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Abstract

Pattern-based clustering is important in many appli-
cations, such as DNA micro-array data analysis, auto-
matic recommendation systems and target marketing sys-
tems. However, pattern-based clustering in large databases
is challenging. On the one hand, there can be a huge num-
ber of clusters and many of them can be redundant and thus
make the pattern-based clustering ineffective. On the other
hand, the previous proposed methods may not be efficient or
scalable in mining large databases.

In this paper, we study the problem ofmaximal pattern-
based clustering. Redundant clusters are avoided com-
pletely by mining only the maximal pattern-based clusters.
MaPle, an efficient and scalable mining algorithm is devel-
oped. It conducts a depth-first, divide-and-conquer search
and prunes unnecessary branches smartly. Our extensive
performance study on both synthetic data sets and real data
sets shows that maximal pattern-based clustering is effec-
tive. It reduces the number of clusters substantially. More-
over, MaPle is more efficient and scalable than the previ-
ously proposed pattern-based clustering methods in mining
large databases.

1 Introduction

Clustering large databases is a challenging data mining
task with many important applications. Most of the previ-
ously proposed methods are based on similarity measures
defined globally on a (sub)set of attributes/dimensions.
However, in some applications, it is hard or even infeasi-
ble to define a good similarity measure on a global subset
of attributes to serve the clustering.

To appreciate the problem, let us consider clustering the
5 objects in Figure 1(a). There are5 dimensions. No pat-
terns among the5 objects are visibly explicit. However, as
elaborated in Figure 1(b) and (c), respectively, objects1,
2 and3 follow the same pattern in dimensionsa, c andd,
while objects1, 4 and5 share another similar pattern in di-
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mensionsb, c, d ande. If we use the patterns as features,
they form twopattern-based clusters.
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Figure 1. A motivating example.

Some recent researches (e.g., [12]) indicate that pattern-
based clustering is useful in many applications. In gen-
eral, given a set of data objects, a subset of objects form a
pattern-based clusters if these objects follow a similar pat-
tern in a subset of dimensions. Comparing to the conven-
tional clustering, pattern-based clustering is a more general
model and has two distinct features. On the one hand,it
does not require a globally defined similarity measure. Dif-
ferent clusters can follow different patterns on different sub-
sets of dimensions. On the other hand,the clusters are not
necessary exclusive. That is, an object can appear in more
than one cluster.

The generality and flexibility of pattern-based clustering
may provide interesting and important insights in some ap-
plications where conventional clustering methods may meet
difficulties. For example, in DNA micro-array data anal-
ysis, the gene expression data are organized as matrices,
where rows represent genes and columns represent sam-
ples/conditions. The number in each cell records the ex-
pression level of the particular gene under the particular
condition. The matrices are often large, containing thou-
sands of genes and hundreds of conditions. It is important
to identify subsets of genes whose expression levels change
coherently under a subset of conditions. Such information
is critical in revealing the significant connections in gene
regulatory networks. As another example, in the applica-
tions of automatic recommendation and target marketing, it
is essential to identify sets of customers/clients with simi-
lar behavior/interest. As a concrete example, suppose that
the ranks of movies given by customers are collected. To
identify customer groups, it is essential to find the subsets



of customers who rank subsets of movies similarly. In the
above two examples, pattern-based clustering is the major
data mining task.

Although the pattern-based clustering problem is pro-
posed and a mining algorithm is developed by Wang et
al. [12], some important problems remain not thoroughly
explored. In particular, we address the following two fun-
damental issues and make corresponding contributions in
this paper.

First, what is the effective representation of pattern-
based clusters?As can be imagined, there can exist many
pattern-based clusters in a large database. Given a pattern-
based clusterC, any non-empty subset of the objects in the
cluster is trivially a pattern-based cluster on any non-empty
subset of dimensions. Mining and analyzing a huge num-
ber of pattern-based clusters may become the bottleneck of
effective analysis.Can we devise a non-redundant repre-
sentation of the pattern-based clusters?

Our contributions. In this paper, we propose the min-
ing of maximal pattern-based clusters. The idea is to report
only those non-redundant pattern-based clusters, and skip
their trivial sub-clusters. We show that, by mining maxi-
mal pattern-based clusters, the number of clusters can be re-
duced substantially. Moreover, many unnecessary searches
for sub-clusters can be pruned and thus the mining effi-
ciency can be improved dramatically as well.

Second,how to mine the maximal pattern-based clus-
ters efficiently?Our experimental results indicate that the
algorithmp-Clusteringdeveloped in [12] may not be satis-
factorily efficient or scalable in large databases. The major
bottleneck is that it has to search many possible combina-
tions of objects and dimensions.

Our contributions. In this paper, we develop a
novel mining algorithm,MaPle(for Maximal Pattern-based
Clustering). It conducts a depth-first, progressively refin-
ing search to mine maximal pattern-based clusters. We pro-
pose techniques to guarantee the completeness of the search
and also prune unpromising search branches. An extensive
performance study on both synthetic data sets and real data
sets is reported. The results show thatMaPleis significantly
more efficient and more scalable in mining large databases
than methodp-Clusteringin [12].

The remainder of the paper is organized as follows. Sec-
tion 2 defines the problem of mining maximal pattern-based
clusters and reviews related work. In Section 3, we develop
algorithm MaPle. An extensive performance study is re-
ported in Section 4. Section 5 concludes the paper.

2 Problem Definition and Related Work

Given a set of objects, where each object is described by
a set of attributes. A pattern-based cluster(R, D) is a sub-
set of objectsR that exhibit a coherent pattern on a subset
of attributesD. To formulate the problem, it is essential
to describe, given a subset of objectsR and a subset of at-
tributesD, how coherent the objects are on the attributes.
The measurepScore serves this purpose.

Definition 2.1 (pScore) Let DB = {r1, . . . , rn} be a
database withn objects. Each object hasm attributes
A = {a1, . . . , am}. We assume that each attribute is in
the domain of real numbers. The value of objectrj on at-
tributeai is denoted asrj .ai. For any objectsrx, ry ∈ DB
and any attributesau, av ∈ A, the pScore is defined

as pScore

([
rx.au rx.av

ry.au ry.av

])
= ‖(rx.au − ry.au) −

(rx.av − ry.av)‖.

Clearly, thepScore describes the similarity between two
objects on two attributes. The smaller thepScore value, the
more similar are the two objects on the two dimensions.
Pattern-based clusters can be defined as follows.

Definition 2.2 (Pattern-based cluster)Let R ⊆ DB be a
subset of objects in the database andD ⊆ A be a subset of
attributes. (R, D) is said aδ-pCluster (for pattern-based
cluster) if for any objectsrx, ry ∈ R and any attributes

au, av ∈ D, pScore

([
rx.au rx.av

ry.au ry.av

])
≤ δ, where

δ ≥ 0.

In a large database with many attributes, there can be
many coincident, statistically insignificant pattern-based
clusters. A cluster may be consideredstatistically insignif-
icant if it contains a small number of objects, or a small
number of attributes. Thus, a user may want to impose con-
straints on the minimum numbers of objects and attributes
in a pattern-based cluster.

In general, given (1) a cluster thresholdδ, (2) anattribute
thresholdmina (i.e., the minimum number of attributes),
and (3) anobject thresholdmino (i.e., the minimum number
of objects), the task ofminingδ-pClustersis to find the com-
plete set ofδ-pClusters(R,D) such that(‖R‖ ≥ mino)
and(‖D‖ ≥ mina). A δ-pCluster satisfying the above re-
quirement is calledsignificant.

Although the attribute and object thresholds are used to
filter out insignificant pClusters, there still can be some
“ redundant” significant pClusters. For example, consider
the objects in Figure 1. Letδ = 5, mina = 3 and
mino = 3. Then, we have6 significant pClusters:C1 =
({1, 2, 3}, {a, c, d}), C2 = ({1, 4, 5}, {b, c, d}), C3 =
({1, 4, 5}, {b, c, e}), C4 = ({1, 4, 5}, {b, d, e}), C5 =
({1, 4, 5}, {c, d, e}), and C6 = ({1, 4, 5}, {b, c, d, e}).
Among them,C2, C3, C4 andC5 are subsumed byC6, i.e.,
the objects and attributes in the four clusters,C2-C5, are
subsets of the ones inC6.

In general, a pClusterC1 = (R1, D1) is called asub-
clusterof C2 = (R2, D2) provided(R1 ⊆ R2) ∧ (D1 ⊆
D2). Moreover,C1 is called aproper sub-clusterof C2 if
eitherR1 ⊂ R2 or D1 ⊂ D2. Pattern-based clusters have
the following property.

Lemma 2.1 (Closure of sub-clusters)LetC = (R,D) be
a δ-pCluster. Then, every sub-cluster(R′, D′) is a δ-
pCluster.



Mining the redundant sub-clusters is tedious and inef-
fective for analysis. Therefore, it is natural to mine only
the “maximal clusters”, i.e., the pClusters that are not sub-
cluster of any other pClusters.

Definition 2.3 (maximal pCluster) A δ-pClusterC is said
maximal(or called aδ-MPC in short) if there exists noδ-
pClusterC ′ such thatC is a proper sub-cluster ofC ′.

Problem Statement (mining maximal δ-pClusters).
Given (1) a cluster thresholdδ, (2) an attribute threshold
mina, and (3) an object thresholdmino, the task ofmining
maximalδ-pClustersis to find the complete set of maximal
δ-pClusters with respect tomina andmino.

2.1 Related Work

The problem of pattern-based clustering and an algo-
rithm, p-Clustering1, are proposed in [12]. According to
the extensive performance study reported in the paper,p-
Clusteringoutperforms all previous methods.

The study of pattern-based clustering is related to previ-
ous work on subspace clustering and frequent itemset min-
ing.

The meaning of clustering in high dimensional data sets
is often unreliable [6]. Some recent studies (e.g. [3, 1, 2, 7])
focus on mining clusters embedded in some subspaces. For
example, CLIQUE [3] is a density and grid based method.
It divides the data into hyper-rectangular cells and uses the
dense cells to construct subspace clusters.

Subspace clustering can be used to semantically com-
press data. An interesting study in [10] employs a random-
ized algorithm to find fascicles, the subsets of data that share
similar values in some attributes. While their method is ef-
fective for compression, it does not guarantee the complete-
ness of mining the clusters.

In some applications, global similarity-based clustering
may not be effective. Still, strong correlations may exist
among a set of objects even if they are far away from each
other as measured by distance functions (such as Euclidean)
used frequently in traditional clustering algorithms. Many
scientific projects collect data in the form of Figure 1(a),
and it is essential to identify clusters of objects that mani-
fest coherent patterns. A variety of applications, including
DNA microarray analysis, collaborative filtering, will ben-
efit from fast algorithms that can capture such patterns.

Cheng and Church propose the biclustering model [8],
which captures the coherence of genes and conditions in a
sub-matrix of a DNA micro-array. Yang et al. [13] develop
a move-based algorithm to find biclusters more efficiently.

On the other hand, a transaction database can be mod-
elled as a binary matrix, where columns and rows stand for
items and transactions, respectively. A cellri,j is set to1 if
item j is contained in transactioni. Then, the problem of

1Wang et al. did not give a specific name to their algorithm in [12]. We
call it p-Clusteringsince the main function in the algorithm ispCluster()
and we want to distinguish the algorithm from the pclusters.

mining frequent itemsets [4] is to find subsets of rows and
columns such that the sub-matrix is all1’s, and the num-
ber of rows is more than a given support threshold. If a
minimum length constraintmina is imposed to find only
frequent itemsets of no less thanmina items, then it be-
comes a problem of mining0-pClusters on binary data. Al-
though there are many efficient methods for frequent item-
set mining, such as [5, 9], they cannot be extended to handle
the general pattern-based clustering problem since they can
only handle the binary data.

3 Algorithm MaPle

3.1 Overview

Essentially,MaPleenumerates all the maximal pClusters
systematically. It guarantees both the completeness and the
non-redundancy of the search, i.e., every maximal pClus-
ter will be found, and each combination of attributes and
objects will be tested at most once.

MaPle enumerates every combination of attributes sys-
tematically in a dictionary order according to an order of
attributes. For each subset of attributesD, MaPle finds
the maximal subsets of objectsR such that(R, D) is a δ-
pCluster. If(R, D) is not a sub-cluster of another pCluster
(R′, D) such thatR ⊂ R′, then (R, D) is a maximalδ-
pCluster. This “attribute-first-object-later” search is illus-
trated in Figure 2.
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Figure 2. Attribute-first-object-later search.

There can be a huge number of combinations of at-
tributes. MaPle prunes many combinations unpromising
for δ-pClusters. Following Lemma 2.1, for subset of at-
tributesD, if there exists no subset of objectsR such that
(R, D) is a significant pCluster, then we do not need to
search any superset ofD. On the other hand, when search-
ing under a subset of attributesD, MaPleonly checks those
subsets of objectsR such that(R, D′) is a pCluster for ev-
ery D′ ⊂ D. Clearly, only subsetsR′ ⊆ R may achieve
δ-pCluster(R′, D). Such pruning techniques are applied
recursively. Thus,MaPle progressively refines the search
step by step.

Moreover, MaPle also prunes searches that are un-
promising to find maximal pClusters. It detects the at-
tributes and objects that can be used to assemble a larger
pCluster from the current pCluster. IfMaPlefinds that the
current subsets of attributes and objects as well as all pos-
sible attributes and objects together turn out to be a sub-



cluster of a pCluster having been found before, then the re-
cursive searches rooted at the current node are pruned, since
it cannot lead to a maximal pCluster.

Why doesMaPleenumerate attributes first and then ob-
jects later, but not in the reverse way?In real databases,
the number of objects is often much larger than the number
of attributes. In other words, the number of combinations
of objects is often dramatically larger than the number of
combinations of attributes. In the pruning using maximal
pClusters discussed above, if the attribute-first-object-later
approach is adopted, once a set of attributes and its descen-
dants are pruned, all searches of related subsets of objects
are pruned as well. Heuristically, the attribute-first-object-
later search may bring a better chance to prune a more bushy
search sub-tree.2

Essentially, we rely on MDSs, the maximalδ-MPC con-
taining only two objects or two attributes, to determine
whether a subset of objects and a subset of attributes to-
gether form a pCluster. Therefore, as a preprocessing, we
materialize all non-redundant MDSs.

Based on the above discussion, we have the framework
of MaPleas shown in Figure 3.

Input: databaseDB, cluster thresholdδ, attribute threshold
mina and object thresholdmino;

Output: the complete set of maximalδ-pClusters;
Method:
(1) compute and prune attribute-pair MDSs and object-pair

MDSs; // Section 3.2
(2) progressively refining, depth-first search for maximal

δ-pClusters; // Section 3.3

Figure 3. Algorithm MaPle.

Comparing top-Clustering, MaPle has several advan-
tages. First, in the third step ofp-Clustering, for each node
in the prefix tree, the combinations of the objects registered
in the node will be explored to find pClusters. This can be
expensive if there are many objects in a node. InMaPle, the
information of pClusters is inherited from the “parent node”
in the depth-first search and the possible combinations of
objects can be reduced substantially. Moreover, once a sub-
set of attributesD is determined hopeless for pClusters,
the searches of any superset ofD will be pruned. Second,
MaPleprunes non-maximal pClusters. Many unpromising
searches can be pruned in their early stages. Third, new
pruning techniques are adopted in the computing and prun-
ing MDSs. That also speeds up the mining.

In the remainder of this section, we will explain the two
steps ofMaPle in detail.

2However, there is no theoretical guarantee that the attribute-first-
object-later search is optimal. There exist counter examples that object-
first-attribute-later search wins. Limited by space, we omit the details here.

3.2 Computing and Pruning MDSs

A pCluster must have at least two objects and two at-
tributes. Intuitively, we can use those pClusters contain-
ing only two objects or two attributes to construct larger
pClusters having more objects and attributes. Given a
databaseDB and a cluster thresholdδ. A δ-pCluster
C1 = ({o1, o2}, D) is called anobject-pair MDS(for
maximal dimension set) if there exists noδ-pClusterC ′1 =
({o1, o2}, D′) such thatD ⊂ D′. On the other hand, a
δ-pClusterC2 = (R, {a1, a2}) is called anattribute-pair
MDSif there exists noδ-pClusterC ′2 = (R′, {a1, a2}) such
thatR ⊂ R′.

MaPlecomputes all attribute-pair MDSs asp-Clustering
does. The method is illustrated in Figure 4(b). Limited by
space, we omit the detailed algorithm here and only show
the following example.

Example 1 (Finding attribute-pair MDSs) Figure 4(a)
shows the object values of two attributes,x andy. The last
row shows the differences of the object values.

Attribute Objects
a b c d e f g h

x 13 11 9 7 9 13 2 15
y 7 4 10 1 12 3 4 7

x− y 6 7 −1 6 −3 10 −2 8
(a) The object values of two attributesx andy.

fhbdacge

108766−1−2−3

(b) Finding MDS

Figure 4. Finding MDS for two attributes.

To compute the attribute-pair MDS,p-Clusteringsorts
the objects in the difference ascending order, as shown in
Figure 4(b). Supposeδ = 2. P-Clusteringruns through
the sorted list using a sliding window of variable width.
The objects in the sliding window form aδ-pCluster pro-
vided the difference between the rightmost element and the
leftmost one is no more thanδ. For example,p-Clustering
firstly sets the left edge of the sliding window at the left
end of the sorted list, and moves rightward until it sees the
first 6. The objects in between,{e, g, c}, is the set of ob-
jects of an attribute-pair MDS. Then,p-Clusteringmoves
the left edge of the sliding window to objectg, and re-
peats the process until the left end of the window runs
through all elements in the list. In total, three MDSs can
be found, i.e.,({x, y}, {e, g, c}), ({x, y}, {a, d, b, h}) and
({x, y}, {h, f}). A similar method can be used to find the
object-pair MDSs.

As our running example, consider mining maximal
pattern-based clusters in a databaseDB as shown in Fig-
ure 5(a). Supposemina = 3, mino = 3 andδ = 1. For
each pair of attributes, we calculate the attribute pair MDSs.
The attribute-pair MDSs returned are shown in Figure 5(b).

We can also generate all the object-pair MDSs similarly.
However, we can speed up the calculation of object-pair



Object a1 a2 a3 a4 a5

o1 5 6 7 7 1
o2 4 4 5 6 10
o3 5 5 6 1 30
o4 7 7 15 2 60
o5 2 0 6 8 10
o6 3 4 5 5 1

(a) The database
Objects Attribute-pair

{o1, o2, o3, o4, o6} {a1, a2}
{o1, o2, o3, o6} {a1, a3}
{o1, o2, o6} {a1, a4}
{o1, o2, o3, o6} {a2, a3}
{o1, o2, o6} {a2, a4}
{o1, o2, o6} {a3, a4}
(b) The attribute-pair MDSs

Figure 5. The running example.

MDSs by utilizing the information on the number of occur-
rences of objects and attributes in the attribute-pair MDSs.

Lemma 3.1 (Pruning MDSs) Given a databaseDB and
a cluster thresholdδ, object thresholdmino and at-
tribute thresholdmina. (1) An attributea cannot ap-
pear in any significantδ-pCluster ifa appears in less than
mino·(mino−1)

2 object-pair MDSs, or appears in less than
(mina−1) attribute-pair MDSs; (2) An objecto cannot ap-
pear in any significantδ-pCluster ifo appears in less than
mina·(mina−1)

2 attribute-pair MDSs, or appears in less than
(mino − 1) object-pair MDSs.

Example 2 (Pruning using Lemma 3.1)Let us check the
attribute-pair MDSs in Figure 5(b). Objecto5 does not ap-
pear in any attribute-pair MDS, and objecto4 appears in
only 1 attribute-pair MDS. According to Lemma 3.1,o4 and
o5 cannot appear in any significantδ-pCluster. Therefore,
object-pairs containingo4 or o5 can be pruned.

There are6 objects in the database. Without this pruning,
we have to check6×5

2 = 15 pairs of objects. With this
pruning, only four objects,o1, o2, o3 ando6 survive. Thus,
we only need to check4×3

2 = 6 pairs of objects.60% of the
original searches are pruned.

Moreover, since attributea5 does not appear in any
attribute-pair MDS, it cannot appear in any significantδ-
pCluster. The attribute can be pruned, i.e.,a5 can be re-
moved from any object-pair MDS.

In summary, after the pruning, only attributesa1, a2, a3

anda4, and objectso1, o2, o3 ando6 survive. We use these
attributes and objects to generate object-pair MDSs. The
result is shown in Figure 6(a). In methodp-Clustering, it
uses all attributes and objects to generate object-pair MDSs.
The result is shown in Figure 6(b). As can be seen, not only
the computation cost inMaPleis less, the number of object-
pair MDSs inMaPle is also one less than that in method
p-Clustering.

Once we get the initial object-pair MDSs and attribute-
pair MDSs, we can conduct a mutual pruning between the

Object-pair Attributes

{o1, o2} {a1, a2, a3, a4}
{o1, o3} {a1, a2, a3}
{o1, o6} {a1, a2, a3, a4}
{o2, o3} {a1, a2, a3}
{o2, o6} {a1, a2, a3, a4}
{o3, o6} {a1, a2, a3}

(a) Object-pair MDSs inMaPle.
Object-pair Attributes

{o1, o2} {a1, a2, a3, a4}
{o1, o3} {a1, a2, a3}
{o1, o6} {a1, a2, a3, a4}
{o2, o3} {a1, a2, a3}
{o2, o6} {a1, a2, a3, a4}
{o3, o4} {a1, a2, a4}
{o3, o6} {a1, a2, a3}

(b) Object-pair MDSs in methodp-Clustering

Figure 6. Pruning using Lemma 3.1.

object-pair MDSs and the attribute-pair MDSs, as method
p-Clusteringdoes. Furthermore, Lemma 3.1 can be applied
in each round to get extra pruning. The pruning algorithm
is shown in Figure 7.

(1) REPEAT
(2) count the number of occurrences of objects and attributes

in the attribute-pair MDSs;
(3) apply Lemma 3.1 to prune objects and attributes;
(4) remove object-pair MDSs containing less thanmina

attributes;
(5) count the number of occurrences of objects and attributes

in the object-pair MDSs;
(6) apply Lemma 3.1 to prune objects and attributes;
(7) remove attribute-pair MDSs containing less thanmino

objects;
(8) UNTIL no pruning takes place

Figure 7. The algorithm of pruning MDSs.

3.3 Progressively Refining, Depth-first Search of Max-
imal pClusters

The algorithm of the progressively refining, depth-first
search of maximal pClusters is shown in Figure 8. We ex-
plain the algorithm step by step in this subsection.

3.3.1 Dividing Search Space
By a list of attributes, we can enumerate all combinations of
attributes systematically. The idea is shown in the following
example.

Example 3 (Enumeration of combinations of attributes)
In our running example, there are four attributes surviving
from the pruning:a1, a2, a3 anda4. We list any subset
of attributes in the order ofa1-a2-a3-a4. Suppose that
mina = 3, i.e., every maximalδ-pCluster should have at



(1) letn be the number of attributes;
make up an attribute listAL = a1-· · ·-an;

(2) FORi = 1 TOn−mina + 1 DO
(3) FORj = i + 1 TOn−mina + 2 DO
(4) find row-maximal pClusters(R, {ai, aj});

//Section 3.3.2
(5) FOR EACHrow-maximal pCluster(R, {ai, aj}) DO
(6) callsearch(R, {ai, aj});
(7) END FOR EACH
(8) END FOR
(9) END FOR
(10)
(11) FUNCTIONsearch(R, D);

// (R, D) is a row-maximal pCluster.
(12) computePD, the set of possible attributes;

//Optimization 1 in Section 3.3.3
(13) apply optimizations in Section 3.3.3 to prune, if possible;
(14) FOR EACHattributea ∈ PD DO
(15) find row-maximal pClusters(R′, D ∪ {a});

//Section 3.3.2
(16) FOR EACHrow-maximal pCluster(R′, D ∪ {a}) DO
(17) callsearch(R′, D ∪ {a});
(18) END FOR EACH
(19) END FOR EACH
(20) IF (R, D) is not a subcluster of some maximal pCluster

having been found
(21) THENoutput(R, D);
(22) END FUNCTION

Figure 8. Projection-based search.

least3 attributes. We divide the complete set of maximal
pClusters into3 exclusive subsets according to the first two
attributes in the pClusters: (1) the ones having attributesa1

anda2, (2) the ones having attributesa1 anda3 but noa2,
and (3) the ones having attributesa2 anda3 but noa1.

In general, the set of maximal pClusters can be divided
into exclusive subsets by a list of attributes. Heuristically,
for an attributea, if there are many distinct objects ap-
pearing in the attribute-pair MDSs containinga, then it is
likely thata may appear in a maximal pCluster of large size
(i.e., a maximal pCluster containing many objects and at-
tributes). Such attributes should be considered first in our
search. Based on the heuristic, given a databaseDB, the
rank of an attributea is the number of distinct objects in
the attribute-pair MDSs containinga. That is,rank(a) =
‖⋃

(R,D)|a∈D R‖, where(R, D) is an attribute-pair MDS.
The list of all attributes in the database in rank descending
order is called theattribute-list of DB. Attributes having
an identical rank can be sorted arbitrarily.

For example, from the attribute-pair MDSs in Fig-
ure 5(b), we can compute the ranks of the attributes. The
ranks ofa1, a2, a3 anda4 are4, 4, 4 and3, respectively.
Thus, we make up the attribute-list asa1-a2-a3-a4. We will
use this list to search for maximalδ-pClusters in our run-
ning example.

Since a pCluster has at least2 attributes,MaPlefirst par-
titions the complete set of maximal pClusters into exclusive
subsets according to the first two attributes, then searches
the subsets one by one in the depth-first manner. For each
subset,MaPle further divides the pClusters in the subset
into smaller exclusive sub-subsets according to the third at-
tributes in the pClusters, and searches the sub-subsets. Such
a process proceeds recursively until all the maximal pClus-
ters are found. This is implemented by line (1)-(3) and (14)
in Figure 8.

3.3.2 Finding Row-maximal pClusters
Now, the problem becomes how to find the maximalδ-
pClusters on the subsets of attributes. For each subset of
attributesD, we will find the maximal subsets of objectsR
such that(R, D) is a pCluster. Such a pCluster is a maximal
pCluster if it is not a sub-cluster of some others.

Given a set of attributesD such that(‖D‖ ≥ 2).
A pCluster(R, D) is called arow-maximalδ-pCluster if
there exists no anyδ-pCluster(R′, D) such thatR ⊂ R′.
In other words, a row-maximal pCluster is maximal in
the sense that no more objects can be included so that
the objects are still coherent on the same subset of at-
tributes. For example, in the database shown in Figure 5(a),
({o1, o2, o3, o6}, {a1, a2}) is a row-maximal pCluster for
subset of attributes{a1, a2}. Clearly, a maximal pCluster
must be a row-maximal pCluster, but not vice versa.

Given a subset of attributesD, how can we find all row-
maximal pClusters efficiently?There are two cases.

If D has only two attributes, then the row-maximal
pClusters are the attribute-pair MDSs forD. Since the
MDSs are computed and stored before the search, they can
be retrieved immediately.

Now, let us consider the case where(‖D‖ ≥ 3). Suppose
D = {ai1 , . . . , aik

} where the attributes inD are listed in
the order of attribute-listAL. Intuitively, (R,D) is a pClus-
ter if R is shared by attribute-pair MDSs from any two at-
tributes fromD. (R, D) is a row-maximal pCluster ifR is
a maximal set of objects.

One tricky thing here is that, in general, there can
be more than one attribute-pair MDS for given attributes
au, av. Thus, there can be more than one row-maximal
pCluster on a subset of attributesD. Technically,(R, D)
is a row-maximal pCluster if for each pair of attributes
{au, av} ⊂ D, there exists an attribute-pair MDS
({au, av}, Ruv), such thatR =

⋂
{au,av}⊂D Ruv.

Recall that MaPle searches the combinations of at-
tributes in the depth-first manner, all row-maximal pClus-
ters for subset of attributesD − {aik} is found before we
search forD. Therefore, we only need to find the subset
of objects in a row-maximal pCluster ofD− {aik} that are
shared by attribute-pair MDSs ofaij , aik

(j < k).

3.3.3 Pruning and Optimizations
Several optimizations can be used to prune the search so
that the mining can be more efficient.



Optimization 1: Only possible attributesshould be con-
sidered to get larger pClusters.

Suppose that(R, D) is a row-maximal pCluster.For ev-
ery attributea such thata is after all attributes inD in the
attribute-list, under what condition can we find a significant
pCluster(R′, D ∪ {a}) such thatR′ ⊆ R?

If (R′, D ∪{a}) is significant, i.e., has at leastmino ob-
jects, thena must appear in at leastmino(mino−1)

2 object-
pair MDSs ({oi, oj}, Dij) such that{oi, oj} ⊆ R′. In
other words, for an attributea that appears in less than
mino(mino−1)

2 object-pair MDSs of objects inR, there ex-
ists no row-maximal pCluster with respect toD ∪ {a}.

Based on the above observation, an attributea is called
a possible attributewith respect to row-maximal pClus-
ter (R, D) if a appears inmino(mino−1)

2 object-pair MDSs
({oi, oj}, Dij) such that{oi, oj} ⊆ R. In line (12) of Fig-
ure 8, we compute possible attributes and only those at-
tributes are used to extend the set of attributes in pClusters.

Optimization 2: Pruning local maxiaml pClusters hav-
ing insufficient possible attributes.

Suppose that(R, D) is a row-maximal pCluster. Let
PD be the set of possible attributes with respect to(R, D).
Clearly, if ‖D ∪PD‖ < mina, then it is impossible to find
any maximal pCluster of a subset ofR. Thus, such a row-
maximal pCluster should be discarded and all the recursive
search can be pruned.

Optimization 3: Extracting common attributes from
possible attribute set directly.

Suppose that(R, D) is a row-maximal pCluster with re-
spect toD, andD′ is the corresponding set of possible at-
tributes. If there exists an attributea ∈ D′ such that for
every pair of objects{oi, oj}, {a} ∪ D appears in an ob-
ject pair MDS of{oi, oj}, then we immediately know that
(R, D∪{a}) must be a row-maximal pCluster with respect
to D ∪ {a}. Such an attribute is called acommon attribute
and should be extracted directly.

Example 4 (Extracting common attributes) In our run-
ning example, ({o1, o2, o3, o6}, {a1, a2}) is a row-
maximal pCluster with respect to{a1, a2}. Interest-
ingly, as shown in Figure 6(a), for every object pair
{oi, oj} ⊂ {o1, o2, o3, o6}, the object-pair MDS con-
tains attributea3. Therefore, we immediately know that
({o1, o2, o3, o6}, {a1, a2, a3}) is a row-maximal pCluster.

Optimization 4: Prune non-maximal pClusters.
Our goal is to find maximal pClusters. Once we know

that the recursive search on a row-maximal pCluster cannot
lead to a maximal pCluster, the recursive search thus can be
pruned. The earlier we detect the impossibility, the more
search efforts can be saved. We can use thedominant at-
tributesto detect the impossibility. We illustrate the idea in
the following example.

Example 5 (Detect non-maximal pClusters)In our run-
ning example, let us try to find the maximal pClusters
whose first two attributes area1 and a3. Following the

above discussion, we identify a row-maximal pCluster
({o1, o2, o3, o6}, {a1, a3}).

One interesting observation from the object-pair MDSs
on objects in{o1, o2, o3, o6} (Figure 6(a)): attributea2 ap-
pears in every object pair. We calleda2 a dominant at-
tribute. That means{o1, o2, o3, o6} also coherent on at-
tributea2. In other words, we cannot have a maximal pClus-
ter whose first two attributes area1 anda3, sincea2 must
also be in the same maximal pCluster. Thus, the search of
maximal pClusters whose first two attributes area1 anda3

can be pruned.

The idea in Example 5 can be generalized. Suppose
(R, D) is a row-maximal pCluster. If there exists an at-
tributea such thata is before the last attribute inD accord-
ing to the attribute-list, and{a} ∪ D appears in an object-
pair MDS({oi, oj}, Dij) for every({oi, oj} ⊆ R), then the
search from(R,D) can be pruned, since there cannot be a
maximal pCluster having attribute setD but noa. Attribute
a is called adominant attributewith respect to(R, D).

4 Empirical Evaluation

We test bothMaPleandp-Clusteringextensively on both
synthetic and real life data sets. In this section, we report the
results.

MaPle is implemented using C/C++. We obtained the
executable ofp-Clusteringfrom the authors of [12]. Please
note that the authors ofp-Clusteringimproved their algo-
rithm dramatically after their publication in SIGMOD’02.
All the experiments are conducted on a PC with a P41.2
GHz CPU and384 M main memory running a Microsoft
Windows XP operating system.

The algorithms are tested against both synthetic and real
life data sets. Synthetic data sets are generated by a syn-
thetic data generator reported in [12]. Limited by space,
we only report the results on a real data set, the Yeast mi-
croarray data set [11]. This data set contains the expression
levels of2, 884 genes under17 conditions.

Results on Yeast Data Set
The results on Yeast data set are shown in Figure 9. We

can obtain the following two interesting observations.

δ mina mino # of MPC # of pClusters

0 9 30 5 5520
0 8 40 5 2.05× 109

0 7 50 11 3.37× 1015

Figure 9. Test results on Yeast raw data set.

On the one hand, there are significant pClusters exist-
ing in real data. For example, we can find pure pCluster
(i.e.,δ = 0) containing more than30 genes and9 attributes
in Yeast data set. That shows the effectiveness and utiliza-
tion of mining maximal pClusters in bioinformatics appli-
cations.
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(a) Runtime vs. minimum number of
objects in pClusters.

(b) Scalability with respect to the num-
ber of objects in the data sets.

(c) Scalability with respect to the num-
ber of attributes in the data sets.

Figure 10. Results on synthetic data sets.

On the other hand, while the number of maximal pClus-
ters is often small, the number of all pClusters can be huge,
since there are many different combinations of objects and
attributes as sub-clusters to the maximal pClusters. This
shows the effectiveness of the notation of maximal pClus-
ters.

Results on Synthetic Data Sets
We test the scalability of the algorithms on the two pa-

rameters, the minimum number of objectsmino and the
minimum number of attributesmina in pClusters. In Fig-
ure 10(a), the runtime of the algorithms versusmino is
shown. The data set has6000 objects and30 attributes.

Both algorithms are in general insensitive to parameter
mino, butMaPleis faster thanp-Clustering. The major rea-
son is that the number of pClusters in the synthetic data set
does not change dramatically asmino decreases and thus
the overhead of the search does not increase substantially.
Please note that we do observe the slight increases of run-
time in both algorithms asmino goes down. One interesting
observation here is that, whenmino > 60, the runtime of
MaPle is significantly shorter. That is because there is no
pCluster in such a setting.MaPlecan detect this in an early
stage and thus can stop early.

We observe the similar trends on the runtime versus pa-
rametermina. The reasoning similar to that onmino holds
here. Limited by space, we omit the details here.

We test the scalability of both algorithms on the num-
ber of objects in the data sets. The result is shown in
Figure 10(b). The data set contains30 attributes, where
there are30 embedded clusters. We fixmina = 5 and
setmino = nobj · 1%, wherenobj is the number of ob-
jects in the data set.δ = 1. The result clearly shows that
both MaPle and p-Clusteringare scalable with respect to
the number of objects in the data sets.MaPleperforms sub-
stantially better thanp-Clusteringin mining large data sets.

We also test the scalability of both algorithms on the
number of attributes. The result is shown in Figure 10(c).
The number of objects is fixed to3, 000 and there are30
embedded pClusters. We setmino = 30 and mina =
nattr · 20%, wherenattr is the number of attributes in the
data set. BothMaPle andp-Clusteringare approximately
linearly scalable with respect to the number of attributes,

andMaPleperforms consistently better thanp-Clustering.
In summary, from the tests on synthetic data sets, we can

see thatMaPleclearly outperformsp-Clustering. MaPle is
efficient and scalable in mining large data sets.

5 Conclusions

In this paper, we proposeMaPle, an efficient and scal-
able algorithm for mining maximal pattern-based clusters in
large databases. We test the algorithm on both real life data
sets and synthetic data sets. The results show thatMaPle
outperforms the best method previously proposed.
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