appear in
some base probable cells that are descendants of the
current cell should be used to expand the children of
the current cell. All other children of the current cell
are not promising.

Based on the above two observations, we develop algo-
rithm DYNO (for DYNamic Qrdering). DYNO follows the
framework of eBUC and has the major improvements as

(a2, b3, c2). Thus, eBUC recursively searches its children. follows.

The first child, (aq, b1, %), iS not a probable cell, and it is

In the depth-first search, if the current cellis not a

not an ancestor of any base probable cells. Thus, as sugprobable cell but is an ancestor of some base probable cell,

gested by Theorem 1, the search @f, b1,) as well as its

then DYNO dynamically generates and orders the children

descendants can be pruned. eBUC moves to the sibling otells.

(az, b1, *) and search recursively.

DYNO does not expand all children cells of Instead,

The rest of the search is conducted similarly. Limited by DYNO collects all base probable cells that are descendants

space, we omit the details here.

of w. Only dimension values of those base probable cells

After the search, eBUC checks all the probable cells en-are used to assemble children cellsuof The correctness

countered. For example, although probable delisb., c¢1)

of this improvement follows the second observation above.

and(aq, b3, c2) are encountered by eBUC, they are not the Moreover, to guarantee the completeness of the search and
most general since they are descendants of probable cellavoid searching a cell more than once in the depth-first

(e, b 1) (o, b, c2) (a, b2, c1)25% | (a1, b2, 2)-42.984 (e b3, c1) | (e b3, c2:37.5%] (a2, ct) (a2, b, c2) (a2, b2, C1)286% | (a2, b2, €2) (a2, b3, c1) | (a2, b3, c:25%

(al, b, *)(al,bz,*):36%\(a1,b3,*):28%\ (al, *, cl)(aL* 2):33%| (a2, bl *) (@2, b2, *)(a2, b3, *)(a2, *, c1) (a2, *, c2)(*, bl 1) (*, b, c2)(* b2,cL):2796(* b2,c2):2796(* , b3, c1)| (*, b3, ¢2):30%

(al, *, *):26.67% (*,b1,%) (*, b2, *):27.21% (*,%,c2)

(**’*)]

Figure 3. Search using eBUC.

search, DYNO joinsv with the right siblings ofw to gen- (*,b3,c2:30%) | (a2,*,¢2) (a2,b3,*) (a2 * cl)
erate its children cells, where the join is defined as follows. \
For a pair of sibling cellav; and wq, two cases may (. 02,7)27.21% | [(@L*,")2667% | (.%.c2) (b3,%) (@.*.%) (*.*,cl)

arise.
. . . %%
e w; andws agree on all dimensions except for one di-
mensionD. That iS,wl.D 75 wa.D and both do not Figure 4. Search using DYNO.
take x on dimensionD. In this case, the join is not
defined. In other wordsy; andws cannot be joined.

e w; andw, agree on all dimensions except for two di- ~ When generating the children cells ©f, «, x), DYNO
mensionsD andD’. Thatis,w;.D = *, ws.D # *, notices thatb, never appears in any base probable cell.
wy.D' # * andwy.D' = . In this case, the join is ~ Thus, any aggregate cells havibg cannot be a proba-

defined asw; such thatws take values as its parent ble cell. - Although(x, by,) is a child of (x,x, %), itis
except for dimension® and D', ws.D = w,.D and unpromising and thus should not be generated. The chil-

ws. D' = w,.D'. dren cells of(x,*, x) generated by DYNO aréx, bs, *),
(a1, *,%), (x,%,¢2), (*,b3,%), (az,*,x), and (x,x*,cy), in
The current cellv may have multiple children. Then, ac- the probability descending order.
cording to the first observation discussed above, we should (a1,*,%) and (x,by,*) are probable cells. They are
search them in the order of likelihood that they are probable giored for postprocessing. The descendants of the two cells
cells. Heuristically, we can search them in their probabil- \yil not be searched.
ity descending order — the higher the probability, the better

chance that it or some of its descendants are a probable ceIIrhe right siblings, two children cells are generated, namely

We need to show that the above dynamic generatlon(*’b&cz) and(as, , c»). The mining can be conducted re-

and ordering of chlldrgn retains the completeness and non'cursively. Limited by space, we omit the details here.
redundancy of depth-first search.

After the search, for each probable cellencountered
Theorem 2 (Dynamic generation and ordering) A in the search, DYNO checks whetheris a descendant of
depth-first search with the dynamic generation and order- some other encountered probable cells. If not, thenwell
ing of children cells visits each aggregate cell once and is output as a most general probable cell.
only once if no pruning is taken. It can be verified that DYNO can find the three most gen-
Proof sketch. The theorem can be proved by induction on eral probable cells. -
the number of non- dimensions in aggregate cells. For

each celkw, it can be shown thab will be generated once]
and only once. Limited by space, we only show the essen- From the above example, we can see that DYNO can find
tial idea here. - the complete set of most general probable cells. Moreover,

DYNO searches much fewer cells than eBUC. In this ex-
Example 7 (DYNO) Let us apply algorithm DYNO on our ample, DYNO searchesl cells, while eBUC searches
running example. The search is illustrated in Figure 4. cells. DYNO searche% = 35.29% less cells than eBUC.
DYNO starts from the most general céH, x,). Since Our experimental results show that DYNO can search over
it is not a probable cell, but it is an ancestor of some base50% less cells than eBUC. This is a major saving in the min-
probable cells, we need to search its children. ing. To summarize, algorithm DYNO is shown in Figure 5.

DYNO recursively searches ceglk, *,c2). By joining

Dimension=6 Cardinality=100

Algorlthm DYNO 900000 #of most geh prot'J cells —%—

Input: a base tablé3, a target class, and a minimum 800000 # of prob cells —a—]
probability threshold; Jitoon

Output: the set of base probable cells and the set of most 5 500000 T~
general probable cells; § 400000 N

Method: 300000 =

1. sort tuples inB, compute and output the base probable e B)
Ce”S' also CompUtﬁTOb(*’.”’*); 003 0.35 0.4 045 05 055 0.6 0.65 0.7

2. letW = 0; TR R e e Tow BR TR

. Probability threshold
3. conduct depth-first search from céll . . ., x), for

each current celb, do
4, if w is not an ancestor of any base probable cell
then return;
if prob(w) > § thenW = W U {w}, return;
6. generate children ab by joining w with the right
siblings ofw, using only the dimension values that o|d goes down, the number of probable cells keeps growing.

Figure 6. Number of probable cells with re-
spect to minimum probability threshold.

;

appear in descendant base probable cells of However, the number of most general probable cells does
7. compute probability for children cells; not monotonically change. When the minimum probability
8. sort the children ofv in the probability descending threshold is high, there are only a small number of prob-
order; able cells, and the number of most general probable cells
9. search the children recursively in depth-first is also small. As the minimum probability threshold goes
manner; down, both the number of probable cells and the number of
most general probable cells increase. When the minimum
/I Postprocessing probability threshold is lower thas0% in our experiments,
10. remove cells from W such thatw has an ancestar’ there are many probable cells. They can be summarized by
in W, some quite general probable cells. The strong capability of
11. outputW; high level aggregate cells to summarize the low level cells
brings down the number of most general aggregate cells. In
Figure 5. Algorithm DYNO. the extreme case, when the_ most general cell in the cube,
(*,...,%), is probable, there is only one most general prob-
able cell.

4 Experimental Results

Cardinality=100,minsup=1,threshold=0.3

We conducted extensive experiments using synthetic 3:222 [Mostgerera g;gggg:gég"g —— /]
data sets. The results are consistent. Limited by space, we W 66+006 Base probable cells 0
only reported some results in this section. B ses006

All the algorithms are implemented using Microsoft Vi- g 4e+006
sual C++ V6.0. The experiments are conducted on a PC £ 3es006
with a P4 1.5G Hz CPU and 512 MB main memory. The = 2e008 «
operating system is Microsoft Windows XP. 1‘”002 g

By default, a base table h&8 dimensions. The cardinal- 4 5 6 7 8 9 10
ity of each dimension i$00. There are 00 thousand tuples Dimensions

in the base table. Each tuple is a base cell with a popula-

tion and a probability of the target class. The probability of ~ Figure 7. The number of probable cells with

the target class in base cells follows the Half-Normal Dis- respect to dimensionality.

tribution in [0, 1], i.e., a normal distribution with meah

and standard deviatioh limited to the domairo, 1]. In the

results reported in this section, we et 1. The number of probable cells and the number of most
First of all, it is interesting to examine the change of the general probable cells also increase as the dimensionality

number of probable cells and the number of most generalincreases, as shown in Figure 7. However, the number of

probable cells with respect to the probable threshold, whichmost general probable cells has a much more moderate in-

is shown in Figure 6. As the minimum probability thresh- crease rate.

Dimension=10,Cardinality=100 collect more information than eBUC. However, the major

1000 a0 advantage of DYNO is that it generates much less candi-
o DYNO —+—] date cells than eBUC, which makes the postprocessing of
700 DYNO clearly faster.
S 600
% 500
'E 400 Dimension=10 Cardinality=100
300 1000 BU'C T
200 . e —%—
DYNO —=—
100 800
0
0.3 035 04 045 05 055 0.6 0.65 0.7 I 600 \
Probability threshold %
E 400
Figure 8. The scalability with respect to mini- 200 T~
o I
mum probability threshold. —~

0
0.3 035 04 045 05 055 0.6 0.65 0.7
Probability threshold

In Figure 8, we tested the scalability of eBUC and
DYNO with respect to the probability threshold. When
the probability threshold is set high, the number of prob-
able cells and the number of most general probable cells
are small. Thus, both algorithms are fast and the differ- Figure 10 shows the postprocessing runtime. Both

ence between the two algorithms is minor. However, when byNO and eBUC use the same method in postprocessing
the probability threshold is low, there can be many probable 15 remove the non-most general probable cells. Since the

Figure 10. The postprocessing runtime with
respect to minimum probability threshold.

cells. DYNO has a much better scalability than eBUC. heuristic search in DYNO (dynamic generation and order-
ing of children cells) can effectively reduce the number of
Dimension=10 Cardinality=100 probable cells searched, the postprocessing cost in DYNO
s eBUC % is substantially smaller than that in eBUC.
DYNO —=—
25
- / Dimension=10 Cardinality=100
& 1.8e+08 —
£ |
i / o % 1.6e+08 —
15 S 14e+08
2
o / z 1.2e+08 —
03 035 04 045 05 055 0.6 065 0.7 ; le+08>
Probability threshold -g 8e+07
2 eer07 eBUC —x— 1
H . . . 2e+07 IZ?YNO‘ A
Figure 9. Th_e _depth-flrst se_a_rch runtime with 03 035 04 045 05 055 06 065 0.7
respect to minimum probability threshold. Probability threshold

) o Figure 11. The number of aggregate cells

into two parts: the time for depth-first search and the time hreshold.

for postprocessing. An interesting observation is that the

depth-first searches in DYNO and eBUC only take a small

part in the total runtime. The runtime for depth-first search ~ Figure 11 supports the claim that DYNO visits substan-
is shown in Figure 9. As can be seen, when the minimum tially less aggregate cells in finding the most general prob-
probability threshold is low and the number of most general able cells. DYNO also encounters much less probable cells
probable cells decreases, DYNO and eBUC become moren the depth-first search than eBUC. The numbers of prob-
efficient in the depth-first search. In other words, the curvesable cells encountered by DYNO and eBUC, respectively,
of depth-first search runtime of DYNO and eBUC in Fig- follow the trends similar to the results in Figure 10. Lim-
ures 9 are consistent with the curve of number of most gen-ited by space, we omit the details here. It shows that the
eral probable cells in Figure 6. In terms of search time per pruning techniques in DYNO are effective.

cell, eBUC is shorter than DYNO since DYNO needs to To test the scalability of our methods, we ranged the di-

mensionality fromd to 10. The results are shown in Fig-
ure 12. DYNO has a better scalability. Moreover, the re-

sults are consistent with the number of most general scal-

able cells shown in Figure 7.

Cardinality=100
300

eBUC —%—
250 DYNG —a—/ |

200

/4;

150

Time(sec)

100

50

/4/(
——4/
6 7 8
Dimension

10

Figure 12. The runtime with respect to dimen-
sionality.

We also tested the runtime of DYNO and eBUC on the
number of tuples in the base table. Both are linearly scal-
able, and DYNO has a better scalability. Limited by space,
we omit the details here.

In summary, the extensive experimental results strongly

suggest that using the most general aggregate cells can ef-

fectively summarize the probable cells. DYNO is an effi-
cient method to compute the most general probable cells.

5 Related Work

The data cube operator [9] is one of the most influential
operators in OLAP. Many approaches have been propose
to compute data cubes efficiently from scratch (e.qg., [24, 17,

these group-bys are computed, we do not need to scan the
base table any more. Multiway may not be efficient in com-
puting iceberg cubes with monotonic iceberg conditions,
since the top-down search cannot use the monotonic iceberg
condition to prune.

Fang et al. [7] proposed the concept of iceberg queries
and developed some sampling algorithms to answer such
queries. An iceber cube is the set of aggregate cells in a
cube that satisfy some user-specified condition. Beyer and
Ramakrishnan [3] introduced the problem of iceberg cube
computation in the spirit of [7] and developed algorithm
BUC, which is revisited in Section 3.1. Often, monotonic
iceberg conditions are used to prune in the computation of
iceberg cubes.

H-cubing [10] uses a hyper-tree data structure called
H-tree to compress the base table. Then, the H-tree can
be traversed bottom-up to compute iceberg cubes. It also
can prune unpromising branches of search using monotonic
iceberg conditions. Moreover, a strategy was developed
in [10] to use weakened but monotonic conditions to ap-
proximate non-monotonic conditions to compute iceberg
cubes. The strategies of pushing non-monotonic conditions
into bottom-up iceberg cube computation were further im-
proved by Wang et al. [22]. A new strategy, divide-and-
pproximate, was developed. The general idea is that the
eakened but monotonic condition can be made up for each
search sub-branch and thus the approximation and pruning
power ca be stronger.

In [23], Xin et al. developed Star-Cubing by extend-
ing H-tree to Star-Tree and integrating the top-down and
bottom-up search strategies. Feng et al. [8] proposed an-
other interesting cubing algorithm, Range Cube, which uses

data structure called range trie to compress data and iden-
tify correlation in attribute values. On the other hand, since

18, 3]). In general, they speed up the cube computation byjceperg cube computation is often expensive in both time

sharing partitions, sorts, or partial sorts for group-bys with
common dimensions.

It is well recognized that the space requirements of data

and space, parallel and distributed iceberg cube computa-
tion has been investigated. For example, Ng et al. [15] stud-
ied how to compute iceberg cubes efficiently using PC clus-

cubes in practice are often huge. Some studies investigatg, o

partial materialization of data cubes, e.g., [11, 3]. Example

methods to compress data cubes are [19, 20, 12, 13]. More-

over, [1, 2, 21] investigate various approximation methods
for data cubes.

There are several major methods on computing (ice-
berg) cubes. MultiWay [24] is an array-based top-down
approach to computing complete data cube.

The basic

In all the previous studies, either the complete cube or
the complete iceberg cube is computed. None of them con-
sider the problem of computing a summarization of the cells
that satisfy some user-specified condition. None of them ei-
ther deal with mining the most general aggregate cells. To
the best of our knowledge, this paper is the first one that

idea is that a high level aggregate cell can be computed®ddresses the issue.

from its descendants instead of the base table. To com-

pute a data cube on a base talfleA, B, C, D), Multi-

On the other hand, this paper is also related to previ-
ous work on concept summarization [4], generalization and

Way first scans the base table once and computes group-bykearning [14]. However, different from those approaches,

(A,B,C,D), (x,B,C,D), (x,%,C,D), (% %% D) and
(x,%,%,%). These group-bys can be computed simultane-

)))

we use the most general aggregate cells to summarize prob-
able groups, which have not been discussed in those previ-

ously without resorting the tuples in the base table. Onceous studies.

6 Conclusions

Data summarization is an important data analysis task
in data warehousing and online analytic processing. In this
paper, we identified a new type of summarization queries,

probable group queriesand proposed a succinct summa-
rization answer to the queries using the base probable cells
and the most general probable cells. The problem of min- [12]

ing the most general probable cells is challenging since the
probable cells can be widely scattered in the cube lattice,
and do not present any monotonicity in cover containment

[10]

[11]

order. We extended the state-of-the-art BUC algorithm to [13]
tackle the problem, and developed techniques and heuris-
tics to speed up the search. An extensive performance study
verified that our approach is effective and efficient.

This study raises several interesting problems for future

studies. For example, it is interesting to improve the per-
formance of DYNO further, especially reducing the cost of [15]
ancestor-descendant checking in the postprocessing. More-
over, summarization and understanding of minor classes are
important for data analysis and applications. Theoretical 16]

framework as well as practical mining methods should be

explored further.

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

D. Barbara and M. Sullivan. Quasi-cubes: Exploiting
approximation in multidimensional databasesSIGMOD
Record 26:12-17, 1997.

D. Barbara and X. Wu. Using loglinear models to compress
datacube. IIWAIM’200Q pages 311-322, 2000.

K. Beyer and R. Ramakrishnan. Bottom-up computation of
sparse and iceberg cubes.Rroc. 1999 ACM-SIGMOD Int.
Conf. Management of Data (SIGMOD’99)ages 359-370,
Philadelphia, PA, June 1999.

Y. Cai, N. Cercone, and J. Han. An attribute-oriented ap-
proach for learning classification rules from relational data-
bases. InProc. 1990 IEEE Int. Conf. Data Engineering
(ICDE’90), pages 281288, Los Angeles, CA, Feb. 1990.

T. Cormen, C. Leiserson, and R. Rivegttroduction to Al-
gorithms The MIT Press, Cambridge, MA, 1990.

R. Duda and P. HarPattern Classification and Scene Analy-
sis John Wiley & Sons, 1973.

M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani,
and J. D. Ullman. Computing iceberg queries efficiently.
In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB'98)
pages 299-310, New York, NY, Aug. 1998.

Y. Feng, D. Agrawal, A. E. Abbadi, and A. Metwally. Range
Cube: Efficient cube computation by exploiting data correla-
tion. InProc. 2004 Int. Conf. Data Engineering (ICDE’'Q4)
pages 658-669, Boston, MA, April 2004.

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
cube: A relational operator generalizing group-by, cross-tab
and sub-totals. IfProc. 1996 Int. Conf. Data Engineering
(ICDE’96), pages 152-159, New Orleans, Louisiana, Feb.
1996.

[14]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

J. Han, J. Pei, G. Dong, and K. Wang. Efficient compu-
tation of iceberg cubes with complex measures. Pioc.
2001 ACM-SIGMOD Int. Conf. Management of Data (SIG-
MOD’01), pages 1-12, Santa Barbara, CA, May 2001.

V. Harinarayan, A. Rajaraman, and J. D. Ullman. Imple-
menting data cubes efficiently. Rroc. 1996 ACM-SIGMOD
Int. Conf. Management of Data (SIGMOD’'9§)ages 205—
216, Montreal, Canada, June 1996.

L. Lakshmanan, J. Pei, and J. Han. Quotient cube: How
to summarize the semantics of a data cube Pioc. 2002

Int. Conf. Very Large Data Bases (VLDB'QZ2)ong Kong,
China, Aug. 2002.

L.V.S. Lashmanan, J. Pei, and Y. Zhao. QC-Trees: An effi-
cient summary structure for semantic OLAP.Rroc. 2003
ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’03), San Diego, California, June 2003.

T. M. Mitchell. Generalization as searctrtificial Intelli-
gence 18:203-226, 1982.

Raymond T. Ng, Alan S. Wagner, and Yu Yin. Iceberg-cube
computation with PC clusters. Proc. 2001 ACM-SIGMOD
Int. Conf. Management of Data (SIGMOD’Qi$anta Bar-
bara, CA, May 2001.

J. R. Quinlan. Induction of decision treelslachine Learn-
ing, 1:81-106, 1986.

K. Ross and D. Srivastava. Fast computation of sparse dat-
acubes. InProc. 1997 Int. Conf. Very Large Data Bases
(VLDB'97), pages 116-125, Athens, Greece, Aug. 1997.

Kenneth A. Ross and Kazi A. Zaman. Optimizing selections
over datacubes. IBtatistical and Scientific Database Man-
agementpages 139-152, 2000.

Jayavel Shanmugasundaram, Usama Fayyad, and P. S.
Bradley. Compressed data cubes for olap aggregate query
approximation on continuous dimensions.Aroceedings of

the fifth ACM SIGKDD international conference on Knowl-
edge discovery and data miningages 223-232, San Diego,
California, United States, 1999. ACM Press.

Yannis Sismanis, Nick Roussopoulos, Antonios Deligian-
nakis, and Yannis Kotidis. Dwarf: Shrinking the petacube. In
Proc. 2002 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’02) Madison, Wisconsin, June 2002.

J. S. Vitter, M. Wang, and B. R. lyer. Data cube approxima-
tion and historgrams via wavelets. Rroc. 1998 Int. Conf.
Information and Knowledge Management (CIKM'98ages
96-104, Washington DC, Nov. 1998.

K. Wang, Y. Jiang, J. X. Yu, G. Dong, and J. Han. Pushing
aggregate constraints by divide-and-approximate Prioc.
2003 Int. Conf. Data Engineering (ICDE’'03pages 291—
302, Bangalore, India, March 2003.

D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Comput-
ing iceberg cubes by top-down and bottom-up integration. In
Proc. 2003 Int. Conf. on Very Large Data Bases (VLDB,02)
pages 476-487, Berlin, Germany, Sept. 2003.

Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-
based algorithm for simultaneous multidimensional aggre-
gates. InProc. 1997 ACM-SIGMOD Int. Conf. Management
of Data (SIGMOD’97) pages 159-170, Tucson, Arizona,
May 1997.

