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Abstract mensions, ¢, d ande. If we use the patterns as features,

they form twopattern-based clusters
Pattern-based clustering is important in many appli-

cations, such as DNA micro-array data analysis, auto- s/, . C— obem1 0 80
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is challenging. On the one hand, there can be a huge num- 4
ber of clusters and many of them can be redundant and thus % | . ...
make the pattern-based clustering ineffective. On the other fg 7

hand, the previous proposed methods may not be efficient or , . Dimensions 0 0
scalable in mining large databases. abocde aoced boode
In th|S paper’ we Study the problemmb.ximal pattern_ (a) The data set (b) Pattern-based cluster 1 (c) Pattern—based cluster 2
based clustering Redundant clusters are avoided com- Figure 1. A motivating example.
pletely by mining only the maximal pattern-based clusters.
MaPle an efficient and scalable mining algorithm is devel- Some recent researches (e.g., [12]) indicate that pattern-

oped. It conducts a depth-first, divide-and-conquer searchbased clustering is useful in many applications. In gen-
and prunes unnecessary branches smartly. Our extensiveeral, given a set of data objects, a subset of objects form a
performance study on both synthetic data sets and real datapattern-based clusters if these objects follow a similar pat-
sets shows that maximal pattern-based clustering is effectern in a subset of dimensions. Comparing to the conven-
tive. It reduces the number of clusters substantially. More- tional clustering, pattern-based clustering is a more general
over, MaPleis more efficient and scalable than the previ- model and has two distinct features. On the one hénd,
ously proposed pattern-based clustering methods in miningdoes not require a globally defined similarity measubé-
large databases. ferent clusters can follow different patterns on different sub-
sets of dimensions. On the other hatitg clusters are not
necessary exclusiv& hat is, an object can appear in more
than one cluster.

The generality and flexibility of pattern-based clustering
) ) ) ~may provide interesting and important insights in some ap-

Clustering large databases is a challenging data miningpjications where conventional clustering methods may meet
task with many important applications. Most of the previ- difficulties. For example, in DNA micro-array data anal-
ously proposed methods are based on similarity measuregsis, the gene expression data are organized as matrices,
defined globally on a (SUb)Set of attributes/dimensions. where rows represent genes and columns represent sam-
However, in some applications, it is hard or even infeasi- ples/conditions. The number in each cell records the ex-
ble to define a good similarity measure on a global subsetpression level of the particular gene under the particular
of attributes to serve the clustering. condition. The matrices are often large, containing thou-

To appreciate the problem, let us consider clustering thesands of genes and hundreds of conditions. It is important
5 objects in Figure 1(a). There abedimensions. No pat-  to identify subsets of genes whose expression levels change
terns among thé objects are visibly explicit. However, as  coherently under a subset of conditions. Such information
elaborated in Figure 1(b) and (c), respectively, objects s critical in revealing the significant connections in gene
2 and3 follow the same pattern in dimensionsc andd, regulatory networks. As another example, in the applica-
while objectsl, 4 and5 share another similar pattern in di-  tions of automatic recommendation and target marketing, it
is essential to identify sets of customers/clients with simi-

*This research is partially supported by NSF Grant [1S-0308001. Any ol
opinions, findings, and conclusions or recommendations expressed in thisIar behaviorfinterest. As a concrete example, suppose that

publication are those of the authors and do not necessarily reflect the viewstN€ ranks of movies given by customers are collected. To
of NSF. identify customer groups, it is essential to find the subsets
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of customers who rank subsets of movies similarly. In the Definition 2.1 (pScore) Let DB = {rq,...,r,} be a

above two examples, pattern-based clustering is the majordatabase withn objects Each object hasn attributes

data mining task. A = {ay,...,an,}. We assume that each attribute is in
Although the pattern-based clustering problem is pro- the domain of real numbers. The value of objecbn at-

posed and a mining algorithm is developed by Wang et tributea; is denoted as;.a;. For any objects,,r, € DB

al. [12], some important problems remain not thoroughly and any attributesi,,a, € A, the pScore is defined

explored. In particular, we address the following two fun- g 2.0y Tg.Oy B
damental issues and make corresponding contributions irPSPSeere (| -7 0 ) = e aw = ryau) =
this paper. (rs-ap — Ty.00)||.

First, what is the effective representation of pattern-

based clustersAs can be imagined, there can exist many  Clearly, thepScore describes the similarity between two
pattern-based clusters in a large database. Given a patterispjects on two attributes. The smaller figrore value, the
based cluste’, any non-empty subset of the objects in the more similar are the two objects on the two dimensions.
cluster is trivially a pattern-based cluster on any non-empty pattern-based clusters can be defined as follows.

subset of dimensions. Mining and analyzing a huge num-

ber of pattern-based clusters may become the bottleneck ofefinition 2.2 (Pattern-based cluster)Let R C DB be a
effectlye analysis.Can we devise a non-redundant repre- ¢ pset of objects in the database dhd- A be a subset of
sentation of the pattern-based clusters? attributes. (R, D) is said ad-pCluster (for pattern-based

_ Our contributions. In this paper, we propose the min- - o)stej if for any objectsr,,r, € R and any attributes
ing of maximal pattern-based clusterEhe idea is to report

only those non-redundant pattern-based clusters, and skig,,,a, € D, pScore ([ ol Ta-o D < 4, where
T . ) . - Ty-Qy  Ty.Qy
their trivial sub-clusters. We show that, by mining maxi 5> 0
mal pattern-based clusters, the number of clusters can be re- = =+
duced substantially. Moreover, many unnecessary searches
for sub-clusters can be pruned and thus the mining effi-
ciency can be improved dramatically as well.
Second,how to mine the maximal pattern-based clus-

In a large database with many attributes, there can be
many coincident, statistically insignificant pattern-based
clusters. A cluster may be considergdtistically insignif-

ters efficiently?Our experimental results indicate that the '€@ntif it contains a small number of objects, or a small
number of attributes. Thus, a user may want to impose con-

algorithmp-Clusteringdeveloped in [12] may not be satis- . e : .
factorily efficient or scalable in large databases. The major Sraints on the minimum numbers of objects and attributes

bottleneck is that it has to search many possible combina-" & Pattern-based cluster. .
tions of objects and dimensions. In general, given (1) a cluster threshéld2) anattribute

Our contributions In this paper, we develop a thresholdmin,, (i.e., the minimum number of attributes),

novel mining algorithmMaPle (for Maximal Pattern-based ~ 2nd (3) arobject thresholdnin, (i.e., the minimum number
Clusteing). It conducts a depth-first, progressively refin- ©f Obiects), the task afinings-pClusterss to find the com-
ing search to mine maximal pattern-based clusters. We proPlete set ofd-pClusters(R, D) such tha(||R|| > min,)
pose techniques to guarantee the completeness of the searéﬁ‘d(”DH =z mma)'. A _6.-pCIuster satisfying the above re-
and also prune unpromising search branches. An extensivéluirement is callegignificant
performance study on both synthetic data sets and real dat? Although Fhe. r?\ttnbute and object thresholds are used to
sets is reported. The results show thi@Pleis significantly ~ 1Iter out insignificant pClusters, there still can be some
more efficient and more scalable in mining large databases, '¢dundarit significant pClusters. For example, consider
than methog-Clusteringin [12]. thg objects in Figure 1. Le§ = 5, ming = 3 and
The remainder of the paper is organized as follows. Sec-"i"% = 3. Then, we havé significant pClustersC, =
tion 2 defines the problem of mining maximal pattern-based ({1,2,3},{a,¢,d}), C2 = ({1,4,5},{b,c.d}), C5 =
clusters and reviews related work. In Section 3, we develop({174’ Shib,ce}), Co = ({1,4,5},{b.d,e}), C5 =
algorithm MaPle An extensive performance study is re- (1145}, {¢.d,e}), and Cs = ({1,4,5},{b, ¢, d,e}).
ported in Section 4. Section 5 concludes the paper. Among them (3, Cs, Cy andCs are subsumed b, i.e.,
the objects and attributes in the four clustets;Cs, are

Lo subsets of the ones ;.
2 PrOblem Def|n|t|0n and Related WOI’k In generaL a pC|ust%’1 — (Rth) is called asub-
clusterof Cy = (Rg, D) provided(R; C Rs) A (Dy C

Given a set of objects, where each object is described byD2). Moreover,C, is called aproper sub-clusteof C if
a set of attributes. A pattern-based clugtr D) is a sub-  eitherR; C Ry or D1 C D,. Pattern-based clusters have
set of objectsR that exhibit a coherent pattern on a subset the following property.
of attributesD. To formulate the problem, it is essential
to describe, given a subset of obje&tsand a subset of at- Lemma 2.1 (Closure of sub-clusters)LetC = (R, D) be
tributes D, how coherent the objects are on the attributes. a §-pCluster. Then, every sub-clusteR’, D) is a o-
The measur@Score serves this purpose. pCluster.




Mining the redundant sub-clusters is tedious and inef- mining frequent itemsets [4] is to find subsets of rows and
fective for analysis. Therefore, it is natural to mine only columns such that the sub-matrix is &l§, and the num-
the “maximal clusters”, i.e., the pClusters that are not sub- ber of rows is more than a given support threshold. If a
cluster of any other pClusters. minimum length constraintnin, is imposed to find only

frequent itemsets of no less thamn, items, then it be-
Definition 2.3 (maximal pCluster) A §-pClusterC'is said comes a problem of minin@-pClusters on binary data. Al-

maximal(or called aj-MPC in short) if there exists né- though there are many efficient methods for frequent item-
pClusterC’ such thatC' is a proper sub-cluster @f’. set mining, such as [5, 9], they cannot be extended to handle

the general pattern-based clustering problem since they can
Problem Statement (mining maximal §-pClusters). only handle the binary data.

Given (1) a cluster threshold, (2) an attribute threshold
ming, and (3) an object threshotdin,,, the task ofmining 3 Algorithm MaPle
maximals-pClustersis to find the complete set of maximal

6-pClusters with respect tavin, andmin,. .
P P Ha mito 3.1 Overview

2.1 Related Work EssentiallyMaPleenumerates all the maximal pClusters

. systematically. It guarantees both the completeness and the
The problem of pattern-based clustering and an algo-yon-redundancy of the search, i.e., every maximal pClus-

rithm, p-Clustering, are proposed in [12]. According t0 ter will be found, and each combination of attributes and

the extensive performance study reported in the pgper, objects will be tested at most once.

Clusteringoutperforms all previous methods. _ MaPle enumerates every combination of attributes sys-
The study of pattern-based clustering is related to previ- tematically in a dictionary order according to an order of

ous work on subspace clustering and frequent itemset Min-giiriputes.  For each subset of attribuies MaPle finds

Ing. , o _ the maximal subsets of objeci such that(R, D) is ad-

_ The meaning of clustering in high dimensional data sets pcyster. If(R, D) is not a sub-cluster of another pCluster

is often unreliable [6]. Some recent studies (e.g. [3, 1, 2, 7]) (R, D) such thatR C R, then(R, D) is a maximals-

focus on mining clusters embedded in some subspaces. FopClyster. This 4ttribute-first-object-later search is illus-
example, CLIQUE [3] is a density and grid based method. trated in Figure 2.

It divides the data into hyper-rectangular cells and uses the
dense cells to construct subspace clusters. attributes
Subspace clustering can be used to semantically com-

1. search asubset of attributes

press data. An interesting study in [10] employs a random- 8
ized algorithm to find fascicles, the subsets of data that share o| &8 1
similar values in some attributes. While their method is ef- § Zt | avossblemadmd plluser |
fective for compression, it does not guarantee the complete- E%

ness of mining the clusters. ™ 1
In some applications, global similarity-based clustering

may not be effective. Still, strong correlations may exist Figure 2. Attribute-first-object-later search.

among a set of objects even if they are far away from each

other as measured by distance functions (such as Euclidean) Tnhere can be a huge number of combinations of at-

used frequently in traditional clustering algorithms. Many intes. MaPle prunes many combinations unpromising
scientific projects collect data in the form of Figure 1(a), tor 5-pClusters. Following Lemma 2.1, for subset of at-
and it is essential to identify clusters of objects that mani- yinhutesD. if there exists no subset of objedissuch that
fest coherent patterns. _A variety of appll_cau_ons, |r_1clud|ng (R, D) is a significant pCluster, then we do not need to
DNA microarray analysis, collaborative filtering, will ben- g5, any superset 6. On the other hand, when search-
efit from fast algorithms that can capture such patterns. ing under a subset of attributé MaPleonly checks those

Cheng and Church propose the biclustering model [8], sypsets of object® such that R, D') is a pCluster for ev-
which captures the coherence of genes and conditions in &, p/ - p. Clearly, only subset® C R may achieve

sub-matrix of a DNA micro-array. Yang et al. [13] develop s-pCluster(R’, D). Such pruning techniques are applied

a move-based algorithm to find biplusters more efficiently. recursively. ThusMaPle progressively refines the search
On the other hand, a transaction database can be modsiep py step.

glled as a binary matrix, where polumns ancj rows stgnd for Moreover, MaPle also prunes searches that are un-

items and transactions, respectively. A agl} is set tol if promising to find maximal pClusters. It detects the at-

item j is contained in transaction Then, the problem of  yihytes and objects that can be used to assemble a larger
Iwang et al. did not give a specific name to their algorithm in [12]. We pCluster from the Curr.ent pCluster. MaPIeflnds that the

call it p-Clusteringsince the main function in the algorithm gluster) current subsets of attributes and objects as well as all pos-

and we want to distinguish the algorithm from the pclusters. sible attributes and objects together turn out to be a sub-




cluster of a pCluster having been found before, then the re-3.2 Computing and Pruning MDSs
cursive searches rooted at the current node are pruned, since
it cannot lead to a maximal pCluster. A pCluster must have at least two objects and two at-

Why doedvlaPleenumerate attributes first and then ob- tributes. Intuitively, we can use those pClusters contain-
jects later, but not in the reverse way real databases, INg only two objects or two attributes to construct larger
the number of objects is often much larger than the numberPClusters having more objects and attributes. Given a
of attributes. In other words, the number of combinations databaseDB and a cluster threshold. A 4-pCluster
of objects is often dramatically larger than the number of C1 = ({o1,02}, D) is called anobject-pair MDS (for
combinations of attributes. In the pruning using maximal Maximal dmension st) if there exists n@-pClusterC; =
pClusters discussed above, if the attribute-first-object-later({01, 02}, D') such thatD C D’. On the other hand, a
approach is adopted, once a set of attributes and its descer-PClusterCy = (R,{a1,az}) is called anattribute-pair
dants are pruned, all searches of related subsets of object¥IDSif there exists nd-pClusterC; = (R, {a1, a}) such
are pruned as well. Heuristically, the attribute-first-object- thatR C R’.

later search may bring a better chance to prune a more bushy MaPlecomputes all attribute-pair MDSs psClustering
search sub-tre&. does. The method is illustrated in Figure 4(b). Limited by

space, we omit the detailed algorithm here and only show

Essentially, we rely on MDSs, the maximaMPC con- the following example.

taining only two objects or two attributes, to determine
whether a subset of objects and a subset of attributes toExample 1 (Finding attribute-pair MDSs) Figure 4(a)
gether form a pCluster. Therefore, as a preprocessing, weshows the object values of two attributesandy. The last
materialize all non-redundant MDSs. row shows the differences of the object values.

Based on the above discussion, we have the framework

P Attribute Objects
of MaPleas shown in Figure 3.
? alblcld]elf]g[h
T 13 | 11 9 7 9 13 2 15
Y 7 4 10 | 1] 12 3 4 7
Input: da‘tabaseDB,.cIusterthresht_)ld, attribute threshold (2-y [6 ] 7] -1]6] 3]10]-2]8 |
out tmtlr:la and c:b{ectt[\r?sholt_hzgf;d t (a) The object values of two attributesandy.
utput: the complete set of maximatpClusters;
Metho: (s 2166 78 10
(2) compute and prune attribute-pair MDSs and object-pair e g c adb h f
MDSS;.// SeCtI.OF.l 3.2 . . (b) Finding MDS
2) progressively refining, depth-first search for maximal
§-pClusters; // Section 3.3 Figure 4. Finding MDS for two attributes.
Figure 3. Algorithm MaPle To compute the attribute-pair MD$;-Clusteringsorts

the objects in the difference ascending order, as shown in
Figure 4(b). Supposé = 2. P-Clusteringruns through
Comparing top-Clustering MaPle has several advan- the sorted list using a sliding window of variable width.
tages. First, in the third step pfClustering for each node  The objects in the sliding window form &pCluster pro-
in the prefix tree, the combinations of the objects registeredvided the difference between the rightmost element and the
in the node will be explored to find pClusters. This can be leftmost one is no more thah For examplep-Clustering
expensive if there are many objects in a nodeMaPle the firstly sets the left edge of the sliding window at the left
information of pClusters is inherited from the “parent node” end of the sorted list, and moves rightward until it sees the
in the depth-first search and the possible combinations offirst 6. The objects in betweerg, g, ¢}, is the set of ob-
objects can be reduced substantially. Moreover, once a subjects of an attribute-pair MDS. Thep;-Clusteringmoves
set of attributesD is determined hopeless for pClusters, the left edge of the sliding window to objegt and re-
the searches of any superset/ofwill be pruned. Second, peats the process until the left end of the window runs
MaPle prunes non-maximal pClusters. Many unpromising through all elements in the list. In total, three MDSs can
searches can be pruned in their early stages. Third, newbe found, i.e.,({z,y},{e, g,¢}), ({=,y},{a,d,b,h}) and
pruning techniques are adopted in the computing and prun-({z, y}, {h, f}). A similar method can be used to find the
ing MDSs. That also speeds up the mining. object-pair MDSs.
In the remainder of this section, we will explain the two _ AS OUr running example, consider mining maximal

steps oMaPlein detall. pattern-based clusters in a datab&asB as shown in Fig-

ure 5(a). Supposewin, = 3, min, = 3 andé = 1. For
each pair of attributes, we calculate the attribute pair MDSs.
2However, there is no theoretical guarantee that the attribute-first- The attribute-pair MDSs returned are shown in Figure 5(b).

object-later search is optimal. There exist counter examples that object- V€ €an also generate all the object-pai.r MDSs S_im”arly_-
first-attribute-later search wins. Limited by space, we omit the details here. However, we can speed up the calculation of object-pair




[ Object a1 [ a2 [ a3 | as [ as |

01 5 6 7 7 1

02 4 4 5 6 10

03 5 5 6 1 30

04 7 7 15 2 60

05 2 0 6 8 10

06 3 4 5 5 1

(a) The database
[ Objects | Attribute-pair |

{01, 02,03,04,06} {a1,a2}
{01, 02,03, 06} {a1,a3}
{01,02,06} {a1, a4}
{01, 02, 03,06} {a2, as}
{01,02,06} {az, a4}
{01702706} {ag,a4}

(b) The attribute-pair MDSs
Figure 5. The running example.

MDSs by utilizing the information on the number of occur-

rences of objects and attributes in the attribute-pair MDSs.

Lemma 3.1 (Pruning MDSs) Given a databasé) B and
a cluster thresholdéd, object thresholdmin, and at-
tribute thresholdmin,. (1) An attributea cannot ap-
pear in any significand-pCluster ifa appears in less than
W object-pair MDSs, or appears in less than
(min, — 1) attribute-pair MDSs; (2) An objeet cannot ap-
pear in any significant-pCluster ifo appears in less than
ming-(ming

—1 attribute-pair MDSs, or appears in less than
(min, — 1) object-pair MDSs.

Example 2 (Pruning using Lemma 3.1)Let us check the
attribute-pair MDSs in Figure 5(b). Objeat does not ap-
pear in any attribute-pair MDS, and objegt appears in
only 1 attribute-pair MDS. According to Lemma 3.4, and
o5 cannot appear in any significabtpCluster. Therefore,
object-pairs containing, or o5 can be pruned.

There are objects in the database. Without this pruning,
we have to checkﬁ§5 = 15 pairs of objects. With this
pruning, only four objectsy, 02, 03 andog survive. Thus,
we only need to checﬁéﬁ‘3 = 6 pairs of objects60% of the
original searches are pruned.

Moreover, since attributes; does not appear in any
attribute-pair MDS, it cannot appear in any significant
pCluster. The attribute can be pruned, i®;,can be re-
moved from any object-pair MDS.

In summary, after the pruning, only attributes a-, as
anday, and object®, 02, 03 andog survive. We use these

[ Object-pair[  Attributes |
{01,02} {al,ag,ag,a4}
{o1,03} {a1,a2,as}
{o1,06} {a1,a2,as,a4}
{02,03} {a1,a2,a3}
{02,06} {a1,a2,a3,a4}
{03,06} {a1,a2,a3}
(a) Object-pair MDSs itMaPle
[ Object-pair|  Attributes |
{01,02} {a1,a2,a3,a4}

{o1,03} {a1,a2,a3}
{01, 06} {a1,a2,a3,a4}
{02,03} {a1, a2, as}
{02, 06} {a1,a2,a3,a4}
{03704} {611,(12,@4}
{03706} {al,a2703}

(b) Object-pair MDSs in methog-Clustering
Figure 6. Pruning using Lemma 3.1.

object-pair MDSs and the attribute-pair MDSs, as method
p-Clusteringdoes. Furthermore, Lemma 3.1 can be applied
in each round to get extra pruning. The pruning algorithm
is shown in Figure 7.

(1) REPEAT

2) count the number of occurrences of objects and attributes
in the attribute-pair MDSs;

3) apply Lemma 3.1 to prune objects and attributes;

4) remove object-pair MDSs containing less thain,,
attributes;

(5) count the number of occurrences of objects and attributes
in the object-pair MDSs;

(6) apply Lemma 3.1 to prune objects and attributes;

©) remove attribute-pair MDSs containing less thain,,

objects;
(8) UNTIL no pruning takes place

Figure 7. The algorithm of pruning MDSs.

3.3 Progressively Refining, Depth-first Search of Max-
imal pClusters

The algorithm of the progressively refining, depth-first
search of maximal pClusters is shown in Figure 8. We ex-
plain the algorithm step by step in this subsection.

attributes and objects to generate object-pair MDSs. The3:3:1 Dividing Search Space

result is shown in Figure 6(a). In methedClustering it

By a list of attributes, we can enumerate all combinations of

uses all attributes and objects to generate object-pair MDSsattributes systematically. The idea is shown in the following
The result is shown in Figure 6(b). As can be seen, not only €xample.

the computation cost ikaPleis less, the number of object-
pair MDSs inMaPle is also one less than that in method
p-Clustering

Once we get the initial object-pair MDSs and attribute-

Example 3 (Enumeration of combinations of attributes)

In our running example, there are four attributes surviving
from the pruning:a, as, az anday. We list any subset
of attributes in the order of;-as-az-a4. Suppose that

pair MDSs, we can conduct a mutual pruning between themin, = 3, i.e., every maximab-pCluster should have at



letn be the number of attributes;
make up an attribute listL = a1-- - --an;
FOR: =1TOn — min, +1 DO

@)
(2

(3) FORj =i+ 1TOn — min, +2DO
(4) find row-maximal pClusteréR, {ai, a;});
//Section 3.3.2
(5) FOR EACHow-maximal pCluste(R, {a;,a;}) DO
(6) call search(R,{a:,a;});
(7 END FOR EACH
(8) END FOR
(9) END FOR
(10

(11) FUNCTIONsearch(R, D);
Il (R, D) is a row-maximal pCluster.

(12) computeP D, the set of possible attributes;
//Optimization 1 in Section 3.3.3
(13) apply optimizations in Section 3.3.3 to prune, if possible;
(14) FOR EACHttributea € PD DO
(15) find row-maximal pCluster&r’, D U {a});
//Section 3.3.2
(16) FOR EACHow-maximal pClustefR’, D U {a}) DO
17) callsearch(R', D U {a});
(18) END FOR EACH
(19) END FOR EACH
(20) IF (R, D) is not a subcluster of some maximal pCluster
having been found
(21) THENoutput(R, D);

(22) END FUNCTION

Figure 8. Projection-based search.

least3 attributes. We divide the complete set of maximal
pClusters inta3 exclusive subsets according to the first two
attributes in the pClusters: (1) the ones having attributes
andas, (2) the ones having attributes andas but noas,
and (3) the ones having attributesandas but noa;.

In general, the set of maximal pClusters can be divided
into exclusive subsets by a list of attributes. Heuristically,
for an attributea, if there are many distinct objects ap-
pearing in the attribute-pair MDSs containingthen it is
likely thata may appear in a maximal pCluster of large size
(i.e., a maximal pCluster containing many objects and at-

tributes). Such attributes should be considered first in our

search. Based on the heuristic, given a datatiaBe the
rank of an attributes is the number of distinct objects in
the attribute-pair MDSs containing That is,rank(a) =
| Ur,pyjaep L, where(R, D) is an attribute-pair MDS.

The list of all attributes in the database in rank descending

order is called thattribute-listof DB. Attributes having
an identical rank can be sorted arbitrarily.

For example, from the attribute-pair MDSs in Fig-

ure 5(b), we can compute the ranks of the attributes. The

ranks ofay, as, az anday are4, 4, 4 and3, respectively.
Thus, we make up the attribute-list@sas-a3-as. We will
use this list to search for maximéatpClusters in our run-
ning example.

Since a pCluster has at le@sattributesMaPlefirst par-
titions the complete set of maximal pClusters into exclusive
subsets according to the first two attributes, then searches
the subsets one by one in the depth-first manner. For each
subset,MaPle further divides the pClusters in the subset
into smaller exclusive sub-subsets according to the third at-
tributes in the pClusters, and searches the sub-subsets. Such
a process proceeds recursively until all the maximal pClus-
ters are found. This is implemented by line (1)-(3) and (14)
in Figure 8.

3.3.2 Finding Row-maximal pClusters

Now, the problem becomes how to find the maximal
pClusters on the subsets of attributes. For each subset of
attributesD, we will find the maximal subsets of objedis
suchthat R, D) is a pCluster. Such a pCluster is a maximal
pCluster if it is not a sub-cluster of some others.

Given a set of attributed such that(||D| > 2).

A pCluster (R, D) is called arow-maximald-pClusterif
there exists no any-pCluster(R’, D) such thatR C R'.

In other words, a row-maximal pCluster is maximal in
the sense that no more objects can be included so that
the objects are still coherent on the same subset of at-
tributes. For example, in the database shown in Figure 5(a),
({01, 02, 03,06},{a1,a2}) is a row-maximal pCluster for
subset of attribute$a,,a2}. Clearly, a maximal pCluster
must be a row-maximal pCluster, but not vice versa.

Given a subset of attribute?, how can we find all row-
maximal pClusters efficientlyPhere are two cases.

If D has only two attributes, then the row-maximal
pClusters are the attribute-pair MDSs fér. Since the
MDSs are computed and stored before the search, they can
be retrieved immediately.

Now, let us consider the case whéfi®| > 3). Suppose
D = {a,,...,a; } where the attributes i® are listed in
the order of attribute-list L. Intuitively, (R, D) is a pClus-
ter if R is shared by attribute-pair MDSs from any two at-
tributes fromD. (R, D) is a row-maximal pCluster iR is
a maximal set of objects.

One tricky thing here is that, in general, there can
be more than one attribute-pair MDS for given attributes
a4, 0. Thus, there can be more than one row-maximal
pCluster on a subset of attributés Technically,(R, D)
is a row-maximal pCluster if for each pair of attributes
{ay,a,} C D, there exists an attribute-pair MDS
({aw, ay}, Ruy), Such thatk = ﬂ{a“,,av}CD Ry

Recall thatMaPle searches the combinations of at-
tributes in the depth-first manner, all row-maximal pClus-
ters for subset of attribute® — {a,;} is found before we
search forD. Therefore, we only need to find the subset
of objects in a row-maximal pCluster & — {a;; } that are
shared by attribute-pair MDSs af,, a;, (j < k).

3.3.3 Pruning and Optimizations

Several optimizations can be used to prune the search so
that the mining can be more efficient.



Optimization 1: Only possible attributeshould be con-
sidered to get larger pClusters.

Suppose thatR, D) is a row-maximal pClusteFor ev-
ery attributea such thata is after all attributes inD in the
attribute-list, under what condition can we find a significant
pCluster(R’, D U {a}) such thatk’ C R?

If (R', DU{a}) is significant, i.e., has at leastin, ob-
jects, thena must appear in at Ieaﬁ% object-
pair MDSs ({0;,0,}, D;;) such that{o;,0;} C R'. In
other words, for an attribute that appears in less than
mino(mine—1) ghiact-pair MDSs of objects iR, there ex-
ists no row-maximal pCluster with respectfbU {a}.

Based on the above observation, an attribuie called
a possible attributewith respect to row-maximal pClus-
ter (R, D) if a appears m% object-pair MDSs
({oi, 05}, D;j) such that{o;, 0;} C R. Inline (12) of Fig-
ure 8, we compute possible attributes and only those at-
tributes are used to extend the set of attributes in pClusters

Optimization 2: Pruning local maxiaml pClusters hav-
ing insufficient possible attributes.

Suppose thatR, D) is a row-maximal pCluster. Let
PD be the set of possible attributes with respedtRoD).
Clearly, if | D U PD|| < min,, then it is impossible to find
any maximal pCluster of a subset Bf Thus, such a row-
maximal pCluster should be discarded and all the recursive
search can be pruned.

Optimization 3: Extracting common attributes from
possible attribute set directly.

Suppose thatR, D) is a row-maximal pCluster with re-
spect toD, and D’ is the corresponding set of possible at-
tributes. If there exists an attribute € D’ such that for
every pair of objectqo;,0;}, {a} U D appears in an ob-
ject pair MDS of{o;, 0;}, then we immediately know that
(R, DU{a}) must be a row-maximal pCluster with respect
to D U {a}. Such an attribute is calleda@mmon attribute
and should be extracted directly.

Example 4 (Extracting common attributes) In our run-
ning example, ({o1,02,03,06},{a1,a2}) is a row-
maximal pCluster with respect tda;,a2}. Interest-
ingly, as shown in Figure 6(a), for every object pair
{0i,0;} C {o01,02,03,06}, the object-pair MDS con-
tains attributeas. Therefore, we immediately know that
({o1, 02, 03,06}, {a1,as,as}) is a row-maximal pCluster.

Optimization 4: Prune non-maximal pClusters.
Our goal is to find maximal pClusters. Once we know

that the recursive search on a row-maximal pCluster cannot
lead to a maximal pCluster, the recursive search thus can be

pruned. The earlier we detect the impossibility, the more
search efforts can be saved. We can usedtmainant at-
tributesto detect the impossibility. We illustrate the idea in
the following example.

Example 5 (Detect non-maximal pClusters)Iin our run-
ning example, let us try to find the maximal pClusters
whose first two attributes are, andaz. Following the

above discussion, we identify a row-maximal pCluster
({01,02703,06}7 {alaCLS})-

One interesting observation from the object-pair MDSs
on objects in{o1, 02, 03, 06} (Figure 6(a)): attribute., ap-
pears in every object pair. We called a dominant at-
tribute. That means{o;, 02, 03,06} also coherent on at-
tributeas. In other words, we cannot have a maximal pClus-
ter whose first two attributes arg andas, sincea; must
also be in the same maximal pCluster. Thus, the search of
maximal pClusters whose first two attributes afeandas
can be pruned.

The idea in Example 5 can be generalized. Suppose
(R, D) is a row-maximal pCluster. If there exists an at-
tributea such that is before the last attribute il accord-
ing to the attribute-list, anda} U D appears in an object-
pair MDS ({0, 0;}, D;;) for every({o;,0;} C R), thenthe
search from(R, D) can be pruned, since there cannot be a

maximal pCluster having attribute sBtbut noa. Attribute
a is called adominant attributewith respect tq R, D).

4 Empirical Evaluation

We test botiMaPleandp-Clusteringextensively on both
synthetic and real life data sets. In this section, we report the
results.

MaPle is implemented using C/C++. We obtained the
executable op-Clusteringfrom the authors of [12]. Please
note that the authors qf-Clusteringimproved their algo-
rithm dramatically after their publication in SIGMOD’'02.

All the experiments are conducted on a PC with alP%
GHz CPU and384 M main memory running a Microsoft
Windows XP operating system.

The algorithms are tested against both synthetic and real
life data sets. Synthetic data sets are generated by a syn-
thetic data generator reported in [12]. Limited by space,
we only report the results on a real data set, the Yeast mi-
croarray data set [11]. This data set contains the expression
levels of2, 884 genes undet7 conditions.

Results on Yeast Data Set
The results on Yeast data set are shown in Figure 9. We
can obtain the following two interesting observations.

[ 0 [ ming [ min, | #of MPC [ # of pClusters]

0 9 30 5 5520
0 8 40 5 2.05 x 10°
0 7 50 11 3.37 x 10™°

Figure 9. Test results on Yeast raw data set.

On the one hand, there are significant pClusters exist-
ing in real data. For example, we can find pure pCluster
(i.e.,6 = 0) containing more thaf0 genes and attributes
in Yeast data set. That shows the effectiveness and utiliza-
tion of mining maximal pClusters in bioinformatics appli-
cations.
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Figure 10. Results on synthetic data sets.

On the other hand, while the number of maximal pClus- andMaPleperforms consistently better tharClustering
ters is often small, the number of all pClusters can be huge, In summary, from the tests on synthetic data sets, we can
since there are many different combinations of objects andsee thaMaPle clearly outperformgp-Clustering MaPleis
attributes as sub-clusters to the maximal pClusters. Thisefficient and scalable in mining large data sets.
shows the effectiveness of the notation of maximal pClus-

ters. 5 Conclusions
Results on Synthetic Data Sets

We test the scalability of the algorithms on the two pa-  In this paper, we proposelaPle an efficient and scal-
rameters, the minimum number of objeetsn, and the able algorithm for mining maximal pattern-based clusters in
minimum number of attributeswin, in pClusters. In Fig- large databases. We test the algorithm on both real life data
ure 10(a), the runtime of the algorithms versusn, is sets and synthetic data sets. The results showMadtle
shown. The data set hé800 objects and0 attributes. outperforms the best method previously proposed.

Both algorithms are in general insensitive to parameter
min,, butMaPleis faster thap-Clustering The majorrea- References
son is that the number of pClusters in the synthetic data set
does not change dramatically agn, decreases and thus  [1] C.C.Aggarwal et al. Fast algorithms for projected clustering.
the overhead of the search does not increase substantially.  In SIGMOD'99
Please note that we do observe the slight increases of run-[2] C.C. Aggarwal and P.S. Yu. Finding generalized projected
time in both algorithms as:in,, goes down. One interesting clusters in high dimensional spaces.StGMOD’0Q
observation here is that, whenin, > 60, the runtime of [3] R. Agrawal et al. Automatic subspace clustering of high
MaPleis significantly shorter. That is because there is no dimensional data for data mining applications. —SiG-

; ? g MOD’98.
pCluster in such a settinglaPlecan detect this in an early [4] R. Agrawal et al. Mining association rules between sets of

stage and thus can stop early. ) items in large databases. In SIGMOD’93.
We observe the similar trends on the runtime versus pa- 5; r agrawal and R. Srikant. Fast algorithms for mining asso-
rametermin,. The reasoning similar to that enin, holds ciation rules. INVLDB'94.
here. Limited by space, we omit the details here. [6] K. S. Beyer et al. When is “nearest neighbor” meaningful?
We test the scalability of both algorithms on the num- In ICDT’99.
ber of objects in the data sets. The result is shown in [7] C. H. Cheng et al. Entropy-based subspace clustering for
Figure 10(b). The data set contaidg attributes, where mining numerical data. IKDD’99.
there are30 embedded clusters. We fixin, = 5 and [8] Y. Cheng and G.M. Church. Biclustering of expression data.

In Proc. of the 8th Int’l Conf on Intelligent System for Molec-
ular Biology.
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setmin, = nop; - 1%, wheren,; is the number of ob-
jects in the data setd = 1. The result clearly shows that

both MaPle and p-Clusteringare scalable with respect to eration. InSIGMOD'0Q
the number of objects in the data sé#aPleperforms sub- |11 | v, jagadish et al. Semantic compression and pattern ex-
stantially better thap-Clusteringin mining large data sets. traction with fascicles. I'WLDB'99.

We also test the scalability of both algorithms on the [11] S. Tavazoie et al. Yeast micro data set. In
number of attributes. The result is shown in Figure 10(c). http://arep.med.harvard.edu/biclustering/yeast.matrix
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