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Abstract. Clustering data streams has found a few important applications. While
many previous studies focus on clustering objects arriving in a data stream, in this
paper, we consider the novel problem of on demand clustering concept drifting
data streams. In order to characterize concept drifting data streams, we propose
an effective method to estimate densities of data streams. One unique feature
of our new method is that its granularity of estimation is adaptive to the avail-
able computation resource, which is critical for processing data streams of unpre-
dictable input rates. Moreover, we can apply any clustering method to on demand
cluster data streams using their density estimations. A performance study on syn-
thetic data sets is reported to verify our design, which clearly shows that our
method obtains results comparable to CluStream [3] on clustering single stream,
and much better results than COD [8] when clustering multiple streams.

1 Introduction

Recently, clustering data streams has found a few important applications, such as stock
market and financial data analysis, sensor networks, wireless communication, and net-
work traffic management. A data stream can be regarded as a (potentially endless) list
of data entries. Typically, data streams are assumed arriving continuously and rapidly.

In this paper, we study the problem of on demand clustering concept drifting data
streams, which is illustrated in the following example.

Example 1 (Motivation). In a coal mine, thousands of sensors are deployed in pits to
monitor the temperature, the humidity, and the concentrations of oxygen and gas. Each
sensor keeps reporting the observed data, and thus generates a data stream. Typically,
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the sensors are not synchronized. That is, the rate that a sensor reports data is indepen-
dent of the others. Generally, such surveillance data streams are concept drifting. That
is, the distribution of a stream may evolve over time.

Clustering the surveillance data streams is important to monitor the working con-
ditions in pits. However, due to the nature of sensors and the detection environment,
the data collected is often noisy. It is not surprising at all that about 30% of data in
a large sensor network is noise. Data records may be lost on their way to the servers.
Apparently, clustering the objects (i.e., records of (temperature, humidity, oxygen con-
centration, gas concentration)) in a data stream does not make good sense. Instead,
if we can characterize the distributions of temperature, humidity, oxygen concentra-
tion, and gas concentration of sensors, we should cluster the sensors according to their
distributions.

To tackle the problem of on demand clustering concept drifting data streams motivated
in Example 1, we need to address some challenges.
Challenge 1: How we can characterize the distributions of noisy data streams?
Our contribution. We propose to characterize a data stream using its kernel density
estimation [15]. Accordingly, data streams should be clustered by their densities. Al-
though kernel density estimation is also used in [2] to estimate the changes in a data
stream, to the best of our knowledge, this is the first paper to apply kernel density esti-
mation to cluster multiple data streams.
Challenge 2: When the number of fast data streams is large, how can we develop an
efficient and scalable method to maintain the density estimations adaptively?
Our contribution. Many previous methods employ load-shedding, i.e., dropping some
data, to handle workload heavier than their capabilities. However, load-shedding may
lose some important information. Here, we propose a load-skimming approach, which
lowers down the granularity of the kernel density estimation adaptively but still captures
every incoming data entry. Our load-skimming approach can provide a solid bound on
the quality of density estimation.
Challenge 3: Concept drifting may happen in a data stream. How can we capture the
concept drifting effectively?
Our contribution. We develop an effective approach to detect significant changes of
the density of a data stream. The general idea is to monitor the top-k densest regions
in a data stream, and catch the changes. Comparing to the existing methods of change
detection, our method is simple and efficient, and thus can be used to handle a large
number of fast data streams.

The rest of the paper is organized as follows. In Section 2, we formulate the prob-
lem and review the related work. The granularity adaptive density estimation method is
proposed in Section 3. We develop the notion of top-k synopsis and the concept drift-
ing detection method in Section 4. The experimental results are reported in Section 5.
Section 6 concludes the paper.

2 Problem Definition and Related Work

In this section, we first present the model of on demand clustering of data streams
according to their kernel densities. Then, we review related work.
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2.1 The Model

Without loss of generality, we consider data space Dn, where D = [α, β] ⊂ R is a
range of real numbers. A data stream S is a sequence of vectors vj (j = 1, 2, . . .) such
that each vector vj ∈ Dn. A vector is also called an entry.

To characterize a data stream S, the distribution of the vectors in the data space can
be used. Let f be the density function of data stream S. Conceptually, stream S is
generated by sampling an infinite data set generated by f .

A data stream S is call concept drifting if the density function f of S evolves over
time. In this paper, we consider a set of concept drifting data streams S1, . . . , Sm.
We assume that the data streams in question are not synchronized. In other words,
the j-th vector v1

j in stream S1 and the j-th vector v2
j in S2 may not arrive at the

same time or at the same time slot. This assumption reflects the application scenarios
where the input rates of data streams may vary from stream to stream, and from time to
time.

Essentially, the similarity between two streams S1 and S2 can be measured by the
similarity between their density functions f1 and f2. Therefore, we can cluster the
streams according to their densities.

Problem definition. Given a set of concept drifting data streams S1, . . . , Sm in the
data space Dn, the problem of on demand clustering the data streams is to continuously
maintain the density functions f1, . . . , fm for the streams, and cluster the streams on
demand according to the similarity among their density functions.

The on demand clustering of data streams consists of two steps: continuous density
estimation and on demand clustering. In the continuous density estimation step, data
streams are summarized using density functions. In the clustering step, any clustering
method can be used, such as k-means employed in our experimental study. In the rest
of the paper, we shall focus on the continuous density estimation step.

2.2 Related Work

Clustering has been studied extensively in both statistics and computer science litera-
ture. Jain et al. [10] provides a nice survey.

Clustering data streams has been studied in depth recently (e.g., [1,3,2,5,9,14]). In
real applications, clustering analysis may be conducted under different models. For
example, many of the previous studies (e.g., [1,3,5,9,14]) focus on clustering data ob-
jects in one stream. That is, an entry in the data stream in question represents a data
object. The task is to cluster the objects, probably with some constraints such as con-
sidering only objects arriving in a sliding window, or finding clusters in subspaces. As
another example, some studies (e.g., [12,17]) maintain clusters of moving objects over
time.

Some methods have also been developed to detect changes of clusters. For exam-
ple, Aggarwal [2] uses velocity density estimation to capture and visualize changes in
an evolving data stream. Bursts are often considered as an important type of changes.
Burst-detection in data streams has been studied in [11,13,18].

When the input rates of streams exceed the capacity, load shedding techniques can
be used. Essentially, a load shedder samples the input data streams, and the stream
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processing methods are applied on the samples only instead of the raw streams. There-
fore, load shedding can improve the latency of the data analysis result by trading off the
answer quality. Various load shedding strategies for data stream processing have been
studied, such as [4,7,16].

The critical difference between load shedding and load skimming developed in this
paper is that load skimming still processes every observation instead of sampling the in-
coming streams. Load skimming adapts to changing input rates of streams by adjusting
the granularity of the data analysis.

Recently, clustering data streams on demand has been studied in [3,8]. In [3], Ag-
garwal et al. use micro-clusters to summarize objects in a data stream. Then, clustering
on demand is conducted using the micro-clusters instead of the original data. CluS-
tream [3] clusters objects in a single data stream, and does not address the problem of
clustering multiple data streams and clustering using densities. In [8], Dai et al. assume
that each data stream is an infinite time series and the data streams are synchronized in
entry arrival. COD [8] approximates the time series and use the approximation to con-
duct clustering on demand. In our model, a stream is not a time series and streams are
not synchronized in arrival. In Section 5, we shall experimentally compare our approach
and CluStream [3] and COD [8].

3 Granularity Adaptive Density Estimation

In this section, we discuss how to estimate the kernel density function for a data stream.
We assume that concept drifting does not happen. Section 4 will address how to handle
concept drifting.

3.1 Kernel Density Estimation

To estimate the density function f from a data stream, we adopt the kernel density
estimation method [15].

Consider estimating the density function f for a data stream S that has no concept
drifting. At a point p in the data space, f(p) is the density at the point. Suppose the
density function f is in Gaussian distribution. Then, f(p) can be estimated by

f(p) =
1
k

k∑

j=1

(
1√
2π

· e−
dist(p,v)2

2h2 ), (1)

where k is the number of entries in the data stream arrived so far, dist(p, v) is the
Euclidian distance between p and v, and h is a parameter to describe the influence of a
data point in its neighborhood. The intuition is that an entry can be regarded as being
generated by different points in the data space according to the density function, and
the density function at a point can thus be estimated by the sum of the contributions of
all the entries.

Generally, we can use any kernel functions for density estimation. In this paper, we
use the Gaussian kernel due to its simplicity and its universal applicability in applica-
tions. Our approach can still be applied using other kernel functions.
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3.2 Grid-Based Estimation

To estimate a continuous density function for a data stream is difficult. In practice, we
can approximate a continuous density function by a discrete representation. Intuitively,
by estimating the densities of a large number of probe points evenly distributed in the
data space Dn, we can achieve a good estimation of the continuous density function.
For any point q in the data space, f(q) can be estimated by f(p) where p is the probe
point closest to q.

Technically, we can organize the probe points as a grid in the data space Dn. Let l be
a granularity parameter specified by the user. Recall that D = [α, β] is the range in each
dimension. Let ω = β−α

l . Then, we deploy (l+1)n probe points (α+i1ω, . . . , α+inω)
in the data space, where 0 ≤ i1, . . . , in ≤ l. That is, on each dimension we have (l +1)
probe point coordinate values evenly distributed. We call (l + 1)−n the granularity of
the probe grid. The smaller the granularity, the better the estimation quality.

When a new entry v in the data stream comes, for each probe point p, we shall update
the density function f(p) according to Equation 1.

3.3 Granularity Adaptive Estimation

Clearly, the complexity of updating the density estimation for each new entry in a stream
is O(ln). To control the cost in practice, we propose two methods: granularity adapting
discussed here and localized estimation introduced in Section 3.4.

The input rate of a data stream may change over time. When the input rate of a data
stream increases and becomes so fast that the density estimation cost exceeds the ca-
pacity of the stream mining system, updating every probe point in the grid may become
infeasible or unacceptable.

In order to still process every new observation point in the upcoming stream, we
can lower down the granularity of the probe grid. In other words, we can make the
granularity adaptive to the input rate of the data stream.

Technically, we can adjust the granularity parameter l. By reducing l, we can reduce
the number of probe point coordinates in each dimension, and thus reduce the granular-
ity. Suppose the new granularity parameter is l′. then, the reduction on the granularity
is ((l + 1)n − (l′ + 1)n). The following result help to set the granularity parameter l
properly.

Theorem 1. Let update time of the density estimation for a probe point be t, the input
rate of a stream be ν, and the fraction of runtime allocated to processing the stream be
a. Then, the granularity is minimized when the granularity parameter l = �( a

νt )
1
n �−1.

Proof. The maximum number of probe points that can be processed in a unit time is a
νt .

l must be an integer and satisfy inequality a
νt ≥ (l + 1)n. The theorem follows.

In implementation, adjusting granularity parameters frequently can be very costly. In-
stead, we use a granularity upgrade rate ψ > 1. Let the current granularity parameter
be l. When the input rate of a data stream exceeds the capacity of the system, the gran-
ularity parameter is reduced to l

ψ . On the other hand, when the available resource is
sufficient to support a finer granularity of parameter at least l · ψ, then the granularity is
lowered down.
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When the granularity parameter is changed, a new probe point may not be a probe
point in the previous probe grid. To avoid loss of historical data, a new probe point that
is not in the previous probe grid inherits the density function estimation from the closest
probe point that is in the previous probe grid.

3.4 Localized Estimation

As analyzed before, when the granularity is small, updating the density estimation at
each probe point for a new entry in a data stream can be costly. From Equation 1, we
can observe that the effect of a new entry on a remote probe point can be very small.
The effect decreases exponentially with respect to the distance between the entry and
the probe point: the larger the distance, the smaller the effect.

This observation motivates the localized estimation method as follows. We can ig-
nore the effect on the probe points that are far away from the new entry. Technically,
we can neglect probe points that are of distance at least δh from the observation point.
We can prove the following.

Theorem 2 (Error bound). For a probe point p, if all entries q in the data stream such
that dist(p, q) > δh are ignored, the error on the estimation of f(p) is bound by

E =
1
k

∑

q,dist(p,q)>δh

e−
dist(p,q)2

2h2 ≤ |{q|dist(p, q) ≥ δh}|
k

· e−
δ2
2 ,

where k is the total number of entries arrived so far in the data stream.

By Theorem 2, we can update only the probe points around a newly arrived entry in a
data stream. In practice, the error can be much smaller than the upper bound when the
granularity is not too rough.

3.5 Summary

We can use a probe grid to estimate a discrete representation of the density function of a
data stream. By localized estimation, when a new entry arrives, we only need to update
the density estimation of the probe points around the entry, and the accumulated error
is bound by Theorem 2. To address the change of input rate of a data stream, we can
adjust the granularity parameter adaptively.

4 Tracing Concept Drifting and on Demand Clustering

Section 3 presents an adaptive method to estimate densities of data streams. When con-
cept drifting happens, a data stream evolves and its density function changes over time.
How can we handle concept drifting data streams effectively and timely?

4.1 Tracing Drifting by Decaying

When concept drifting happens in a data stream, the density of the stream in a recent
window is different from the density in the long term history, as elaborated in Figure 1.
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data stream

current windowhistory

Fig. 1. Concept drifting

Therefore, to handle concept drifting, we shall trace the drifting concepts by finding the
current density. Here, we propose two methods.

Critically, to trace the current density, we need a mechanism to eliminate stale data
gradually. Decaying is a typical and effective strategy, which is also used in some pre-
vious studies on data streams, such as [6]. Essentially, each data entry carries a weight
which decays over time. More recent data has higher weights than older data.

In the context of this study, we use a decay factor ρ, which is a value between 0
and 1. Periodically, the density estimation of each probe point is decayed by factor ρ,
i.e., f(p) = ρf(p). In implementation, decaying can be conducted lazily. That is, each
probe point p carries a time stamp τp. When the probe point p is updated due to a new
entry in the stream, τp is compared with the system current time stamp τ . The density
estimation f(p) should be decayed to f(p) · ρτ−τp before the effect of the new entry is
added in.

Alternatively, to capture the current density distribution, we can use a window W
of size τ , where τ is a user-specified parameter. We estimate the density distribution
in W . When the window is full (i.e., τ new entries arrive), the density distribution
in W is compared with the historical density distribution. If the difference between
the two distributions is minor, then no concept drifting happens and the density dis-
tribution in W can be added to the historical density distribution, since the density
distribution is addable. On the other hand, if the difference is substantial, then the con-
cept drifting happens. We should use the distribution in W to replace the historical
distribution.

4.2 On Demand Clustering

We can compare two data streams using their densities. Let f1 and f2 be the estimated
density functions of data streams S1 and S2, respectively. Then, the similarity between
S1 and S2 can be measured as

sim(S1, S2) =

√∫

Dn

(f1(p) − f2(p))2dp (2)

With the probe grids, Equation 2 can be approximated by

sim(S1, S2) =
√ ∑

probe point p

(f1(p) − f2(p))2 (3)

We can apply any clustering algorithms on demand to find clusters of the data
streams.
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Fig. 2. The 10 data sets used in Section 5.1

Table 1. The sum of squares of distances to means on the 10 synthetic data sets

Method D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

CluStream 32394.9 69811.6 73561.5 49371.7 42980.7 53675.6 21952.9 29070.7 43029.2 34900.2
Our method 33887.7 66779.9 68583.9 58816.3 37240.7 47000.1 51351.3 49511.2 32093.4 68476.9

5 Experimental Results

To verify the clustering method proposed in this paper, we conduct an extensive per-
formance study using synthetic data sets. Limited by space, we can only report some
results on selected aspects here. More experimental results can be found in the full
version of the paper.

5.1 Clustering One Data Stream

First, we examine whether clustering using density estimation can be competent with
other clustering methods on mining one data stream. We use 10 synthetic data sets as
shown in Figure 2. Each data set contains 50, 000 entries of 5 clusters in a 2-dimensional
data space.

On each data set, we run CluStream [3] our density estimation algorithms, respec-
tively. CluStream uses 10, 000 entries to initialize 5, 000 micro-clusters. Our density
estimation algorithm uses a 200 × 200 probe gride (i.e., the granularity parameter is set
to 19), and h = 10 in localized estimation (Section 3.4). Both methods scan the data set
only once. Then, micro-clusters and probe points are clustered by k-means, where the
number of clusters in clustering is set to 5. To compare the quality of clusters found, we
compute the sum of squares (SSQ) of distances between entries in the clusters and the
corresponding means. The results are shown in Table 1.

We observe that each method obtains the better clustering results on 5 data sets,
respectively. Interestingly, on data sets D7, D8 and D10 where some clusters distributed
in a long stripe, CluStream performs substantially better. In such cases, micro-clusters
are capable to capture the stripe structures and thus the situations are to the advantage
of CluStream. In the other data sets, our method achieves better or comparable results.
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The runtime of computing micro-clusters in CluStream and the density estimation time
in our method are also comparable. Limited by space, we omit the details.

5.2 Clustering Multiple Streams

We generate synthetic data streams in Gaussian distribution. Each stream contains
10, 000 data entries. The experimental results on 100 streams are shown in Figure 3. In
this test, 10 clusters are found, which contain 2, 3, 8, 2, 7, 11, 14, 3, 43, and 7 streams,
respectively. The distribution of the streams are listed in the order of clusters. As can be
seen, streams in each cluster are of similar distribution. To the best of our knowledge,
there exists no other methods that can also cluster multiple streams according to their
density distributions. Please note that COD [8] treats each stream as a time series, and
thus cannot identify clusters properly in this test. In fact, COD outputs a cluster of 91
streams and 9 clusters each of 1 stream in this experiment.

Fig. 3. Clustering multiple streams
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Since COD also cluster multiple streams, we compare the runtime of our method and
that of COD. The result is shown in Figure 4. As can be seen, our method is scalable
with respect to the number of data streams. When there are many streams, our method
is clearly more efficient than COD.

6 Conclusions

In this paper, we propose a simple yet effective method for on demand clustering mul-
tiple concept drifting data streams. The central idea is to characterize concept drifting
data streams by estimating densities. Our new method is adaptive to the available com-
putation resource, which is critical for processing data streams of unpredictable input
rates. Moreover, we can apply any clustering method to on demand cluster data streams
using their density estimations. We report a performance study on synthetic data sets
to verify our design. The experimental results clearly show that our method can obtain
clusters of good quality and is scalable in mining a large number of data streams.
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