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ABSTRACT

Privacy becomes a more and more serious concern in appheati
involving microdata. Recently, efficient anonymizatiors lastracted
much research work. Most of the previous methods use glebal r
coding, which maps the domains of the quasi-identifiertaitds to
generalized or changed values. However, global recodingmaga
always achieve effective anonymization in terms of disabiiity
and query answering accuracy using the anonymized datae-Mor
over, anonymized data is often for analysis. As well acatte
many analytical applications, different attributes in gadset may
have different utility in the analysis. The utility of atbtites has not
been considered in the previous methods.

In this paper, we study the problem wafility-based anonymiza-
tion. First, we propose a simple framework to specify utility bf a
tributes. The framework covers both numeric and categlodiat.
Second, we develop two simple yet efficient heuristic loeabd-
ing methods for utility-based anonymization. Our exteagierfor-
mance study using both real data sets and synthetic datsiests
that our methods outperform the state-of-the-art multedisional
global recoding methods in both discernability and querswaanr-
ing accuracy. Furthermore, our utility-based method cassbthe
quality of analysis using the anonymized data.

Categories and Subject Descriptordd.2.8 [Database Applica-
tions]: [Data Mining]
General Terms: Security, Algorithms, Performance

keywords: Privacy preservation, data mining, k-anonymity, utility,
local recoding

1. INTRODUCTION
To protect privacy against re-identifying individuals tojirjing
multiple public data sources, k-anonymity was proposed 1B).
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A data set isk-anonymougk > 1) if each record in the data set
is indistinguishable from at leagk — 1) other records within the
same data set. The larger the valugkpthe better the privacy is
protected.

A few k-anonymization algorithms have been developed. Gen-
erally, to achieve k-anonymity, those methods generalizeup-
press thequasi-identifier attributeswhich are the minimal set of
attributes in the table that can be joined with externalnmfation
to re-identify individual records.

Information loss is an unfortunate consequence of anoraamiz
tion. In order to make the anonymized data as useful as pessib
it is required to reduce the information loss as much as plessi
A few models have been proposed to measure the usefulness of
anonymized data. For example, the discernability modetr[é$
to minimize the number of tuples that are indistinguishaaédong
as they satisfy the k-anonymity requirement.

In this paper, we study the problem of k-anonymization ard fo
cus on two interesting issueanonymization using heuristic local
recodingandultility-based anonymization

1.1 Global and Local Anonymization

Many recent methods (e.g., [4, 6, 7]) use eithibal recod-
ing or constrained local recodingGlobal recoding maps a given
value in a single domain to another one globally. In consédi
local recoding, the data space is partitioned into a set oh{n
overlapping) regions, and the anonymization maps all supiea
region to the same generalized or changed tuple. For exaFigle
ure 1(b) demonstrates3aanonymization using global recoding for
the table in Figure 1(a), where (age, zipcode) is the quissitifier.

In contrast,(fully) local recodingmaps (non-distinct) individ-
ual tuple to generalized tuples. For example, Figure 1(osh
a 3-anonymization using local recoding of the same table in Fig
ures 1(a). The two identical tuple®3 and R4, are mapped to
different generalized tuples in local recoding. Clearlgbgl re-
coding can be regarded as a specific type of local recoding.

Local recoding may achieve less information loss than dloba
recoding In our example, the two generalized tuples in global re-
coding have the sizes of interveisand 5 in age, andl and0 in
zipcode, respectively. In local recoding, the sizes ofriraks are
6 and2 in age, andl and2 in zipcode, respectively. By intuition,
the smaller the sizes of intervals in the generalized typkesless
information loss in the anonymization.

Can we use (fully) local recoding to achieve less informatio
loss in anonymization effectively@enerally, optimal k-anonymity
is NP-hard [8, 2]. In this paper, we propose two simple yetieffit
heuristic algorithms using local recoding for k-anonyntima. Our
extensive empirical study on both real data sets and syattieta
sets show that our method outperforms the state-of-thglaipal
and constrained local recoding methods in both the disbéditya
and the accuracy of query answering.



[ Row-id [ Age | Zipcode ] [ Row-id [ Age | Zipcode | [ Row-id [ Age | Zipcode |
R1 24 | 53712 RI | [24-32] | [53712-53713] R1 | [24-30] | [53711-53712]
R2 25 | 5371l R2 | [25-30] 53711 R2 | [24-30] | [63711-53712]
R3 30 | 5371l R3 | [25-30] 53711 R3 | [24-30] | [63711-53712]
R4 30 | 5371l R4 | [25-30] 53711 R4 | [30-32] | [53711-53713]
R5 32 53712 R5 24-32 53712-53713 R5 30-32 53711-53713
R6 32 53713 R6 24-32 53712-53713 R6 30-32 53711-53713

(a) The original table.

b) 3-anonymization by global recoding.

(c) 3-anonymization by local recoding.

Figure 1. Global recoding and local recoding. The row-ids ae for reference only and are not released with the data. Thushe

row-ids are not part of the quasi-identifier.

1.2 Utility-Based Anonymization

Anonymized data is often for analysis and data mining. Ad wel
recognized in many data analysis applications, differ¢mibates
may have different utility. For example, consider anonyingza
data set about patients for disease analysis. Suppose én frd
achieve k-anonymity, we can generalize from a five-digit fip-
code to a four-digit prefix (e.g., from3712 to 5371x). Alterna-
tively, we can also generalize attribute age to age grougs feom
23 t0[20, 30]). In many cases, the age information is critical to dis-
ease analysis, while the information loss on the accurasgitm is
often acceptable (a four digit prefix in fact still identifiasrela-
tively local region). Thus, the age attribute has more tytilnan
the zipcode attribute, and should be retained as accuratesaile
in anonymization.

Can we make the anonymization utility awardtility of at-
tributes has not been considered by previous anonymizateth-
ods. In this paper, we propose a modeldtlity-based anonymiza-

quality metrics soon.

Since the attributes not in the quasi-identifier do not neebolet
changed, to keep our discussion simple but without loss roéige-
ity, hereafter we consider only the attributes in the qudeitifier.
That is, for tableT'(A44,...,A,) in question, we assume that
(A1,..., A,) is the quasi-identifier.

Generally, data items are recoded in anonymization. Heee, w
regard suppression as a specific form of recoding that recade
data item to null value (i.e., unknown).

Two types of recoding can be used [14]: global recoding and lo
cal recoding, as described and demonstrated in SectiorMaty
previous methods use global recoding and constrained lecad-
ing. In [9, 11], full-domain generalizationa type of constrained
local recoding, was developed, which maps the whole domfin o
each quasi-identifier attribute to a more general domaihéndo-
main generalization hierachy. Full-domain generalizagjoaran-
tees that all values of a particular attribute still beloaghe same

tion. We consider both numeric data and categorical data with and domain after generalization.

without hierarchies. We present a simple method to spedify u
ity of attributes and push them into the heuristic local diag
anonymization methods. Our experimental results showttieat
utility-based anonymization improves the accuracy in agwg
targeted queries substantially.

The rest of the paper is organized as follows. In section 2, we
recall the notions related to anonymization, and review éhated
work. We present our utility specification framework in Sect3.

Our heuristic local recoding methods are developed in Seeti
An extensive performance study on both real data sets arldegig
data sets is reported in Section 5.

2. K-ANONYMITY AND RELATED WORK

Consider atablg” = (Ai,..., An). A quasi-identifieiis a min-
imal set of attributegA;,,..., 4;,) (1 < i1 < -+ <4 < n)in
T that can be joined with external information to re-identifigi-
vidual records. In this paper, we assume that the quastiieris
specified by the administrator based on the background leumel
Thus, we focus on how to anonymiZeto satisfy the k-anonymity
requirement.

A table T is said k-anonymousgiven a parametek and the
quasi-identifier( 4;, , . .., A;,) if for each tuplet € T, there exist
at least anothefk — 1) tuplesty, . .., tx—1 such that thosé tuples
have the same projection on the quasi-identifier,ii@.ﬂ Aiy) =
b1, Ay == ko1, g Tuplet and all other tu-

i1 il al 11
ples indistinguishable fromon the quasi-identifier form asquiv-
alence classWe call the class thgroupthatt is generalized.

Given a tablel” with the quasi-identifier and a parameterthe
problem ofk-anonymizatioris to compute a viewl” that has the
same attributes dE such thafl” is k-anonymous and as closefo
as possible according to some quality metric. We shall distie

To achieve full-domain generalization, two types of panting
can be applied. First, single-dimensional partitioningg@divides
an attribute into a set of non-overlapping intervals, anchea-
terval will be replaced by a summary value (e.g., the meas, th
median, or the range). On the other hand, (strict) multidisienal
partitioning [7] divides the domain into a set of non-ovepiang
multidimensional regions, and each region will be geneealiinto
a summary tuple.

Generally, anonymization is accompanied by informatisslo
Various models have been proposed to measure the infommatio
loss. For example, thaiscernability model4] assigns to each tuple
t a penalty based on the size of the group thatgeneralized, i.e.,
the number of tuples equivalentt@n the quasi-identifier. That is,
Com = ZEegroup-byS on quasi-identifiéfE|2-

Alternatively, thenormalized average equivalence class size met-
ric was given in [7]. The intuition of the metric is to measure how
well the partitioning approaches the best case where egté tu
is generalized in a group df indistinguishable tuples. That is,
C - number of tuples in the table

AVG = number of group-bys on quasi-identifier

The ideal anonymization should minimize the penalty. Havev

theoretical analysis [2, 8, 7, 3, 1] indicates that the problof
optimal anonymization under many non-trivial quality misdis
NP-hard. A few approximation methods were developed [3jhsu
as datafly [12], annealing [15], and Mondrian multidimensilok-
anonymity [7]. Some optimal methods [4, 6] with exponentiast
in the worst case were shown feasible and often of good perfor
mance in practice.

To the best of our knowledge, none of the previous studies ad-
dress the concern on utilities of attributes systematicall

3. UTILITY-BASED ANONYMIZATION



Figure 2: The six tuples in Example 1.

Without loss of generality, in this paper we assume that ggne
ization is used in anonymization. That is, when a tuple issgalin
ized, the ranges of the group of tuples that are generalizzdsed
to represent the generalization, as illustrated in Figuré bther
representations such as mean or median are used, the dafiniti
can be revised straightforwardly and our methods still work

In previous methods, the quality metrics, such as the discer
ability metric and the normalized average equivalencesctize
metric discussed in Section 2, mainly focus on the size affgdon
anonymization. In an anonymized table, when each grouppdésu
sharing the same projection on the quasi-identifierthagles, the
penalty metrics are minimized. However, such metrics may no
lead to high quality anonymization.

ExamMPLE 1 (QUALITY METRICS). Consider 2-anonymiza-
tions for the six tuples shown in Figure 2.X,Y") is the quasi-
identifier. The six tuples can be anonymized in three gro{ipsh},
{¢c,d}, and{e, f}. In this anonymization scheme, both the discern-
ability metric Cp s and the normalized average equivalence class
size metricC 4y ¢ are minimized.

Suppose each group is generalized using the range of thestupl
in the group. That isg andb are generalized (10, 20], [60, 70]);

c andd are generalized t(20, 50], [20, 50]); ande and f are gen-
eralized to([50, 60], [10, 15]).

In order to measure how well the generalized tuples appratdm
the original ones, for each tuple we can use the sum of the inte
val sizes on all attributes of the generalized tuple to meathe
uncertainty of the generalized tuples. Thatli&a) = U(b) =
10 + 10 = 20. Similarly, we getU(c) U(d) = 60 and
Ule) U(f) = 15. The total uncertainty of the anonymized
table is the sum of the uncertainty of all tuples, i.E(T) =
e U(t) = 20420 + 60 + 60 + 15 + 15 = 190. By in-
tuition, the uncertainty reflects the information loss. Tées the
uncertainty, the less information is lost.

On the other hand, we may anonymize the tuples in two groups:

{a,b,c} are generalized tg[10, 20], [50, 70]), and {d, e, f} are
generalized to([50, 60], [10,20]). In fact, the data set iS-
anonymous, which is better th&anonymous in terms of privacy
preservation. Moreover, the total uncertainty in this amoization
is 150, lower than the-anonymity scheme.

However, this anonymization scheme has a higher penalty tha
the 2-anonymous scheme in both the discernability metiio,,
and the normalized average equivalence class size n@€fic.
In other words,optimizing the quality metrics on group size may
not always minimize information loss. [

A utility-based metric should capture two aspedtse informa-
tion loss caused by the anonymizatiand the importance of at-
tributes. Such utility-aware anonymization may help to improve
the quality of analysis afterwards. We introduce the cohoéper-
tainty penalty.

First, let us consider the case of numeric attributes. Tdte
a table with quasi-identifiefA4, . .., A,), where all attributes are
numeric. Suppose a tupte= (z1,...,z,) is generalized to tu-
plet’ = ([y1,21],---,[yn, 2s]) such thaty; < z; < 2z (1 <

1 < n). On attributeA;, thenormalized certainty penaltis de-
fined asNC Py, (t) z‘f‘;ﬁ?‘, where|A4;| = maxier{t.As} —
minge7{t.A;} is the range of all tuples on attribute.

Let each attributel; be associated with a weigh; to reflect its
utility in the analysis on the anonymized data. Then,weéghted
certainty penaltyof a tuple is given byNCP(t) = >0 (w; -
NCPa, () = 0, (w; - 252%),

Clearly, when all weights are set toand all attributes have
range [0, 1], the weighted certainty penalty is tHe norm dis-
tance between point@nax;cc{t.A1},..., maxcq{t.An}) and
(mineg{t.A1}, ..., miniea{t.An}), whereG is the equivalence
group thatt belongs to.

Our utility-based metric is given by the total weighted aarty
penalty on the whole table. That &\CP(T) = >, . NCP(t).

For categorical attributes, distance is often not well @efirirhat
makes measuring utility on categorical attributes difficld some
previous methods (e.g., [6, 7]), itis assumed that a totloexists
on all values in a categorical attribute. In many appligaicsuch
an order may not exist. For example, sorting all zipcodehéirt
numeric order may not reflect the utility properly. Two regganay
be adjacent but their zipcodes may not be consecutive.

More often than not, hierarchies exist in categorical lattes.
For example, zipcodes can be organized into hierarchy abmeg
cities, counties, and states. Lt ..., v; be a set of leaf nodes in
a hierarchy tree. Let be the node in the hierarchy on the attribute
such that: is an ancestor afy, . . . , v;, andu does not have any de-
scendant that is stillan ancestorgf . . . , v;. u is called theclosest
common ancestaf vy, . . ., v;, denoted byincestor(vi, ..., v).
The number of leaf nodes that are descendants isfcalled the
sizeof u, denoted byize(u).

Suppose a tuplehas valuey on a categorical attributd. When
it is generalized in anonymization, the value will be replhdy a
set of valueqv1, ..., v}, whereuvt, . .., v; are the values of tuples
on the attribute in the same generalized group. We definadhe

malized certainty penaltgf t as NC'Pa(t) = =5, where| A
is the number of distinct values on attribue Here, we assume
that each leaf node is of the same importance. The definitinribe
straightforwardly extended by assigning weights to irtérmodes
to capture the more important leaf nodes and internal hubieal
structures. Limited by space, we omit the details here.

Putting things together, for a table consisting of both nticne
and categorical attributes, the total weighted normalizedainty
penalty is the sum of the weighted normalized certainty lbgiod
all tuples. That isSNCP(T) = >, > i (wi - NCPa, (),
where NC' P4, (t) should be computed according to whetligris
a numeric or categorical attribute.

Given a tablel’, a parametek, the weights of attributes and the
hierarchies on categorical attributes, iieblem of optimal utility-
based anonymizatiois to compute a k-anonymous taldlg such
that the weighted normalized certainty penaltyIdris minimized.

The previous studies show that the problem of optimal k-gnoty
is NP-hard under various quality models. The utility-basestiel
we propose here is a generalization of the suppression mbhes,
the optimal utility-based anonymization is also NP-hard.

4. GREEDY METHODS

We propose two greedy algorithms. The first method conducts a
bottom-up search, while the second one works top-down.

4.1 The Bottom-Up Method

To maximize the utility of the anonymization of a tuple, we
may “cluster” the tuples locally according to the weightedtainty
penalty. Those compact clusters having at lédaples can be gen-



Input: atableT, parametek;, weights of attributes, and
hierarchies on categorical attributes;

Output: ak-anonymous tablé@”;

Method:

1: Initialization: create a group for each tuple;

2: VHI LE there exists some group such thaiG| < k DO{

3:  FOReach groug? such tha{G| < k DO{

4 scan all other groups once to find gratipsuch
that NC P(G U G’) is minimized;

5: merge groups: andG’;

}

6: FOReach grougz such thatG| > 2k DO

7: split the group intq‘—f‘J groups such that each
group has at leagt tuples;

8: generalize and output the surviving groups;

Figure 3: The bottom-up algorithm.

eralized. This idea leads to our bottom-up method.

At the beginning, we treat each tuple as an individual grdap.
each iteration, for each group whose population is less khave
merge the group with the other group such that the combinaapgr
has the smallest weighted certainty penalty. The iterajmes on
until every group has at leasttuples. The algorithm is shown in
Figure 3.

The bottom-up algorithm is a greedy method. In each round, it
merges groups such that the resulted weighted certainiltpes
locally minimized. In one iteration, if one group is mergedhw
multiple groups, it is possible that the group becomes tatgmk.

In order to avoid over-generalization, if a group has moenttk
tuples, then the group should be split. It is guaranteedithtite
resulted table, each group has ug2é — 1) tuples.

Please note that, unlike many previous methods that try nd-mi
mize the average number of tuples per group, our algoritiyrtet
reduce the weighted certainty penalty, which reflects tHayubf
the anonymized data. At the same time, they also keep thegrumb
of tuples per group small.

After the k-th round, the number of tuples in a group is at least
2%, Therefore, by at mosflog, k] iterations, each group has at
leastk tuples, and thus the generalized groups satisfythronymity
requirement. The complexity of the algorithm@X [log,, k]|T'|?)
on tableT'.

The bottom-up method is a local recoding method. It does not
split the domain. Instead, it only searches the tuples. ebsfft
groups may have overlapping ranges. Moreover, in the stepliof
ting, several tuples with the identical quasi-identifierynte split
into different groups.

4.2 A Top-Down Approach

The major cost in the bottom-up method is to search for the-clo
est groups (Step 4 in Figure 3). In the bottom-up method, we ha
to use a two-level loop to conduct the search. We observegif w
can partition the data properly so that the tuples in eactitipar
are local, then the search of the nearest neighbors can Heuppe
Motivated by this observation, we develop the top-down agph.

The general idea is as follows. We partition the table iteeit
A set of tuples is partitioned into subsets if each subsetasem
local. That is, likely they can be further partitioned intmadler
groups that reduce the weighted certainty penalty. Aftergrti-
tioning, we merge the groups that are smaller thao honor the
k-anonymity requirement.

The algorithm framework is shown in Figure 4. To keep the

Input: atableT, parametek, weights of attributes,
hierarchies on categorical attributes;

Output: ak-anonymous tablé”;

Method:

1: | F|T| <k THEN RETURN,

2: ELSE{

3. partitionT into two exclusive subsefg; and7T; such
thatT, andT: are more local thaff’, and eithefT}
or T have at least tuples;

4: | F|T1| > k THENrecursively partitioril;
5: | F|T2| > k THENrecursively partitioril;
6: adjust the groups so that each group has at letgiles;

Figure 4: The top-down greedy search method.

algorithm simple, we consider binary partitioning. Thatilseach
round, we partition a set of tuples into two subsets. We attapt
following heuristic. We form two groups using the two seeplés
that cause the highest certainty penalty if they are putthesame
group, and assign the other tuples into the two groups acaptd
the two seed tuples.

Technically, we want to find tuples,v € T that maximize
NCP(u,v). uandv become the seed tuple of groups, and
G, respectively.

The cost of findingu, v such thatNC'P(u, v) is maximized is
O(|T)?). To reduce the cost, we propose a heuristic method here.
We randomly picks a tuple;;. By scanning all tuples once, we
can find tuplev; that maximizesVC P(u1,v1). Then, we scan all
tuples again, find tuple, that maximizesVC P (uz, v1). The iter-
ation goes on a few rounds unilC' P (u, v) does not increase sub-
stantially. Our experimental results on both the real data and
the synthetic data sets show that the maximal weightedingrta
penalty converges quickly. By up 8orounds, we can achiewsy %
of the maximal penalty. By up t6 rounds, we can achieve more
than98.75% of the maximal penalty. In practice, we can choose a
small integer as the number of rounds to find the seed tuples.

Once the two seed tuples are determined, two grétpandG.,
are created. Then, we assign other tuples to the two groupbyn
one in a random order. For tupte, the assignment depends on
NCP(Gyu,w) and NCP(Gy,w), whereG,, G, are the groups
formed so far. Tuplew is assigned to the group that leads to a
lower uncertainty penalty.

If a resulting group hak or more tuples, then the partitioning is
conducted recursively on the group. A postprocessing sip[sts
for those groups with less thantuples. If one grougs has less
thank tuples, we apply the local greedy adjustment similar to the
bottom-up approach. That is, we consider two alternativésst,
we can find a se&”’ of (k—|G|) tuples in some other group that has
more than2k — |G|) tuples such thaV C P(GUG") is minimized.
Second, we compute the increase of penalty by mer@ingith
the nearest neighbor group 6f. By comparing the two penalty
measures, we decide wheth@f is moved toG or G is combined
with its nearest neighbor group. Such adjustments shouttbhe
until every group has at leakttuples.

In the worst case, the overall partitioning cosi¢|T'|?), and

we may have to adju$t%j groups each having less thanuples.
However, in practice, the number of groups that are smaibamk
is much less than the worst case. As shown in our experimthets,
top-down method is clearly faster than the bottom-up method

The top-down method is also a local recoding method. Two tu-
ples identical in the quasi-identifier may be assigned todiffer-
ent groups.
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data set Adults. penalty on data set Adults.

Private
Self-employ-not-inc
Self-employ-inc

Married-civ-spouse
married-AF-spouse

Federal Divorced

ederai-gov Marital-statusf Separated

Work-clas Local-gov NeEer—married
State—gov Widowed
Withoot—pay

Married-spouse-abse
Never-worked

Figure 5: The hierarchies on attributes work-class and marial-
status.

5. EXPERIMENTAL RESULTS

Discernability Figure 8:
error rate on data set Adults.

Relative Error(%)
Relative Error(%)

IS S

.

() (A1A2) (ALA2 A3 ALAZ A3 AG)
attribute(s) on which random queries generate

Query answering Figure 9: Utility in query
answering, on uniform syn-
thetic data sets (dimensional-
ity=4, k = 10).

tainty penalty, but the MultiDim method does not, the anoizgm
tion generated by the bottom-up method and the top-downadeth
has a4c|ear|y lower certainty penalty. The gap is stableutbo
2 x 107,

Figure 7 compares the discernability penalty (drawn in te |
arithmic scale) of the anonymization generated by the threth-
ods with respect to different values bf Interestingly, although
the bottom-up and the top-down methods do not explicitlyufoc
on reducing the discernability penalty, they outperform hulti-
Dim method. The results show that optimizing the utility ahd
reducing the discernability are not conflicting with eachest In
fact, the two methods also try to keep the size of groups saiegh

We compare three methods: the mondarian multidimensional they reduce the certainty penalty. Grouping tuples loazdly bring

k-anonymization method [7], the bottom-up method and thge to
down method developed in this paper. According to [7], themo
darian multidimensional k-anonymization method (calledlt
Dim for short hereafter) is so far the best method in both igual
(measured by the discernability penalty) and efficiency.

We measure the quality of the anonymization using three-crit
ria: the certainty penalty, the discernability penaltyd ahe error
rate in query answering. The certainty penalty proposeHigpa-
per measures the utility of the anonymization. The disdglita
penalty is a de facto standard measure on anonymizatiortyqual
used in many previous studies. The error rate measures lieer ef
tive the anonymized data sets are in query answering.

All our experiments were conducted on a PC with a Pentium P4
2.0 GHz CPU and 512 MB main memory, running Microsoft Win-
dows XP. All the algorithms were implemented by us in Micifbso
Visual C++ version 6.0.

5.1 Results on Real Data Set Adults

The Adults census data set from the UC Irvine machine legrnin
repository has become a de facto benchmark for k-anonyimizat
The data set was configured as described in [4]. The salasg cla
attribute was dropped, and the tuples with missing valuee ne
moved. The resulting data set contais 162 tuples.

Since the MultiDim method does not handle hierarchies on cat
egorical attributes but treats a categorical attributedis@ete nu-
meric attribute, we configured the data set for MultiDim awats
used in [7]. For the bottom-up method and the top-down method
proposed in this paper, we used age and education levelsrasicu
data, and use the other attributes as categorical attsibWe used
the two hierarchies in Figure 5 on attributes work-classraadtal-
status. On other categorical attributes, a simple twotlaiesarchy
is applied: the values are the leaf nodes and the root is AleL, (i
suppression). All weights were setto

Figure 6 shows the certainty penalty of the anonymizatiothef
three methods with respect to differéntalues. As expected, since
the bottom-up method and the top-down method focus on the cer

us benefit on reducing both the certainty penalty and theetisc
ability penalty.

To test the effectiveness of query answering using the anzed
data, we generate workloads usBigMandCOUNT aggregate queries,
respectively. Each workload hds000 random queries. Each
COUNT query involves all the attributes, and ea®8tMquery in-
volves all but the age attribute that is used to compute the 3ine
ranges of the attributes are selected randomly. For a aitaat-
tribute, a query carries either a random categorical value, set
of values that are summarized by an internal node in the rtoigya
as the range. This is consistent with the settings in [7].

Figure 8 shows the results on two workloads of aggregate func
tions COUNT andSUM respectively, with respect to differehtval-
ues. The bottom-up method and the top-down method outperfor
the MultiDim method substantially, which can be explainedwo
aspects. First, the utility-driven anonymization put agthat are
similar to each other into groups. The generalized groupsnof
have small ranges, and can answer queries more accuraty. S
ond, our methods handle categorical attributes betterttr@aMul-
tiDim method. The hierarchies are considered in the ancrgmi
tion. This contributes to the query answering quality sgign

The runtime of the three methods on the Adult data set is not
sensitive tok, about10 seconds (MultiDim)60 seconds (the top-
down method) an@00 seconds (the bottom-up method). The top-
down method is about 5-6 times slower than MultiDim, and ismu
faster than the bottom-up method. The difference in theieffay
can be explained by their complexity. While the MultiDim rined
has the complexit9 (|T'| log |T|2, the bottom-up and the top-down
methods have complexi®@(|T|).

5.2 Results on Synthetic Data Sets

To test the performance of the three methods more thoroughly
we generated synthetic data sets in two types of distribstiani-
form distribution and Gaussian distribution. The dimenaidy
and the number of tuples may vary according to the needs efrexp
iments. By default, a data set ha®, 000 tuples and each attribute
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Figure 10: Certainty penalty Figure 11: Discernability Figure 12: Scalability with Figure 13: The effectiveness of
with respect to dimension- penalty with respect to dimen- respect to database sizethe seed tuple choice heuris-
ality, on synthetic data setssionality, on synthetic data g synthetic data sets withtic in the top-down method, on
with  Gaussian distribution sets with Gaussian distribution niform distribution (dimen- real data set Adults, and syn-
(o =1.0, k = 10). (o = 1.0, k = 10). sionality=4, k = 10). thetic data sets with uniform
and Gaussian distribution (di-
mensionality=4).

is in the domain of integer with randé, 16]. Again, by default the A critical step in the top-down method is to choose two seed
weights are set ta. tuples. We used a heuristic method as described in Sectibig4.
We generate groups of random queries on attribute combina- ure 13 shows the effectiveness of the heuristic. We usedraugb
tions A1, A1 Az, A1 Az As, and A1 A3 A3 As, respectively. The av- method to compute the pair of tuples of the largest certgianalty.
erage error rates of the queries in each group is shown iré-gu Then, we used the heuristic method to compute seed tuplesrtha
For comparison, we also conduct the same queries on anomymiz far away, and compare their certainty penalty with the masim
tion that do not consider the weights. As can be seen, theteffe As shown, with a small number of iterations, our heuristieegi

of utility-based anonymization is significant. The anoryation very good approximation to the maximum. Thus, in our implame
using the weighted top-down or bottom-up methods answers th tation, we conduct 3 iterations to obtain the seed tuples.
queries o4+, A; Az, andA; A; A3 more accurately than the non- To summarize, the extensive experiments using both real dat
weighted methods. When all attributes are involved in ayjube sets and synthetic data sets show that, in terms of utility dis-
weighted methods may lose some accuracy as the trade-off. cernability, the bottom-up method and the top-down methed d
Figure 10 shows the certainty penalty with respect to varitiu veloped in this paper often achieve better anonymizatiaquadity
mensionality. The top-down method and the bottom-up method than the MultiDim method, the state-of-the-art approadhe fop-
are comparable, and the top-down method is slightly beftae down method is better than the bottom-up method.
MultiDim method has a high certainty penalty in high dimemsil The trad-off of high anonymization quality is the runtimeher
data. Please note that, as the dimensionality increasesettainty MultiDim method is more efficient. However, the runtime oéth
penalty generally increases accordingly since each atéribon- top-down method is not far away from that of the MultiDim medh
tributes to the certainty penalty. The bottom-up and thedown in practice. Moreover, for anonymization, the computatiome is

methods try to reduce the penalty in the anonymization phoee often a secondary consideration yielding to the quality.
and thus may achieve good results. Figure 11 shows thesemuilt
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