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ABSTRACT

Privacy becomes a more and more serious concern in apphsati
involving microdata. Recently, efficient anonymizatiors lastracted
much research work. Most of the previous methods use glebal r
coding, which maps the domains of the quasi-identifiertaitds to
generalized or changed values. However, global recodingnmaga
always achieve effective anonymization in terms of disabiiity

and query answering accuracy using the anonymized datae-Mor

over, anonymized data is often used for analysis. As wek sied
in many analytical applications, different attributes irdata set
may have different utility in the analysis. The utility oftidvutes
has not been considered in the previous methods.

In this paper, we study the problem ofility-based anonymiza-
tion. First, we propose a simple framework to specify utility bf a
tributes. The framework covers both numeric and categlodit.
Second, we develop two simple yet efficient heuristic loeabd-
ing methods for utility-based anonymization. Our exteagierfor-
mance study using both real data sets and synthetic datshests
that our methods outperform the state-of-the-art multaisional
global recoding methods in both discernability and querswaar-
ing accuracy. Furthermore, our utility-based method carsbthe
quality of analysis using the anonymized data.

Categories and Subject Descriptors
H.2.8 [Database Applicationg: Data Mining

General Terms

Security, Algorithms, Performance

Keywords

Privacy preservation, data mining, k-anonymity, utilitgcal re-
coding

1. INTRODUCTION

Recently, privacy becomes a more and more serious concept in
plications involvingmicrodata which refers to data published in
its raw, non-aggregated form [17]. One important type ofqmy
attack is re-identifying individuals by joining multipleuplic data
sources. For example, according to [15], more tRaf of the
population of the United States can be uniquely identifieidgis
their zipcode, gender, and date of birth.
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To protect privacy against this type of attacks, k-anonymits
proposed [12; 15]. A data set isanonymougk > 1) if each
record in the data set is indistinguishable from at ldést- 1)
other records within the same data set. The larger the vdlée o
the better the privacy is protected.

Since the concept of k-anonymity has been proposed, efficieth-
ods for anonymization has attracted much research work.wA fe
k-anonymization algorithms have been developed. We sidfw
the related work briefly in Section 2.2. Generally, to achiév
anonymity, those methods generalize or suppressgubsi-identifier
attributes which are the minimal set of attributes in the table that
can be joined with external information to re-identify ividiual
records.

Information loss is an unfortunate consequence of anorgtiiz

In order to make the anonymized data as useful as possible, it
is required to reduce the information loss as much as pessibl
A few models have been proposed to measure the usefulness of
anonymized data. For example, the discernability modetr[é$

to minimize the number of tuples that are indistinguishaatdong

as they satisfy the k-anonymity requirement.

In this paper, we study the problem of k-anonymization araifo
on two interesting issuesinonymization using heuristic local re-
codingandutility-based anonymization

1.1 Global and Local Anonymization

Many recent methods (e.g., [4; 8; 9]) uglbal recoding which
maps the domains of the quasi-identifier attributes to geized or
changed values. In other words, the data space is partitione
a set of (non-overlapping) regions. The anonymization nadps
tuples in a region to the same generalized or changed tuptex-
ample, Figures 1(b) demonstrate§-anonymization using global
recoding for the table in Figures 1(a), where (age, zipcisl#é)e
quasi-identifier. Tuples?3 an R4 in Figures 1(a) are identical.
They are mapped to the same generalized tuple in global iregod
In contrast,local recodingmaps (non-distinct) individual tuple to
generalized tuples. For example, Figure 1(c) shodmaonymiza-
tion using local recoding of the same table in Figures 1(ag flvo
identical tuples,R3 and R4, are mapped to different generalized
tuples in local recoding. Clearly, global recoding can kgarded
as a specific type of local recoding.

Interestingly, from Figure 1, we can observe thatal recoding
may achieve a less information loss than global recodilgour
example, the two generalized tuples in global recoding tibee
sizes of interval8 and5 in age, andl and0 in zipcode, respec-
tively. In local recoding, the sizes of intervals @&@nd2 in age,
and1 and2 in zipcode, respectively. By intuition, smaller the sizes

Page 21



SIGKDD Explorations

| Row-id | Age | Zipcode ] | Row-id | Age | Zipcode | | Row-id| Age | Zipcode ]
R1 | 24 | 53712 R1 | [24-32] | [53712-53713] R1 | [24-30] | [53711-53712]
R2 | 25 | 5a7il R2 | [25-30] 53711 R2 | [24-30] | [53711-53712]
R3 | 30 | 5a7il R3 | [25-30] 53711 R3 | [24-30] | [53711-53712]
R4 | 30 | 5avil R4 | [25-30] 53711 R4 | [30-32] | [53711-53713]
R5 | 32 | 53712 R5 | [24-32] | [53712-53713] R5 | [30-32] | [53711-53713]
R6 | 32 | 53713 R6 | [24-32] | [53712-53713] R6 | [30-32] | [53711-53713]

(a) The original table.

b) 3-anonymization by global recoding.

(c) 3-anonymization by local recoding.

Figure 1: Global recoding and local recoding. The row-idsfar reference only and are not released with the data. Thespw-ids are

not part of the quasi-identifier.

of intervals in the generalized tuples, less informaticssln the
anonymization.

Can we use local recoding to achieve less information loasony-
mization effectively? Generally, optimal k-anonymity is NP-
hard [10; 2]. In this paper, we propose two simple yet efficien
heuristic algorithms using local recoding for k-anonyntia. Our
extensive empirical study on both real data sets and syattieta
sets show that our method outperforms the state-of-thglaloal
recoding method in both the discernability and the accuiafcy
query answering.

1.2 Utility-Based Anonymization

Anonymized data is often for analysis and data mining. Ad wel
recognized in many data analysis applications, differémibates
may have different utility. For example, consider anonyingza
data set about patients for disease analysis. Suppose én tard
achieve k-anonymity, we can generalize from a five-digit fip-
code to a four-digit prefix (e.g., fro3712 to 5371x). Alterna-
tively, we can also generalize attribute age to age grougs feom
23 t0[20, 30]). In many cases, the age information is critical to dis-
ease analysis, while the information loss on the accurasgitm is
often acceptable (a four digit prefix in fact still identif@selatively
local region). Thus, the age attribute has more utility ttrenzip-
code attribute, and should be retained as accurately agh[@Bs
anonymization.

Can we make the anonymization utility awatd@lity of attributes
has not been considered by previous anonymization methiods.
this paper, we propose a model fdility-based anonymizatioiWwe
consider both numeric data and categorical data with anldowit
hierarchies. We present a simple method to specify utilitate
tributes and push them into the heuristic local recodinghgimoza-
tion methods. Our experimental results show that the yHilésed
anonymization improves the accuracy in answering targpiedes
substantially.

Paper Organization

The rest of the paper is organized as follows. In section Zeweall
the notions related to anonymization, and review the relaterk.
We present our utility specification framework in Section@ur
heuristic local recoding methods are developed in SectioAr
extensive performance study on both real data sets andedimth
data sets is reported in Section 5. The paper is concludeddn S
tion 6.

2. K-ANONYMITY AND RELATED WORK
2.1 K-Anonymity
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Consider a tablg” = (Aq,..., A,). A quasi-identifieris a mini-
mal set of attribute$A;,,..., A;) (1 < iy < --- <4 < n)in
T that can be joined with external information to re-identifgi-
vidual records. In this paper, we assume that the quastiiberns
specified by the administrator based on the background laumel
Thus, we focus on how to anonymiZéto satisfy the k-anonymity
requirement.

Formally, given a parametdr and the quasi-identifiefA;,, ...,
A;,), a tableT is said k-anonymousf for each tuplet € T,
there exist at least anothék — 1) tuplesty, ..., tx—1 such that
thosek tuples have the same projection on the quasi-identifier, i.e
t(Ail = tl(Ail _____ A5 - Tuplet
and all other tuples indistinguishable franon the quasi-identifier
form anequivalence classWe call the class thgroup thatt is
generalized.

Given a tableT” with the quasi-identifier and a parameterthe
problem ofk-anonymizationis to compute a viewl” that has the
same attributes &6 such thafl” is k-anonymous and” is as close
to T as possible according to some quality metric. We shall dscu
the quality metrics soon.

Since the attributes not in the quasi-identifier do not neebe
changed, to keep our discussion simple but without loss roé ige-
ity, hereafter we consider only the attributes in the qudeitifier.
That is, for tablel'( A4, . .., A,) in question, we assumel, ...,
Ay) is the quasi-identifier.

:...:tk71(4i1 _____ A

2.2 Related Work

K-anonymization was proposed by Samarati and Sweeney gt1; 1
15; 14]. Generally, data items are recoded in anonymizatitame,
we regard suppression as a specific form of recoding thatiesca
data item to null value (i.e., unknown).

Two types of recoding can be used [17]: global recoding andllo
recoding, as described and demonstrated in Section 1.1y ptan
vious methods use global recoding. In [11; 1f8]|-domain gener-
alization a specific type of global recoding, was developed, which
maps the whole domain of each quasi-identifier attributertmee
general domain in the domain generalization hierachy-&athain
generalization guarantees that all values of a particttidbate still
belong to the same domain after generalization.

To achieve full-domain generalization, two types of patiing
can be applied. First, single-dimensional partitioning7divides

an attribute into a set of non-overlapping intervals, anchea-
terval will be replaced by a summary value (e.g., the meam, th
median, or the range). On the other hand, (strict) multidisienal
partitioning [9] divides the domain into a set of non-ovepang
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multidimensional regions, and each region will be geneealiinto

a summary tuple.

Generally, anonymization is accompanied by informati@sld/ar-
ious models have been proposed to measure the informassn lo
For example, theliscernability mode[4] assigns to each tuplea
penalty based on the size of the group thiatgeneralized, i.e., the
number of tuples equivalent toon the quasi-identifier. That is,

> B,

Ecgroup-bys on quasi-identifier

Cpm =

Alternatively, thenormalized average equivalence class size metric
was given in [9]. The intuition of the metric is to measure how
well the partitioning approaches the best case where epth ig
generalized in a group d@f indistinguishable tuples. That is,

number of tuples in the table
number of group-bys on quasi-identifigt

Cave =

The quality of anonymization can also be evaluated basedson i
usefulness in data analysis applications, such as clag&fic[6;
16].

The ideal anonymization should minimize the penalty. Hasvev
theoretical analysis [2; 10; 9; 3; 1] indicates that the feobof
optimal anonymization under many non-trivial quality misdis
NP-hard. A few approximation methods were developed [3jhsu
as datafly [14], annealing [18], and Mondrian multidimensilok-
anonymity [9]. Interestingly, some optimal methods [4; 8Sthw
exponential cost in the worst case were proposed. The enpetal
results in those studies show that they are feasible andataeve
good performance in practice.

3. UTILITY-BASED ANONYMIZATION

Without loss of generality, in this paper we assume that igeize-
tion is used in anonymization. That is, when a tuple is gdized
the ranges of the group of tuples that are generalized axktose
represent the generalization, as illustrated in Figuré dther rep-
resentations such as mean or median are used, the defirdans
be revised straightforwardly and our methods still work.

3.1 Utility-Based Anonymization: Motivation

In previous methods, the quality metrics, such as the distslr

ity metric and the normalized average equivalence clagsmit-

ric discussed in Section 2.2, mainly focus on the size of gsdn
anonymization. In an anonymized table, when each grouppdésu
sharing the same projection on the quasi-identifierthagples, the
penalty metrics are minimized. However, such metrics may no
lead to high quality anonymization.

EXAMPLE 1 (QUALITY METRICS). Suppose we want to
achieve2-anonymity for the six tuples shown in Figure @X,Y")
is the quasi-identifier. The six tuples can be anonymizedhiae
groups:{a, b}, {c,d}, and{e, f}. In this anonymization scheme,
both the discernability metri€ps and the normalized average
equivalence class size metfityv ¢ are minimized.
Let us consider the utility of the anonymized data. Suppesh e
group is generalized using the range of the tuples in thepgrou
That is,a andb are generalized t¢{10, 20], [60, 70]); ¢ andd are
generalized tq[20, 50], [20, 50]); ande and f are generalized to
([50, 60], [10, 15]).
In order to measure how well the generalized tuples apprateém
the original ones, for each tuple we can use the sum of the inte
val sizes on all attributes of the generalized tuple to meathe
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Figure 2: The six tuples in Example 1.

uncertainty of the generalized tuples. Thatliga) = U(b) =
10 + 10 = 20. Similarly, we getU(c) U(d) = 60 and
U(e) U(f) = 15. The total uncertainty of the anonymized
table is the sum of the uncertainty of all tuples, i.€(T")
>er U(t) = 20 420 + 60 + 60 + 15 + 15 = 190. By in-
tuition, the uncertainty reflects the information loss. Téss the
uncertainty, the less information is lost.
On the other hand, we may anonymize the tuples in two groups:
{a,b,c} are generalized tg[10, 20], [50, 70]), and {d,e, f} are
generalized tq[50, 60], [10, 20]). In fact, the data set i3-anony-
mous, which is better thalxanonymous in terms of privacy preser-
vation. Moreover, the total uncertainty in this anonymimatis
150, lower than the-anonymity scheme.
However, this anonymization scheme has a higher penaltyttiea
2-anonymous scheme in both the discernability mettic,, and
the normalized average equivalence class size métiigc. In
other words, optimizing the quality metrics on group size/mat
always lead to anonymization that minimizes the infornratass.

|

Can we have a quality metric that can measure the utility ef th
anonymized data®uch a utility-based metric should capture the
following two aspects.

e The information loss caused by the anonymizatithen a
record is anonymized, it is generalized in its quasi-idisnti
The metric should measure the information loss of the gen-
eralization with respect to the original data.

e The importance of attribute?\s well accepted in data anal-
ysis such as aggregate queries, different attributes may ha
different importance in data analysis. In anonymizatiam c
we introduce less uncertainty to the important attribu®séh
utility-aware anonymization may help to improve the qualit
of analysis afterwards.

3.2 Weighted Certainty Penalty

We introduce the concept of certainty penalty to captureutiwer-
tainty caused by generalization.

3.2.1 Numeric Attributes

First, let us consider the case of numeric attributes. Tdie a
table with quasi-identifie( A4, ..., A,), where all attributes are
numeric. Suppose a tupte= (z1,...,z») is generalized to tuple
t' = ([y1,21],- -, [Yn, zn]) sUch thaty; < z; < z; (1 < i < n).
On attributeA;, thenormalized certainty penalig defined as

Zi = Yi
|4

where|A4;| = maxier{t.A;} — min,er{t.A;} is the range of all
tuples on attributed;.

NCPq,(t) =
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Figure 3: A hierarchy on a categorical attribute.

Let each attributed; be associated with a weight; to reflect its
utility in the analysis on the anonymized data. Then,weéghted
certainty penaltyof a tuple is given by

n n

= 5w - NCPa,(£) = > (w; -

i=1 i=1

NCP(t)

Clearly, when all weights are set taand all attributes have ranges
[0, 1], the weighted certainty penalty is tHg norm distance be-
tween points (maxicq{t.A1},..., maxicc{t.A»}) and
(minieg{t. A1}, ..., miniea{t.An}), whereG is the equivalence
group thatt belongs to.

Our utility-based metric is given by the total weighted aérty
penalty on the whole table. That is,

=> NCP(t

teT

NCP(T

3.2.2 Categorical Attributes

Distance is often not well defined on categorical attribueesich
makes measuring utility on categorical attributes difficld some
previous methods (e.g., [8; 9]), it is assumed that a toti#oexists
on all values in a categorical attribute. In many appligaicsuch
an order may not exist. For example, sorting all zipcodehéir t
numeric order may not reflect the utility properly. Two regganay
be adjacent but their zipcodes may not be consecutive.

More often than not, hierarchies exist in categorical ladtes. For
example, zipcodes can be organized into hierarchy of regizties,
counties, and states.

Letwvs,...,v; be a set of leaf nodes in a hierarchy tree. Ldie
the node in the hierarchy on the attribute such thetan ancestor
of v1,...,v;, andu does not have any descendant that is still an
ancestor o1, ..., v;. u is called theclosest common ancestof
v1,..., v, denoted bywncestor(vi, ..., v;). The number of leaf
nodes that are descendantsuab called thesizeof «, denoted by
size(u).

Can we use the hierarchy information to measure the utilitgat-
egorical attributes?

EXAMPLE 2 (UTILITY ON CATEGORICAL ATTRIBUTES).
Consider a categorical attribute of domdin b, ¢, d, e, f, g}. Sup-
pose a hierarchy exists on the attribute as shown in Figuieha.
values appear in the leaf nodes in the hierarchy tree.
Intuitively, if we generalize tuples having valuandc, the anony-
mized tuples have good utility on this categorical attrésytsince

utility on the attribute since the common ancestou@ind f is far
away fromf.

One may wonder whether the shortest distance betweand v

in the hierarchy tree can be used as the certainty penaltiprtun
nately, it does not work well. Consider Figure 3 again. liely,
generalizingd and e together is better than generalizingand d
together, since the closest common ancestat ahde is in a hi-
erarchical level lower than the closest common ancestar arid

d. However, the shortest distance betwéesnde is 5, while the
shortest distance betweerandd is only 4. If we use the shortest
distance as the guide, then mergingndd is better than merging
d ande. In other words, the shortest distance may be misleading.
To measure the utility of merging two valuesindy into the same
generalized group, we can observe that the critical fastéorithe
closest common ancestarof 2 andy, how many other values are
also the descendants of The smaller the number, the smaller the
uncertainty introduced by the generalization. n

Based on the observation in Example 2, we define the certainty
penalty on categorical attributes as follows.
Suppose a tuplé has valuev on a categorical attributd. When
it is generalized in anonymization, the value will be repldy a
set of values{vi, ..., v}, wherevs, ..., v, are the values of tu-
ples on the attribute in the same generalized group. We défine
normalized certainty penaltyf ¢ as follows.
size(u)

NCPa(t) A
where|A| is the number of distinct values on attribute Here,
we assume that each leaf node is of the same importance. The de
inition can be straightforwardly extended by assigningghés to
internal nodes to capture the more important leaf nodesraachial
hierarchical structures. Limited by space, we omit theitietere.

ExXAamMPLE 3. Let us consider the cases discussed in Example 2
again. Puttingt andd together in a group has penaltyand putting
d ande together in a group has pena@y)nly, which is smaller than
the case ofi andd. =

Putting things together, for a table consisting of both ntienend
categorical attributes, the total weighted normalizedtedety penalty
is the sum of the weighted normalized certainty penalty bflal
ples. That s,

NCP(T

-3

teT i=1

- NCPg,(t)),

where NC' P4, (t) should be computed according to whetligris

a numeric or categorical attribute.

Given a tableT’, a parametek, the weights of attributes and the
hierarchies on categorical attributes, iieblem of optimal utility-
based anonymizatiois to compute a k-anonymous taldlg such
that the weighted normalized certainty penaltyZdris minimized.

3.3 Complexity

The previous studies show that the problem of optimal k-guoty
is NP-hard under various quality models. The utility-baseztiel
we propose here is a generalization of the suppression mddel
have the following results on the complexity.

LEMMA 1 (CATEGORICAL ATTRIBUTES). Suppose the

b andc share the same parent in the hierarchy. On the other hand,quasi-identifier has only categorical attributes. The pesh of op-
putting @ and f into the same generalized group may have poor timal utility-based k-anonymization is NP-hard flor> 2.
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Input: atableT, parametek;, weights of attributes, and
hierarchies on categorical attributes;

Output: ak-anonymous tabl&"”;

Method:

1: Initialization: create a group for each tuple;

2: VI LE there exists some group such thatG| < k DO{

3:  FOReach groug? such tha{G| < k DO{

4 scan all other groups once to find gra@psuch
that NC P(G U G') is minimized;
merge groups’ andG’;

}

FOR each grougs such thatG| > 2k DO
split the group intq‘—f‘J groups such that each
group has at leagt tuples;

m

N o

}

. generalize and output the surviving groups;

(o]

Figure 4: The bottom-up algorithm.

Proof sketch. We can show that the suppression model used in [2]
is a special case of the weighted normalized certainty pedat
fined here, where all weights are setlt@and all hierarchies have
only two levels: the detailed values and suppression. Timenia
follows from the result in [2]. n

Following from the lemma, we have the following result.

THEOREM1 (CoOMPLEXITY). The problem of optimal
utility-based anonymization is NP-hard. m

In fact, for a table consisting of only numeric attributess prob-
lem is still NP-hard. Limited by space, we omit the detailsehe

4. GREEDY METHODS

In this section, we develop heuristic methods for utiligsbd ano-
nymization. We propose two greedy algorithms. The first meth

conducts a bottom-up search, while the second one works top-

down.

4.1 The Bottom-Up Method

To maximize the utility of the anonymization of a tuple, weyma
“cluster” the tuples locally according to the weighted aerty
penalty. Those compact clusters having at ldastiples can be
generalized. This idea leads to our bottom-up method.

At the beginning, we treat each tuple as an individual grolmp.
each iteration, for each group whose population is less thave
merge the group with the other group such that the combinaajgr
has the smallest weighted certainty penalty. The iterajmes on
until every group has at leasttuples. The algorithm is shown in
Figure 4.

The bottom-up algorithm is a greedy method. In each round, it
merges groups such that the resulted weighted certainiltpen
locally minimized. In one iteration, if one group is mergedhw
multiple groups, itis possible that the group becomes ratgnk.

In order to avoid over-generalization, if a group has moenttk
tuples, then the group should be split. It is guaranteedithtite
resulted table, each group has ug2é — 1) tuples.

Please note that, unlike many previous methods that try to-mi
mize the average number of tuples per group, our algoritiyrte t
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Input: atableT, parametek, weights of attributes,

hierarchies on categorical attributes;

Output: ak-anonymous tabl@&"”;

Method:

1: | F|T| <k THEN RETURN,

2: ELSE{

3.  partitionT into two exclusive subsefg; and7T5 such
that7} andT% are more local thaff’, and eitherl}
or T have at leask tuples;

4: | F|T1| > k THENrecursively partitioril;

5: | F|T2| > k THENrecursively partitioril;

}

6: adjust the groups so that each group has at leagtles;

Figure 5: The framework of the top-down greedy search method

reduce the weighted certainty penalty, which reflects tHiyuof
the anonymized data. At the same time, they also keep thegrumb
of tuples per group small.

EXAMPLE 4 (ADVANTAGES OF THE BOTTOM-UP METHOD).
To understand the difference between our method and thépgev
methods, let us check the case in Figure 2. The bottom-upadeth
generates two groupsia, b, c} and{d, e, f}, as expected in Ex-
ample 1. Although it does not minimize the average group, $ize
optimizes the utility of the anonymized data — the inforroatioss
is better than ang-anonymous scheme in this example. Moreover,
as a byproduct, the result3sanonymous, which means a stronger
protection of privacy. =

After the k-th round, the number of tuples in a group is at leAst
Therefore, by at mosflog, k| iterations, each group has at least
k tuples, and thus the generalized groups satisfykth@onymity
requirement. The complexity of the algorithm@X [log, k]|T'|?)

on tableT'.

The bottom-up method is a local recoding method. It doespiit s
the domain. Instead, it only searches the tuples. Diffegentips
may have overlapping ranges. Moreover, in the step of sitt
several tuples with the identical quasi-identifier may bkt pto
different groups.

4.2 A Top-Down Approach

The major cost in the bottom-up method is to search for theesib
groups (Step 4 in Figure 4). In the bottom-up method, we have
to use a two-level loop to conduct the search. We observegif w
can partition the data properly so that the tuples in eactitipar

are local, then the search of the nearest neighbors can Heuppe
Motivated by this observation, we develop the top-down apph.

The general idea is as follows. We partition the table iteeht

A set of tuples is partitioned into subsets if each subsetdsem
local. That is, likely they can be further partitioned intoaler
groups that reduce the weighted certainty penalty. Aftergrti-
tioning, we merge the groups that are smaller than honor the
k-anonymity requirement.

To keep the algorithm simple, we consider binary partitigniThat

is, in each round, we partition a set of tuples into two suhsEhe
algorithm framework is shown in Figure 5.

Now, the problem becomes how we can partition a set of tuples
into two subsets so that they are compact and likely lead #&llsm
weighted certainty penalty. We adopt the following heirisiWe

Page 25



SIGKDD Explorations

form two groups using the two seed tuples that cause the $tighe
certainty penalty if they are put into the same group, anijaske
other tuples into the two groups according to the two seelésup
Technically, we want to find tuples,v € T that maximize
NCP(u,v). u andv become the seed tuple of groups, and
G, respectively.

The cost of findingu, v such thatNCP(u,v) is maximized is
O(|T)?). To reduce the cost, we propose a heuristic method here.
We randomly pick a tuple:;. By scanning all tuples once, we
can find tuplev; that maximizesVC P (u1,v1). Then, we scan all
tuples again, find tuple; that maximizesVC P (uz, v1). The iter-
ation goes on a few rounds untilC' P (u, v) does not increase sub-
stantially. Our experimental results on both the real data and
the synthetic data sets show that the maximal weightedingrta
penalty converges quickly. By up forounds, we can achied %

of the maximal penalty. By up t6 rounds, we can achieve more
than98.75% of the maximal penalty. In practice, we can choose a
small integer as the number of rounds to find the seed tuples.
Once the two seed tuples are determined, two gradpand G,

are created. Then, we assign other tuples to the two groups on
by one in a random order. For tuple the assignment depends on
NCP(Gy,w) and NCP(G,,w), whereG,, G, are the groups
formed so far. Tuplew is assign to the group that leads to lower
uncertainty penalty.

If at least one group hals or more tuples, then the partitioning is
conducted. The top-down method is recursively applied tseh
groups having at leagttuples.

We have a postprocessing step to adjust for those groupdesih
thank tuples. If one groug has less thak tuples, we apply the
local greedy adjustment similar to the bottom-up approatiat is,

we consider two alternatives. First, we can find agesf (k—|G|)
tuples in some other group that has more tlah — |G|) tuples
such thatVC' P(G U G') is minimized. Second, we compute the
increase of penalty by mergin@ with the nearest neighbor group
of G. By comparing the two penalty measures, we decide whether
G’ is moved to¢ or G is combined with its nearest neighbor group.
Such adjustments should be done until every group has dtieas
tuples, i.e., thé-anonymity requirement is satisfied.

In worst case, the partition depth is bounded®§7’|). In each
step of partition, it take®)(m) time cost to partition then tuples

in the current set into two subsets. Thus, the overall jpamtitg
costisO(|T'|?). After the top-down partitioning, in the worst case,
we may have to adju%t%] groups each having less thanuples.
Thus, the cost of adjustmenta¥ |7'|?) in the worst case. However,
in practice, the number of groups that are smaller thas much
less than the worst case. As shown in our experiments, the top
down method is clearly faster than the bottom-up method.

The top-down method is also a local recoding method, sintieein
adjustment step, similar to the bottom-up method, two wien-
tical in the quasi-identifier may be assigned to two diffégoups.

5. EXPERIMENTAL RESULTS

To evaluate the two heuristic methods proposed in this paper
conducted an extensive empirical study using both real skts
and synthetic data sets.

5.1 Settings and Evaluation Criteria

We compare three methods: the mondarian multidimensional k
anonymization method [9], the bottom-up method and thedimpn
method developed in this paper. According to [9], the moiaaar
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multidimensional k-anonymization method (called Multibifor
short hereafter) is so far the best method in both qualityagueed
by the discernability penalty) and efficiency. The genedahi of
the method is a top-down greedy search that is similar talimgl
kd-trees [5]. At each step, it chooses a dimension to sg@itdta
set at the median of the dimension. Heuristically, the disimn
with the widest normalized range of values is chosen.

We measure the quality of the anonymization using threergait
the certainty penalty, the discernability penalty, andetrer rate in
query answering. The certainty penalty proposed in thiepaea-
sures the utility of the anonymization. The discernabifignalty

is a de facto standard measure on anonymization quality imsed
many previous studies. The error rate measures how eféeittes
anonymized data sets are in query answering.

All our experiments were conducted on a PC with a Pentium @4 2.
GHz CPU and 512 MB main memory, running Microsoft Windows
XP. All the algorithms were implemented by us in Microsofsial
C++ version 6.0.

5.2 Results on Real Data Set Adults

The Adults census data set from the UC Irvine machine legrnin
repository has become a de facto benchmark for k-anonyimizat
The data set was configured as described in [4]. The salasg cla
attribute was dropped, and the tuples with missing valueg ne
moved. The resulting data set contas 162 tuples.

Since the MultiDim method does not handle hierarchies osgat

ical attributes but treats a categorical attribute as aeliscayumeric
attribute, we configured the data set for MultiDim as it waedus
in [9]. For the bottom-up method and the top-down method pro-
posed in this paper, we used age and education levels asinumer
data, and use the other attributes as categorical attsibWe used
the two hierarchies in Figure 6 on attributes work-classraadtal-
status. On other categorical attributes, a simple twotleegarchy

is applied: the values are the leaf nodes and the root is AleL, (i
suppression). All weights were setto

Figure 7 shows the certainty penalty of the anonymizatiothef
three methods with respect to differéntalues. As expected, since
the bottom-up method and the top-down method focus on the cer
tainty penalty, but the MultiDim method does not, the anoizgm
tion generated by the bottom-up method and the top-downadeth
has a clearly lower certainty penalty. The gap is stableu@bo
2 x 10",

Figure 8 compares the discernability penalty of the anomgition
generated by the three methods with respect to differenegabfk.
Interestingly, although the bottom-up and the top-dowrhoés do

not explicitly focus on reducing the discernability pegathey out-
perform the MultiDim method. Please note that the discalitab
penalty in the figure is drawn in the logarithmic scale. Thaules
show that optimizing the utility and the reducing the disedility

are not conflicting with each other. In fact, the two metholde a
try to keep the size of groups same when they reduce the migrtai
penalty. Grouping tuples locally can bring us benefit on caty
both the certainty penalty and the discernability penalty.
Interestingly, the anonymized data sets generated by ttienbo

up method and the top-down method are comparable in both the
certainty penalty and the discernability. This is not urestpd
since the two methods greedily group tuples locally to aghie
anonymity.

To test the effectiveness of query answering using the anaed
data, we generate workloads usiSgM and COUNT aggregate
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Figure 6: The hierarchies on attributes work-class andtalsstatus.
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10 - ~ _ ] Figure 10 shows the runtime of the three methods. As the-éde
—F T the bottom-up and the top-down methods consumes more r@ntim
10 ] than the MultiDim method. The top-down method is about 5-6
——MultiDim times slower than MultiDim, and is much faster than the btigp
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1o 5.3 Results on Synthetic Data Sets

100

Figure 10: Runtime with respect foon data set Adults.

queries, respectively. Each workload ha$00 random queries.
EachCOUNT query involves all the attributes, and eg@iMquery
involves all but the age attribute that is used to computestime.
The ranges of the attributes are selected randomly. Foegaatal
attribute, a query carries either a random categoricakevalua set
of values that are summarized by an internal node in the cigya
as the range. This is consistent with the settings in [9].

Figure 9 shows the results on two workloads of aggregatdifurs
COUNT and SUM respectively, with respect to differehtvalues.
Clearly, the bottom-up method and the top-down method outpe
form the MultiDim method substantially. The results can ke e
plained in two aspects. First, the utility-driven anonyatian put
tuples that are similar to each other into groups. Thus, #megl-
ized groups often have small ranges, and can answer quesies m
accurately. Second, our methods handle categorical @tstet-
ter than the MultiDim method. The hierarchies are considléne
the anonymization. This contributes to the query answegirajity
strongly.
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To test the performance of the three methods more thorougjely
generated synthetic data sets in two types of distributiongorm
distribution and Gaussian distribution. The dimensidgalind the
number of tuples may vary according to the needs of expetsnen
By default, a data set hd$, 000 tuples and each attribute is in the
domain of integer with rangg, 16]. Again, by default the weights
are set tal.

5.3.1 Anonymization Quality

Figures 11 and 12 show the certainty penalty with respektdn

the synthetic data sets with uniformly distribution and &san
distribution, respectively. In the uniform distributectalathe Mul-
tiDim method and the top-down method are comparable, and the
top-down method is better whénis small. The bottom-up method
performs poorly. The reason is that with uniform distributi the
kd-tree like construction in the MultiDim method can paotit the
data set evenly into groups with hyper-rectangle boundioxgb

so that each group is balanced and achieves low penalty.arhe s
happens to the top-down method as well. In the bottom up rdetho
the groups formed by merging may be in irregular shape arsl thu
may lead to high certainty penalty.

In data sets with Gaussian distribution, both the top-dovethad
and the bottom-up method work better than the MultiDim mdtho
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The advantage is clear. With bias data, local search antiieca  discernability penalty than the MultiDim method in all cas&his
coding may have good chance to find local clusters that lebmivto is consistent with the results on the real Adults data set.

certainty penalty. From this set of experiments, we conclude that the bottorang
It is interesting to test the certainty penalty with respgedathe de- the top-down methods often have similar performance inamira-
gree of bias in data. Figure 13 shows the results. The toprdow tion quality, measured by both the certainty penalty anddise
method is consistently the best. When the data is severabedj cernability. The anonymization quality using those two noels

the MultiDim method performs poorly. But when the data beesm  are often better than the MultiDim method.
less biased, the MultiDim method catches up with and evepesut
forms the bottom-up method, but is still worse than the topxul
method.

Figure 14 shows the certainty penalty with respect to varidiy
mensionality. The top-down method and the bottom-up method
are comparable, and the top-down method is slightly beftae
MultiDim method has a high certainty penalty in high dimemsil
data. Please note that, as the dimensionality increasesettainty
penalty generally increases accordingly since each até&ibon-
tributes to the certainty penalty. The bottom-up and thedown
methods try to reduce the penalty in the anonymization phaee
and thus may achieve good results.

We also test the quality of the anonymization using the disadal-

ity penalty measure. Figures 15, 16, 17, and 18 show thetsesul
on the cases in Figures 11, 12, 13, and 14, respectively. &he r
sults using the discernability penalty measure are cangistith

the results reported in [9].

From the results, we can observe that the bottom-up methdd an
the top-down method have similar performance, and achies® |

5.3.2 Utility and Query Answering

To test the utility in query answering, we use a uniformly-dis
tributed data set withl attributes, and set = 10. We assign
weights8, 4, 2, and1 to attributesA;, A2, Az, and A4, respec-
tively. That is, the information loss in attribut&; is strongly un-
desirable.

We generaté groups of random queries on attribute combinations
A1, A1As, A1 Az As, and A1 A3 A3 Ay, respectively. The average
error rates of the queries in each group is shown in Figurd=b®.
comparison, we also conduct the same queries on anonyamzati
that do not consider the weights.

As can be seen, the effect of utility-based anonymizatimigsif-
icant. The anonymization using the weighted top-down otdnot

up methods answers the queries4n A; A2, andA; A, As more
accurately than the non-weighted methods. When all atatbare
involved in a query, the weighted methods may lose some acgur
as the trade-off.

We also test the average error rates using the anonymizedalat
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answer aggregate queries. Figure 20 shows the resultsislaxh
periment, we assign the default weighto every attribute, and test
two aggregate functionSUMand COUNT. The average error rate
is computed froml, 000 random queries. The methodology is the
same as the experiment reported in Figure 9 and the expgemen
reported in [9].

The results show that both the bottom-up and the top-dowih-met
ods achieve lower error rate than the MultiDim method whkesa

not large, since local recoding often groups tuples withlsoga-
tainty penalty. Wherk is large, the top-down method has the best
performance, and is clearly better than the other two method

5.3.3 Efficiency and Scalability

The advantages of the bottom-up and the top-down methods in

anonymization quality do not come for free. The trade-offhis
longer computation time. Figure 21 shows the results orabdéy.

The complexity of the MultiDim method i©(|7’|log |T'|), lower
than that of the bottom-up and the top-down methods. Thes, th
MultiDim method is more scalable. However, since anonymiza
tion is typically an offline, one-time task, quality can be arm
important concern than the runtime. On the other hand, the di
ference between the top-down method and the MultiDim method
is not dramatic. In our experiments, even when the data sétsc
up to100, 000 tuples, the runtime of the top-down approach is just
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(dimensionality=4,real data set Adults, and synthetic data sets
with uniform and Gaussian distribution (di-
mensionality=4).

less thart times slower than that of the MultiDim method.

The top-down method is substantially faster than the botipm
method. As analyzed in Section 4, splitting in the top-dovaitod

is much faster than merging in the bottom-up method.

A critical step in the top-down method is to choose two seed tu
ples. We used a heuristic method as described in Sectiongd. Fi
ure 22 shows the effectiveness of the heuristic. We usedraubb
method to compute the pair of tuples of the largest certgianalty.
Then, we used the heuristic method to compute seed tuplesrtha
far away, and compare their certainty penalty with the masxm
As shown, with a small number of iterations, our heuristizegi
very good approximation to the maximum. Thus, in our implame
tation, we conduct 3 iterations to obtain the seed tuples.

Summary

The extensive experiments using both real data sets anbegimt
data sets show that, in terms of utility and discernabitftg, bottom-
up method and the top-down method developed in this papen oft
achieve better anonymization in quality than the MultiDirathod,
the state-of-the-art approach. The top-down method igbttan
the bottom-up method.

The trad-off of high anonymization quality is the runtime her
MultiDim method is more efficient. However, the runtime oéth
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top-down method is not far away from that of the MultiDim medh
in practice. Moreover, for anonymization, the computatiome is
often a secondary consideration yielding to the quality.

6. CONCLUSIONS

As privacy becomes a more and more serious concern in applica

tions involving microdata, good anonymization is impottdn this
paper, we showed that global recoding, which is often useulén
vious methods, may not achieve effective anonymizatioreims
of discernability and query answering accuracy. Moreaberutil-
ity of attributes has not been considered in the previouhaoukst
Consequently, we study the problem wflity-based anonymiza-
tion. A simple framework was given to specify utility of attrilas,
and two simple yet efficient heuristic local recoding methdar
utility-based anonymization were developed. Our extengarfor-
mance study using both real data sets and synthetic datshests
that our methods outperform the state-of-the-art multaisional
global recoding methods in both discernability and querswaar-
ing accuracy. Furthermore, our utility-based method cassbthe
quality of analysis using the anonymized data.

Utility-based anonymization is important in applicationdamay
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