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ABSTRACT
Privacy becomes a more and more serious concern in applications
involving microdata. Recently, efficient anonymization has attracted
much research work. Most of the previous methods use global re-
coding, which maps the domains of the quasi-identifier attributes to
generalized or changed values. However, global recoding may not
always achieve effective anonymization in terms of discernability
and query answering accuracy using the anonymized data. More-
over, anonymized data is often for analysis. As well accepted in
many analytical applications, different attributes in a data set may
have different utility in the analysis. The utility of attributes has not
been considered in the previous methods.

In this paper, we study the problem ofutility-based anonymiza-
tion. First, we propose a simple framework to specify utility of at-
tributes. The framework covers both numeric and categorical data.
Second, we develop two simple yet efficient heuristic local recod-
ing methods for utility-based anonymization. Our extensive perfor-
mance study using both real data sets and synthetic data setsshows
that our methods outperform the state-of-the-art multidimensional
global recoding methods in both discernability and query answer-
ing accuracy. Furthermore, our utility-based method can boost the
quality of analysis using the anonymized data.

Categories and Subject Descriptors:H.2.8 [Database Applica-
tions]: [Data Mining]

General Terms: Security, Algorithms, Performance

keywords: Privacy preservation, data mining, k-anonymity, utility,
local recoding

1. INTRODUCTION
To protect privacy against re-identifying individuals by joining

multiple public data sources, k-anonymity was proposed [10, 13].
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A data set isk-anonymous(k ≥ 1) if each record in the data set
is indistinguishable from at least(k − 1) other records within the
same data set. The larger the value ofk, the better the privacy is
protected.

A few k-anonymization algorithms have been developed. Gen-
erally, to achieve k-anonymity, those methods generalize or sup-
press thequasi-identifier attributes, which are the minimal set of
attributes in the table that can be joined with external information
to re-identify individual records.

Information loss is an unfortunate consequence of anonymiza-
tion. In order to make the anonymized data as useful as possible,
it is required to reduce the information loss as much as possible.
A few models have been proposed to measure the usefulness of
anonymized data. For example, the discernability model [4]tries
to minimize the number of tuples that are indistinguishable, as long
as they satisfy the k-anonymity requirement.

In this paper, we study the problem of k-anonymization and fo-
cus on two interesting issues:anonymization using heuristic local
recodingandutility-based anonymization.

1.1 Global and Local Anonymization
Many recent methods (e.g., [4, 6, 7]) use eitherglobal recod-

ing or constrained local recoding. Global recoding maps a given
value in a single domain to another one globally. In constrained
local recoding, the data space is partitioned into a set of (non-
overlapping) regions, and the anonymization maps all tuples in a
region to the same generalized or changed tuple. For example, Fig-
ure 1(b) demonstrates a3-anonymization using global recoding for
the table in Figure 1(a), where (age, zipcode) is the quasi-identifier.

In contrast,(fully) local recodingmaps (non-distinct) individ-
ual tuple to generalized tuples. For example, Figure 1(c) shows
a 3-anonymization using local recoding of the same table in Fig-
ures 1(a). The two identical tuples,R3 and R4, are mapped to
different generalized tuples in local recoding. Clearly, global re-
coding can be regarded as a specific type of local recoding.

Local recoding may achieve less information loss than global
recoding. In our example, the two generalized tuples in global re-
coding have the sizes of intervals8 and5 in age, and1 and0 in
zipcode, respectively. In local recoding, the sizes of intervals are
6 and2 in age, and1 and2 in zipcode, respectively. By intuition,
the smaller the sizes of intervals in the generalized tuples, the less
information loss in the anonymization.

Can we use (fully) local recoding to achieve less information
loss in anonymization effectively?Generally, optimal k-anonymity
is NP-hard [8, 2]. In this paper, we propose two simple yet efficient
heuristic algorithms using local recoding for k-anonymization. Our
extensive empirical study on both real data sets and synthetic data
sets show that our method outperforms the state-of-the-artglobal
and constrained local recoding methods in both the discernability
and the accuracy of query answering.



Row-id Age Zipcode
R1 24 53712
R2 25 53711
R3 30 53711
R4 30 53711
R5 32 53712
R6 32 53713
(a) The original table.

Row-id Age Zipcode
R1 [24-32] [53712-53713]
R2 [25-30] 53711
R3 [25-30] 53711
R4 [25-30] 53711
R5 [24-32] [53712-53713]
R6 [24-32] [53712-53713]

(b) 3-anonymization by global recoding.

Row-id Age Zipcode
R1 [24-30] [53711-53712]
R2 [24-30] [53711-53712]
R3 [24-30] [53711-53712]
R4 [30-32] [53711-53713]
R5 [30-32] [53711-53713]
R6 [30-32] [53711-53713]

(c) 3-anonymization by local recoding.

Figure 1: Global recoding and local recoding. The row-ids are for reference only and are not released with the data. Thus,the
row-ids are not part of the quasi-identifier.

1.2 Utility-Based Anonymization
Anonymized data is often for analysis and data mining. As well

recognized in many data analysis applications, different attributes
may have different utility. For example, consider anonymizing a
data set about patients for disease analysis. Suppose in order to
achieve k-anonymity, we can generalize from a five-digit full zip-
code to a four-digit prefix (e.g., from53712 to 5371∗). Alterna-
tively, we can also generalize attribute age to age groups (e.g., from
23 to [20, 30]). In many cases, the age information is critical to dis-
ease analysis, while the information loss on the accurate location is
often acceptable (a four digit prefix in fact still identifiesa rela-
tively local region). Thus, the age attribute has more utility than
the zipcode attribute, and should be retained as accurate aspossible
in anonymization.

Can we make the anonymization utility aware?Utility of at-
tributes has not been considered by previous anonymizationmeth-
ods. In this paper, we propose a model forutility-based anonymiza-
tion. We consider both numeric data and categorical data with and
without hierarchies. We present a simple method to specify util-
ity of attributes and push them into the heuristic local recoding
anonymization methods. Our experimental results show thatthe
utility-based anonymization improves the accuracy in answering
targeted queries substantially.

The rest of the paper is organized as follows. In section 2, we
recall the notions related to anonymization, and review therelated
work. We present our utility specification framework in Section 3.
Our heuristic local recoding methods are developed in Section 4.
An extensive performance study on both real data sets and synthetic
data sets is reported in Section 5.

2. K-ANONYMITY AND RELATED WORK
Consider a tableT = (A1, . . . , An). A quasi-identifieris a min-

imal set of attributes(Ai1 , . . . , Ail
) (1 ≤ i1 < · · · < il ≤ n) in

T that can be joined with external information to re-identifyindi-
vidual records. In this paper, we assume that the quasi-identifier is
specified by the administrator based on the background knowledge.
Thus, we focus on how to anonymizeT to satisfy the k-anonymity
requirement.

A table T is saidk-anonymousgiven a parameterk and the
quasi-identifier(Ai1 , . . . , Ail

) if for each tuplet ∈ T , there exist
at least another(k−1) tuplest1, . . . , tk−1 such that thosek tuples
have the same projection on the quasi-identifier, i.e.,t(Ai1

,...,Ail
) =

t1(Ai1
,...,Ail

)
= · · · = tk−1(Ai1

,...,Ail
)
. Tuplet and all other tu-

ples indistinguishable fromt on the quasi-identifier form anequiv-
alence class. We call the class thegroup thatt is generalized.

Given a tableT with the quasi-identifier and a parameterk, the
problem ofk-anonymizationis to compute a viewT ′ that has the
same attributes asT such thatT ′ is k-anonymous and as close toT
as possible according to some quality metric. We shall discuss the

quality metrics soon.
Since the attributes not in the quasi-identifier do not need to be

changed, to keep our discussion simple but without loss of general-
ity, hereafter we consider only the attributes in the quasi-identifier.
That is, for tableT (A1, . . . , An) in question, we assume that
(A1, . . . , An) is the quasi-identifier.

Generally, data items are recoded in anonymization. Here, we
regard suppression as a specific form of recoding that recodes a
data item to null value (i.e., unknown).

Two types of recoding can be used [14]: global recoding and lo-
cal recoding, as described and demonstrated in Section 1.1.Many
previous methods use global recoding and constrained localrecod-
ing. In [9, 11], full-domain generalization, a type of constrained
local recoding, was developed, which maps the whole domain of
each quasi-identifier attribute to a more general domain in the do-
main generalization hierachy. Full-domain generalization guaran-
tees that all values of a particular attribute still belong to the same
domain after generalization.

To achieve full-domain generalization, two types of partitioning
can be applied. First, single-dimensional partitioning [4, 5] divides
an attribute into a set of non-overlapping intervals, and each in-
terval will be replaced by a summary value (e.g., the mean, the
median, or the range). On the other hand, (strict) multidimensional
partitioning [7] divides the domain into a set of non-overlapping
multidimensional regions, and each region will be generalized into
a summary tuple.

Generally, anonymization is accompanied by information loss.
Various models have been proposed to measure the information
loss. For example, thediscernability model[4] assigns to each tuple
t a penalty based on the size of the group thatt is generalized, i.e.,
the number of tuples equivalent tot on the quasi-identifier. That is,
CDM =

P

E∈group-bys on quasi-identifier|E|2.
Alternatively, thenormalized average equivalence class size met-

ric was given in [7]. The intuition of the metric is to measure how
well the partitioning approaches the best case where each tuple
is generalized in a group ofk indistinguishable tuples. That is,

CAV G =
number of tuples in the table

number of group-bys on quasi-identifier·k
.

The ideal anonymization should minimize the penalty. However,
theoretical analysis [2, 8, 7, 3, 1] indicates that the problem of
optimal anonymization under many non-trivial quality models is
NP-hard. A few approximation methods were developed [3], such
as datafly [12], annealing [15], and Mondrian multidimensional k-
anonymity [7]. Some optimal methods [4, 6] with exponentialcost
in the worst case were shown feasible and often of good perfor-
mance in practice.

To the best of our knowledge, none of the previous studies ad-
dress the concern on utilities of attributes systematically.

3. UTILITY-BASED ANONYMIZATION
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Figure 2: The six tuples in Example 1.

Without loss of generality, in this paper we assume that general-
ization is used in anonymization. That is, when a tuple is general-
ized, the ranges of the group of tuples that are generalized are used
to represent the generalization, as illustrated in Figure 1. If other
representations such as mean or median are used, the definitions
can be revised straightforwardly and our methods still work.

In previous methods, the quality metrics, such as the discern-
ability metric and the normalized average equivalence class size
metric discussed in Section 2, mainly focus on the size of groups in
anonymization. In an anonymized table, when each group of tuples
sharing the same projection on the quasi-identifier hask tuples, the
penalty metrics are minimized. However, such metrics may not
lead to high quality anonymization.

EXAMPLE 1 (QUALITY METRICS). Consider 2-anonymiza-
tions for the six tuples shown in Figure 2.(X, Y ) is the quasi-
identifier. The six tuples can be anonymized in three groups:{a, b},
{c, d}, and{e, f}. In this anonymization scheme, both the discern-
ability metricCDM and the normalized average equivalence class
size metricCAV G are minimized.

Suppose each group is generalized using the range of the tuples
in the group. That is,a andb are generalized to([10, 20], [60, 70]);
c andd are generalized to([20, 50], [20, 50]); ande andf are gen-
eralized to([50, 60], [10, 15]).

In order to measure how well the generalized tuples approximate
the original ones, for each tuple we can use the sum of the inter-
val sizes on all attributes of the generalized tuple to measure the
uncertainty of the generalized tuples. That is,U(a) = U(b) =
10 + 10 = 20. Similarly, we getU(c) = U(d) = 60 and
U(e) = U(f) = 15. The total uncertainty of the anonymized
table is the sum of the uncertainty of all tuples, i.e.,U(T ) =
P

t∈T
U(t) = 20 + 20 + 60 + 60 + 15 + 15 = 190. By in-

tuition, the uncertainty reflects the information loss. Theless the
uncertainty, the less information is lost.

On the other hand, we may anonymize the tuples in two groups:
{a, b, c} are generalized to([10, 20], [50, 70]), and{d, e, f} are
generalized to([50, 60], [10, 20]). In fact, the data set is3-
anonymous, which is better than2-anonymous in terms of privacy
preservation. Moreover, the total uncertainty in this anonymization
is 150, lower than the2-anonymity scheme.

However, this anonymization scheme has a higher penalty than
the 2-anonymous scheme in both the discernability metricCDM

and the normalized average equivalence class size metricCAV G.
In other words,optimizing the quality metrics on group size may
not always minimize information loss.

A utility-based metric should capture two aspects:the informa-
tion loss caused by the anonymizationand the importance of at-
tributes. Such utility-aware anonymization may help to improve
the quality of analysis afterwards. We introduce the concept of cer-
tainty penalty.

First, let us consider the case of numeric attributes. LetT be
a table with quasi-identifier(A1, . . . , An), where all attributes are
numeric. Suppose a tuplet = (x1, . . . , xn) is generalized to tu-
ple t′ = ([y1, z1], . . . , [yn, zn]) such thatyi ≤ xi ≤ zi (1 ≤

i ≤ n). On attributeAi, thenormalized certainty penaltyis de-
fined asNCPAi

(t) = zi−yi

|Ai|
, where|Ai| = maxt∈T {t.Ai} −

mint∈T {t.Ai} is the range of all tuples on attributeAi.
Let each attributeAi be associated with a weightwi to reflect its

utility in the analysis on the anonymized data. Then, theweighted
certainty penaltyof a tuple is given byNCP (t) =

Pn

i=1(wi ·

NCPAi
(t)) =

Pn

i=1(wi ·
zi−yi

|Ai|
).

Clearly, when all weights are set to1 and all attributes have
range [0, 1], the weighted certainty penalty is theL1 norm dis-
tance between points(maxt∈G{t.A1}, . . . , maxt∈G{t.An}) and
(mint∈G{t.A1}, . . . , mint∈G{t.An}), whereG is the equivalence
group thatt belongs to.

Our utility-based metric is given by the total weighted certainty
penalty on the whole table. That is,NCP (T ) =

P

t∈T
NCP (t).

For categorical attributes, distance is often not well defined. That
makes measuring utility on categorical attributes difficult. In some
previous methods (e.g., [6, 7]), it is assumed that a total order exists
on all values in a categorical attribute. In many applications, such
an order may not exist. For example, sorting all zipcodes in their
numeric order may not reflect the utility properly. Two regions may
be adjacent but their zipcodes may not be consecutive.

More often than not, hierarchies exist in categorical attributes.
For example, zipcodes can be organized into hierarchy of regions,
cities, counties, and states. Letv1, . . . , vl be a set of leaf nodes in
a hierarchy tree. Letu be the node in the hierarchy on the attribute
such thatu is an ancestor ofv1, . . . , vl, andu does not have any de-
scendant that is still an ancestor ofv1, . . . , vl. u is called theclosest
common ancestorof v1, . . . , vl, denoted byancestor(v1, . . . , vl).
The number of leaf nodes that are descendants ofu is called the
sizeof u, denoted bysize(u).

Suppose a tuplet has valuev on a categorical attributeA. When
it is generalized in anonymization, the value will be replaced by a
set of values{v1, . . . , vl}, wherev1, . . . , vl are the values of tuples
on the attribute in the same generalized group. We define thenor-
malized certainty penaltyof t asNCPA(t) = size(u)

|A|
, where|A|

is the number of distinct values on attributeA. Here, we assume
that each leaf node is of the same importance. The definition can be
straightforwardly extended by assigning weights to internal nodes
to capture the more important leaf nodes and internal hierarchical
structures. Limited by space, we omit the details here.

Putting things together, for a table consisting of both numeric
and categorical attributes, the total weighted normalizedcertainty
penalty is the sum of the weighted normalized certainty penalty of
all tuples. That is,NCP (T ) =

P

t∈T

Pn

i=1(wi · NCPAi
(t)),

whereNCPAi
(t) should be computed according to whetherAi is

a numeric or categorical attribute.
Given a tableT , a parameterk, the weights of attributes and the

hierarchies on categorical attributes, theproblem of optimal utility-
based anonymizationis to compute a k-anonymous tableT ′ such
that the weighted normalized certainty penalty onT ′ is minimized.

The previous studies show that the problem of optimal k-anonymity
is NP-hard under various quality models. The utility-basedmodel
we propose here is a generalization of the suppression model. Thus,
the optimal utility-based anonymization is also NP-hard.

4. GREEDY METHODS
We propose two greedy algorithms. The first method conducts a

bottom-up search, while the second one works top-down.

4.1 The Bottom-Up Method
To maximize the utility of the anonymization of a tuple, we

may “cluster” the tuples locally according to the weighted certainty
penalty. Those compact clusters having at leastk tuples can be gen-



Input: a tableT , parameterk, weights of attributes, and
hierarchies on categorical attributes;

Output: ak-anonymous tableT ′;
Method:
1: Initialization: create a group for each tuple;
2: WHILE there exists some groupG such that|G| < k DO {
3: FOR each groupG such that|G| < k DO {
4: scan all other groups once to find groupG′ such

thatNCP (G ∪ G′) is minimized;
5: merge groupsG andG′;

}
6: FOR each groupG such that|G| ≥ 2k DO
7: split the group into⌊ |G|

k
⌋ groups such that each

group has at leastk tuples;
}

8: generalize and output the surviving groups;

Figure 3: The bottom-up algorithm.

eralized. This idea leads to our bottom-up method.
At the beginning, we treat each tuple as an individual group.In

each iteration, for each group whose population is less thank, we
merge the group with the other group such that the combined group
has the smallest weighted certainty penalty. The iterationgoes on
until every group has at leastk tuples. The algorithm is shown in
Figure 3.

The bottom-up algorithm is a greedy method. In each round, it
merges groups such that the resulted weighted certainty penalty is
locally minimized. In one iteration, if one group is merged with
multiple groups, it is possible that the group becomes larger thank.
In order to avoid over-generalization, if a group has more than2k
tuples, then the group should be split. It is guaranteed thatin the
resulted table, each group has up to(2k − 1) tuples.

Please note that, unlike many previous methods that try to mini-
mize the average number of tuples per group, our algorithms try to
reduce the weighted certainty penalty, which reflects the utility of
the anonymized data. At the same time, they also keep the number
of tuples per group small.

After thek-th round, the number of tuples in a group is at least
2k. Therefore, by at most⌈log2 k⌉ iterations, each group has at
leastk tuples, and thus the generalized groups satisfy thek-anonymity
requirement. The complexity of the algorithm isO(⌈log2 k⌉|T |2)
on tableT .

The bottom-up method is a local recoding method. It does not
split the domain. Instead, it only searches the tuples. Different
groups may have overlapping ranges. Moreover, in the step ofsplit-
ting, several tuples with the identical quasi-identifier may be split
into different groups.

4.2 A Top-Down Approach
The major cost in the bottom-up method is to search for the clos-

est groups (Step 4 in Figure 3). In the bottom-up method, we have
to use a two-level loop to conduct the search. We observe, if we
can partition the data properly so that the tuples in each partition
are local, then the search of the nearest neighbors can be sped up.
Motivated by this observation, we develop the top-down approach.

The general idea is as follows. We partition the table iteratively.
A set of tuples is partitioned into subsets if each subset is more
local. That is, likely they can be further partitioned into smaller
groups that reduce the weighted certainty penalty. After the parti-
tioning, we merge the groups that are smaller thank to honor the
k-anonymity requirement.

The algorithm framework is shown in Figure 4. To keep the

Input: a tableT , parameterk, weights of attributes,
hierarchies on categorical attributes;

Output: ak-anonymous tableT ′;
Method:
1: IF |T | ≤ k THEN RETURN;
2: ELSE {
3: partitionT into two exclusive subsetsT1 andT2 such

thatT1 andT2 are more local thanT , and eitherT1

or T2 have at leastk tuples;
4: IF |T1| > k THEN recursively partitionT1;
5: IF |T2| > k THEN recursively partitionT2;

}
6: adjust the groups so that each group has at leastk tuples;

Figure 4: The top-down greedy search method.

algorithm simple, we consider binary partitioning. That is, in each
round, we partition a set of tuples into two subsets. We adoptthe
following heuristic. We form two groups using the two seed tuples
that cause the highest certainty penalty if they are put intothe same
group, and assign the other tuples into the two groups according to
the two seed tuples.

Technically, we want to find tuplesu, v ∈ T that maximize
NCP (u, v). u and v become the seed tuple of groupsGu and
Gv, respectively.

The cost of findingu, v such thatNCP (u, v) is maximized is
O(|T |2). To reduce the cost, we propose a heuristic method here.
We randomly picks a tupleu1. By scanning all tuples once, we
can find tuplev1 that maximizesNCP (u1, v1). Then, we scan all
tuples again, find tupleu2 that maximizesNCP (u2, v1). The iter-
ation goes on a few rounds untilNCP (u, v) does not increase sub-
stantially. Our experimental results on both the real data sets and
the synthetic data sets show that the maximal weighted certainty
penalty converges quickly. By up to3 rounds, we can achieve97%
of the maximal penalty. By up to6 rounds, we can achieve more
than98.75% of the maximal penalty. In practice, we can choose a
small integer as the number of rounds to find the seed tuples.

Once the two seed tuples are determined, two groupsGu andGv

are created. Then, we assign other tuples to the two groups one by
one in a random order. For tuplew, the assignment depends on
NCP (Gu, w) andNCP (Gv, w), whereGu, Gv are the groups
formed so far. Tuplew is assigned to the group that leads to a
lower uncertainty penalty.

If a resulting group hask or more tuples, then the partitioning is
conducted recursively on the group. A postprocessing step adjusts
for those groups with less thank tuples. If one groupG has less
thank tuples, we apply the local greedy adjustment similar to the
bottom-up approach. That is, we consider two alternatives.First,
we can find a setG′ of (k−|G|) tuples in some other group that has
more than(2k−|G|) tuples such thatNCP (G∪G′) is minimized.
Second, we compute the increase of penalty by mergingG with
the nearest neighbor group ofG. By comparing the two penalty
measures, we decide whetherG′ is moved toG or G is combined
with its nearest neighbor group. Such adjustments should bedone
until every group has at leastk tuples.

In the worst case, the overall partitioning cost isO(|T |2), and
we may have to adjust⌊ |T |

2k
⌋ groups each having less thank tuples.

However, in practice, the number of groups that are smaller thank
is much less than the worst case. As shown in our experiments,the
top-down method is clearly faster than the bottom-up method.

The top-down method is also a local recoding method. Two tu-
ples identical in the quasi-identifier may be assigned to twodiffer-
ent groups.
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Marital−status

Married−spouse−absent
Widowed
Never−married
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Divorced
married−AF−spouse
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Self−employ−inc
Self−employ−not−inc

Federal−gov
Local−gov

Figure 5: The hierarchies on attributes work-class and marital-
status.

5. EXPERIMENTAL RESULTS
We compare three methods: the mondarian multidimensional

k-anonymization method [7], the bottom-up method and the top-
down method developed in this paper. According to [7], the mon-
darian multidimensional k-anonymization method (called Multi-
Dim for short hereafter) is so far the best method in both quality
(measured by the discernability penalty) and efficiency.

We measure the quality of the anonymization using three crite-
ria: the certainty penalty, the discernability penalty, and the error
rate in query answering. The certainty penalty proposed in this pa-
per measures the utility of the anonymization. The discernability
penalty is a de facto standard measure on anonymization quality
used in many previous studies. The error rate measures how effec-
tive the anonymized data sets are in query answering.

All our experiments were conducted on a PC with a Pentium P4
2.0 GHz CPU and 512 MB main memory, running Microsoft Win-
dows XP. All the algorithms were implemented by us in Microsoft
Visual C++ version 6.0.

5.1 Results on Real Data Set Adults
The Adults census data set from the UC Irvine machine learning

repository has become a de facto benchmark for k-anonymization.
The data set was configured as described in [4]. The salary class
attribute was dropped, and the tuples with missing values were re-
moved. The resulting data set contains30, 162 tuples.

Since the MultiDim method does not handle hierarchies on cat-
egorical attributes but treats a categorical attribute as adiscrete nu-
meric attribute, we configured the data set for MultiDim as itwas
used in [7]. For the bottom-up method and the top-down method
proposed in this paper, we used age and education levels as numeric
data, and use the other attributes as categorical attributes. We used
the two hierarchies in Figure 5 on attributes work-class andmarital-
status. On other categorical attributes, a simple two-level hierarchy
is applied: the values are the leaf nodes and the root is ALL (i.e.,
suppression). All weights were set to1.

Figure 6 shows the certainty penalty of the anonymization ofthe
three methods with respect to differentk values. As expected, since
the bottom-up method and the top-down method focus on the cer-

tainty penalty, but the MultiDim method does not, the anonymiza-
tion generated by the bottom-up method and the top-down method
has a clearly lower certainty penalty. The gap is stable, about
2 × 104.

Figure 7 compares the discernability penalty (drawn in the log-
arithmic scale) of the anonymization generated by the threemeth-
ods with respect to different values ofk. Interestingly, although
the bottom-up and the top-down methods do not explicitly focus
on reducing the discernability penalty, they outperform the Multi-
Dim method. The results show that optimizing the utility andthe
reducing the discernability are not conflicting with each other. In
fact, the two methods also try to keep the size of groups smallwhen
they reduce the certainty penalty. Grouping tuples locallycan bring
us benefit on reducing both the certainty penalty and the discern-
ability penalty.

To test the effectiveness of query answering using the anonymized
data, we generate workloads usingSUM andCOUNT aggregate queries,
respectively. Each workload has1, 000 random queries. Each
COUNT query involves all the attributes, and eachSUM query in-
volves all but the age attribute that is used to compute the sum. The
ranges of the attributes are selected randomly. For a categorical at-
tribute, a query carries either a random categorical value,or a set
of values that are summarized by an internal node in the hierarchy
as the range. This is consistent with the settings in [7].

Figure 8 shows the results on two workloads of aggregate func-
tionsCOUNT andSUM, respectively, with respect to differentk val-
ues. The bottom-up method and the top-down method outperform
the MultiDim method substantially, which can be explained in two
aspects. First, the utility-driven anonymization put tuples that are
similar to each other into groups. The generalized groups often
have small ranges, and can answer queries more accurately. Sec-
ond, our methods handle categorical attributes better thanthe Mul-
tiDim method. The hierarchies are considered in the anonymiza-
tion. This contributes to the query answering quality strongly.

The runtime of the three methods on the Adult data set is not
sensitive tok, about10 seconds (MultiDim),60 seconds (the top-
down method) and200 seconds (the bottom-up method). The top-
down method is about 5-6 times slower than MultiDim, and is much
faster than the bottom-up method. The difference in the efficiency
can be explained by their complexity. While the MultiDim method
has the complexityO(|T | log |T |), the bottom-up and the top-down
methods have complexityO(|T |2).

5.2 Results on Synthetic Data Sets
To test the performance of the three methods more thoroughly,

we generated synthetic data sets in two types of distributions: uni-
form distribution and Gaussian distribution. The dimensionality
and the number of tuples may vary according to the needs of exper-
iments. By default, a data set has10, 000 tuples and each attribute
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is in the domain of integer with range[1, 16]. Again, by default the
weights are set to1.

We generate4 groups of random queries on attribute combina-
tionsA1, A1A2, A1A2A3, andA1A2A3A4, respectively. The av-
erage error rates of the queries in each group is shown in Figure 9.
For comparison, we also conduct the same queries on anonymiza-
tion that do not consider the weights. As can be seen, the effect
of utility-based anonymization is significant. The anonymization
using the weighted top-down or bottom-up methods answers the
queries onA1, A1A2, andA1A2A3 more accurately than the non-
weighted methods. When all attributes are involved in a query, the
weighted methods may lose some accuracy as the trade-off.

Figure 10 shows the certainty penalty with respect to various di-
mensionality. The top-down method and the bottom-up method
are comparable, and the top-down method is slightly better.The
MultiDim method has a high certainty penalty in high dimensional
data. Please note that, as the dimensionality increases, the certainty
penalty generally increases accordingly since each attribute con-
tributes to the certainty penalty. The bottom-up and the top-down
methods try to reduce the penalty in the anonymization procedure
and thus may achieve good results. Figure 11 shows the results us-
ing the discernability penalty measure, which are consistent with
the results reported in [7]. We can observe that the bottom-up
method and the top-down method have similar performance, and
achieve less discernability penalty than the MultiDim method. This
is consistent with the results on the real Adults data set.

From this set of experiments, we conclude that the bottom-up
and the top-down methods often have similar performance in anony-
mization quality, measured by both the certainty penalty and the
discernability. The anonymization quality using those twometh-
ods are often better than the MultiDim method.

The advantages of the bottom-up and the top-down methods in
anonymization quality do not come for free. The trade-off isthe
longer computation time. Figure 12 shows the results on scalability.
The complexity of the MultiDim method isO(|T | log |T |), lower
than that of the bottom-up and the top-down methods. Thus, the
MultiDim method is more scalable. However, since anonymiza-
tion is typically an offline, one-time task, quality can be a more
important concern than the runtime. On the other hand, the dif-
ference between the top-down method and the MultiDim method
is not dramatic. In our experiments, even when the data set scales
up to100, 000 tuples, the runtime of the top-down approach is just
less than6 times slower than that of the MultiDim method.

The top-down method is substantially faster than the bottom-up
method. As analyzed in Section 4, splitting in the top-down method
is much faster than merging in the bottom-up method.

A critical step in the top-down method is to choose two seed
tuples. We used a heuristic method as described in Section 4.Fig-
ure 13 shows the effectiveness of the heuristic. We used a thorough
method to compute the pair of tuples of the largest certaintypenalty.
Then, we used the heuristic method to compute seed tuples that are
far away, and compare their certainty penalty with the maximum.
As shown, with a small number of iterations, our heuristic gives
very good approximation to the maximum. Thus, in our implemen-
tation, we conduct 3 iterations to obtain the seed tuples.

To summarize, the extensive experiments using both real data
sets and synthetic data sets show that, in terms of utility and dis-
cernability, the bottom-up method and the top-down method de-
veloped in this paper often achieve better anonymization inquality
than the MultiDim method, the state-of-the-art approach. The top-
down method is better than the bottom-up method.

The trad-off of high anonymization quality is the runtime. The
MultiDim method is more efficient. However, the runtime of the
top-down method is not far away from that of the MultiDim method
in practice. Moreover, for anonymization, the computationtime is
often a secondary consideration yielding to the quality.
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