
MAPO: Mining API Usages from Open Source Repositories

Tao Xie
Department of Computer Science

North Carolina State University
Raleigh, NC 27695

xie@csc.ncsu.edu

Jian Pei
School of Computing Science

Simon Fraser University
Burnaby, BC Canada V5A 1S6

jpei@cs.sfu.ca

ABSTRACT
To improve software productivity, when constructing new software
systems, developers often reuse existing class libraries or frame-
works by invoking their APIs. Those APIs, however, are often com-
plex and not well documented, posing barriers for developers to use
them in new client code. To get familiar with how those APIs are
used, developers may search the Web using a general search engine
to find relevant documents or code examples. Developers can also
use a source code search engine to search open source repositories
for source files that use the same APIs. Nevertheless, the number
of returned source files is often large. It is difficult for develop-
ers to learn API usages from a large number of returned results.
In order to help developers understand API usages and write API
client code more effectively, we have developed an API usage min-
ing framework and its supporting tool called MAPO (for Mining
API usages from Open source repositories). Given a query that de-
scribes a method, class, or package for an API, MAPO leverages
the existing source code search engines to gather relevant source
files and conducts data mining. The mining leads to a short list of
frequent API usages for developers to inspect. MAPO currently
consists of five components: a code search engine, a source code
analyzer, a sequence preprocessor, a frequent sequence miner, and
a frequent sequence postprocessor. We have examined the effec-
tiveness of MAPO using a set of various queries. The preliminary
results show that the framework is practical for providing informa-
tive and succinct API usage patterns.

Categories and Subject Descriptors: D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement

General Terms: Design, Documentation, Measurement.

Keywords: Application Programming Interfaces, Program Com-
prehension, Mining Software Repositories.

1. INTRODUCTION
During software development, by invoking the corresponding

APIs, developers often reuse existing class libraries or frameworks
to write client code. These APIs, being equipped with only sim-
ple API documents, however, are often complex and not well doc-
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umented. For example, suppose we plan to use the Byte Code
Engineering Library (BCEL) [9] to instrument the bytecode of a
Java class by adding an extra method to the class (This program-
ming task was faced by the first author when developing a dynamic
analysis tool). By a quick search on BCEL’s API document, we can
find a class calledorg.apache.bcel.generic.ClassGen con-
taining a method calledpublic void addMethod(Method m),
which seems to be the right API method to use. From the API doc-
ument for this method, we only see a simple description for the
method: “Add a method to this class. Parameters: m - method to
add.” We still do not know how to use this method, in particu-
lar, how to prepare theMethod object, what method calls should
be invoked on thisMethod object beforeaddMethod is invoked,
and what method calls are needed to be invoked on theClassGen
object before and after theaddMethod is invoked, and so forth.

Because the API document does not provide sufficient informa-
tion for us to learn how to use the API, we can search the Web using
a general search engine, say Google, to look for other developers’
experience of using the API. We can indeed find some articles that
include code segments to briefly explain specific usages of BCEL.
However, because the same API can be used in different ways, we
still do not have high confidence on whether the described code seg-
ments represent the API usage that we should follow. We can also
use some code search engines such as the Koders search engine [3]
and the SPARS-J search engine [5, 13]. These search engines re-
trieve from open source repositories a long list of source files that
contain the call sites of theaddMethod method. Nevertheless, the
numerous and improperly sorted results returned by those source
code search engines cannot quickly and comprehensively help us
understand the commonality among these source files.

Only collecting a set of call sites or code segments is far from
enough to support developers’ learning of API usage. Developers
are interested in the inherent usage patterns of APIs. Thus, the real
challenge is how to constructa tool to analyze the code segments
and disclose the inherent usage patterns, which motivates this re-
search.

In order to help developers understand API usages and write API
client code more effectively, we have developed an API usage min-
ing framework and its supporting tool called MAPO (for Mining
API usages from Open source repositories) by leveraging the exist-
ing code search engines. The mining produces a short list of fre-
quent API usage patterns for developers to inspect. MAPO consists
of five components: a code search engine, a source code analyzer,
a sequence preprocessor, a frequent sequence miner, and a frequent
sequence postprocessor. To examine its effectiveness, we have ap-
plied the MAPO tool on a set of various queries. The preliminary
results show that the framework is practical for providing informa-
tive and succinct API usage patterns.



2. MAPO DESIGN CONSIDERATIONS
In MAPO, we want to achieve the following four objectives.

1. The tool should be able to extract API usage information
from a source file that may not be able to be compiled by
a compiler, because a source code search engine may not re-
turn all other source files that the source file depends on.

2. The tool should be able to infer frequent API usages that
include sequencing information among method calls. The
sequencing information is an important part of API usages.
For example, theopen method of aFile object needs to be
invoked before theread method.

3. The tool should be able to mine frequent API usages that in-
clude method calls from more than one class, because realis-
tic API usages often involve methods from multiple classes.

4. The tool should be able to produce a short list of relevant
frequent API usage patterns for inspection.

3. CHOICES OF MINING TOOLS
Given a set of code segments, a user wants to obtain the com-

mon usage patterns of APIs. A few data mining techniques may be
applicable in such a situation.

Straightforwardly, for each code segment, we can obtain the set
of APIs used in the segment. Then, we can mine the combinations
of APIs appearing in many segments by applying the frequent item-
set mining methods such as Apriori [6] and FP-growth [10]. Given
a transaction database where each transaction is a set of items, and
a minimum support thresholdmin sup, a frequent itemset mining
method returns the complete set of item combinations that appear
in at leastmin sup transactions.

Frequent itemset mining provides the insights on which APIs
are frequently used together in code segments. However, it still
does not fully disclose the usage patterns. Particularly, frequent
itemsets do not indicate how a group of APIs may be invoked in
some specific order.

To capture the groups of APIs that are frequently used together
as well as the orders in which they are used, we mine sequential pat-
terns [7]. Given a database of sequences and a minimum support
thresholdmin sup, a sequential pattern mining algorithm returns
the complete set of frequent subsequences, calledsequential pat-
terns, that appear in at leastmin sup sequences in the database.

The complete set of sequential patterns are informative for API
usage analysis. It, however, may contain redundant information.
For example, suppose methodsopen, read andclose of a File
object are always called in the order ofopen-read-close. Then,
〈open〉, 〈read〉, 〈close〉, 〈open; read〉, 〈open; close 〉, 〈read;
close〉, and〈open; read; close〉 are all sequential patterns with
the same frequency in the database. Pattern〈open; read; close〉
should be used as the representative of the whole group of sequen-
tial patterns because it captures the complete usage information
thatopen, read, andclose are used. Once pattern〈open; read;
close〉 is identified, the other six patterns in the group become re-
dundant because they are sub-patterns of〈open; read; close〉 and
have the same frequency. A patternS such as〈open; read; close〉
is called aclosed sequential pattern if it is frequent and there exists
no any proper super-pattern ofS having the same frequency asS.
In the API usage mining task, the complete set of closed sequential
patterns gives the complete yet non-redundant information on the
common usage patterns of APIs.

Finite state automaton (FSA) learning has been frequently used
to learn API protocols in the form of an FSA out of program-
execution traces [8, 16]. Given a set of sequences, an FSA learn-
ing algorithm reconstructs an FSA that can accept these sequences.
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Figure 1: An overview of the API usage mining framework.

In our research context, the sequences extracted from the results
of code search engines can include many irrelevant method calls;
therefore, applying FSA learning in our research context would
produce a large FSA, which is often not useful and not focusing.
A probabilistic FSA learning algorithm [18] can be used to infer a
probabilistic FSA where each edge is weighted by how often the
edge is traversed while accepting sequences. Infrequent behavior
reflected by those rarely-traversed edges can be removed to reduce
the complexity of the learned FSA. The resulting FSA, however,
would still be complicated.

4. API USAGE MINING FRAMEWORK
To automatically mine API usages from open source reposito-

ries, we have developed a novel framework based on existing code
search engines and a frequent sequence miner. Figure 1 shows the
overview of the framework. The framework receives a query de-
scribing a method name, class name, or package name, and outputs
a set of API usages (in the form of method call sequences). The
framework consists of five major components: a code search en-
gine, a code analyzer, a sequence preprocessor, a frequent-sequence
miner, and a frequent-sequence postprocessor. The code searchen-
gine receives a query and then searches open source repositories
for source files that are relevant to the query. The code analyzer
analyzes the relevant source files returned by the code search en-
gine and produces a set of method call sequences, each of which is
a callee sequence for a method defined in the source files. The se-
quence preprocessor inlines some call sequences into others based
on caller-callee relationships and removes some irrelevant call se-
quences from the set of call sequences according to the given query.
The frequent-sequence miner discovers frequent sequences from
the preprocessed sequences. The frequent-sequence postprocessor
reduces the set of frequent sequences in some ways. We next illus-
trate each of the components in the framework in detail.

4.1 Code Search Engine
There exist a number of code search engines1. Among the non-

academic search engines, we found that Koders [3], CodeBase [1],
and DocJar [2] can return a list of Java source files given the tex-
tual query of “bcel.” SPARS-J [5] developed by Inoue et al. [13]
is one of the few academic code search engines. Like the preceding
non-academic engines, SPARS-J can also return source files given
the textual query of “bcel.” Currently we have not committed our
development efforts to develop a tool for automatically grabbing

1http://gonzui.sourceforge.net/links.html



source files returned by various search engines. Instead, we manu-
ally download source files from the returned set of links. We plan
to implement a tool to automate this task in the future. Note that al-
though our framework is based on a code search engine, the source
files used for API usage mining can also be collected directly from
any source repositories, such as local source repositories within a
software company or a combination of open and local source repos-
itories.

4.2 Source Code Analyzer
To extract method-call sequences from source files, we have de-

veloped a source code analyzer based on a lightweight source code
analyzer PMD [4], which does not require source files to be com-
pilable. From each source file, the code analyzer extracts a list of
methods, each of which is associated with a sequence of method
calls invoked by the method. Currently we count the number of
method parameters to characterize method signatures in method-
call names. We ignore control flows but simply use call-site loca-
tions when extracting method-call sequences. Note that method-
call sequences can include method calls from more than one class;
therefore, we can later infer from them API usages involving more
than one class.

We incorporate various techniques in the source code analyzer to
try to collect the class name and the full package name (called full
class name) for each method call. The preceding task is not trivial
when the classes that a source file depends on are unavailable. We
keep track of field declarations and local variable declarations so
that we can know the class name of a method call based on the re-
ceiver object name. We keep track ofimport statements so that we
can know the full package name of a class based on the class name
if the class is explicitly exported in theimport statements. We
construct a map from method-call names to their full class names
across various source files in the first pass of the analysis. Then, in
the second pass, for those method calls whose full class names can-
not be found, we assign to them full class names if we can find the
same method-call names in the map. In the end, we filter out from
the extracted method call sequences those method calls whose full
class names cannot be found.

4.3 Sequence Preprocessor
We have developed several techniques to improve the quality of

extracted method-call sequences before they are fed to a mining
tool. First, we filter out those method calls whose full class names
start with “java.”: those are commonly used Java library classes.
Including them in the sequences is often not necessary.

Second, whenee is the callee of a callerer, and the method-call
sequence ofee is ms, we inline ee by replacing all occurrences
of ee with ms in the method-call sequence ofer. We perform the
inlining process for three iterations by default, allowing us to col-
lect method sequences up to the call depth of three. Note that if a
call sequence pattern is spread across several source files or the call
depth of three, MAPO cannot recognize it completely.

Finally, from the set of inlined sequences, we remove method-
call sequences that do not contain the given query entity (e.g.,
method name, class name, or package name), because these se-
quences are not relevant to the given query entity.

4.4 Frequent Sequence Miner
We use the BIDE [19] algorithm to mine closed sequential pat-

terns from the preprocessed method-call sequences. BIDE enu-
merates closed sequential patterns in a depth-first search. For ex-
ample, supposeA, B, C, andD are the APIs in question. Then,
the complete set of closed sequential patterns can be divided into

Table 1: API usage mining results
query #files #seqs #seqs-pre #freqseq #freqseq-post
BCEL 36 1087 186 429 8
Javassist 50 828 141 90 23

four exclusive subsets: the ones having〈A〉, 〈B〉, 〈C〉, and〈D〉 as
prefixes, respectively. Each subset is further divided recursively.

In the depth-first search, once a sequenceS is encountered
whose frequency in the database is smaller than the support thresh-
old, BIDE does not need to search any longer sequenceS′ that has
S as a prefix, because the frequency ofS′ cannot exceed that ofS.

Moreover, once a frequent sequenceS is met, all APIs that ap-
pear in every sequence that containsS in the database are also
extracted and a closed sequential pattern is formed. On the other
hand, ifS is a sub-sequence of a closed sequential patternS′ and
S andS′ have the same frequency, then BIDE does not need to
recursively search the subtree ofS, because it is not closed.

BIDE also uses a few techniques to speed up the search, such
as searching using projected databases and the pseudo-projection
technique. Limited by space, we omit the details here.

4.5 Frequent Sequence Postprocessor
Because the number of frequent sequences mined by BIDE could

be large, we have developed several techniques to reduce the size of
frequent sequences without compromising important API usage in-
formation. First, we remove frequent sequences that do not contain
the given query entity (e.g., method name, class name, or pack-
age name), because these frequent sequences are not relevant to
the query entity. Second, in frequent sequences, we compress con-
secutive calls of the same method into one. Alteratively we can
compress method-call sequences in a similar way in the sequence
preprocessor but doing compression here can help compress repet-
itive call patterns separated by infrequent method calls in original
call sequences. Third, we remove duplicate frequent sequences af-
ter the compression. Finally, we further reduce the set of frequent
sequences so that every frequent sequence in the reduced set is not
a subsequence of another in the reduced set. We adapted the imple-
mentation of the longest common sequences (LCS) [11] algorithm
to implement the subsequence checking.

5. PRELIMINARY RESULTS
We have applied MAPO on various queries. This section shows

two particular queries that are related to the motivating example
shown in Section 1. We searched Koders [3] with two queries: the
textual BCEL query of “org.apache.bcel.generic ClassGen
addMethod” and the textual Javaassist query of “javassist
CtClass addMethod,” where we replace those dots that separate
package names, class names, and method names with space char-
acters in order to allow Koders to return more related results. The
method in the Javaassist query has the same functionality as the
method in the BCEL query but these two methods are from two
different libraries.

Table 1 show the statistics of the API usage mining results for
these two queries. Columns 1-6 show the query name, the number
of source files returned by Koders, the number of sequences ex-
tracted by the code analyzer, the number of sequences produced by
the sequence preprocessor, the number of frequent sequences pro-
duced by BIDE, and the number of frequent sequences produced
by the frequent sequence postprocessor, respectively. From the sta-
tistics, we can observe that the sequence preprocessor is effective
in reducing the size of sequences before being fed to BIDE, and the
frequent sequence postprocessor is also effective in reducing the
size of frequent sequences before being inspected by users.



We inspected the frequent patterns produced by MAPO and
found them precise in general in characterizing the API usages. For
example, for the BCEL query, the first frequent sequence is listed
as below where package names are omitted for simplicity, the en-
closed numbers represent the total number of method parameters if
any, and “<init>” represents a constructor call.
InstructionList.<init>
InstructionFactory,createLoad(2)
InstructionList,append(1)
InstructionFactory,createReturn(1)
InstructionList,append(1)
MethodGen,setMaxStack
MethodGen,setMaxLocals
MethodGen,getMethod
ClassGen,addMethod(1)
InstructionList.dispose

The API usages mined by MAPO for the Javassist query are sim-
pler and also more diverse than the ones for the BCEL query. The
first frequent sequence is simply two method calls:
CtNewMethod,make(2)
CtClass,addMethod(1)

6. RELATED WORK
CodeWeb developed by Michail [17] mines association rules

such as that application classes inheriting from a particular li-
brary class often instantiate another class or one of its descendants.
MAPO focuses on API usages in general beyond library reuse pat-
terns through class inheritances. In addition, MAPO mines API us-
ages that include sequencing information among method calls. PR-
Miner developed by Li and Zhou [14] uses frequent itemset mining
to extract implicit programming rules and detect their violations
for detecting bugs. The rules mined by PR-Miner do not include se-
quencing information, which is mined by MAPO. A tool developed
by Williams and Hollingsworth [20] and DynaMine developed by
Livshits and Zimmermann [15] mine simple rules from software re-
vision histories. These rules involve mostly method pairs, whereas
MAPO mines more complicated API usage patterns from code seg-
ments returned by a code search engine. Different from all the pre-
ceding mining tools, which take no query before mining, MAPO
takes a query and mines from code segments relevant to the query.

MAPO is related to a number of code search engines [3,5,13] as
well as the Strathcona tool developed by Holmes and Murphy [12].
Strathcona locates a set of relevant code examples from an exam-
ple repository by matching the structure of the code under devel-
opment with the code examples in the repository. Like other code
search engines, Strathcona returns a list of relevant code examples,
whereas MAPO can extract common patterns among the list of
relevant code examples returned by a code search engine or even
Strathcona.

7. CONCLUSIONS
In order to help developers understand API usages and write API

client code more effectively, we have developed a novel framework
and its supporting tool called MAPO for mining API usages from
open source repositories by leveraging existing code search engines
and a frequent sequence miner. MAPO can produce a short list of
succinct frequent sequences for inspection. Our preliminary results
show that MAPO provides useful API usage patterns for develop-
ers to inspect. In future work, we plan to synthesize code frag-
ments from mined frequent API usages. These synthesized code
fragments can be directly inserted into developers’ code.
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