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Abstract

Mining frequent patterns from large databases plays an essential role in many data mining

tasks and has broad applications. Most of the previously proposed methods adopt apriori-

like candidate-generation-and-test approaches. However, those methods may encounter se-

rious challenges when mining datasets with prolific patterns and/or long patterns.

In this work, we develop a class of novel and efficient pattern-growth methods for mining

various frequent patterns from large databases. Pattern-growth methods adopt a divide-

and-conquer approach to decompose both the mining tasks and the databases. Then, they

use a pattern fragment growth method to avoid the costly candidate-generation-and-test

processing completely. Moreover, effective data structures are proposed to compress crucial

information about frequent patterns and avoid expensive, repeated database scans. A com-

prehensive performance study shows that pattern-growth methods, FP-growth and H-mine,

are efficient and scalable. They are faster than some recently reported new frequent pattern

mining methods.

Interestingly, pattern growth methods are not only efficient, but also effective. With

pattern growth methods, many interesting patterns can also be mined efficiently, such as

patterns with some tough non-anti-monotonic constraints and sequential patterns. These

techniques have strong implications to many other data mining tasks.
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Chapter 1

Introduction

“The universe is full of magical things patiently waiting for our wits to grow sharper.”1 Data

mining is to find valid, novel, potentially useful, and ultimately understandable patterns

in data [FPSSe96]. In general, there are many kinds of patterns (knowledge) that can

be discovered from data. For example, association rules can be mined for market basket

analysis, classification rules can be found for accurate classifiers, clusters and outliers can

be identified for customer relation management.

Frequent pattern mining plays an essential role in many data mining tasks, such as

mining association rules [AS94, KMR+94], correlations [BMS97], causality [SBMU98], se-

quential patterns [AS95], episodes [MTV97], multi-dimensional patterns [LSW97, KHC97],

max-patterns [Bay98], partial periodicity [HDY99], and emerging patterns [DL99]. Fre-

quent pattern mining techniques can also be extended to solve many other problems, such

as iceberg-cube computation [BR99] and classification [LHM98]. Thus, effective and efficient

frequent pattern mining is an important and interesting research problem.

1.1 Motivation

Most of the previous studies on frequent pattern mining, such as [AS94, KMR+94, SON95,

PCY95, LSW97, STA98, SVA97, NLHP98, GLW00], adopt an Apriori-like approach, which

is based on an anti-monotone Apriori heuristic [AS94]: if any length k pattern is not frequent

in the database, its length (k + 1) super-pattern can never be frequent. The essential idea is

1By Eden Phillpotts (1862-1960), English writer, poet, playwright.

1



CHAPTER 1. INTRODUCTION 2

to iteratively generate the set of candidate patterns of length (k+1) from the set of frequent

patterns of length k (for k ≥ 1), and check their corresponding occurrence frequencies in

the database.

The Apriori heuristic achieves good performance gain by (possibly significantly) reduc-

ing the size of candidate sets. However, in situations with prolific frequent patterns, long

patterns, or quite low minimum support thresholds, an Apriori-like algorithm may still

suffer from the following two nontrivial costs:

• It is costly to handle a huge number of candidate sets. For example, if there are

104 frequent 1-itemsets, the Apriori algorithm will need to generate more than 107

length-2 candidates and test their occurrence frequencies. Moreover, to discover a

frequent pattern of size 100, such as {a1, . . . , a100}, it must generate


 100

1


 length-

1 candidates,


 100

2


 length-2 candidates, and so on. Ultimately, it generates


 100

1


 +


 100

2


 + · · ·+


 100

100


 = 2100 − 1 > 1030

candidates in total. This is the inherent cost of candidate generation, no matter what

implementation technique is applied.

• It is tedious to repeatedly scan the database and check a large set of candidates by

pattern matching, which is especially true for mining long patterns.

As frequent pattern mining is an essential data mining task, developing efficient frequent

mining techniques has been an important research direction in data mining.

There are some interesting questions that need to be answered.

• Apriori is one basic principle in frequent pattern mining. As analyzed, it has its

advantages and disadvantages. To improve the efficiency of frequent pattern mining

substantially, is there any way to obtain this advantage while avoiding the costly

candidate-generation-and-test and repeated database scan operations?

• Frequent pattern mining often suffers not only from the lack of efficiency but also

from the lack of effectiveness, i.e., there could be a huge number of frequent patterns
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generated from a database. Can we develop any method to derive some succinct

expression of frequent patterns and also push the users’ interest focus into the mining

process?

• Frequent pattern mining has many potential applications. Can we extend the effective

and efficient frequent pattern mining methods to solve some other interesting data

mining problems?

This thesis tries to make good progress in answering the above questions.

1.2 Contributions

In this thesis, we study the problem of efficient and effective frequent pattern mining, as

well as some of its extensions and applications. In particular, we make the following contri-

butions.

• We systematically develop a pattern-growth method for frequent pattern mining. A

novel algorithm, FP-growth, is proposed for efficiently mining frequent patterns from

large dense datasets. Furthermore, to achieve efficient frequent pattern mining in

various situations, we design H-mine, which is highly scalable and space preserving

for very large databases.

• As an inherent problem, frequent pattern mining may return too many patterns.

Constraint-based data mining is an important approach to solve the problem of effec-

tive data mining. We study the problem of constraint-based frequent pattern mining

using pattern-growth methods. Our study shows that pattern-growth methods can

push constraints deeper into the mining process, even including such constraints using

aggregate AV G() and SUM(), which other methods cannot handle.

• We extend the pattern-growth method to allow the mining of sequential patterns. Our

study shows that pattern-growth methods are more efficient in mining large sequence

databases. Interesting techniques are developed to solve the sequential pattern mining

problem effectively.
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1.3 Organization of the Thesis

The remainder of the thesis is structured as follows:

• In Chapter 2, we present the frequent pattern mining problem and an overview of

related work systematically.

• In Chapter 3, a novel frequent pattern method, FP-growth, is developed. The correct-

ness and efficiency of FP-growth are verified by theoretical analysis and experimental

tests.

• Even though FP-growth is efficient in mining large dense databases, it may have the

problem of building many recursive projected databases and FP-trees and thus may

be costly in space. In Chapter 4, we propose H-mine, which retains the advantages of

FP-growth but avoids redundant sub-database/tree building. Our performance study

shows that H-mine achieves good scalability in mining large databases and is also

efficient in space.

• The problem of constraint-based frequent pattern mining is studied in Chapter 5 using

pattern-growth methods. Not only do we examine the constraints proposed in previous

studies, we also attempt to attack some tough ones. A new kind of constraint, called

convertible constraint, is identified. Pattern-growth methods are developed for pushing

various constraints deep into the mining process.

• We extend the pattern-growth methods to solve the sequential pattern mining prob-

lem in Chapter 6. The study indicates that, with some modification and customiza-

tion, pattern-growth methods can be applied to mine patterns from various kinds of

databases.

• We summarize the characteristics of pattern-growth methods in Chapter 7. Some

interesting extensions and applications of pattern-growth methods are also discussed.

• The thesis concludes in Chapter 8. Interesting applications of pattern-growth methods

are discussed and some future directions are presented.



Chapter 2

Problem Definition and Related

Work

In this chapter, we first define the problem of frequent pattern mining, then we revisit the

Apriori heuristic and algorithm. Several improvements of the Apriori algorithm are also

discussed.

2.1 Frequent Pattern Mining Problem

The frequent pattern mining problem was first introduced by R. Agrawal, et al. in [AIS93]

as mining association rules between sets of items.

Let I = {i1, . . . , im} be a set of items. An itemset X ⊆ I is a subset of items. Hereafter,

we write itemsets as X = ij1 · · · ijn , i.e. omitting set brackets. Particularly, an itemset with

l items is called an l-itemset.

A transaction T = (tid,X) is a tuple where tid is a transaction-id and X is an itemset.

A transaction T = (tid,X) is said to contain itemset Y if Y ⊆ X.

A transaction database TDB is a set of transactions. The support of an itemset X in

transaction database TDB, denoted as supTDB(X) or sup(X), is the number of transactions

in TDB containing X, i.e.,

sup(X) = |{(tid, Y )|((tid, Y ) ∈ TDB) ∧ (X ⊆ Y )}|

Problem statement. Given a user-specified support threshold min sup, X is called a

5
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frequent itemset or frequent pattern if sup(X) ≥ min sup. The problem of mining frequent

itemsets is to find the complete set of frequent itemsets in a transaction database TDB with

respect to a given support threshold min sup.

Association rules can be derived from frequent patterns. An association rule is an

implication of the form X =⇒ Y , where X and Y are itemsets and X ∩ Y = ∅. The rule

X =⇒ Y has support s in a transaction database TDB if supTDB(X ∪ Y ) = s. The rule

X =⇒ Y holds in the transaction database TDB with confidence c where c = sup(X∪Y )
sup(X) .

Given a transaction database TDB, a support threshold min sup and a confidence thresh-

old min conf , the problem of association rule mining is to find the complete set of asso-

ciation rules that have support and confidence no less than the user-specified thresholds,

respectively.

Association rule mining can be divided into two steps. First, frequent patterns with

respect to support threshold min sup are mined. Second, association rules are generated

with respect to confidence threshold min conf . As shown in many studies (e.g., [AS94]),

the first step, mining frequent patterns, is significantly more costly in terms of time than

the rule generation step.

As we shall see later, frequent pattern mining is not only used in association rule mining.

Instead, frequent pattern mining is the basis for many data mining tasks, such as sequential

pattern mining and associative classification. It also has broad applications, such as basket

data analysis, cross-marketing, catalog design, sale campaign analysis, web log (click stream)

analysis, etc.

2.2 Apriori Heuristic and Algorithm

To achieve efficient mining frequent patterns, an anti-monotonic property of frequent item-

sets, called the Apriori heuristic, was identified in [AS94].

Theorem 2.1 (Apriori) Any superset of an infrequent itemset cannot be frequent. In

other words, every subset of a frequent itemset must be frequent.

Proof. To prove the theorem, we only need to show sup(X) ≤ sup(Y ) if X ⊇ Y .

Given a transaction database TDB. Let X and Y be two itemsets such that X ⊇ Y .

For each transaction T containing itemset X, T also contains Y , which is a subset of X.

Thus, we have sup(X) ≤ sup(Y ).
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The Apriori heuristic can prune candidates dramatically. Based on this property, a fast

frequent itemset mining algorithm, called Apriori, was developed. It is illustrated in the

following example.

Example 2.1 (Apriori) Let the transaction database, TDB, be Table 2.1 and the mini-

mum support threshold be 3.

tid Itemset (Ordered) Frequent Items
100 f, a, c, d, g, i,m, p a, c, f, m, p

200 a, b, c, f, l, m, o a, b, c, f, m

300 b, f, h, j, o b, f

400 b, c, k, s, p b, c, p

500 a, f, c, e, l, p, m, n a, c, f, m, p

Table 2.1: A transaction database TDB.

Apriori finds the complete set of frequent itemsets as follows.

1. Scan TDB once to find frequent items, i.e. items appearing in at least 3 transactions.

They are a, b, c, f,m, p. Each of these six items forms a length-1 frequent itemset. Let

L1 be the complete set of length-1 frequent itemsets.

2. The set of length-2 candidates, denoted as C2, is generated from L1. Here, we use

the Apriori heuristic to prune the candidates. Only those candidates that consist

of frequent subsets can be potentially frequent. An itemset xy ∈ C2 if and only if

x, y ∈ L1. Thus, C2 = {ab, ac, . . . , ap, bc, . . . ,mp}. There are


 6

2


 = 15 itemsets in

C2. They form the candidate set C2.

3. Scan TDB once more to count the support of each itemset in C2. The itemsets in C2

passing the support threshold form the length-2 frequent itemsets, L2. In this example,

L2 contains itemsets ac, af , am, cf , cm, and fm.

4. Then, we form the set of length-3 candidates. Only those length-3 itemsets for which

every length-2 sub-itemset is in L2 are qualified as candidates. For example, acf is a

length-3 candidate since ac, af and cf are all in L2.

One scan of TDB identifies the subset of length-3 candidates passing the support

threshold and form the set L3 of length-3 frequent itemsets. A similar process goes

on until no candidate can be derived or no candidate is frequent.
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One can verify that the above process eventually finds the complete set of frequent

itemsets in the database TDB.

The Apriori algorithm is presented as follows.

Algorithm 1 (Apriori)

Input: transaction database TDB and support threshold min sup

Output: the complete set of frequent patterns in TDB with respect to support threshold

min sup

Method:

1. scan transaction database TDB once to find L1, the set of frequent 1-itemsets;

2. for (k = 2; Lk−1 6= ∅; k + +) do

(a) generate Ck, the set of length-k candidates. A k-itemset X is in Ck if and

only if every length-(k − 1) subset of X is in Lk−1;

(b) if Ck = ∅ then go to Step 3;

(c) scan transaction database TDB once to count the support for every itemset

in Ck;

(d) Lk = {X|(X ∈ Ck) ∧ (sup(X) ≥ min sup)};
3. return

⋃k
i=1 Li

Now, let us analyze the efficiency of the Apriori algorithm using this example.

• The Apriori heuristic helps reducing the number of candidates significantly. Since there

are in total 14 items appearing in the database, there could be


 14

2


 = 91 possible

length-2 itemsets. As shown in the example, with the Apriori heuristic, we only need

to check the support counts for 15 length-2 candidates. Apriori cuts 83.52% at the

length-2 itemset level. As the length of candidates becomes longer, the number of

possible combinations becomes larger, thus the cutting effect of the Apriori heuristic

is sharper.
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• Even though Apriori can cut a lot of candidates, it could still be costly to handle a huge

number of candidate itemsets in large transaction databases. For example, if there are

1 million items and only 1% (i.e. 104 items) are frequent length-1 itemsets, Apriori

has to generate more than 107 length-2 candidates, test each of their support and save

them for length-3 candidates generation.

• It is tedious to repeatedly scan the database and check a large set of candidates by

pattern matching, which is particularly true if a long pattern exists. Apriori is a level-

by-level candidate-generation-and-test algorithm. To find a frequent itemset X =

x1 · · ·x100, Apriori has to scan the database 100 times.

• Apriori encounters difficulty in mining long patterns. For example, to find a frequent

itemset X = x1 · · ·x100, it has to generate-and-test 2100 − 1 candidates.

2.3 Improvements over Apriori

In the past several years, many improvements over the Apriori algorithm have been pro-

posed. In this section, we review some important proposals.

As shown in Section 2.2, the major bottlenecks in Apriori algorithm are in three aspects.

• The Apriori algorithm needs to scan the database multiple times. When mining a

huge database, multiple database scans are costly. One feasible strategy to improve

the efficiency of Apriori algorithm is to reduce the number of database scans.

• The Apriori algorithm has to generate a huge number of candidates. Storing and

counting these candidates are tedious. To attack this problem, some studies focus on

reducing the number of candidates.

• One dominant operation in the Apriori algorithm is support counting. To speed up

the Apriori-like algorithms, some facilities are proposed.

A typical example for the effort of reducing the number of database scans can be found in

[BMUT97]. In that study, Brin, et al. propose DIC, a dynamic itemset counting algorithm.

Intuitively, DIC works like a train running over the data with stops at intervals M

transactions apart. That is, the algorithm reads M transactions at a time and update the

appropriate support counts. When the train reaches the end of the transaction database, it
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has made one scan over the data and it starts over at the beginning for the next scan. The

“passengers” on the train are candidate itemsets. If an itemset is on the train, its support

is updated each time a transaction containing the itemset is scanned.

At the start of the first scan, the passengers on the train are the set of length-1 can-

didates. At each stop, DIC checks the passengers on the train according to the following

rules.

1. When the support count of a candidate itemset X passes the support threshold, we

check whether X can be joined with some other frequent itemsets with the same length

to generate new candidates. If so, we add the new candidate on the train. We generate

a length-k itemset X = a1 · · · ak only when all


 k

k − 1


 length-(k − 1) subsets of

X have accumulated support greater than or equal to the support threshold. For

example, when the counter corresponding to itemset abc passes the support threshold,

we check whether abc can be joined with some other length-3 frequent itemsets. If

bcd, acd and abd are already determined as frequent itemsets, then we can generate a

length-4 candidate abcd.

2. When a candidate itemset X has travelled for one complete scan, it is removed from

the train. If, at that time, the support for X is greater than or equal to the support

threshold, output X and its support as a frequent pattern.

For example, let us consider mining a transaction database TDB with 40, 000 transac-

tions and support threshold 100. Let the interval between stops be 10, 000. If itemset a

and b get support counts greater than 100 in the first 10, 000 transactions, DIC will start

counting 2-itemset ab after the first 10, 000 transactions. Similarly, if ab, ac and bc are

contained in at least 100 transactions among the second 10, 000 transactions, DIC will start

counting 3-itemset abc after 20, 000 transactions. Once DIC gets to the end of the trans-

action database TDB, it will stop counting the 1-itemsets and go back to the start of the

database and count the 2 and 3-itemsets. After the first 10, 000 transactions, DIC will finish

counting ab, and after 20, 000 transactions, it will finish counting abc. By overlapping the

counting of different lengths of itemsets, DIC can save some database scans.

On the other hand, DIC also explores efficient support counting. It optimizes the trie

structure used in the Apriori algorithm for counting candidates. Frequent items in each

candidate are sorted in support ascending order according to their popularity in the first M
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transactions. Such an order can reduce the number of inner loops in counting. Reordering

items incurs some overhead, but for some data, it may be beneficial overall.

Experimental results reported in [BMUT97] indicates that DIC is faster than Apriori

when the support threshold is low.

Another interesting study on reducing the number of database scans is from Savasere,

et al. [SON95]. The large transaction database is divided into multiple partitions such that

each partition can be held in main memory. The whole database is scanned only twice. In

the first scan, partitions are read into main memory one by one. Local frequent patterns

are mined with respect to relative support threshold using the Apriori method. The second

scan consolidates global frequent patterns. Each global frequent pattern must be frequent

in at least one partition. Therefore, only those local frequent patterns should be counted

and tested in the second scan.

The major challenges for this partitioning-based method are in two aspects. On one

hand, partitioning the database is non-trivial when the database is biased. On the other

hand, a low global support threshold may lead to a much lower local threshold and thus

produce a huge number of local frequent patterns. As an extreme example, if the global

(absolute) support threshold is 10 and the global database is divided into 10 partitions, then

some partitions may have local threshold 1, which means every itemset in those partitions

is a local frequent pattern. Counting a huge number of patterns in the second scan could

be very costly.

In [Toi96], Toivonen proposes a frequent pattern mining method by sampling. Instead of

mining the database directly, the sampling method first mine a sample of the database using

the Apriori algorithm. The sample should be small enough to fit into main memory. Then,

the whole database is scanned once to verify frequent itemsets found in the sample. Only

those frequent patterns having no frequent super-pattern are checked. In some rare cases

where the sampling method may not produce all frequent patterns, the missing patterns can

be found in one more pass of the database. The performance study in [Toi96] shows that

the sampling algorithm is faster than both Apriori and the partitioning method in [SON95].

In many cases, after mining the sample database, the sampling method needs only one scan

to find all frequent patterns.

Park, et al. [PCY95] illustrate that frequent pattern mining can be sped up by reducing

the number of candidates. DHP (for direct hashing and pruning), a hashing-based algorithm,

is introduced. DHP is an Apriori-like algorithm, with improvement on candidate generation



CHAPTER 2. PROBLEM DEFINITION AND RELATED WORK 12

and counting. In the k-th scan, DHP counts not only length-k candidates, but also buckets of

length-(k+1) potential candidates. For example, let a, b, c, d, and e be items in a transaction

database. In the first scan, DHP counts the supports of the five length-1 candidates. At

the same time, potential length-2 candidates, ab, ac, . . . , de, are generated and grouped

into buckets. Suppose ab, ad, and ae are in the same bucket. Every transaction containing

ab, ad, or ae results in an increment of 1 to the support count of the bucket. After the first

scan, if the support count of the bucket is below the support threshold, neither ab nor ad

nor ae should be a length-2 candidate even if a, b, d and e are frequent.

DHP is especially effective for the generation of a candidate set for large 2-itemsets.

Explicitly, the number of candidate 2-itemsets generated by the proposed algorithm is, in

orders of magnitude, smaller than that generated by previous methods.

2.4 TreeProjection: Going Beyond Apriori-like Methods

Recently, Agarwal, et al. propose TreeProjection, a frequent pattern mining algorithm not

in the Apriori framework. TreeProjection mines frequent patterns by constructing a lex-

icographical tree and projecting a large database into a set of reduced, item-based sub-

databases based on the frequent patterns mined so far. The general idea is shown in the

following example.

Example 2.2 For the same transaction database presented in Example 2.1, we construct

the lexicographical tree according to the method described in [AAP00]. The resulting tree

is shown in Figure 2.1, and the construction process is presented as follows.

By scanning the transaction database once, all frequent 1-itemsets are identified. As

recommended in [AAP00], the frequency ascending order is chosen as the ordering of the

items. So, the order is p-m-b-a-c-f . The top level of the lexicographical tree is constructed,

i.e. the root and the nodes labelled by length-1 patterns. At this stage, the root node labelled

“null” and the nodes which store frequent 1-itemsets are generated. All transactions in the

database are projected to the root node, i.e., all infrequent items are removed.

Each node in the lexicographical tree contains two pieces of information: (i) the pattern

that the node represents, and (ii) the set of items which by adding to the pattern in the

current node may generate longer patterns. The latter piece of information is recorded as

active extensions and active items.
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m {acf, acf, acf} {cf,cf,cf} cab f

Null

pc ma {cf, cf, cf} mc mf

mac maf

macf

mcf

ac af

acf

cf

{pmacf, pbc, pmacf, mbacf, bf}

p

Figure 2.1: A lexicographical tree.

A matrix at the root node is created as shown below. The matrix computes the frequen-

cies of length-2 patterns; thus, all pairs of frequent items are included in the matrix. The

items are arranged in ascending order. The matrix is built by adding counts from transac-

tions in the projected database, i.e., computing frequent 2-itemsets based on transactions

stored in the root node.

p m b a c f

p

m 2

b 1 1

a 2 3 1

c 3 3 2 3

f 2 3 2 3 3

At the same time as the matrix is built, transactions in the root are projected to level-1

nodes as follows. Let t = a1a2 · · · an be a transaction with all items listed in ascending

order. Transaction t is projected to node ai (1 ≤ i < n− 1) as t′ai
= ai+1ai+2 · · · an.

From the matrix, frequent 2-itemsets are found to be: {pc, ma,mc, mf, ac, af, cf}. The

nodes in the lexicographical tree for these frequent 2-itemsets are generated. At this stage,

the active nodes for 1-itemsets are m and a, because only these nodes contain enough
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descendants to potentially generate longer frequent itemsets. All other 1-itemset nodes are

pruned.

In the same way, the lexicographical tree is grown level by level. From the matrix at

node m, nodes labelled mac, maf , and mcf are added, and only ma is active for frequent

2-itemsets. It is easy to see that the lexicographical tree in total contains 19 nodes.

The number of nodes in a lexicographical tree is exactly that of the frequent itemsets.

TreeProjection proposes an efficient way to enumerate frequent patterns. The efficiency of

TreeProjection can be explained by two main factors:

• On one hand, the transaction projection limits support counting to a relatively small

space, and only related portions of transactions are considered.

• On the other hand, the lexicographical tree facilitates the management and counting

of candidates and provides the flexibility of picking an efficient strategy during the

tree generation phase as well as transaction projection phase.

[AAP00] reports that their algorithm is up to one order of magnitude faster than other

recent techniques in literature.



Chapter 3

FP-growth: A Pattern Growth

Method

We presented the conventional frequent pattern mining method, Apriori, in Section 2.2. As

analyzed, the major costs in Apriori-like methods are the generation of a huge number of

candidates and the repeated scanning of large transaction databases to test those candi-

dates. In short, the candidate-generation-and-test operation is the bottleneck for Apriori-like

methods.

Can we avoid candidate-generation-and-test in frequent pattern mining? To attack this

problem, we develop FP-growth, a pattern growth method for frequent pattern mining in

this chapter. First, we develop an effective data structure, FP-tree, in Section 3.1. Then, in

Section 3.2, we propose an efficient algorithm for mining frequent patterns from an FP-tree,

and verify its correctness. In Section 3.3, we discuss how to scale the method to mine large

databases which cannot be held in main memory. Experimental results and performance

studies are reported in Section 3.4.

3.1 Frequent-Pattern Tree: Design and Construction

Information from transaction databases is essential for mining frequent patterns. Therefore,

if we can extract the concise information for frequent pattern mining and store it into

a compact structure, then it may facilitate frequent pattern mining. Motivated by this

thinking, in this section, we develop a compact data structure, called FP-tree, to store

15
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complete but no redundant information for frequent pattern mining.

3.1.1 Frequent-Pattern Tree

To design a compact data structure for efficient frequent-pattern mining, let’s first examine

an example.

Example 3.1 Let the transaction database, TDB, be the first two columns of Table 3.1

(same as the transaction database used in Example 2.1), and the minimum support threshold

be 3 (i.e., min sup = 3).

TID Items Bought (Ordered) Frequent Items
100 f, a, c, d, g, i, m, p f, c, a, m, p

200 a, b, c, f, l, m, o f, c, a, b, m

300 b, f, h, j, o f, b

400 b, c, k, s, p c, b, p

500 a, f, c, e, l, p, m, n f, c, a, m, p

Table 3.1: A transaction database.

A compact data structure can be designed based on the following observations:

1. Since only the frequent items will play a role in the frequent-pattern mining, it is

necessary to perform one scan of transaction database TDB to identify the set of

frequent items (with frequency count obtained as a by-product).

2. If the set of frequent items of each transaction can be stored in some compact structure,

it may be possible to avoid repeatedly scanning the original transaction database.

3. If multiple transactions share a set of frequent items, it may be possible to merge the

shared sets with the number of occurrences registered as count. It is easy to check

whether two sets are identical if the frequent items in all of the transactions are listed

according to a fixed order.

4. If two transactions share a common prefix, according to some sorted order of frequent

items, the shared parts can be merged using one prefix structure as long as the count

is registered properly. If the frequent items are sorted in their frequency descending

order, there are better chances that more prefix strings can be shared.
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item

c

p

m

b

a

f

head of
node-links

root

f:4

c:3 b:1

a:3

m:2

p:2

b:1

m:1

c:1

b:1

p:1

Header table

Figure 3.1: The FP-tree in Example 3.1.

With the above observations, one may construct a frequent-pattern tree as follows.

1. A scan of TDB derives a list of frequent items, 〈(f :4), (c:4), (a:3), (b:3), (m:3), (p:3)〉
(the number after “:” indicates the support), in which items are ordered in frequency-

descending order. (In the case that two or more items have exactly same support

count, they are sorted alphabetically.) This ordering is important since each path of

a tree will follow this order. For convenience of later discussions, the frequent items

in each transaction are listed in this ordering in the rightmost column of Table 3.1.

2. Then, the root of a tree is created and labelled with “null”. The FP-tree is constructed

as follows by scanning the transaction database TDB the second time.

(a) The scan of the first transaction leads to the construction of the first branch of

the tree: 〈(f :1), (c:1), (a:1), (m:1), (p:1)〉. Notice that the frequent items in the

transaction are listed according to the order in the list of frequent items.

(b) For the second transaction, since its (ordered) frequent item list 〈f, c, a, b, m〉
shares a common prefix 〈f, c, a〉 with the existing path 〈f, c, a, m, p〉, the count of

each node along the prefix is incremented by 1, and one new node (b:1) is created

and linked as a child of (a:2) and another new node (m:1) is created and linked

as the child of (b:1).
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(c) For the third transaction, since its frequent item list 〈f, b〉 shares only the node

〈f〉 with the f -prefix subtree, f ’s count is incremented by 1, and a new node

(b:1) is created and linked as a child of (f :3).

(d) The scan of the fourth transaction leads to the construction of the second branch

of the tree, 〈(c:1), (b:1), (p:1)〉.
(e) For the last transaction, since its frequent item list 〈f, c, a, m, p〉 is identical to

the first one, the path is shared with the count of each node along the path

incremented by 1.

To facilitate tree traversal, an item header table is built in which each item points to

its first occurrence in the tree via a node-link. Nodes with the same item-name are

linked in sequence via such node-links. After scanning all the transactions, the tree,

together with the associated node-links, are shown in Figure 3.1.

Based on this example, a frequent-pattern tree can be designed as follows.

Definition 3.1 (FP-tree) A frequent-pattern tree (or FP-tree in short) is a tree structure

defined below.

1. It consists of one root labeled as “null”, a set of item-prefix subtrees as the children of

the root, and a frequent-item-header table.

2. Each node in the item-prefix subtree consists of three fields: item-name, count, and

node-link, where item-name registers which item this node represents, count registers

the number of transactions represented by the portion of the path reaching this node,

and node-link links to the next node in the FP-tree carrying the same item-name, or

null if there is none.

3. Each entry in the frequent-item-header table consists of two fields, (1) item-name and

(2) head of node-link (a pointer pointing to the first node in the FP-tree carrying the

item-name).

Based on this definition, we have the following FP-tree construction algorithm.

Algorithm 2 (FP-tree construction)

Input: A transaction database TDB and a minimum support threshold min sup.
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Output: FP-tree, the frequent-pattern tree of TDB.

Method: The FP-tree is constructed as follows.

1. Scan the transaction database TDB once. Collect F , the set of frequent items, and

the support of each frequent item. Sort F in support-descending order as FList, the

list of frequent items.

2. Create the root of an FP-tree, T , and label it as “null”. For each transaction t in

TDB do the following.

Select the frequent items in transaction t and sort them according to the order of

FList. Let the sorted frequent-item list in t be [p|P ], where p is the first element and

P is the remaining list. Call insert tree([p|P ], T ).

The function insert tree([p|P ], T ) is performed as follows. If T has a child N such

that N.item-name = p.item-name, then increment N ’s count by 1; else create a new

node N , with count initialized to 1, parent link linked to T , and node-link linked to

the nodes with the same item-name via the node-link structure. If P is nonempty, call

insert tree(P,N) recursively.

Analysis. The FP-tree construction takes exactly two scans of the transaction database:

1. The first scan collects the set of frequent items; and

2. The second constructs the FP-tree.

The cost of inserting a transaction t into the FP-tree is O(|freq(t)|), where freq(t) is the

set of frequent items in t. In next section, we will show that the FP-tree contains complete

information for frequent-pattern mining.

3.1.2 Completeness and Compactness of FP-tree

Several important properties of FP-tree can be observed from the FP-tree construction

process.

Given a transaction database TDB and a support threshold min sup. Let F be the

frequent items in TDB. For each transaction t, freq(t) is the set of frequent items in t,

i.e., freq(t) = t ∩ F , and is called the frequent item projection of transaction t. According

to Apriori principle, the set of frequent item projections of transactions in the database is
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sufficient for mining the complete set of frequent patterns, since the infrequent items play

no role in frequent patterns.

Lemma 3.1 Given a transaction database TDB and a support threshold min sup, the sup-

port of every frequent itemset can be derived from TDB’s FP-tree.

Proof. Based on the FP-tree construction process, for each transaction in the TDB, its

frequent item projection is mapped to a path from the root in the FP-tree.

Given a frequent itemset X = x1 · · ·xn in which items are sorted in the support de-

scending order. Following the side-link of item xn, we can visit all the nodes with label xn

in the tree.

For each path p from the root to a node v with label xn, the support count supv in node

v is the number of transactions represented by p. If x1, . . . , xn all appear in p, then the

supv transactions represented by p contain X. Thus, we accumulate such support counts.

The sum is the support of X.

Based on this lemma, after an FP-tree for TDB is constructed, it contains the complete

information for mining frequent patterns from the transaction database. Thereafter, only

the FP-tree is needed in the remaining of the mining process, regardless of the number and

length of the frequent patterns.

Lemma 3.2 Given a transaction database TDB and a support threshold min sup, the num-

ber of nodes in an FP-tree is no more than
∑

t∈TDB |freq(t)| + 1. Further, the number of

nodes in the longest path from the root is maxt∈TDB{|freq(t)|}.
Proof. Based on the FP-tree construction process, for any transaction t in TDB, let

freq(t) = x1 · · ·xk. There exists a path root − x1 − · · · − xk in the FP-tree. Each node in

the tree, except for the root node, corresponds to at least one frequent item occurred in the

transaction database. In the worst case, there is no overlap among frequent item projections

of transactions, and thus all paths from the root to leaves share only the root node. Thus,

the number of nodes in the tree is no more than
∑

t∈TDB |freq(t)|+ 1. In the longest path

from the root in the tree, there are maxt∈TDB{|freq(t)|} nodes.

Lemma 3.2 shows an important benefit of the FP-tree: the size of an FP-tree is bounded

by the size of its corresponding database because each transaction will contribute at most

one path to the FP-tree, with the length equal to the number of frequent items in that

transaction. Since transactions often share frequent items, the size of the tree is usually much
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smaller than its original database. An FP-tree never breaks a transaction into pieces. Thus,

unlike the Apriori-like method which may generate an exponential number of candidates

in the worst case, under no circumstances, may an FP-tree with an exponential number of

nodes be generated.

The FP-tree is a highly compact structure which stores the information for frequent-

pattern mining. Since a single path “a1 → a2 → · · · → an” in the a1-prefix subtree registers

all the transactions whose maximal frequent set is in the form of “a1 → a2 → · · · → ak”

for any 1 ≤ k ≤ n, the size of the FP-tree is often substantially smaller than the size of the

database and that of the candidate sets generated in the association rule mining.

The items in the frequent item set are ordered in the support-descending order: More

frequently occurring items are more likely to be shared and thus they are arranged to be

closer to the top of the FP-tree. In general, this ordering provides a relatively compact

FP-tree structure.

It is also feasible to construct an FP-tree using some other order, and all properties we

have discussed before hold. Here, the support descending order is a heuristic to reduce the

size of the tree. However, this does not mean that the tree so constructed always achieves the

maximal compactness. With the knowledge of particular data characteristics, it is sometimes

possible to achieve even better compression than the frequency-descending ordering. Con-

sider the following example. Let the transactions be: {adef, bdef, cdef, a, a, a, b, b, b, c, c, c},
and the minimum support threshold be 3. The frequent item set associated with support

count becomes {a:4, b:4, c:4, d:3, e:3, f :3}. Following the item frequency ordering a → b → c

→ d → e → f , the FP-tree constructed will contain 12 nodes, as shown in Figure 3.2 (a).

However, following another item ordering f → d → e → a → b → c, it will contain only 9

nodes, as shown in Figure 3.2 (b).

The compactness of FP-tree is also verified by our experiments. Sometimes a rather small

FP-tree results from a quite large database. For example, for the database Connect-4 used

in MaxMiner [Bay98], which contains 67,557 transactions with 43 items in each transaction,

when the support threshold is 50% (which is used in the MaxMiner experiments [Bay98]),

the total number of occurrences of frequent items is 2,219,609, whereas the total number

of nodes in the FP-tree is 13,449 which represents a reduction ratio of 165.04, while it still

holds hundreds of thousands of frequent patterns! (Notice that for databases with mostly

short transactions, the reduction ratio is not that high.) Therefore, it is not surprising some

gigabyte transaction database containing many long patterns may even generate an FP-tree
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Figure 3.2: FP-tree constructed based on frequency descending ordering may not always be
minimal.

which fits in main memory.

3.2 Mining Frequent Patterns Using FP-tree

Construction of a compact FP-tree ensures that subsequent mining can be performed with

a rather compact data structure. However, this does not automatically guarantee that it

will be highly efficient since one may still encounter the combinatorial problem of candidate

generation if we simply use this FP-tree to generate and check all the candidate patterns.

In this section, we will study how to explore the compact information stored in an

FP-tree, develop the principles of frequent-pattern growth by examination of our running

example, explore how to perform further optimization when there exists a single prefix path

in an FP-tree, and propose a frequent-pattern growth algorithm, FP-growth, for mining the

complete set of frequent patterns using FP-tree.

3.2.1 Principles of Frequent-pattern Growth for FP-tree Mining

In this subsection, we examine some interesting properties of the FP-tree structure which

will facilitate frequent-pattern mining.

Property 3.2.1 (Node-link property) For any frequent item ai, all the possible patterns

containing only frequent items and ai can be obtained by following ai’s node-links, starting

from ai’s head in the FP-tree header.
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This property is directly from the FP-tree construction process, and it facilitates the

access of all the frequent-pattern information related to ai by traversing the FP-tree once

following ai’s node-links.

To facilitate the understanding of other properties of FP-tree related to mining, we first

go through an example which performs mining on the constructed FP-tree (Figure 3.1) in

Example 3.1.

Example 3.2 Let us examine the mining process based on the constructed FP-tree shown

in Figure 3.1.

According to the list of frequent items, f -c-a-b-m-p, all frequent patterns in the database

can be divided into 6 subsets without overlap:

1. patterns containing item p;

2. patterns containing item m but no item p;

3. patterns containing item b but no m nor p;

4. patterns containing item a but no b, m nor p;

5. patterns containing item c but no a, b, m nor p; and

6. patterns containing item f but no c, a, b, m nor p.

Let us mine these subsets one by one.

1. We first mine patterns having item p. An immediate frequent pattern in this subset

is (p:3).

To find other patterns having item p, we need to access all frequent item projections

containing item p. Based on Property 3.2.1, all such projections can be collected by

starting at p’s node-link head and following its node-links.

Following p’s node-links, we can find that p has two paths in the FP-tree: 〈f :4, c:3, a:3,

m:2, p:2〉 and 〈c:1, b:1, p:1〉. The first path indicates that string “(f, c, a, m, p)” appears

twice in the database. Notice the path also indicates that string 〈f, c, a〉 appears three

times and 〈f〉 itself appears even four times. However, they only appear twice together

with p. Thus, to study which string appear together with p, only p’s prefix path

〈f :2, c:2, a:2,m:2〉 (or simply, 〈fcam:2〉) counts. Similarly, the second path indicates
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Figure 3.3: Mining FP-tree| m, a conditional FP-tree for item m

string “(c, b, p)” appears once in the set of transactions in DB, or p’s prefix path

is 〈cb:1〉. These two prefix paths of p, “{(fcam:2), (cb:1)}”, form p’s subpattern-

base, which is called p’s conditional pattern-base (i.e., the subpattern-base under the

condition of p’s existence). Construction of an FP-tree on this conditional pattern-base

(which is called p’s conditional FP-tree) leads to only one branch (c:3). Hence, only one

frequent pattern (cp:3) is derived. (Notice that a pattern is an itemset and is denoted

by a string here.) The search for frequent patterns associated with p terminates.

2. Now, let us turn to patterns having item m but no item p. Immediately, we iden-

tify frequent pattern (m:3). By following m’s node-links, two paths in FP-tree,

〈f :4, c:3, a:3,m:2〉 and 〈f :4, c:3, a:3, b:1, m:1〉 are found. Notice p appears together

with m as well, however, there is no need to include p here in the analysis since any

frequent patterns involving p has been analyzed in the previous examination of pat-

terns having item p. Similar to the above analysis, m’s conditional pattern-base is

{(fca:2), (fcab:1)}. Constructing an FP-tree on it, we derive m’s conditional FP-tree,

〈f :3, c:3, a:3〉, a single frequent pattern path, as shown in Figure 3.3. This conditional

FP-tree is then mined recursively by calling mine(〈f :3, c:3, a:3〉|m).

Figure 3.3 shows that “mine(〈f :3, c:3, a:3〉|m)” involves mining three items (a), (c),

(f) in sequence. The first derives a frequent pattern (am:3), a conditional pattern-base

{(fc:3)}, and then a call “mine(〈f :3, c:3〉|am)”; the second derives a frequent pattern

(cm:3), a conditional pattern-base {(f :3)}, and then a call “mine(〈f :3〉|cm)”; and the

third derives only a frequent pattern (fm:3). Further recursive call of “mine(〈f :3, c:

3〉|am)” derives (cam:3), (fam:3), a conditional pattern-base {(f :3)}, and then a call
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“mine(〈f :3〉|cam)”, which derives the longest pattern (fcam:3). Similarly, the call of

“mine(〈f :3〉|cm)”, derives one pattern (fcm:3). Therefore, the whole set of frequent

patterns involving m is {(m:3), (am:3), (cm:3), (fm:3), (cam:3), (fam:3), (fcam:3),

(fcm:3)}. This indicates a single path FP-tree can be mined by outputting all the

combinations of the items in the path.

3. Similarly, we can mine patterns containing item b but no m nor p. Node b derives

(b:3) and has three paths: 〈f :4, c:3, a:3, b:1〉, 〈f :4, b:1〉, and 〈c:1, b:1〉. Since b’s condi-

tional pattern-base {(fca:1), (f :1), (c:1)} generates no frequent item, the mining for

b terminates.

4. For patterns having item a but no b, m nor p, node a derives one frequent pattern

{(a:3)} and one subpattern base {(fc:3)}, a single-path conditional FP-tree. Thus, its

set of frequent patterns can be generated by taking their combinations. Concatenating

them with (a:3), we have {(fa:3), (ca:3), (fca:3)}.

5. Now, it is the turn to mine patterns having item c but no a, b, m nor p. Node c derives

(c:4) and one subpattern-base {(f :3)}, and the set of frequent patterns associated with

(c:3) is {(fc:3)}.

6. The last subset, i.e., pattern having item f but no any other items, is f itself and

(f :4) should be output. No conditional pattern-base need to be constructed.

Item Conditional pattern-base Conditional FP-tree
p {(fcam:2), (cb:1)} {(c:3)}|p
m {(fca:2), (fcab:1)} {(f :3, c:3, a:3)}|m
b {(fca:1), (f :1), (c:1)} ∅
a {(fc:3)} {(f :3, c:3)}|a
c {(f :3)} {(f :3)}|c
f ∅ ∅

Table 3.2: Mining frequent patterns by creating conditional (sub)pattern-bases

The conditional pattern-bases and the conditional FP-trees generated are summarized

in Table 3.2.

The correctness and completeness of the process in Example 3.2 should be justified.

This is accomplished by first introducing a few important properties related to the mining

process.
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Property 3.2.2 (Prefix path property) To calculate the frequent patterns with suffix ai,

only the prefix sub-pathes of nodes labelled ai in the FP-tree need to be accumulated, and

the frequency count of every node in the prefix path should carry the same count as that in

the corresponding node ai in the path.

Proof. Let the nodes along the path P be labelled as a1, . . . , an in such an order that a1

is the root of the prefix subtree, an is the leaf of the subtree in P , and ai (1 ≤ i ≤ n)

is the node being referenced. Based on the process of FP-tree construction presented in

Algorithm 2, for each prefix node ak (1 ≤ k < i), the prefix sub-path of the node ai in P

occurs together with ak exactly ai.count times. Thus every such prefix node should carry

the same count as node ai. Notice that a postfix node am (for i < m ≤ n) along the same

path also co-occurs with node ai. However, the patterns with am will be generated at the

examination of the postfix node am, enclosing them here will lead to redundant generation

of the patterns that would have been generated for am. Therefore, we only need to examine

the prefix sub-path of ai in P .

For example, in Example 3.2, node m is involved in a path 〈f :4, c:3, a:3,m:2, p:2〉, to

calculate the frequent patterns for node m in this path, only the prefix sub-path of node m,

which is 〈f :4, c:3, a:3〉, need to be extracted, and the frequency count of every node in the

prefix path should carry the same count as node m. That is, the node counts in the prefix

path should be adjusted to 〈f :2, c:2, a:2〉.
Based on this property, the prefix sub-path of node ai in a path P can be copied and

transformed into a count-adjusted prefix sub-path by adjusting the frequency count of every

node in the prefix sub-path to the same as the count of node ai. The so transformed prefix

path is called the transformed prefix path of ai for path P .

Notice that the set of transformed prefix paths of ai form a small database of patterns

which co-occur with ai. Such a database of patterns occurring with ai is called ai’s condi-

tional pattern-base, and is denoted as “pattern base | ai”. Then one can compute all the

frequent patterns associated with ai in this ai-conditional pattern-base by creating a small

FP-tree, called ai’s conditional FP-tree and denoted as “FP-tree| ai”. Subsequent mining

can be performed on this small conditional FP-tree. The process of constructing conditional

pattern-bases and conditional FP-trees has been demonstrated in Example 3.2.

This process is performed recursively, and the frequent patterns can be obtained by a

pattern-growth method, based on the following lemmas and corollary.
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Lemma 3.3 (Fragment growth) Let α be an itemset in DB, B be α’s conditional pattern-

base, and β be an itemset in B. Then the support of α∪β in DB is equivalent to the support

of β in B.

Proof. According to the definition of conditional pattern-base, each (sub)transaction in B

occurs under the condition of the occurrence of α in the original transaction database DB.

If an itemset β appears in B ψ times, it appears with α in DB ψ times as well. Moreover,

since all such items are collected in the conditional pattern-base of α, α ∪ β occurs exactly

ψ times in DB as well. Thus we have the lemma.

From this lemma, we can directly derive an important corollary.

Corollary 3.2.1 (Pattern growth) Let α be a frequent itemset in DB, B be α’s condi-

tional pattern-base, and β be an itemset in B. Then α ∪ β is frequent in DB if and only if

β is frequent in B.

Proof. This corollary is the case when α is a frequent itemset in DB, and when the support

of β in α’s conditional pattern-base B is no less than ξ, the minimum support threshold.

We first prove the “if” part. Suppose β is frequent in B, that is, β appears in B at least

ξ times. Since B is α’s conditional pattern-base, each transaction in B appears under the

existence of α. That is, β appears together with α in DB at least ξ times. Therefore, α∪ β

is frequent in DB.

Then we prove the “only if” part. Suppose β is not frequent in B, that is, β appears in

B less than ξ times. Since B is α’s conditional pattern-base, all the itemsets containing β

and co-occurring with α are in B. Thus β co-occurs with α less than ξ times. Therefore,

α ∪ β is not frequent in DB.

Based on Corollary 3.2.1, mining can be performed by first identifying the set of frequent

1-itemsets in DB, and then for each such frequent 1-itemset, constructing its conditional

pattern-bases, and mining its set of frequent 1-itemsets in the conditional pattern-base, and

so on. This indicates that the process of mining frequent patterns can be viewed as first

mining frequent 1-itemset and then progressively growing each such itemset by mining its

conditional pattern-base, which can in turn be done similarly. By doing so, a frequent k-

itemset mining problem is successfully transformed into a sequence of k frequent 1-itemset

mining problems via a set of conditional pattern-bases. Since mining is done by pattern

growth, there is no need to generate any candidate sets in the entire mining process.
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Notice also in the construction of a new FP-tree from a conditional pattern-base obtained

during the mining of an FP-tree, the items in the frequent itemset should be ordered in the

frequency descending order of node occurrence of each item instead of its support (which

represents item occurrence). This is because each node in an FP-tree may represent many

occurrences of an item but such a node represents a single unit (i.e., the itemset whose

elements always occur together) in the construction of an item-associated FP-tree.

3.2.2 Frequent-pattern Growth With Single Prefix Path of FP-tree

The frequent-pattern growth method described above works for all kinds of FP-trees. How-

ever, further optimization can be explored on a special kind of FP-tree, called single prefix-

path FP-tree, and such an optimization is especially useful at mining long frequent patterns.

A single prefix-path FP-tree is an FP-tree that consists of only a single path or a single

prefix path stretching from the root to the first branching node of the tree, where a branching

node is a node containing more than one child.

Let us examine an example.

Example 3.3 Figure 3.4(a) is a single prefix-path FP-tree that consists of one prefix path,

〈(a:10)→(b:8)→(c:7)〉, stretching from the root of the tree to the first branching node

(c:7). Although it can be mined using the frequent-pattern growth method described

above, a better method is to split the tree into two fragments: the single prefix-path,

〈(a:10)→(b:8)→(c:7)〉, as shown in Figure 3.4(b), and the multiple-path part, with the root

replaced by a pseudo-root R, as shown in Figure 3.4(c). These two parts can be mined

separately and then combined together.

Let us examine the two separate mining processes. All the frequent patterns associated

with the first part, the single prefix-path P = 〈(a:10)→(b:8)→(c:7)〉, can be mined by

enumeration of all the combinations of the sub-pathes of P with the support set to the

minimum support of the items contained in the sub-path. This is because each such sub-

path is distinct and occurs the same number of times as the minimum occurrence frequency

among the items in the sub-path which is equal to the support of the last item in the sub-

path. Thus, path P generates the following set of frequent patterns, freq pattern set(P )

= {(a:10), (b:8), (c:7), (ab:8), (ac:7), (bc:7), (abc:7)}.
Let Q be the second FP-tree (Figure 3.4(c)), the multiple-path part rooted with R. Q

can be mined as follows.



CHAPTER 3. FP-GROWTH: A PATTERN GROWTH METHOD 29

Root

a:10

b:8

c:7 e:1

e:2

f:3

R

d:4

Root

a:10

b:8

e:2

f:3e:1

c:7

d:4

(a) Single prefix-path tree (b) Single-path portion P (c) Multipath portion Q

Figure 3.4: Mining an FP-tree with a single prefix path.

First, R is treated as a null root, and Q forms a multiple-path FP-tree, which can be

mined using a typical frequent-pattern growth method. The mining result is:

freq pattern set(Q) = {(d : 4), (e : 3), (f : 3), (df : 3)}

Second, for each frequent itemset in Q, R can be viewed as a conditional frequent

pattern-base, and each itemset in Q with each pattern generated from R may form a distinct

frequent pattern. For example, for (d:4) in freq pattern set(Q), P can be viewed as its

conditional pattern-base, and a pattern generated from P , such as (a:10), will generate

with it a new frequent itemset, (ad:4), since a appears together with d at most four times.

Thus, for (d:4) the set of frequent patterns generated will be (d:4) × freq pattern set(P )

= {(ad:4), (bd:4), (cd:4), (abd:4), (acd:4), (bcd:4), (abcd:4)}, where X × Y means that

every pattern in X is combined with every one in Y to form a “cross-product-like” larger

itemset with the support being the minimum support between the two patterns. Thus,

the complete set of frequent patterns generated by combining the results of P and Q will

be freq pattern set(Q) × freq pattern set(P ), with the support being the support of the

itemset in Q (which is always no more than the support of the itemset from P ).
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In summary, the set of frequent patterns generated from such a single prefix path con-

sists of three distinct sets: (1) freq pattern set(P ), the set of frequent patterns gener-

ated from the single prefix-path, P ; (2) freq pattern set(Q), the set of frequent patterns

generated from the multiple-path part of the FP-tree, Q; and (3) freq pattern set(Q) ×
freq pattern set(P ), the set of frequent patterns involving both parts.

We first show if an FP-tree consists of a single path P , one can generate the set of

frequent patterns according to the following lemma.

Lemma 3.4 (Pattern generation for an FP-tree consisting of single path) Suppose

that an FP-tree T consists of a single path P = 〈root→a1:s1→a2:s2→· · ·→ak:sk〉. Then,

an itemset X = ai1 · · · aij (1 ≤ i1 < · · · < ij ≤ k) is a frequent pattern and sup(X) equals

to the support count registered in node aij in the tree T .

Proof. According to the construction of the FP-tree, a1, . . . , ak are frequent items. Since

there is only one path in the tree, every transaction having ak must also have a1, . . . , ak−1.

That is, sup(a1 · · · ak) = sup(ak) = sk ≥ min sup, where min sup is the support threshold.

By Apriori property, we have that an itemset X as stated in the lemma is a frequent pattern.

For an itemset X as stated in the lemma, since the tree has only one path, every

transaction containing X must correspond to a sub-path from the root in the tree to some

node al such that l ≥ ij , and thus increases the support count in node aij by 1 in the tree

construction. That means the support count registered in node aij is no less than sup(X).

On the other hand, by Apriori property, the support of aij cannot be larger than that of

X. Thus, we have sup(X) is exactly the support count registered in aij .

We then show if an FP-tree consists of a single prefix-path, the set of frequent patterns

can be generated by splitting the tree into two according to the following lemma.

Lemma 3.5 (Pattern generation for an FP-tree consisting of single prefix path)

Suppose an FP-tree T , similar to the tree in Figure 3.4(a), consist of (1) a single prefix path

P , similar to the tree P in Figure 3.4(b), and (2) the multi-path part, Q, which can be viewed

as an independent FP-tree with a pseudo-root R, similar to the tree Q in Figure 3.4(c).

The complete set of the frequent patterns of T consists of the following three portions:

1. The set of frequent patterns generated from P by enumeration of all the combinations

of the items along path P , with the support being the minimum support among all the

items that the pattern contains.
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2. The set of frequent patterns generated from Q by taking root R as “null.”

3. The set of frequent patterns combining P and Q formed by taken the cross-product

of the frequent patterns generated from P and Q, denoted as freq pattern set(P ) ×
freq pattern set(Q), that is, each frequent itemset is the union of one frequent itemset

from P and one from Q and its support is the minimum one between the supports of

the two itemsets.

Proof. Based on the FP-tree construction rules, each node ai in the single prefix path of

the FP-tree appears only once in the tree. The single prefix-path of the FP-tree forms a new

FP-tree P , and the multiple-path part forms another FP-tree Q. They do not share nodes

representing the same item. Thus, the two FP-trees can be mined separately.

First, we show that each pattern generated from one of the three portions by following

the pattern generation rules is distinct and frequent. According to Lemma 3.4, each pattern

generated from P , the FP-tree formed by the single prefix-path, is distinct and frequent.

The set of frequent patterns generated from Q by taking root R as “null” is also distinct and

frequent since such patterns exist without combining any items in their conditional databases

(which are in the items in P . The set of frequent patterns generated by combining P and Q,

that is, taking the cross-product of the frequent patterns generated from P and Q, with the

support being the minimum one between the supports of the two itemsets, is also distinct

and frequent. This is because each frequent pattern generated by P can be considered as a

frequent pattern in the conditional pattern-base of a frequent item in Q, and whose support

should be the minimum one between the two supports since this is the frequency that both

patterns appear together.

Second, we show that no patterns can be generated out of this three portions. Since

according to Lemma 3.3, the FP-tree T without being split into two FP-trees P and Q

generates the complete set of frequent patterns by pattern growth. Since each pattern

generated from T will be generated from either the portion P or Q or their combination,

the method generates the complete set of frequent patterns.

3.2.3 The Frequent-pattern Growth Algorithm

Based on the above lemmas and properties, we have the following algorithm for mining

frequent patterns using FP-tree.
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Algorithm 3 (FP-growth: Mining frequent patterns with FP-tree by pattern

fragment growth)

Input: A database DB, represented by FP-tree constructed according to Algorithm 2, and

a minimum support threshold ξ.

Output: The complete set of frequent patterns.

Method: call FP-growth(FP-tree, null).

Procedure FP-growth(Tree, α)

{
(1) if Tree contains a single prefix path // Mining single prefix-path FP-tree

(2) then {
(3) let P be the single prefix-path part of Tree;

(4) let Q be the multiple-path part with the top branching node replaced by a null root;

(5) for each combination (denoted as β) of the nodes in the path P do

(6) generate pattern β ∪ α with support = minimum support of nodes in β;

(7) let freq pattern set(P ) be the set of patterns so generated; }
(8) else let Q be Tree;

(9) for each item ai in Q do { // Mining multiple-path FP-tree

(10) generate pattern β = ai ∪ α with support = ai.support;

(11) construct β’s conditional pattern-base and then β’s conditional FP-tree Treeβ;

(12) if Treeβ 6= ∅
(13) then call FP-growth(Treeβ, β);

(14) let freq pattern set(Q) be the set of patterns so generated; }
(15) return(freq pattern set(P ) ∪ freq pattern set(Q) ∪ (freq pattern set(P )

× freq pattern set(Q)))

}
Analysis. With the properties and lemmas in Sections 2 and 3, we show that the algorithm

correctly finds the complete set of frequent itemsets in transaction database DB.

As shown in Lemma 3.1, FP-tree of DB contains the complete information of DB in

relevance to frequent pattern mining under the support threshold ξ.

If an FP-tree contains a single prefix-path, according to Lemma 3.5, the generation of the

complete set of frequent patterns can be partitioned into three portions: the single prefix-

path portion P , the multiple-path portion Q, and their combinations. Hence we have lines
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(1)–(4) and line (15) of the procedure. According to Lemma 3.4, the generated patterns for

the single prefix path are the enumerations of the sub-paths of the prefix path, with the

support being the minimum support of the nodes in the sub-path. Thus we have lines (5)–(7)

of the procedure. After that, one can treat the multiple-path portion or the FP-tree that does

not contain the single prefix-path as portion Q (lines (4) and (8)) and construct conditional

pattern-base and mine its conditional FP-tree for each frequent itemset ai. The correctness

and completeness of the prefix path transformation are shown in Property 3.2.2. Thus

the conditional pattern-bases store the complete information for frequent pattern mining

for Q. According to Lemmas 3.3 and its corollary, the patterns successively grown from

the conditional FP-trees are the set of sound and complete frequent patterns. Especially,

according to the fragment growth property, the support of the combined fragments takes

the support of the frequent itemsets generated in the conditional pattern-base. Therefore,

we have lines (9)–(14) of the procedure. Line (15) sums up the complete result according

to Lemma 3.5.

Let’s now examine the efficiency of the algorithm. The FP-growth mining process scans

the FP-tree of DB once and generates a small pattern-base Bai for each frequent item ai,

each consisting of the set of transformed prefix paths of ai. Frequent pattern mining is then

recursively performed on the small pattern-base Bai by constructing a conditional FP-tree

for Bai . As reasoned in the analysis of Algorithm 2, an FP-tree is usually much smaller than

the size of DB. Similarly, since the conditional FP-tree, “FP-tree| ai”, is constructed on the

pattern-base Bai , it should be usually much smaller and never bigger than Bai . Moreover, a

pattern-base Bai is usually much smaller than its original FP-tree, because it consists of the

transformed prefix paths related to only one of the frequent items, ai. Thus, each subsequent

mining process works on a set of usually much smaller pattern-bases and conditional FP-

trees. Moreover, the mining operations consist of mainly prefix count adjustment, counting

local frequent items, and pattern fragment concatenation. This is much less costly than

generation and test of a very large number of candidate patterns. Thus the algorithm is

efficient.

From the algorithm and its reasoning, one can see that the FP-growth mining process

is a divide-and-conquer process, and the scale of shrinking is usually quite dramatic. If the

shrinking factor is around 20∼100 for constructing an FP-tree from a database, it is expected

to be another hundreds of times reduction for constructing each conditional FP-tree from
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its already quite small conditional frequent pattern-base.

Notice that even in the case that a database may generate an large number of frequent

patterns, the size of the FP-tree is usually quite small. For example, for a frequent pattern

of length 100, “a1 · · · a100”, the FP-tree construction results in only one path of length 100

for it, such as “〈a1→· · ·→a100〉”. The FP-growth algorithm will still generate about 1030

frequent patterns (if time permits!!), such as “a1, a2, . . ., a1a2, . . ., a1a2a3, . . ., a1 . . . a100”.

However, the FP-tree contains only one frequent pattern path of 100 nodes, and according

to Lemma 3.4, there is no need to construct any conditional FP-tree in order to find all

the patterns. Moreover, with FP-tree, we can derive some condensed expression of frequent

patterns. In the case that we have only a long pattern a1 · · · a100, we can only output the

long pattern itself and omit all proper sub-patterns.

3.3 Scaling FP-tree-Based FP-growth by Database Projec-

tion

FP-growth proposed in the last section is essentially a main memory-based frequent pattern

mining method. However, when the database is large, or when the minimum support

threshold is quite low, it is unrealistic to assume that the FP-tree of a database can fit

in main memory. A disk-based method should be worked out to ensure that mining is

highly scalable. In this section, we develop a method to first partition the database into

a set of projected databases, and then for each projected database, construct and mine its

corresponding FP-tree.

Let us revisit the mining problem in Example 3.1.

Example 3.4 Suppose the FP-tree in Figure 3.1 cannot be held in main memory. Instead

of constructing a global FP-tree, one can project the transaction database into a set of

frequent item-related projected databases as follows.

Starting at the tail of the frequent item list, p, the set of transactions that contain item p

can be collected into p-projected database. Infrequent items and item p itself can be removed

from them because the infrequent items are not useful in frequent pattern mining, and item

p is by default associated with each projected transaction. Thus, the p-projected database

becomes {fcam, cb, fcam}. This is very similar to the the p-conditional pattern-base shown

in Table 3.2 except fcam and fcam are expressed as (fcamp:2) in Table 3.2. After that,
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the p-conditional FP-tree can be built on the p-projected database based on the FP-tree

construction algorithm.

Similarly, the set of transactions containing item m can be projected into m-projected

database. Notice that besides infrequent items and item m, item p is also excluded from the

set of projected items because item p and its association with m have been considered in the

p-projected database. For the same reason, the b-projected database is formed by collecting

transactions containing item b, but infrequent items and items f , m and b are excluded.

This process continues for deriving a-projected database, c-projected database, and so on.

The complete set of item-projected databases derived from the transaction database are

listed in Table 3.3, together with their corresponding conditional FP-trees. One can easily

see that the two processes, constructing the global FP-tree and forming conditional FP-trees,

and projecting the database into a set of projected databases and constructing conditional

FP-trees, yield identical conditional FP-trees.

Item Projected database Conditional FP-tree
p {fcam, cb, fcam} {(c:3)}|p
m {fca, fcab, fca} {(f :3, c:3, a:3)}|m
b {fca, f, c} ∅
a {fc, fc, fc} {(f :3, c:3)}|a
c {f, f, f} {(f :3)}|c
f ∅ ∅

Table 3.3: Projected databases and their FP-trees

As shown in Section 2, a conditional FP-tree is usually orders of magnitude smaller than

the global FP-tree. Thus, construction of a conditional FP-tree from each projected database

and then mining on it will dramatically reduce the size of FP-trees to be handled. What

about that a conditional FP-tree of a projected database still cannot fit in main memory?

One can further project the projected database, and the process can go on recursively until

the conditional FP-tree fits in main memory.

Let us define the concept of projected database formally.

Definition 3.2 (Projected database)

Let ai be a frequent item in a transaction database, DB. The ai-projected database for

ai, denoted as DB|ai , can be derived as follows. First, all transactions containing ai are

selected. Then, remove any infrequent items from any selected transaction. Delete from
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each selected transaction ai and any other items which follow ai in the list of frequent items.

The ai-projected database is derived by projecting the set of items in the transactions

containing ai into the projected database. Alternatively, it can be also achieved by collecting

the same set of items from the ai-subtree in the FP-tree. Thus, the two methods derive the

same sets of conditional FP-trees.

There are two methods for database projection: parallel projection and partition projec-

tion.

Parallel projection is implemented as follows: Scan the database to be projected once,

where the database could be either a transaction database or an α-projected database. For

each transaction T in the database, for each frequent item ai in T , project T to the ai-

projected database based on the transaction projection rule, specified in the definition of

projected database. Since a transaction is projected in parallel to all the projected databases

in one scan, it is called parallel projection. The set of projected databases shown in Table

3.3 of Example 3.4 demonstrates the result of parallel projection. This process is illustrated

in Figure 3.5 (a).

Parallel projection facilitates parallel processing because all the projected databases are

available for mining at the end of the scan, and these projected databases can be mined in

parallel. However, since each transaction in the database is projected to multiple projected

databases, if a database contains many long transactions with multiple frequent items,

the total size of the projected databases could be multiple times of the original one. Let

each transaction contains on average l frequent items. A transaction is then projected to

l − 1 projected database. The total size of the projected data from this transaction is

1 + 2 + · · · + (l − 1) = l(l−1)
2 . This implies that the total size of the single item-projected

databases is about l−1
2 times of that of the original database.

To avoid such an overhead, we propose a partition projection method. Partition projec-

tion is implemented as follows. A transaction T is projected to the ai-projected database

only if ai is the last item appearing in T . A transaction is projected to only one projected

database during the database scan. After the scan, the database is partitioned by projection

into a set of projected databases, and hence it is called partition projection.

The projected databases are mined in the reverse order of the list of frequent items.

That is, the projected database of the least frequent item is mined first, and so on. When
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Figure 3.5: Parallel projection vs. partition projection.

a projected database DB|ak
is being mined, transactions in DB|ak

are further projected.

Each transaction t in DB|ak
is projected to the aj-projected database DB|ak

|aj for the last

frequent item aj in t. The partition projection process for the database in Example 3.4 is

illustrated in Figure 3.5 (b).

The advantage of partition projection is that the total size of the projected databases at

each level is smaller than the original database, and it usually takes less memory and I/Os to

complete the partition projection. However, the processing order of the projected databases

becomes important, and one has to process these projected databases in a sequential manner.

Also, during the processing of each projected database, one needs to project the processed

transactions to their corresponding projected databases, which may take some I/O as well.

Nevertheless, due to its low memory requirement, partition projection is still a promising

method in frequent pattern mining.

Example 3.5 Let us examine how the database in Example 3.4 can be projected by par-

tition projection.

First, by one scan of the transaction database, each transaction is projected to only

one projected database. The first transaction, facdgimp, is projected to the p-projected

database since p is the last frequent item in the list of frequent items. Thus, fcam (i.e., with
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infrequent items removed) is inserted into the p-projected database. Similarly, transaction

abcflmo is projected to the m-projected database as fcab, bfhjo to the b-projected database

as f , bcksp to the p-projected database as cb, and finally, afcelpmn to the p-projected

database as fcam. After this phrase, the entries in every projected databases are shown in

Table 3.4.

item Projected databases
p {fcam, cb, fcam}
m {fcab}
b {f}
a ∅
c ∅
f ∅

Table 3.4: Single-item projected databases by partition projection.

With this projection, the original database can be replaced by the set of single-item

projected databases, and the total size of them is smaller than that of the original database.

Second, the p-projected database is first processed (i.e., construction of p-conditional

FP-tree), where p is the last item in the list of frequent items. During the processing of the

p-projected database, each transaction is projected to the corresponding projected database

according to the same partition projection rule. For example, fcam is projected to the

m-projected database as fca, cb is projected to the b-projected database as c, and so on.

The process continues until every single-item projected database is completely processed.

3.4 Experimental Evaluation and Performance Study

In this section, we present a performance comparison of FP-growth with the classical fre-

quent pattern mining algorithm Apriori, and a recently proposed database projection-based

algorithm, TreeProjection.

3.4.1 Environments of Experiments

All the experiments are performed on a 266-MHz Pentium PC machine with 128 megabytes

main memory, running on Microsoft Windows/NT. All the programs are written in Mi-

crosoft/Visual C++6.0. Notice that we do not directly compare our absolute number of

runtime with those in some published reports running on the RISC workstations because
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different machine architectures may differ greatly on the absolute runtime for the same al-

gorithms. Instead, we implement their algorithms to the best of our knowledge based on

the published reports on the same machine and compare in the same running environment.

Please also note that run time used here means the total execution time, that is, the pe-

riod between input and output, instead of CPU time measured in the experiments in some

literature. We feel that run time is a more comprehensive measure since it takes the total

running time consumed as the measure of cost, whereas CPU time considers only the cost

of the CPU resource. Also, all reports on the runtime of FP-growth include the time of

constructing FP-trees from the original databases.

The experiments are pursued on both synthetic and real data sets. The synthetic data

sets which we used for our experiments were generated using the procedure described in

[AS94]. We refer readers to it for more details on the generation of data sets.

We report experimental results on two synthetic data sets. The first one is T10.I4.D100K

with 1K items. In this data set, the average transaction size and average maximal potentially

frequent itemset size are set to 10 and 4, respectively, while the number of transactions in

the dataset is set to 100K. It is a sparse dataset. The frequent itemsets are short and not

numerous.

The second synthetic data set we used is T25.I20.D100K with 10K items. The average

transaction size and average maximal potentially frequent itemset size are set to 25 and 20,

respectively. There exist exponentially numerous frequent itemsets in this data set when

the support threshold goes down. There are also pretty long frequent itemsets as well as a

large number of short frequent itemsets in it. It contains abundant mixtures of short and

long frequent itemsets.

To test the capability of FP-growth on dense datasets with long patterns, we use the

real data set Connect-4, compiled from the Connect-4 game state information. The data

set is from the UC-Irvine Machine Learning Database Repository1. It contains 67, 557

transactions, while each transaction is with 43 items. It is a dense dataset with a lot of long

frequent itemsets.

3.4.2 Compactness of FP-tree

To test the compactness of FP-trees, we compare the sizes of the following structures.

1http://www.ics.uci.edu/∼mlearn/MLRepository.html
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• Alphabetical FP-tree. It includes the space of all the links. However, in such an FP-

tree, the alphabetical order of items are used instead of frequency descending order.

• Ordered FP-tree. Again, the size covers that of all links. In such an FP-tree, the items

are sorted according to frequency descending order.

• Transaction database. Each item in a transaction is stored as an integer. It is simply

the sum of occurrences of items in transactions.

• Frequent transaction database. That is the sub-database extracted from the original

one by removing all infrequent items.

In real dataset Connect-4, FP-tree achieves good compactness. As seen from the result

shown in Figure 3.6, the size of ordered FP-tree is always smaller than the size of the

transaction database and the frequent transaction database. In a dense database, the size

of the database and that of its frequent database are close. The size of the alphabetical

FP-tree is smaller than that of the two databases in most cases but is slightly larger (about

1.5 to 2.5 times larger) than the size of the ordered FP-tree. It indicates that the frequency-

descending ordering of the items benefits data compression in this case.
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Figure 3.6: Compactness of FP-tree over data set Connect-4.

In dataset T25.I20.D100k, which contains abundant mixture of long and short frequent

patterns, FP-tree is compact most of the time. The result is shown in Figure 3.7. Only
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when the support threshold lower than 2.5% does the size of FP-tree larger than that of

frequent database. And as long as the support threshold is over 1.5%, the FP-tree is smaller

than the transaction database. The difference of sizes of ordered FP-tree and alphabetical

FP-tree is quite small in this dataset. It is about 2%.
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Figure 3.7: Compactness of FP-tree over data set T25.I20.D100k.

In sparse dataset T10.I4.D100k, FP-tree achieves good compactness when the support

threshold is over 3.5%. Again, the difference of ordered FP-tree and alphabetical FP-tree is

trivial. The result is shown in Figure 3.8.

From the above experiments, we have the following conclusions.

• FP-tree achieves good compactness most of the time. Especially in dense datasets, it

can compress the database many times. Clearly, there is some overhead for pointers

and counters. However, the gain of sharing among frequent projections of transactions

is substantially more than the overhead and thus makes FP-tree space more efficient

in many cases, which has been shown in our performance study.

• When support is very low, FP-tree becomes bushy. In such cases, the degree of sharing

in branches of FP-tree becomes low. The overhead of links makes the size of FP-tree

large. Therefore, instead of building FP-tree, we should construct projected databases.

That is the reason why we build FP-tree for transaction database/projected database

only when it passes certain density threshold. From the experiments, one can see
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Figure 3.8: Compactness of FP-tree over data set T10.I4.D100k.

that such a threshold is pretty low, and easy to touch. Therefore, even for very large

and/or sparse database, after one or a few rounds of database projection, FP-tree can

be used for all the remaining mining tasks.

In the following experiments, we employed an implementation of FP-growth that inte-

grates both database projection and FP-tree mining. The density threshold is set to 3%,

and items are listed in frequency descending order.

3.4.3 Scalability Study

The scalability of Apriori, TreeProjection and FP-growth on synthetic data set T10.I4.D100K

as the support threshold decreases from 0.15% to 0.01% is shown in Figure 3.9.

FP-growth is faster than both Apriori and TreeProjection. TreeProjection is faster and

more scalable than Apriori. Since the dataset is sparse, as the support threshold is high,

the frequent itemsets are short and the number of them is not large, the advantages of

FP-growth and TreeProjection over Apriori are not so impressive. However, as the support

threshold goes down, the gap is becoming wider. FP-growth can finish the computation

for support threshold 0.01% within the time for Apriori over 0.05%. TreeProjection is also

scalable, but is slower than FP-growth.

The advantages of FP-growth over Apriori becomes obvious when the dataset contains an
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Figure 3.9: Scalability with threshold over sparse data set.

abundant mixtures of short and long frequent patterns. Figure 3.10 shows the experimental

results of scalability with threshold over dataset T25.I20.D100k. FP-growth can mine with

support threshold as low as 0.05%, with which Apriori cannot work out within reasonable

time. TreeProjection is also scalable and faster than Apriori, but it is slower than FP-growth.

The advantage of FP-growth is dramatic in datasets with long patterns, which is challeng-

ing to the algorithms that mine the complete set of frequent patterns. The result on mining

the real dataset Connect-4 is shown in Figure 3.11. To the best of our knowledge, this is the

first algorithm that handles such dense real dataset in performance study. From the figure,

one can see that FP-growth is scalable even when there are many long patterns. Without

candidate generation, FP-growth enumerates long patterns efficiently. In such datasets, nei-

ther Apriori nor TreeProjection are comparable to the performance of FP-growth. To deal

with long patterns, Apriori has to generate tremendous number of candidates, that is a very

costly process. The main costs in TreeProjection are matrix computation and transaction

projection. In a database with a large number of frequent items, the matrices become quite

large, and the computation cost jumps up substantially. In contrast, the height of FP-tree

is limited by the maximal length of the transactions, and many transactions share the prefix

paths of an FP-tree. This explains why FP-growth has distinct advantages when the support

threshold is low and when the number of transactions is large.

To test the scalability of FP-growth against the number of transactions, a set of synthetic
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Figure 3.10: Scalability with threshold over dataset with abundant mixtures of short and
long frequent patterns.

datasets are generated using the same parameters of T10.I4 and T25.I20, and the number of

transactions ranges from 100k to 1M. FP-growth is tested over them using the same support

threshold in percentage. The result is in Figure 3.12, which shows the linear increase of

runtime with the number of transactions. Please note that unlike the way reported in some

literature, we do not replicate transactions in real data sets to test the scalability. This is

because no matter how many times the transactions are replicated, FP-growth builds up

an FP-tree with the size identical to that of the original one, and the scaling-up of such

databases becomes trivial.

3.4.4 Comparison Between FP-growth and TreeProjection

TreeProjection is described in Section 2.4. In comparison with the FP-growth method,

TreeProjection suffers from some problems related to efficiency, scalability, and implemen-

tation complexity. We analyze them as follows.

First, TreeProjection may encounter difficulties at computing matrices when the database

is huge, when there are a lot of transactions containing many frequent items, and/or when

the support threshold is very low. This is because in such cases there often exist a large

number of frequent items. The size of the matrices at high level nodes in the lexicographical

tree can be huge, as shown in our introduction section. The study in TreeProjection [AAP00]
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Figure 3.11: Scalability with threshold over Connect-4.

has developed some smart memory caching methods to overcome this problem. However,

it could be wise not to generate such huge matrices at all instead of finding some smart

caching techniques to reduce the cost. Moreover, even if the matrix can be cached efficiently,

its computation still involves some nontrivial overhead. To compute a matrix at node P

with n projected transactions, the cost is O(
∑n

i=1
|Ti|2

2 ), where | Ti | is the length of the

transaction. If the number of transaction is large and the length of each transaction is long,

the computation is costly. The FP-growth method will never need to build up matrices and

compute 2-itemset frequency since it avoids the generation of any candidate k-itemsets for

any k by applying a pattern growth method. Pattern growth can be viewed as successive

computation of frequent 1-itemset (of the database and conditional pattern bases) and

assembling them into longer patterns. Since computing frequent 1-itemsets is much less

expensive than computing frequent 2-itemsets, the cost is substantially reduced.

Second, since one transaction may contain many frequent itemsets, one transaction in

TreeProjection may be projected many times to many different nodes in the lexicographical

tree. When there are many long transactions containing numerous frequent items, trans-

action projection becomes an nontrivial cost of TreeProjection . The FP-growth method

constructs FP-tree which is a highly compact form of transaction database. Thus both the

size and the cost of computation of conditional pattern bases, which corresponds roughly

to the compact form of projected transaction databases, are substantially reduced.
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Figure 3.12: Scalability of FP-growth with number of transactions.

Third, TreeProjection creates one node in its lexicographical tree for each frequent item-

set. At the first glance, this seems to be highly compact since FP-tree does not ensure that

each frequent node will be mapped to only one node in the tree. However, each branch of the

FP-tree may store many “hidden” frequent patterns due to the potential generation of many

combinations using its prefix paths. Notice that the total number of frequent k-itemsets

can be very large in a large database or when the database has quite long frequent itemsets.

For example, for a frequent itemset (a1, a2, · · · , a100), the number of frequent itemsets at the

50th-level of the lexicographic tree will be


 100

50


 = 100!

50!×50! ≈ 1.0 × 1029. For the same

frequent itemset, FP-tree and FP-growth will only need one path of 100 nodes.

In summary, FP-growth mines frequent itemsets by (1) constructing highly compact FP-

trees which share numerous “projected” transactions and hide (or carry) numerous frequent

patterns, and (2) applying progressive pattern growth of frequent 1-itemsets which avoids

the generation of any potential combinations of candidate itemsets implicitly or explicitly,

whereas TreeProjection must generate candidate 2-itemsets for each projected database.

Therefore, FP-growth is more efficient and more scalable than TreeProjection, especially

when the number of frequent itemsets becomes really large. These observations and analyses

are well supported by our experiments reported in this section.
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3.5 Summary

In this chapter, we have proposed a novel data structure, frequent pattern tree (FP-tree), for

storing compressed, crucial information about frequent patterns, and developed a pattern

growth method, FP-growth, for efficient mining of frequent patterns in large databases.

There are several advantages of FP-growth over other approaches.

1. It constructs a highly compact FP-tree, which is usually substantially smaller than the

original database and thus saves the costly database scans in the subsequent mining

processes.

2. It applies a pattern growth method which avoids costly candidate generation and test

by successively concatenating frequent 1-itemset found in the (conditional) FP-trees.

This ensures that it never generates any combinations of new candidate sets which

are not in the database because the itemset in any transaction is always encoded

in the corresponding path of the FP-trees. In this context, mining is not Apriori-

like (restricted) generation-and-test but frequent pattern (fragment) growth only. The

major operations of mining are count accumulation and prefix path count adjustment,

which are usually much less costly than candidate generation and pattern matching

operations performed in most Apriori-like algorithms.

3. It applies a partitioning-based divide-and-conquer method which dramatically reduces

the size of the subsequent conditional pattern bases and conditional FP-trees. Several

other optimization techniques, including direct pattern generation for single tree-path

and employing the least frequent events as suffix, also contribute to the efficiency of

the method.

We have implemented the FP-growth method, studied its performance in comparison

with several influential frequent pattern mining algorithms in large databases. Our per-

formance study shows that the method mines both short and long patterns efficiently in

large databases, outperforming the current candidate pattern generation-based algorithms.

The FP-growth method has also been implemented in the new version of DBMiner system

and been tested in large industrial databases, such as in London Drugs databases, with

satisfactory performance.

There are a lot of interesting research issues related to FP-tree-based mining, includ-

ing further study and implementation of SQL-based, highly scalable FP-tree structure,
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constraint-based mining of frequent patterns using FP-trees, and the extension of the FP-

tree-based mining method for mining sequential patterns [AS95], closed patterns [PBTL99],

max-patterns [Bay98], partial periodicity [HDY99], and other interesting frequent patterns.

Some of them will be addressed in the following chapters.



Chapter 4

H-mine: Scalable Space-preserving

Mining

In Chapter 3, we developed FP-growth, a pattern-growth method for frequent pattern min-

ing. Although FP-growth is more efficient than Apriori in many cases, it may still encounter

some difficulties in some cases, as illustrated below.

• Huge space is required to serve the mining. FP-growth avoids candidate generation by

compressing the transaction database into an FP-tree and pursuing partition-based

mining recursively. However, if the database is huge and sparse, the FP-tree will be

large and the space requirement for recursion is a challenge.

• Real databases contain all the cases. Real data sets can be sparse and/or dense in

different applications. For example, in telecommunication data analysis, calling pat-

terns for home users vs. business users could be very different: some are frequent

and dense (e.g., to family members and close friends), but some are huge and sparse.

Similar situations arise for market basket analysis, census data analysis, classification

and predictive modelling, etc. It is hard to select an appropriate mining method on

the fly if no algorithm fits all.

• Large applications need more scalability. Many existing methods are efficient when

the data set is not very large. Otherwise, their core data structures (such as FP-tree)

or the intermediate results (e.g., the set of candidates in Apriori or the recursively

generated conditional databases in FP-growth) may not fit in main memory and easily

49



CHAPTER 4. H-MINE: SCALABLE SPACE-PRESERVING MINING 50

cause thrashing.

This poses a new challenge: “Can we work out a better method which is (1) efficient in

all occasions (dense vs. sparse, huge vs. memory-based data sets), and (2) space requirement

is small, even for very large databases?”

In this chapter, we propose a new data structure, H-struct, and a new mining method,

H-mine, to overcome these difficulties. One major feature of H-mine is that it is space-

preserving, meaning (1) H-mine is moderate in memory usage; (2) it can fully utilize all

available main memory space if necessary; and (3) it performs well even with very small

main memory. We make the following progress.

1. A memory-based, efficient pattern-growth algorithm, H-mine(Mem), is proposed for

mining frequent patterns for the data sets that can fit in (main) memory. A simple,

memory-based hyper-structure, H-struct, is designed for fast mining.

2. We show that, theoretically, H-mine(Mem) has polynomial space usage and is thus

more space efficient than FP-growth and TreeProjection when mining sparse data sets,

and also more efficient than Apriori-based methods which generate a large number

of candidates. Experimental results show that H-mine(Mem) has exactly predictable

space overhead and, in many cases, it is faster than memory-based Apriori and FP-

growth with very limited space usage.

3. Based on H-mine(Mem), we propose H-mine, a scalable algorithm for mining large

databases by first partitioning the database, mining each partition in memory using

H-mine(Mem), and then consolidating global frequent patterns.

4. For dense data sets, H-mine is integrated with FP-growth dynamically by detecting

the swapping condition and constructing FP-trees for efficient mining.

5. Such efforts ensure that H-mine is scalable in both large and medium sized databases

and in both sparse and dense data sets. Our comprehensive performance study con-

firms that H-mine is highly scalable and is faster than Apriori and FP-growth in all

occasions.

The remainder of the chapter is organized as follows. Section 4.1 is devoted to H-

mine(Mem), an efficient algorithm for memory-based frequent pattern mining. In Section
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4.2, H-mine(Mem) is extended to huge, disk-based databases, together with some further

optimization techniques. Our performance study is reported in Section 4.3. We discuss

related issues and conclude the chapter in Section 4.4.

4.1 H-mine(Mem): Memory-Based Hyper-Structure Mining

In this section, H-mine(Mem) (memory-based hyper-structure mining of frequent patterns)

is developed, and in Section 4.2, the method is extended to handle large and/or dense

databases.

4.1.1 General idea of H-mine(Mem)

Our general idea of H-mine(Mem) is illustrated in the following example.

Example 4.1 Let the first two columns of Table 4.1 be our running transaction database

TDB. Let the minimum support threshold be min sup = 2.

Transaction ID Items Frequent-item projection
100 c, d, e, f, g, i c, d, e, g

200 a, c, d, e, m a, c, d, e

300 a, b, d, e, g, k a, d, e, g

400 a, c, d, h a, c, d

Table 4.1: The transaction database TDB as our running example.

Following the Apriori property (Theorem 2.1), only frequent items play roles in frequent

patterns. By scanning TDB once, the complete set of frequent items {a : 3, c : 3, d :

4, e : 3, g : 2} can be found and output, where the notation a : 3 means item a’s support

(occurrence frequency) is 3. Let freq(X) (the frequent-item projection of X) be the set of

frequent items in itemset X. For the ease of explanation, the frequent-item projections of

all the transactions of Table 4.1 are shown in the third column of the table.

Following the alphabetical order of frequent items1 (called F-list): a-c-d-e-g, the complete

set of frequent patterns can be partitioned into 5 subsets as follows: (1) those containing

item a; (2) those containing item c but no item a; (3) those containing item d but no item a

1Any ordering should work, and the alphabetical ordering is just for the convenience of explanation.
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nor c; (4) those containing item e but no item a nor c nor d; and (5) those containing only

item g, as shown in Figure 4.1.

mine ad-proj db
local freq. item: e

Patterns having a and d but no cPatterns having a and c
mine ac-proj db
local freq. items: d

Patterns having a
mine a-proj db

local freq. items: c-d-e

Patterns having c but no a
mine c-proj db

All patterns in TDB
freq items: a-c-d-e-g

Patterns having d

mine d-proj db
but no a nor c

Pattern acd

Pattern a Pattern ae

Pattern ac Pattern adePattern ad

Patterns having e

mine e-proj db
but no a nor c nor d

Pattern g

Figure 4.1: Divide-and-conquer tree for frequent patterns.

If the frequent-item projections of transactions in the database can be held in main

memory, they can be organized as shown in Figure 4.2. All items in frequent-item projections

are sorted according to the F-list. For example, the frequent-item projection of transaction

100 is listed as cdeg. Every occurrence of a frequent item is stored in an entry with two

fields: an item-id and a hyper-link.

Header
table H

frequent
projections

400

300

200

100 c d e g

edca

d

da

c

3 2

a c e gd

3 4 3

ge

a

Figure 4.2: H-struct, the hyper-structure for storing frequent-item projections.

A header table H is created, where each frequent item entry has three fields: an item-

id, a support count, and a hyper-link. When the frequent-item projections are loaded into

memory, those with the same first item (in the order of F-list) are linked together by the
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hyper-links as a queue, and the entries in header table H act as the heads of the queues.

For example, the entry of item a in the header table H is the head of a-queue, which links

frequent-item projections of transactions 200, 300, and 400. These three projections all have

item a as their first frequent item (in the order of F-list). Similarly, frequent-item projection

of transaction 100 is linked as c-queue, headed by item c in H. The d-, e- and g-queues are

empty since there is no frequent-item projection that begins with any of these items.

Clearly, it takes one scan (the second scan) of the transaction database TDB to build

such a memory structure (called H-struct). Then the remaining of the mining can be

performed on the H-struct only, without referencing any information in the original database.

After that, the five subsets of frequent patterns can be mined one by one as follows.

First, let us consider how to find the set of frequent patterns in the first subset, i.e., all the

frequent patterns containing item a. This requires to search all the frequent-item projections

containing item a, i.e., the a-projected database2, denoted as TDB|a. Interestingly, the

frequent-item projections in the a-projected database are already linked in the a-queue,

which can be traversed efficiently.

To mine the a-projected database, an a-header table Ha is created, as shown in Figure

4.3. In Ha, every frequent item except for a itself has an entry with the same three fields as

H, i.e., item-id, support count and hyper-link. The support count in Ha records the support

of the corresponding item in the a-projected database. For example, item c appears twice

in a-projected database (i.e., frequent-item projections in the a-queue), thus the support

count in the entry c of Ha is 2.

By traversing the a-queue once, the set of locally frequent items, i.e., the items appearing

at least twice, in the a-projected database is found, which is {c : 2, d : 3, e : 2} (Note: g : 1

is not locally frequent and thus will not be considered further.) This scan outputs frequent

patterns {ac : 2, ad : 3, ae : 2} and builds up links for Ha header as shown in Figure 4.3.

Thus the set of frequent patterns containing item a can be further partitioned into four

subsets: (1) the pattern a itself; (2) those containing a and c; (3) those containing a and d

but no c; and (4) those containing a and e but no c nor d, i.e., pattern ae. The divide-and-

conquer tree for frequent patterns is shown in Figure 4.1. These four subsets are mined as

follows.

2The a-projected database consists of all the frequent-item projections containing item a, but these are
all “virtual” projections since no physical projections are performed to create a new database.
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3 2

a c e gd

3 4 3
Header
table H

frequent
projections
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300
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100 c d e g

edca

d

da

c
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a

1

c e gd

2 3
Header
table Ha 2

Figure 4.3: Header table Ha and ac-queue.

1. The first subset contains only frequent pattern a.

2. The a-queue is traversed recursively to find frequent patterns containing a and c. First,

the frequent-item projections whose first local frequent item is a are linked together

by the hyper-links as a queue, and the entries in the header table Ha act as the heads

of the queues. Here, frequent-item projections of transactions 200 and 400 are added

to the ac-queue in any order. Transaction 300 are added to the ad-queue. At this

moment, the ae-queue is empty. This situation is shown in Figure 4.3.

The process continues recursively for the ac-projected database by examining the c-

queue in Ha. This process creates the ac-header table Hac, as shown in Figure 4.4.

3 2

a c e gd

3 4 3
Header
table H

frequent
projections

400

300

200

100 c d e g

dca

d

da

c

ge

a

Header
table Hac

ed

2 1

e

table Ha
Header

1

c e gd

2 3 2

Figure 4.4: Header table Hac.

Since only item d : 2 is a locally frequent item in the ac-projected database, only

acd : 2 is output, and the search along this path is completed.
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3. The recursion backtracks to find frequent patterns containing a and d but not c. Since

the queue started from d in the header table Ha, i.e., the ad-queue, links all frequent-

item projections containing items a and d (but excluding item c in the projection),

one can get the complete ad-projected database by inserting frequent-item projections

having item d in the ac-queue into the ad-queue. This involves one more traversal

of the ac-queue. Each frequent-item projection in the ac-queue is appended to the

queue of the next frequent item in the projection according to F-list. Since all the

frequent-item projections in the ac-queue have item d, they are all inserted into the

ad-queue, as shown in Figure 4.5.

3 2

a c e gd

3 4 3
Header
table H

frequent
projections

400

300

200

100 c d e g

edca

d

da

c

ge

a

1

c e gd

2 3 2
Header
table Ha

Figure 4.5: Header table Ha and ad-queue.

It can be seen that, after the adjustment, the ad-queue collects the complete set of

frequent-item projections containing items a and d. Thus, the set of frequent patterns

containing items a and d can be mined recursively. Please note that, even though item

c appears in frequent-item projections of ad-projected database, we do not consider

it as a locally frequent item in any recursive projected database since it has been

considered in the mining of the ac-queue. This mining generates only one pattern

ade : 2. Notice also the third level header table Had can use the table Hac since the

search for Hac was done in the previous round. Thus we only need one header table

at the third level. Later we can see that only one header table is needed for each level

in the whole mining process.

4. Since there is no transaction in the ae-projected database, the only frequent pattern

in this projected database is ae itself. The search terminates.
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After the frequent patterns containing item a are found, the transactions in the a-

projected database, i.e., a-queue, should be further projected to other projected databases.

Since the c-queue includes all frequent-item projections containing item c except for those

projections containing both items a and c, which are in the a-queue. To mine all the frequent

patterns containing item c but no a, and other subsets of frequent patterns, we need to insert

all the projections in the a-queue into the proper queues.

We traverse the a-queue once more. Each frequent-item projection in the queue is

appended to the queue of the next item in the projection following a in the F-list, as shown

in Figure 4.6. For example, frequent-item projection acde is inserted into c-queue and adeg

is inserted into d-queue.

Header
table H

frequent
projections

400

300

200

100 c d e g

edca

d

da

c

3 2

a c e gd

3 4 3

ge

a

Figure 4.6: Adjusted hyper-links after mining a-projected database.

By mining the c-projected database recursively (with shared header table at each level),

we can find the set of frequent patterns containing item c but no a. Notice item a will not

be included in the c-projected database since all the frequent patterns having a have already

been found.

Similarly, the mining goes on. In the next section, we verify that the above mining

process finds the complete set of frequent patterns without duplication. The remaining

mining process is left as an exercise to interested readers.

Notice also that the depth-first search for mining the first set of frequent patterns at

any depth can be done in one database scan by constructing the header tables at all levels

simultaneously.
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4.1.2 H-mine(Mem): The algorithm for memory-based hyper-structure

mining

Now, let us summarize and justify the mining process shown in Example 4.1.

Given a transaction database TDB and a support threshold min sup, let L be the set of

frequent items. F-list, a list of frequent items, is a global order over L. Let x and y (x 6= y)

be two frequent items. We denote x ≺ y if and only if x is before y according to the F-list.

For example, based on the F-list in Example 4.1, we have a ≺ c ≺ d ≺ e ≺ g.

Frequent-item projections of transactions in TDB are organized in an H-struct defined

below.

1. An H-struct contains the set of frequent-item projections of a transaction database.

Each item in a frequent-item projection is represented by an entry with two fields:

item-id and hyper-link.

2. An H-struct has a header table. The header table is an array of frequent items in the

order of F-list. A support count and a hyper-link are attached to each item in the

header table.

3. When the H-struct is created, items in the header table are the heads of queues of

frequent-item projections linked by hyper-links.

The hyper-structure shown in Figure 4.2 is an example of H-struct. About H-struct, we

have the following lemma.

Lemma 4.1 (H-struct) Given a transaction database TDB, a support threshold min sup,

and F-list.

1. H-struct is unique without considering the order of frequent-item projections in queues

of frequent-item projections.

2. The space requirement of an H-struct is k
∑

t∈TDB |freq(t)|, where freq(t) is a frequent-

item projection of a transaction t, and k is a constant.

3. Two and only two scans of a transaction database are needed to build an H-struct.

Proof. For every transaction, H-struct stores its frequent-item projection. Besides frequent-

item projections, H-struct also stores a header table. The maximal number of entries in the
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table is at most the number of frequent items, while the size of each entry is fixed. This is

all the space needed by the H-struct. Therefore, we have the space requirement as shown in

the formula of item 2. The remaining part of the lemma follows the definition of H-struct

immediately.

Given a transaction database TDB and F-list, the complete set of frequent patterns can

be partitioned into a series of subsets without overlap, as stated in the following lemma.

Lemma 4.2 (Partition of search space) Given a transaction database TDB and sup-

port threshold min sup, let F-list: “x1-. . . -xn” be a list of frequent items. The complete set

of frequent patterns can be partitioned into n subsets without overlap as follows: the k-th

subset (1 ≤ k ≤ n) contains patterns having item xk but no item xi (1 ≤ i < k).

Proof. Let P be a frequent pattern. We sort items in P according to the F-list. Thus,

there exists a k (1 ≤ k ≤ n) such that xk is the first item in P . Pattern P belongs to the

k-th subset. On the other hand, suppose P also belongs to the k′-th subset where k 6= k′.

Without loss of generality, suppose k < k′. P in the k′-th subset requires that P does not

contain any item before xk′ , i.e., P does not contain xk. That leads to a contradiction.

To mine the subsets of frequent patterns, we introduce the concept of projected database.

Let P be a frequent pattern. The P -projected database is the collection of frequent-item

projections containing pattern P , denoted as TDB|P .

Clearly, to mine the k-th subset of frequent patterns in Lemma 4.2, we only need to

look at the xk-projected database TDB|xk
and ignore occurrences of items xi’s (1 ≤ i < k).

How can H-struct facilitate the construction of projected databases? We have the following

lemma.

Lemma 4.3 (Projected databases) Given a transaction database TDB and support thresh-

old min sup, let F-list: “x1-. . . -xn” be the list of frequent items. In the H-struct,

1. The x1-projected database is the x1-queue in the header table.

2. The x2-projected database is the x2-queue in the header table and the frequent-item

projections starting at item x2 in the x1-queue.

3. In general, the xk-projected database (1 < k ≤ n) is the xk-queue in the header table

and the frequent-item projections starting at xk in the xi-queues (1 ≤ i < k).
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Proof. The lemma follows the definitions of H-struct and projected databases.

Based on Lemma 4.3, we can first find the complete set of frequent patterns containing x1,

using the x1-queue available in H-struct. Conceptually, we treat the queue of frequent-item

projections in x1-projected database as a sub-H-struct and apply the techniques recursively.

That is, we find the locally frequent items, further partition the subset of frequent patterns

and doing recursive mining. The storage of frequent-item projections, i.e., H-struct, can be

shared. What we need is only a new header table to form queues within the x1-projected

database.

Then, we insert those frequent-item projections in x1-queue starting at item x2 to the

x2-queue in the header table, and form the complete x2-projected database. Since the

projections exclude x1 in the x2-projected database by starting at x2, we can find the

complete set of frequent patterns containing item x2 but no item x1.

Similarly, we can find the complete set of frequent patterns. Based on the above reason-

ing, we have the following algorithm.

Algorithm 4 (H-mine(Mem)) (Main) memory-based hyper-structure mining of frequent

patterns.

Input: A transaction database TDB and a support threshold min sup.

Output: The complete set of frequent patterns.

Method:

1. scan TDB once, find and output L, the set of frequent items. Let F-list: “x1-

. . . -xn” (n = |L|) be a list of frequent items.

2. scan TDB again, construct H-struct, with header table H, and with each xi-

queue linked to the corresponding entry in H.

3. for i = 1 to n do

(a) call H-mine(xi,H,F-list)

(b) traverse the xi-queue in the header table H, for each frequent-item projection

X, link X to the xj-queue in the header table H, where xj is the item in X

following xi immediately.
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Procedure H-mine(P, H,F-list) // P is a frequent pattern

// Note: The frequent-item projections in the P -projected database are linked as a

P -queue in the header table H.

1. traverse P -queue once, find and output its locally frequent items and derive

F-listP : “xj1-. . . -xjn′”.

// Note: Only the items in the F-list and are located to the right of P are

considered. Items in the F-listP follow the same order as that in the F-list.

2. construct header table HP , scan the P -projected database, and for each frequent-

item projection X in the projected database, use the hyper-link of xji (1 ≤ i ≤ n′)

in X to link X to the Pxji-queue in the header table HP , where xji is the first

locally frequent item in X according to the F-listP .

3. for i = 1 to n′ do

(a) call H-mine(P ∪ {xji},HP ,F-listP ).

(b) traverse Pxji-queue in the header table HP , for each frequent-item projection

X, link X to the xjk
-queue (i < k ≤ n′) in the header table HP , where xjk

is the item in X following xji immediately according to F-list.

Analysis. The correctness and completeness of the algorithm can be shown by an induction

of enumeration of frequent patterns based on Lemma 4.2. Lemma 4.3 guarantees that by

properly adjusting the hyper-links, the algorithm correctly finds the subsets of patterns

using the right projected database.

4.1.3 Space Usage of H-mine(Mem)

Now, let us analyze the space usage of Algorithm 4.

As shown in Lemma 4.1, the space usage of constructing an H-struct is at most

(k
∑

t∈TDB

|freq(t)|)

where k is a constant. To mine the H-struct, the only space overhead is a set of local header

tables. At first glance, the number of header tables seems to be in the scale of that of

frequent patterns. However, a close look at the algorithm finds that only a very limited

number of header tables exist simultaneously. For example, to find pattern P = bcde, only
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the header tables for the “prefixes” of P , i.e., Hb, Hbc, Hbcd and Hbcde, are needed. All the

other header tables either are already used and can be freed, or have not been generated yet.

The header tables for patterns with item a have already been used and can be freed since

all the patterns having item a have been found before pattern bcde. On the other hand, all

the other header tables are for patterns to be found later and thus need not be generated at

this moment. Therefore, the number of header tables is no more than the maximal length

of a single frequent pattern. Thus we have the following lemma.

Lemma 4.4 (Number of header tables) The maximum number of header tables needed

in the hyper-structure mining of frequent patterns. i.e., H-mine(Mem), is at most the max-

imal length of single frequent pattern that can be found.

Since the maximal length of a single frequent pattern cannot exceed the maximal length

of a transaction, and in general, the maximal length of a transaction is much smaller than the

number of transactions, we have the following theorem on the space usage of H-mine(Mem).

Theorem 4.1 (Space usage) The space usage of Algorithm 4 is

k
∑

t∈TDB

|freq(t)|

where freq(t) is a frequent-item projection of a transaction t, and k is a constant.

Proof. This is based on (1) as shown in Lemma 4.1, the space requirement of an H-struct

is k
∑

t∈TDB |freq(t)|, and (2) the space required for the remaining is a set of m header

tables, each being much smaller than H-struct and in the worst case being the same scale

of H-struct , where m is the maximal length of any transaction in TDB.

Comparing with other frequent pattern mining methods, the efficiency of H-mine(Mem)

comes from the following aspects.

1. H-mine(Mem) avoids candidate generation and test by adopting a frequent-pattern

growth methodology. H-mine(Mem) absorbs the advantages of pattern-growth.

2. H-mine(Mem) confines its search in a dedicated space. Unlike FP-growth, it does

not need to physically construct memory structures of projected databases. It fully

utilizes the information well organized in the H-struct, and collects information about

projected databases using header tables, which are light-weight structures. That also

saves a lot of efforts on managing space.
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3. H-mine(Mem) does not need to store any frequent patterns in memory. Once a fre-

quent pattern is found, it is output to disk. In contrast, the candidate-generation-

and-test method has to save and use the frequent patterns found in the current round

to generate candidates for the next round.

The above analysis is verified by our extensive performance study, as presented in Section

4.3.

4.2 From H-mine(Mem) to H-mine: Efficient Mining in Dif-

ferent Occasions

In this section, we first extend our algorithm H-mine(Mem) to H-mine, which mines frequent-

patterns in large data sets that cannot fit in main memory. Then, we explore how to integrate

FP-growth when the data sets being mined become very dense.

4.2.1 H-mine: Mining Frequent Patterns in Large Databases

H-mine(Mem) is efficient when the frequent-item projections of a transaction database plus

a set of header tables can fit in main memory. However, we cannot expect this is always the

case. When they cannot fit in memory, a database partitioning technique can be developed

as follows.

Let TDB be the transaction database with n transactions and min sup be the support

threshold. By scanning TDB once, one can find L, the set of frequent items.

Then, TDB can be partitioned into k parts, TDB1, . . . , TDBk, such that, for each

TDBi (1 ≤ i ≤ k), the frequent-item projections of transactions in TDBi can be held

in main memory, where TDBi has ni transactions, and
∑k

i=1 ni = n. We can apply H-

mine(Mem) to TDBi to find frequent patterns in TDBi with the minimum support threshold

min supi = bmin sup×ni
n c (i.e., each partitioned database keeps the same relative minimum

support as the global database).

Let Fi (1 ≤ i ≤ k) be the set of (locally) frequent patterns in TDBi. Based on the

property of partition-based mining [SON95], P cannot be a (globally) frequent pattern in

TDB with respect to the support threshold min sup if there exists no i (1 ≤ i ≤ k) such

that P is in Fi. Therefore, after mining frequent patterns in TDBi’s, we can gather the
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patterns in Fi’s and collect their (global) support in TDB by scanning the transaction

database TDB one more time.

Based on the above observation, we can extend H-mine(Mem) to H-mine as follows.

Algorithm 5 (H-mine) Hyper-structure mining of frequent-patterns in large databases.

Input and output: same as Algorithm 4.

method:

1. Scan transaction database TDB once to find L, the complete set of frequent

items.

2. Partition TDB into k parts, TDB1, . . . , TDBk, such that, for each TDBi (1 ≤
i ≤ k), the frequent-item projections in TDBi can be held in main memory.

3. For i = 1 to k, use H-mine(Mem) to mine frequent patterns in TDBi with respect

to the minimum support threshold min supi = bmin sup× ni
n c, where n and ni

are the numbers of transactions in TDB and TDBi, respectively. Let Fi be the

set of frequent patterns in TDBi.

4. Let F =
⋃k

i=1 Fi. Scan TDB one more time, collect support for patterns in F .

Output those patterns which pass the minimum support threshold min sup.

One important issue in Algorithm 5 is how to partition the database. As analyzed in

Section 4.1.2, the only space cost of H-mine(Mem) incurred by the header tables. The maxi-

mal number of header tables as well as their space requirement are predictable (usually very

small in comparison with the size of frequent-item projections). Therefore, after reserving

space for header tables, the remaining main memory can be used to build an H-struct that

covers as many transactions as possible. In practice, it is good to first estimate the size

of available main memory for mining and the size of the overall frequent-item projected

database (in the scale of the sum of support counts of frequent items), and then partition

the database relatively even to avoid the generation of skewed partitions.

Note that our partition-based mining method shares some similarities with the parti-

tioned Apriori method proposed by Savasere et al. [SON95]. In their paper, a transaction

database is partitioned. Then, every partition is mined using Apriori. After that, all the

locally frequent patterns are gathered to form a set of globally frequent candidate patterns.

Finally, their global supports are counted by one more scan of the transaction database.

However, there are two essential differences between their method and ours.
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1. As also indicated in [SON95], it is not easy to get a good partition scheme using

the partitioned Apriori [SON95] since it is hard to predict the space requirement of

Apriori. In contrast, it is straightforward for H-mine to partition the transaction

database, since the space overhead is very small and predictable during mining.

2. H-mine first finds globally frequent items. When mining partitions of a database,

H-mine examines only those items which are globally frequent. In skewed partitions,

many globally infrequent items can be locally frequent in some partitions, H-mine

does not spend any effort to check them but the partitioned Apriori [SON95] does.

Furthermore, we can do better in consolidating globally frequent patterns from local

ones. When mining a large transaction database, if the database is partitioned relatively

even, it is expected that many short globally frequent patterns are frequent in every parti-

tion. In this case, a pattern frequent in every partition is a globally frequent pattern, and

its global support count is the sum of the counts in all the partitions. H-mine does not

need to test such patterns in its third scan. Therefore, in the third scan, H-mine checks

only those locally frequent patterns which are infrequent in some partitions. Furthermore,

a pattern is checked against only those partitions where it is infrequent.

We illustrate the idea in the following example.

Example 4.2 A large transaction database TDB is partitioned into four parts, P1, P2, P3

and P4. Let the support threshold be 100. The four parts are mined respectively using

H-mine(Mem). The locally frequent patterns as well as the partition-ids where they are

frequent are shown in Table 4.2. The accumulated support count for a pattern is the sum

of support counts from partitions where the pattern is locally frequent.

Local frequent pattern Partitions Accumulated support count
ab P1, P2, P3, P4 280
ac P1, P2, P3, P4 320
ad P1, P2, P3, P4 260
abc P1, P3, P4 120
abcd P1, P4 40
· · · · · · · · ·
Table 4.2: Local frequent patterns in partitions.
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1. Pattern ab is frequent in all the partitions. Therefore, it is globally frequent. Its global

support count is its accumulated support count, i.e., 280. So do patterns ac and ad.

2. Pattern abc is frequent in all partitions except in P2. The accumulated support count of

abc covers the occurrences of the pattern in partitions P1, P3 and P4. Thus, the pattern

should be checked only in P2. The global support count of abc is its accumulated

count plus its support count in P2. Similarly, pattern abcd need to be checked in only

partitions P2 and P3.

3. In the third scan of H-mine, after scanning partition P2, suppose the support count

of pattern abcd in partition P2 is 20. Since abcd is not frequent in partition P3, its

support count in P3 must be less than the local support threshold. If the local support

threshold is 30, we do not need to check pattern abcd in partition P3, since abcd has

no hope to be globally frequent.

As can be seen from the example, we have the following optimization methods on con-

solidating globally frequent patterns.

1. Accumulate the global support count from local ones for the patterns frequent in every

partition.

2. Only check the patterns against those partitions where they are infrequent.

3. Use local support thresholds to derive the upper bounds for the global support counts

of locally frequent patterns. Only check those patterns whose upper bound pass the

global support threshold.

With the above optimization, the number of patterns to be consolidated can be re-

duced dramatically. As shown in our experiments, when the data set is relatively evenly

distributed, only up to 20% of locally frequent patterns have to be checked in the third scan

of H-mine.

In general, the following factors contribute to the scalability and efficiency of H-mine.

• As analyzed in Section 4.1, H-mine(Mem) has small space overhead and is efficient

in mining partitions which can be held in main memory. With the current memory

technology, it is likely that many medium-sized databases can be mined efficiently by

this memory-based frequent-pattern mining mechanism.
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• No matter how large the database is, it can be mined by at most three scans of

the database: the first scan finds globally frequent items; the second mines parti-

tioned database using H-mine(Mem); and the third verifies globally frequent patterns.

Since every partition is mined efficiently using H-mine(Mem), the mining of the whole

database is highly scalable.

• One may wonder that, since the partitioned Apriori [SON95] takes two scans of TDB,

whereas H-mine takes three scans, how can H-mine outperform the one proposed in

[SON95]? Notice that the major cost in this process is the mining of each partitioned

database. The last scan of TDB for collecting supports and generating globally fre-

quent patterns is fast because the set of locally frequent patterns can be inserted into

one compact structure, such as a hashing tree. Since H-mine generates less partitions

and mines each partition very fast, it has better overall performance than the Apriori-

based partition mining algorithm. This is also demonstrated in our performance study.

4.2.2 Handling dense data sets: Dynamic integration of H-struct and

FP-tree-based mining

As indicated in several studies [BAG99, HPY00, PHM00], finding frequent patterns in dense

databases is a challenging task since it may generate dense and long patterns which may

lead to the generation of very large (and even exponential) number of candidate sets if

an Apriori-like algorithm is used. The FP-growth method proposed in our recent study

[HPY00] works well in dense databases with a large number of long patterns due to the

effective compression of shared prefix paths in mining.

In comparison with FP-growth, H-mine does not generate physical projected databases

and conditional FP-trees and thus saves space as well as time in many cases. However, FP-

tree-based mining has its advantages over mining on H-struct since FP-tree shares common

prefix paths among different transactions, which may lead to space and time savings as well.

As one may expect, the situation under which one method outperforms the other depends

on the characteristics of the data sets: if data sharing is rare such as in sparse databases, the

compression factor could be small and FP-tree may not outperform mining on H-struct. On

the other hand, there are many dense data sets in practice. Even though the data sets might

not be dense originally, as mining progresses, the projected databases become smaller, and

data often becomes denser as the relative support goes up when the number of transactions
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in a projected database reduces substantially. In such cases, it is beneficial to swap the

data structure from H-struct to FP-tree since FP-tree’s compression by common prefix path

sharing and then mining on the compressed structures will overweigh the benefits brought

by H-struct.

The question becomes what should be the appropriate situations that one structure

is more preferable over the other and how to determine when such a structure/algorithm

swapping should happen. A dynamic pattern density analysis technique is suggested as

follows.

In the context of frequent pattern mining, a (projected) database is dense if the frequent

items in it have high relative support. The relative support can be computed as follows:

relative support =
absolute support

# of tran (or freq-item projections) in the (projected) database
.

When the relative support is high, such as 10% or over, i.e., the projected database is dense,

and the number of (locally) frequent items is not large (so that the resulting FP-tree is not

bushy), then FP-tree should be constructed to explore the sharing of common prefix paths

and database compression. On the other hand, when the relative support of frequent items

is low, such as far below 1%, it is sparse, and H-struct should be constructed for efficient

H-mine. However, for relative support values in between, it is not clear which method would

be more efficient.

With this discussion, one can see that Algorithm 5 (H-mine) should be modified as

follows.

In Step 3 of Algorithm 5 which mines frequent patterns in each partition TDBi, H-

mine(Mem) is called. However, instead of simply constructing H-struct and mining the

H-struct iteratively till the end, H-mine(Mem) will analyze the basic characteristics of data

to determine whether H-struct should be constructed or utilized in the subsequent mining

or whether FP-trees should be constructed for frequent-pattern growth.

4.3 Performance Study and Experimental Results

To evaluate the efficiency and scalability of H-mine, we have performed an extensive per-

formance study. In this section, we report our experimental results on the performance

of H-mine in comparison with Apriori and FP-growth. It shows that H-mine outperforms
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Apriori and FP-growth and is efficient and highly scalable for mining very large databases.3

All the experiments are performed on a 466MHz Pentium PC machine with 128 megabytes

main memory and 20G hard disk, running Microsoft Windows/NT. H-mine and FP-growth

are implemented by us using Visual C++6.0, while the version of Apriori that we used is a

well-known version, “GNU Lesser General Public License” available at http://fuzzy.cs.uni-

magdeburg.de/∼borgelt/. All reports of the runtime of H-mine include both the time of

constructing H-struct and mining frequent-patterns. They also include both CPU time and

I/O time.

We have tested various data sets, with consistent results. Limited by space, only the

results on some typical data sets are reported here.

4.3.1 Mining transaction databases in main memory

In this sub-section, we report results on mining transaction databases which can be held in

main memory. H-mine is implemented as stated in Section 4.1. For FP-growth, the FP-

trees can be held in main memory in the tests reported in this sub-section. We modified

the source code for Apriori so that the transactions are loaded into main memory and the

multiple scans of database are pursued in main memory.

Data set Gazelle is a sparse data set. It is a web store visit (click stream) data set from

Gazelle.com. It contains 59, 602 transactions, while there are up to 267 item per transaction.

Figure 4.7 shows the run time of H-mine, Apriori and FP-growth on this data set.

Clearly, H-mine wins the other two algorithms, and the gaps (in term of seconds) become

larger as the support threshold goes lower.

Apriori works well in such sparse data sets since most of the candidates that Apriori

generates turn out to be frequent patterns. However, it has to construct a hashing tree for

the candidates and match them in the tree and update their counts each time when scanning

a transaction that contains the candidates. That is the major cost for Apriori.

FP-growth has a similar performance as Apriori and sometime is even slightly worse.

This is because when the database is sparse, FP-tree cannot compress data as effectively as

what it does on dense data sets. Constructing FP-trees over sparse data sets recursively has

its overhead.

3A prototype of H-mine is also tested by a third party in US (a commercial company) on business data.
Their results are consistent with ours. They observed that H-mine is more than 10 times faster than Apriori
and other participating methods in their test when the support threshold is low.
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Figure 4.7: Runtime on data set Gazelle.

Figure 4.8 plots the high water mark of space usage of H-mine, Apriori and FP-growth

in the mining procedure. To make the comparison clear, the space usage (axis Y) is in

logarithmic scale. From the figure, we can see that H-mine and FP-growth use similar space

and are very scalable in term of space usage with respect to support threshold. Even when

the support threshold reduces to very low, the memory usage is still stable and moderate.

The memory usage of Apriori does not scale well as the support threshold goes down.

Apriori has to store level-wise frequent patterns and generate next level candidates. When

the support threshold is low, the number of frequent patterns as well as that of candidates

are non-trivial. In contrast, pattern-growth methods, including H-mine and FP-growth , do

not need to store any frequent patterns or candidates. Once a pattern is found, it is output

immediately and never read back.

What are the performance of these algorithms over dense data sets? We use the synthetic

data set generator described in [AS94] to generate a data set T25I15D10k. The data set

generator has been used in many studies on frequent pattern mining. We refer readers to

[AS94] for more details on the data set generation.

Data set T25I15D10k contains 10, 000 transactions and each transaction has up to 25

items. There are 1, 000 items in the data set and the average longest potentially frequent
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Figure 4.8: Space usage on data set Gazelle.

itemset is with 15 items. It is a relatively dense data set.

Figure 4.9 shows the runtime of the three algorithms on this data set. When the support

threshold is high, most patterns are of short lengths, Apriori and FP-growth have similar

performance. When the support threshold becomes low, most items (more than 90%) are

frequent. Then, FP-growth is much faster than Apriori. In all cases, H-mine is the fastest

one. It is more than 10 times faster than Apriori and 4-5 times faster than FP-growth.

Figure 4.10 shows the high water mark of space usage of the three algorithms in mining

this data set. Again, the space usage is drawn in logarithmic scale. As the number of pat-

terns goes up dramatically as support threshold goes down, Apriori requires an exponential

amount of space. H-mine and FP-growth use stable amount of space. In dense data set, an

FP-tree is smaller than the set of all frequent-item projections of the data set. However,

long patterns means more recursions and more recursive FP-trees. That makes FP-growth

require more space than H-mine in this case. On the other hand, since the number of fre-

quent items is large in this data set, an FP-tree, though compressing the database, still has

many branches in various levels and becomes bushy. That also introduces non-trivial tree

browsing cost.

Figure 4.11 and 4.12 explore the runtime per frequent pattern on data sets Gazelle and
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Figure 4.9: Runtime on data set T25I15D10k.

T25I15D10k, respectively. As the support threshold goes down, the number of frequent

patterns goes up. As can be seen from the figures, the runtime per pattern of the three

algorithms keeps going down. That explains the scalability of the three algorithms. Among

the three algorithms, H-mine has the least runtime per pattern and thus has the best

performance, especially when support threshold is low. The figures also illustrate that

H-mine is scalable with respect to the number of frequent patterns.

In very dense data set, such as Connect-4 (from UC-Irvine4) and pumsb (from IBM

Almaden Research Center5), H-mine builds FP-trees since the numbers of frequent items

are very small. Thus it has the same performance as FP-growth. Previous studies, e.g.,

[Bay98], show that Apriori is incapable of mining such data sets.

4.3.2 Mining very large databases

To test the efficiency and scalability of the algorithms on mining very large databases,

we generate data set T25I15D1280k using the synthetic data generator. It has 1, 280, 000

4www.ics.uci.edu/∼mlearn/MLRepository.html
5www.almaden.ibm.com/cs/quest/demos.html
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Figure 4.10: Space usage on data set T25I15D10k.

transactions with similar statistic features as the data set T25I15D10k.

We enforce memory constraints on H-mine so that the total memory available is limited

to 2, 4, 8 and 16 megabytes, respectively. The memory covers the space for H-struct and all

the header tables, as well as the related mechanisms. Since the FP-tree built for the data

set is too big to fit in main memory, we do not report the performance of FP-growth on this

data set. We do not explicitly compose any memory constraint on Apriori.

Figure 4.13 shows the scalability of both H-mine (with main memory size constraint 2

megabytes) and Apriori with respect to number of transactions in the database. Various

support threshold settings are tested. Both algorithms have linear scalability and H-mine

is a clear winner. From the figure, we can see that H-mine is more efficient and scalable at

mining very large databases.

To study the effect of memory size constraint on the mining efficiency and scalability

of H-mine in large databases, we plot Figure 4.14. The figure shows the scalability of H-

mine with respect to support threshold with various memory constraints, i.e., 2, 4, 8 and

16 megabytes, respectively. As shown in the figure, the runtime is not sensitive to the

memory limitation when support threshold is high. When the support threshold goes down,

as available space increases, performance gets better.
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Figure 4.11: Runtime per pattern on data set Gazelle.

Figure 4.15 shows the effect of available memory size on mining large data sets. At

high support level, the performance is not sensitive to the available memory size and thus

the number of partitions. When the support threshold is low, the memory size plays an

important role in performance.

With high support threshold, the number of frequent patterns is small and most frequent

patterns are short. The dominant cost is I/O cost and thus is insensitive to size of available

memory. When support threshold is low, with larger available memory, H-mine has less

partitions and thus generates fewer locally frequent patterns, i.e., the locally frequent pat-

terns contain more globally frequent ones and less noise. Therefore, H-mine can run faster

with more memory. The results show that H-mine can fully utilize the available memory to

scale up the mining process.

Does H-mine have to check all or most of the locally frequent patterns against the whole

database in its third scan of the database? Fortunately, the answer is no. Our experimental

results show that H-mine has a very light workload in its third scan. We consider the ratio

of the number of patterns to be checked in the third scan over that of all distinct locally

frequent patterns, where a locally frequent pattern is to be checked in the third scan if

it is not frequent in every partition. Figure 4.16 shows the ratio numbers. In general, as
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Figure 4.12: Runtime per pattern on data set T25I15D10k.

the support threshold goes down, the ratio goes up. That means mining with low support

threshold may lead to more patterns frequent in some partitions. On the other hand, less

memory (small partition) leads to more partitions and also increase the ratio.

As shown in the figure, only a limited portion of locally frequent patterns, e.g., less than

35% in our test case, needs to be tested in the third scan. This leads to a low cost of the

third scan in our partition-based mining.

We also implemented a partition-based Apriori method. The partitioned Apriori cuts

the database into even partitions, exactly as H-mine does. Then, it uses main memory

based Apriori to mine each partition. We do not apply any main memory constraint to

it on candidate generation, i.e., it can use as much available memory to store candidates

and level-wise frequent patterns as it wants. The partitioned Apriori has up to 15% better

performance than Apriori when support threshold is low, but still lose to H-mine with a wide

margin. Limited by space, we omit a detailed performance report on partitioned Apriori

here.

In summary, our experimental results and performance study verify our analysis and

support our claim that H-mine is an efficient algorithm for mining frequent patterns. It is

highly scalable in mining very large databases.
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Figure 4.13: Scalability with respect to number of transactions.

4.4 Summary

In this chapter, we have proposed a simple and novel hyper-linked data structure, H-struct,

and a new frequent pattern mining algorithm, H-mine, which takes advantage of H-struct

data structure and dynamically adjusts links in the mining process. As shown in our perfor-

mance study, H-mine has high performance, is scalable in all kinds of data, with very limited

and predictable space overhead, and outperforms the previously developed algorithms with

various settings.

In this section, we will discuss why H-mine has such high performance and what could

be the impact of this new method.

First, a major distinction of H-mine from the previously proposed methods is that H-

mine re-adjusts the links when mining different “projected” databases and has very small

space overhead, even counting temporary working space; whereas candidate generation-and-

test has to generate and test a large number of candidate itemsets, and FP-growth has to

generate a good number of conditional (projected) databases and FP-trees. The structure-

and space-preserving philosophy of H-mine promotes the sharing of the existing structures in

mining, reduces the cost of copying a large amount of data and building new data structures
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Figure 4.14: Scalability of H-mine on large data set T25I15D1280k.

on such data, and reduces the cost of updating and checking such data structures as well.

Second, H-mine absorbs the nice features of FP-growth. It is essentially a frequent-

pattern growth approach since it partitions its search space according to both patterns and

data based on a divide-and-conquer methodology, without generating and testing candi-

date patterns. However, unlike FP-growth, H-mine does not create any physical projected

databases nor constructing conditional (local) FP-trees. Instead, it builds and adjusts links

dynamically among frequent items during mining to achieve the same effect as construc-

tion of physical projected databases. It avoids paying the cost of space and time for the

(projected) database re-construction, and thus has better performance than FP-growth.

Third, H-mine is not confined itself to H-struct only. Instead, it watches carefully the

changes of data characteristics during mining and dynamically switches its data structure

from H-struct to FP-tree and its mining algorithm from mining on H-struct to FP-growth

when the data set becomes dense and the number of frequent items becomes small. This

absorbs the benefits of FP-growth which explores data compression and prefix-path shared

mining. Since mining on H-struct and mining on FP-tree are built based on the same

frequent-pattern growth methodology, such a dynamic algorithm swapping can be performed

naturally and easily.
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Figure 4.15: Effect of memory size on mining large data set.

Fourth, H-mine can be scaled-up to very large databases due to its small and precisely

predictable run-time memory overhead and its database partition mining technique. H-

mine partitions a large database into a set of relatively uniform-sized partitions, and mines

each partition using H-mine(Mem). Since mining each partition in main memory is highly

efficient, and many mined patterns can be shared among uniformly partitioned databases

to reduce the effort of pattern matching in the additional database scan, the overall cost

is far less than other proposed methods, which has been demonstrated in our performance

study.

Based on the above analysis, one can see that H-mine represents a new, highly efficient

and scalable mining method. Its structure- and space-preserving mining methodology may

have strong impact on the development of new, efficient and scalable data mining methods

for mining other kinds of patterns, such as closed-itemsets [PHM00], max-patterns [Bay98],

sequential patterns [SA96a, PHMA+01], constraint-based mining [NLHP98, PHL01], etc.

This should be an interesting direction for further study.
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Figure 4.16: The ratio of patterns to be checked by H-mine in the third scan.



Chapter 5

Constraint-based Pattern-growth

Mining

In Chapters 3 and 4, we have developed efficient pattern-growth methods to mine frequent

patterns from large databases. Many applications need not only efficient but also effective

frequent pattern mining techniques. In many cases, frequent pattern mining may return

much more patterns than the users can understand and process. Integrating the users’

interests into frequent pattern mining becomes an important issue.

Recent work has highlighted the importance of the constraint-based mining paradigm:

the user is allowed to express her focus in mining, by means of a rich class of constraints that

capture application semantics. Besides allowing user exploration and control, the paradigm

allows many of these constraints to be pushed deep into mining, confining the search for

patterns to those of users’ interest; therefore, improving performance. Metarules or various

kinds of templates have been proposed as filters to define the forms of rules to be mined

[KMR+94, SVA97]. Itemset constraints have been incorporated into association mining

[SVA97]. A systematic method for the incorporation of two large classes of constraints, anti-

monotone and succinct, in frequent itemset mining is presented in [NLHP98, LNHP99]. A

method for mining association rules in large, dense databases by incorporating user-specified

constraints to ensure every mined rule offers a predictive advantage over any of its simplifi-

cations, is developed in [BAG99]. Constraints specified using regular expressions are inves-

tigated for sequential pattern mining in [GRS99]. Constraint-based mining of correlations,

by exploration of anti-monotonicity and succinctness, as well as monotonicity, is studied in

79
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[GLW00].

While previous studies cover a large class of useful constraints, there are still many other

useful and natural constraints that have not been considered. For example, consider the

constraints avg(S) θ v, median(S) θ v, and sum(S) θ v. The first two are neither anti-

monotone, nor monotone, nor succinct. The last one is anti-monotone when θ is ≤ and

all items have non-negative values. If S contains items of arbitrary values, sum(S) ≤ v is

rather like the first two constraints. Intuitively, this implies that such constraints are hard

to optimize. In this chapter, we investigate a whole class of constraints that subsumes these

examples. The main idea is that certain constraints which do not exhibit nice properties

in general may do so in the presence of certain item ordering. We make the following

contributions.

• We introduce (Section 5.2) the concept of convertible constraints and classify them into

three classes: convertible anti-monotone, convertible monotone, and strongly convert-

ible. This covers a good number of useful constraints which were previously regarded

as tough, including all the examples above.

• We characterize (Section 5.2) the class of convertible constraints using the notion

of prefix monotone functions, and study the arithmetical closure properties of such

functions. As a byproduct, we can show a good class of constraints involving arithmetic

are convertible. For example, we show that max(S)/avg(S) ≤ v is convertible anti-

monotone and median(S)−min(S) ≥ v is convertible monotone.

• We show that convertible constraints cannot be pushed deep into the basic Apriori

framework. However, they can be pushed deep into frequent pattern growth mining.

We thus develop (Section 5.3) algorithms for fast mining of frequent itemsets satis-

fying the various constraints. We also discuss (Section 5.5) how multiple convertible

constraints can be incorporated in fast frequent pattern mining.

• We report our results from a detailed set of experiments, which show the effectiveness

of the algorithms developed (Section 5.4).

Our study distinguishes itself from the previous works on constraint-based frequent-

pattern mining in the following aspects.
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• As argued before, the previous works on constraint-based frequent-pattern mining

that relied on properties like anti-monotonicity, succinctness, or monotonicity (e.g.,

[NLHP98, LNHP99, GLW00]) cannot handle the constraints studied in this chapter.

• There have been many studies on constraint-based search algorithms in artificial in-

telligence, such as [Web95, Rym92]. Our study is distinguished from theirs in two

aspects: (i) we find the complete set of frequent itemsets satisfying the constraints,

while their algorithms find some feasible solutions satisfying the constraints; and (ii)

our goal is to find methods scalable in large databases, while their algorithms are

mostly main memory-based.

Section 5.1 motivates the problem of frequent itemset mining with constraints. Sec-

tion 5.6 concludes the chapter.

5.1 Problem Definition: Frequent Itemset Mining with Con-

straints

A constraint C is a predicate on the powerset of the set of items I, i.e., C : 2I→{true, false}.
An itemset S satisfies a constraint C if and only if C(S) is true. The set of itemsets satisfying

a constraint C is satC(I) = {S | S ⊆ I ∧ C(S) = true}. We call an itemset in satC(I)

valid.

Problem definition. Given a transaction database T , a support threshold ξ, and a set of

constraints C, the problem of mining frequent itemsets with constraints is to find the complete

set of frequent itemsets satisfying C, i.e., find FC = {S | S ∈ satC(I) ∧ sup(S) ≥ ξ}.

Many kinds of constraints can be associated with frequent itemset mining. Two cat-

egories of constraints, succinctness and anti-monotonicity, were proposed in [NLHP98,

LNHP99]; whereas the third category, monotonicity, was studied in [BMS97, GLW00, PH00]

in the contexts of mining correlated sets and frequent itemsets. We briefly recall these no-

tions below.

Definition 5.1 (Anti-monotone, Monotone, and Succinct Constraints) A constraint

Ca is anti-monotone if and only if whenever an itemset S violates Ca, so does any superset

of S. A constraint Cm is monotone if and only if whenever an itemset S satisfies Cm, so

does any superset of S. Succinctness is defined in steps, as follows.
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• An itemset Is ⊆ I is a succinct set, if it can be expressed as σp(I) for some selection

predicate p, where σ is the selection operator.

• SP ⊆ 2I is a succinct powerset, if there is a fixed number of succinct sets I1, I2, . . . , Ik ⊆
I, such that SP can be expressed in terms of the strict powersets of I1, . . . , Ik using

union and minus.

• Finally, a constraint Cs is succinct provided satCs(I) is a succinct powerset.

We can show the following result.

Theorem 5.1 Every succinct constraint involving only aggregate functions can be expressed

using conjunction and/or disjunction of monotone and anti-monotone constraints.

Proof. The proof of the theorem is by induction on the structure of SATC(I) of the

succinct constraint, according to the definition of succinctness. There are three essential

cases as follows.

• If SATC(I) = 2Ic , where Ic is a set, then C is an anti-monotone constraint since any

pattern satisfying the constraint must be a subset of Ic.

• If SATC(I) = 2Ic1 ∪ 2Ic2 , then C can be expressed in terms of C = C1 ∨C2, where C1

and C2 are corresponding anti-monotone constraints.

• If SATC(I) = 2I1−2I2 , then the constraint can be expressed as the conjunction of two

constraints, C = Ca ∧Cm, where Ca is the anti-monotone constraint corresponding to

2I1 , and Cm is a monotone constraint S ∩ (I1 − I2) 6= ∅.
Especially, if SATC(I) = 2I − 2I1 − · · · − 2Im , then C is a monotone constraint S ∩
(I − I1 − · · · − Im) 6= ∅.

These three categories of constraints cover a large class of popularly encountered con-

straints. A representative subset of commonly used, SQL-based constraints is listed in Table

5.11. However, there are still many useful constraints, such as avg(S) θ v and sum(S) θ v

where θ ∈ {≤,≥} (shown in the table) that belong to none of the three classes.

Example 5.1 Let Table 5.2 be our running transaction database T , with a set of items

I = {a, b, c, d, e, f, g, h}. Let the support threshold be ξ = 2. Itemset S = acd is frequent

1For brevity, we show a small subset of representative constraints, involving aggregates. See [NLHP98,
LNHP99] for more details.
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Constraint Anti-monotone Monotone Succinct
min(S) ≤ v no yes yes
min(S) ≥ v yes no yes
max(S) ≤ v yes no yes
max(S) ≥ v no yes yes
count(S) ≤ v yes no weakly
count(S) ≥ v no yes weakly

sum(S) ≤ v (∀a ∈ S, a ≥ 0) yes no no
sum(S) ≥ v (∀a ∈ S, a ≥ 0) no yes no

sum(S) θ v, θ ∈ {≤,≥} (∀a ∈ S, a θ 0) no no no
range(S) ≤ v yes no no
range(S) ≥ v no yes no

avg(S) θ v, θ ∈ {≤,≥} no no no
sup(S) ≥ ξ yes no no
sup(S) ≤ ξ no yes no

Table 5.1: Characterization of commonly used, SQL-based constraints.

Transaction ID Items in transaction
10 a, b, c, d, f
20 b, c, d, f, g, h
30 a, c, d, e, f
40 c, e, f, g

Table 5.2: The transaction database T in Example 5.1.

since it is in transactions 10 and 30, respectively. The complete set of frequent itemsets are

listed in Table 5.3.

Length l Frequent l-itemsets
1 a, b, c, d, e, f, g
2 ac, ad, af, bc, bd, bf, cd, ce, cf, cg, df, ef, fg
3 acd, acf, adf, bcd, bcf, bdf, cdf, cef, cfg
4 acdf, bcdf

Table 5.3: Frequent itemsets with support threshold ξ = 2 in transaction database T in
Table 5.2.

Let each item have an attribute value (such as profit), with the concrete value shown in

Table 5.4. In all constraints such as sum(S) θ v, we implicitly refer to this value.

The constraint range(S) ≤ 15 requires that for an itemset S, the value range of the

items in S must be no greater than 15. It is an anti-monotone constraint, in the sense that

if an itemset, say ab, violates the constraint, any of its supersets will violate it; and thus ab

can be removed safely from the candidate set during an Apriori-like frequent itemset mining
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Item Value
a 40
b 0
c −20
d 10
e −30
f 30
g 20
h −10

Table 5.4: The values (such as profit) of items in Example 5.1.

process [NLHP98]. However, the constraint Cavg ≡ avg(S) ≥ 25 is not anti-monotone

(nor monotone, nor succinct, which can be verified by readers). For example, avg(df) =

(10+30)/2 < 25, violates the constraint. However, upon adding one more item a, avg(adf) =

(40 + 10 + 30)/3 ≥ 25, adf satisfies Cavg.

This example scratches the surface of a large class of useful constraints involving avg,

median, etc. as well as arithmetic. Exploiting them in mining calls for new techniques,

which is the subject of this chapter.

5.2 Convertible Constraints and Their Classification

Before introducing the concept of convertible constraint, we motivate it with an example.

Example 5.2 Suppose we wish to mine frequent itemsets over transaction database T in

Table 5.2, with the support threshold ξ = 2 and with constraint C ≡ avg(S) ≥ 25,

The complete set of frequent itemsets satisfying C can be obtained by first mining the

frequent itemsets without using the constraint (i.e., Table 5.3) and then filtering out those

not satisfying the constraint. Since the constraint is neither anti-monotone, nor monotone,

nor succinct, it cannot be directly incorporated into an Apriori-style algorithm. E.g., itemset

fg satisfies the constraint, while its subset g and its superset dfg do not.

If we arrange the items in value-descending order, 〈a, f, g, d, b, h, c, e〉, we can observe

an interesting property, as follows. Writing itemsets w.r.t. this order leads to a notion of a

prefix. E.g., afd has af and a as its prefixes. Interestingly, the average of an itemset is no

more than that of its prefix, according to this order.
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5.2.1 Convertible Constraints

The observation made in Example 5.2 motivates the following definition. We will frequently

make use of an order2 over the set of all the items and assume itemsets are written according

to this order.

Definition 5.2 (Prefix itemset) Given an order R over the set of items I, an itemset

S′ = i1i2 · · · il is called a prefix of itemset S = i1i2 · · · im w.r.t. R, where items in both

itemsets are listed according to order R and (l ≤ m). S′ is called a proper prefix of S if

(l < m).

We next formalize convertible constraints as follows.

Definition 5.3 (Convertible Constraints) A constraint C is convertible anti-monotone

provided there is an order R on items such that whenever an itemset S satisfies C, so does

any prefix of S. It is convertible monotone provided there is an order R on items such

that whenever an itemset S violates C, so does any prefix of S. A constraint is convertible

whenever it is convertible anti-monotone or monotone.

Note that any anti-monotone (resp., monotone) constraint is trivially convertible anti-

monotone (resp., convertible monotone): just pick any order on items.

Example 5.3 We show avg(S) θ v where θ ∈ {≤,≥} is a convertible constraint.

Let R be the value-descending order. Given an itemset S = a1a2 · · · al satisfying

the constraint avg(S) ≥ v, where items in S are listed in the order R. For each pre-

fix S′ = a1 · · · ak of S (1 ≤ k ≤ l), since ak ≥ ak+1 ≥ · · · ≥ al−1 ≥ al, we have

avg(S′) ≥ avg(S′ ∪ {ak+1}) ≥ · · · ≥ avg(S) ≥ v. This implies S′ also satisfies the con-

straint. So, constraint avg(S) ≥ v is convertible anti-monotone. Similarly, it can be shown

that constraint avg(S) ≤ v is convertible monotone.

Interestingly, if the order R−1 (i.e., the reversed order of R) is used, the constraint

avg(S) ≥ v can be shown convertible monotone. We leave this as an exercise to the reader.

In summary, constraint avg(S) θ v is convertible constraint. Furthermore, there exists

an order R such that the constraint is convertible anti-monotone w.r.t. R and convertible

monotone w.r.t. R−1.

2Unless otherwise stated, every order used in this chapter is assumed to be total over the set of items.
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As another example, let us examine the constraints with function sum(S).

Example 5.4 As shown in Table 5.1, constraint sum(S) ≤ v is anti-monotone if items are

all with non-negative values. However, if items are with negative, zero or positive values,

the constraint becomes neither anti-monotone, nor monotone, nor succinct.

Interestingly, this constraint exhibits a “piecewise” convertible monotone or anti-monotone

behavior. If v ≥ 0 in the constraint, the constraint is convertible anti-monotone w.r.t. item

value ascending order. Given an itemset S = a1a2 · · · al such that sum(S) ≤ v, where items

are listed in value ascending order. For a prefix S′ = a1a2 · · · aj (1 ≤ j ≤ l), if aj ≤ 0,

that means a1 ≤ a2 ≤ · · · ≤ aj−1 ≤ aj ≤ 0. So, sum(S′) ≤ 0 ≤ v. On the other hand, if

aj > 0, we have 0 < aj ≤ aj+1 ≤ · · · ≤ al. Thus, sum(S′) = sum(S)− sum(aj+1 · · · al) < v.

Therefore, sum(S′) ≤ v in both cases, which means S′ satisfies the constraint.

If v ≤ 0 in the constraint, it becomes convertible monotone w.r.t. item value descending

order. We leave it to the reader to verify this.

Similarly, we can also show that, if items are with negative, zero or positive values,

constraint sum(S) ≥ v is convertible monotone w.r.t. value ascending order when v ≥ 0,

and convertible anti-monotone w.r.t. value descending order when v ≤ 0.

The following lemma can be proved with a straightforward induction.

Lemma 5.1 Let C be a constraint over a set of items I.

1. C is convertible anti-monotone if and only if there exists an order R over I such that

for every itemset S and item a ∈ I such that ∀x ∈ S, x R a, C(S ∪{a}) implies C(S).

2. C is convertible monotone if and only if there exists an order R over I such that for

every itemset S and item a ∈ I such that ∀x ∈ S, x R a, C(S) implies C(S ∪ {a}).
Proof. We show the first part of the lemma. The second part can be shown similarly.

⇒ (if part) Suppose constraint C has the property that for every itemset S and item a ∈ I

such that item ∀x ∈ S, x R a, C(S ∪{a}) implies C(S). For an itemset S = a1a2 · · · am and

its prefix S′ = a1a2 · · · al (l ≤ m), let Sk be itemset a1a2 · · · ak. C(S) = C(Sm−1 ∪ {am}) =

true implies C(Sm−1) = true. By induction, we can show that C(S′) = C(Sl) = true.

Thus, C is convertible anti-monotone.

⇐ (only-if part) Given a convertible anti-monotone constraint C, following the definition

of convertible anti-monotonicity, the property holds that for every itemset S and item a ∈ I

such that item ∀x ∈ S, x R a, C(S ∪ {a}) implies C(S).
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The notion of prefix monotone functions, introduced below, is helpful in determining the

class of a constraint. We denote the set of real numbers as R.

Definition 5.4 (Prefix monotone functions) Given an order R over a set of items I, a

function f : 2I→R is a prefix (monotonically) increasing function w.r.t. R if and only if for

every itemset S and its prefix S′ w.r.t. R, f(S′) ≤ f(S). A function g : 2I→R is called a

prefix (monotonically) decreasing function w.r.t. R if and only if for every itemset S and its

prefix S′ w.r.t. R, g(S′) ≥ g(S).

We have the following lemma on the determination of prefix monotone functions. The

proof is similar to that of Lemma 5.1.

Lemma 5.2 Given an order R over a set of items I,

1. a function f : 2I→R is a prefix decreasing function w.r.t. R if and only if for every

itemset S and item a such that ∀x ∈ S, x R a, f(S) ≥ f(S ∪ {a}).

2. A function g : 2I→R is a prefix increasing function w.r.t. R if and only if for every

itemset S and item a such that ∀x ∈ S, x R a, g(S) ≤ g(S ∪ {a}).

Proof. We show the first part of the lemma. The second part can be proved similarly.

⇐ Let f : 2I→R be a prefix decreasing function. Itemset S is a prefix of S ∪ {a} if

∀x ∈ S, x Ra. According to the definition of prefix decreasing function, we have f(S) ≥
f(S ∪ {a}).
⇒ Suppose function f : 2I→R has the property that for every itemset S and item a

such that ∀x ∈ S, x R a, f(S) ≥ f(S ∪ {a}). For an itemset S = a1a2 · · · am and its

prefix S′ = a1a2 · · · al (l ≤ m), we have f(S′) = f(a1a2 · · · al) ≤ f(a1a2 · · · alal+1) ≤ · · · ≤
f(a1a2 · · · am) = f(S). So, f is a prefix decreasing function.

It turns out that prefix monotone functions satisfy interesting closure properties with

arithmetic. An understanding of this would shed light on characterizing a whole class of

convertible functions involving arithmetic. The following theorem establishes the arithmeti-

cal closure properties of prefix monotone functions. We say a function f : 2I→R is positive,

provided ∀S ⊆ I : f(S) > 0.

Theorem 5.2 Let f and f ′ be prefix decreasing functions, and g and g′ be prefix increasing

functions w.r.t. an order R, respectively. Let c be a positive real number.
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1. Functions −f(S), 1
f(S) , c ·g(S) and g(S)+g′(S) are prefix increasing functions. Func-

tions −g(S), 1
g(S) , c · f(S) and f(S) + f ′(S) are prefix decreasing functions.

2. If f and g are positive functions, then f(S)×f ′(S) is prefix decreasing, and g(S)×g′(S)

is prefix increasing.

3. A constraint h(S) ≥ v (resp., h(S) ≤ v) is convertible anti-monotone (resp., mono-

tone) if and only if h is prefix decreasing. Similarly, h(S) ≥ v (resp., h(S) ≤ v) is

convertible monotone (resp., anti-monotone) if and only if h is prefix increasing.

Proof. The theorem follows related definitions immediately.

Example 5.5 As an illustration, notice that avg(S) is a prefix decreasing function w.r.t.

value-descending order, and avg(S) ≥ 20 is convertible anti-monotone w.r.t. the same order.

Also, max(S) is a prefix increasing3 function w.r.t. this order. From Theorem 5.2, it follows

that 1/avg(S) is prefix increasing and hence max(S)/avg(S) is prefix increasing.4 Con-

sequently, we immediately deduce that max(S)/avg(S) ≤ v is convertible anti-monotone

w.r.t. this order.

We know from Theorem 5.1 that a succinct constraint can be expressed in terms of

conjunction and/or disjunction of anti-monotone and monotone constraints. By definition,

every monotone/anti-monotone is convertibly so. A natural question is, what is the rela-

tionship between succinct constraints and convertible constraints? The following theorem

settles this question.

Theorem 5.3 Every succinct constraint is either anti-monotone, or monotone, or convert-

ible.

Proof. The proof of the theorem is by induction on the structure of satC(I) of a succinct

constraint C, according to the definition of succinctness.

Suppose C is a succinct constraint over I, the set of items.

• FC(I) = 2IC , where IC ⊆ I. As shown in Theorem 5.1, constraint C is anti-monotone.

Interestingly, C is also convertible monotone w.r.t. order R, where ∀a ∈ IC , b ∈ I−IC ,

b R c.

3It is also prefix decreasing w.r.t. this order.
4Assuming all the items have non-negative values.
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• FC(I) = 2I1 ∪ 2I2, where I1, I2 ⊆ I. Constraint C is anti-monotone (Theorem 5.1).

However, C is not convertible monotone in this case.

• FC(I) = 2I1 − 2I2, where I1, I2 ⊆ I. Constraint C is convertible anti-monotone w.r.t.

order R, where ∀a ∈ I1 − I2, b ∈ I − (I1 − I2), a R b. Please note that C is also

convertible monotone w.r.t. R−1.

Especially, FC(I) = 2I − 2I1 − · · · − 2Im , where I1, . . . , Im ⊆ I. Constraint C is

monotone (Theorem 5.1).

As an example, consider a succinct constraint C whose solution space satC(I) is de-

scribed as 2I1−2I2 , where I1, I2 ⊆ I, and Ii = σpi(I), pi being a selection predicate, i = 1, 2.

Consider an order R such that all the items in I1− I2 come before any item in I− (I1− I2),

but otherwise the items are ordered arbitrarily. Then, it is easy to see that w.r.t. R, C is

convertible anti-monotone and w.r.t. R−1, it is convertible monotone.

5.2.2 Strongly convertible constraint

Some convertible constraints have the additional desirable property that w.r.t. an order R
they are convertible anti-monotone, while w.r.t. its inverse R−1 they are convertible mono-

tone. E.g., avg(S) ≤ v is convertible monotone w.r.t. value ascending order and convertible

anti-monotone w.r.t. value descending order (see also Example 5.3). This property provides

great flexibility in data mining query optimization.

Definition 5.5 (Strongly convertible constraint) A constraint Csc is called a strongly

convertible constraint, provided there exists an order R over the set of items such that Csc

is convertible anti-monotone w.r.t. R and convertible monotone w.r.t. R−1.

Notice that median(S) θ v (θ ∈ {≤,≥}) is also strongly convertible. Clearly, not every

convertible constraint is strongly convertible. E.g., max(S)/avg(S) ≤ v 5 is convertible

anti-monotone w.r.t. value descending order, when all the items have a non-negative value.

However, it is not convertible monotone w.r.t. value ascending order.

The following lemma links strongly convertible constraints to prefix monotone functions.

5It says the proportion of the max price of any item in the itemset over the average price of the items in
the set cannot go over certain limit.
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Lemma 5.3 Constraint f(S) θ v is strongly convertible, if and only if there exists an order

R over the set of items such that f is a prefix decreasing function w.r.t. R and a prefix

increasing function w.r.t. R−1.

Proof. The lemma follows Theorem 5.2 immediately.

For example, avg(S) and median(S) are both prefix decreasing w.r.t. value descending

order and prefix increasing w.r.t. value ascending order.

There still exist some constraints that cannot be pushed by item ordering. For example,

the constraint avg(S)−median(S) = 06 does not admit any natural ordering on items w.r.t.

which it is convertible. We call such constraints inconvertible.

5.2.3 Summary: a classification on constraints

As a general picture, constraints (only involving aggregate functions) can be classified into

the following categories according to their interactions with the frequent itemset mining

process: anti-monotone, monotone, succinct and convertible, which in turn can be subdi-

vided into convertible anti-monotone and convertible monotone. The intersection of the last

two categories is precisely the class of strongly convertible constraints (which can be treated

either as convertible anti-monotone or monotone by ordering the items properly). Figure

5.1 shows the relationship among the various classes of constraints.

anti-monotone

monotone

convertible anti-monotone

convertible monotone

strongly convertible
succinct

inconvertible

Figure 5.1: A classification of constraints and their relationships

Some commonly used convertible constraints are listed in Table 5.5.

6The constraint requires that the median item in the itemset is equal to the average value.
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Constraint Convertible Convertible Strongly
anti-monotone monotone convertible

avg(S) θ v (θ ∈ {≤,≥}) yes yes yes
median(S) θ v (θ ∈ {≤,≥}) yes yes yes

sum(S) ≤ v (v ≥ 0, ∀a ∈ S, aϑ0, θ, ϑ ∈ {≤,≥}) yes no no
sum(S) ≤ v (v ≤ 0, ∀a ∈ S, aϑ0, θ, ϑ ∈ {≤,≥}) no yes no
sum(S) ≥ v (v ≥ 0, ∀a ∈ S, aϑ0, θ, ϑ ∈ {≤,≥}) no yes no
sum(S) ≥ v (v ≤ 0, ∀a ∈ S, aϑ0, θ, ϑ ∈ {≤,≥}) yes no no
f(S) ≥ v (f is a prefix decreasing function) yes ∗ ∗
f(S) ≥ v (f is a prefix increasing function) ∗ yes ∗
f(S) ≤ v (f is a prefix decreasing function) ∗ yes ∗
f(S) ≤ v (f is a prefix increasing function) yes ∗ ∗

Table 5.5: Characterization of some commonly used, SQL-based convertible constraints. (∗
means it depends on the specific constraint.)

5.3 Mining Algorithms

In this section, we explore how to mine frequent itemsets with convertible constraints ef-

ficiently. The general idea is to push the constraint into the mining process as deep as

possible, thereby pruning the search space.

In Section 5.3.1, we first argue that the Apriori algorithm cannot be extended to mining

with convertible constraints efficiently. Then, a new method is proposed by examining an

example. Section 5.3.2 presents the algorithm FICA for mining frequent itemsets with

convertible anti-monotone constraints. Algorithm FICM, which computes the complete set

of frequent itemsets with convertible monotone constraint, is given in Section 5.3.3. Section

5.3.4 discusses mining frequent itemsets with strongly convertible constraints.

5.3.1 Mining frequent itemsets with convertible constraints: An example

We first show that convertible constraints cannot be pushed deep into the Apriori-like

mining.

Remark 5.3.1 A convertible constraint that is neither monotone, nor anti-monotone, nor

succinct, cannot be pushed deep into the Apriori mining algorithm.

Rationale. As observed earlier for such a constraint (e.g., avg(S) ≤ v), subsets (supersets)

of a valid itemset could well be invalid and vice versa. Thus, within the level-wise framework,

no direct pruning based on such a constraint can be made. In particular, whenever an invalid
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subset is eliminated without support counting, its supersets that are not suffixes cannot be

pruned using frequency.

For example, itemset df in our running example violates the constraint avg(S) ≥ 25.

However, an Apriori-like algorithm cannot prune such itemsets. Otherwise, its superset adf ,

which satisfies the constraint, cannot be generated.

Before giving our algorithms for mining with convertible constraints, we give an overview

in the following example.

Example 5.6 Let us mine frequent itemsets with constraint C ≡ avg(S) ≥ 25 over trans-

action database T in Table 5.2, with the support threshold ξ = 2. Items in every itemset are

listed in value descending order R: 〈a(40), f(30), g(20), d(10), b(0), h(−10), c(−20), e(−30)〉.
It is shown that constraint C is convertible anti-monotone w.r.t. R. The mining process is

shown in Figure 5.2.

By scanning T once, we find the support counts for every item. Since h appears in only

one transaction, it is an infrequent items and is thus dropped without further consideration.

The set of frequent 1-itemsets are a, f , g, d, b, c and e, listed in order R. Among them, only

a and f satisfy the constraint7. Since C is a convertible anti-monotone constraint, itemsets

having g, d, b, c or e as prefix cannot satisfy the constraint. Therefore, the set of frequent

itemsets satisfying the constraint can be partitioned into two subsets:

1. The ones having itemset a as a prefix w.r.t. R, i.e., those containing item a; and

2. The ones having itemset f as a prefix w.r.t. R, i.e., those containing item f but no a.

The two subsets form two projected databases [HPY00] which are mined respectively.

1. Find frequent itemsets satisfying the constraint and having a as a prefix. First, a is

a frequent itemset satisfying the constraint. Then, the frequent itemsets having a

as a proper prefix can be found in the subset of transactions containing a, which is

called a-projected database. Since a appears in every transaction in the a-projected

database, it is omitted. The a-projected database contains two transactions: bcdf and

cdef . Since items b and e are infrequent within this projected database, neither ab

nor ae can be frequent. So, they are pruned. The frequent items in the a-projected

7The fact that itemset g does not satisfy the constraint implies none of any 1-itemsets after g in order R
can satisfy the constraint avg.
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fg-proj. DB
dbc
ce
freq. items: c
C(fgc)=false

Tran. DB
afdbc
fgdbc
afdce
fghce

C(a)=true
freq. items: a, f, g, d, b,c, e

C(g)=true
C(f)=true

af-proj. DB
dc
dc

freq. items: d, c
C(afd)=true
C(afc)=false

ad-proj. DB
c
c
freq. items: c
C(adc)=false

a-proj. DB
fdbc
fdce

freq. items: f, d, c
C(af)=true

f-proj. DB
dbc
gdbc
dce
gce
freq. items: g, d, b, c, e
C(fg)=true

C(ad)=true
C(ac)=false

C(fd)=false

R: a-f-g-d-b-c-e

Figure 5.2: Mining frequent itemsets satisfying constraint avg(S) ≥ 25.

database is f, d, c, listed in the order R. Since ac does not satisfy the constraint, there

is no need to create an ac-projected database.

To check what can be mined in the a-projected database with af and ad, as prefix,

respectively, we need to construct the two projected databases and mine them. This

process is similar to the mining of a-projected databases. The af -projected database

contains two frequent items d and c, and only afd satisfies the constraint. Moreover,

since afdc does not satisfy the constraint, the process in this branch is complete.

Since afc violates the constraint, there is no need to construct afc-projected database.

The ad-projected database contains one frequent item c, but adc does not satisfy the

constraint. Therefore, the set of frequent itemsets satisfying the constraint and having

a as prefix contains a, af , afd, and ad.
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2. Find frequent itemsets satisfying the constraint and having f as a prefix. Similarly,

the f-projected database is the subset of transactions containing f , with both a and f

removed. It has four transactions: bcd, bcdg, cde and ceg. The frequent items in the

projected database are g, d, b, c, e, listed in the order of R. Since only itemsets fg and

fd satisfy the constraint, we only need to explore if there is any frequent itemset with

fg or fd as a proper prefix that satisfies the constraint. The projected fg-database

contains no frequent itemset with fg as a proper prefix that satisfies the constraint.

Since b is the item immediately after d in order R, and fdb violates the constraint,

any itemset with fd as a proper prefix cannot satisfy the constraint. Thus, f and fg

are the only two frequent itemsets having f as a prefix and satisfying the constraint.

In summary, the complete set of frequent itemsets satisfying the constraint contains 6

itemsets: a, f , af , ad, afd, fg. Our new method generates and tests only a small set of

itemsets.

5.3.2 FICA: Mining frequent itemsets with convertible anti-monotone

constraint

Now, let us justify the correctness and completeness of the mining process in Example 5.6.

First, we show that the complete set of frequent itemsets satisfying a given convertible

anti-monotone constraint can be partitioned into several non-overlapping subsets. It leads

to the soundness of our algorithmic framework.

Lemma 5.4 Consider a transaction database T , a support threshold ξ and a convertible

anti-monotone constraint C w.r.t. an order R over a set of items I. Let a1, a2, . . . , am be

the items satisfying C. The complete set of frequent itemsets satisfying C can be partitioned

into m disjoint subsets: the jth subset (1 ≤ j ≤ m) contains frequent itemsets satisfying C

and having aj as a prefix.

Proof. The lemma follows on showing: (i) every frequent itemset S satisfying C must be

in the jth subset, for some j, 1 ≤ j ≤ m, and (ii) no two subsets overlap.

We mine the subsets of frequent itemsets satisfying the constraint by constructing the

corresponding projected database.

Definition 5.6 (Projected database) Given a transaction database T , an itemset α and

an order R.
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1. Itemset β is called the max-prefix projection of transaction 〈tid, It〉 ∈ T w.r.t. R, if

and only if (1) α ⊆ It and β ⊆ It; (2) α is a prefix of β w.r.t. R; and (3) there exists

no proper superset γ of β such that γ ⊆ It and γ also has α as a prefix w.r.t. R.

2. The α-projected database is the collection of max-prefix projections of transactions

containing α, w.r.t. R.

Remark 5.3.2 Given a transaction database T , a support threshold ξ and a convertible

anti-monotone constraint C. Let α be a frequent itemset satisfying C. The complete set of

frequent itemsets satisfying C and having α as a prefix can be mined from the α-projected

database.

Rationale. To mine frequent itemsets having α as a prefix, only the transactions containing

α is needed. Furthermore, according to the definition of convertible anti-monotonicity, the

information about itemsets having α as a prefix is sufficient to serve the mining with the

constraint. That information is completely retained in the max-prefix projections. So we

have the lemma.

The mining process can be further improved by the following lemma.

Definition 5.7 (Ascending and descending orders) An order R over a set of items I

is called an ascending order for function h : 2I→R if and only if (1) for items a and b,

h(a) < h(b) implies a R b, and (2) for itemsets α ∪ {a} and α ∪ {b} such that both of them

have α as a prefix and a R b, f(α∪ {a}) ≤ f(α∪ {b}). R−1 is called a descending order for

function h.

For example, it can be verified that the value ascending order is an ascending order for

function avg(S) and a descending order for function max(S)/avg(S).

Lemma 5.5 Given a convertible anti-monotone constraint C ≡ f(S) θ v (θ ∈ {≤,≥})
w.r.t. ascending/descending order R over a set of items I, where f is a prefix function. Let

α be a frequent itemset satisfying C and a1, a2, . . . , am be the set of frequent items in the

α-projected database, listed in the order of R.

1. If itemset α∪{ai} (1 ≤ i < m) violates C, for j such that i < j ≤ m, itemset α∪{aj}
also violates C.
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2. If itemset α ∪ {aj} (1 ≤ j < m) satisfies C, but α ∪ {aj , aj+1} violates C, no frequent

itemset having α ∪ {aj} as a proper prefix satisfies C.

Proof. The constraint C must be in one of the two forms: (1) f is a prefix ascending

function w.r.t. descending order R and C ≡ f(S) ≥ v or (2) f is a prefix descending

function w.r.t. ascending order R and C ≡ f(S) ≤ v. Here, we show the lemma holds for

the first case. The second case can be shown similarly.

Suppose f(α∪ {ai}) < vS. Since R is a descending order, ai R aj implies f(α∪ {aj}) ≤
f(α ∪ {ai}). That means itemset α ∪ {aj} also violates C.

Alternatively, suppose f(α ∪ {aj}) ≥ v but f(α ∪ {aj , aj+1}) < v. For any item aj+k

after aj in the order of R, f(α ∪ {aj , aj+k}) ≤ f(α ∪ {aj , aj+1}). So, itemset α ∪ {aj , aj+k}
must also violate the constraint.

Based on the above reasoning, we have the algorithm FICA as follows for mining

Frequent Itemsets with Convertible Anti-monotone constraints.

Algorithm 6 (FICA)

Input: a transaction database T , a support threshold ξ and a convertible anti-monotone

constraint C w.r.t. an order R over a set of items I

Output: the complete set of frequent itemsets satisfying the constraint C

Method: Call ficA(∅, T );

Function ficA(α, T |α)

Parameters: α is the itemset as prefix and T |α is the α-projected database.

Method:

1. Scan T |α once, find frequent items in T |α. Let Iα be the set of frequent items within

T |α such that ∀a ∈ Iα, C(α ∪ {a}) = true.

2. If Iα = ∅ return, else ∀a ∈ Iα, output α ∪ {a} as a frequent itemset satisfying the

constraint.
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3. If C is in form of f(S) θ v where f is a prefix function and θ ∈ {≤,≥}, using Lemma

5.5 to optimize the mining by removing items b from Iα such that there exists no

frequent itemset satisfying C and having α ∪ {b} as a proper prefix.

4. Scan T |α once more, ∀a ∈ I|α, generate α ∪ {a}-projected database T |α∪{a}.

5. For each item a in I|α, call ficA(α ∪ {a}, T |α∪{a}).

Rationale. The correctness and completeness of the algorithm has been reasoned step-by-

step in this section. The efficiency of the algorithm is at that it pushes the constraint deep

into the mining process, so that we do not need to generate the complete set of frequent

itemsets in most cases. Only related frequent itemsets are identified and tested. As shown

in Example 5.6 and in the experimental results, the search space is decreased dramatically

when the constraint is sharp.

Based on the above reasoning, we have the following theorem.

Theorem 5.4 Given a transaction database, a support threshold and a convertible con-

straint, FICA (Algorithm 6) computes the complete set of frequent itemsets satisfying the

constraint without duplication.

5.3.3 FICM: Mining frequent itemsets with monotone constraints

In the last two subsections, an efficient algorithm for mining frequent itemsets with convert-

ible anti-monotone constraints is developed. Under similar spirit, an algorithm for mining

frequent itemsets with convertible monotone constraints can also be developed. Instead of

giving details of formal reasoning, we illustrate the ideas using an example and then present

the algorithm.

Example 5.7 Let us mine frequent itemsets in transaction database T in Table 5.2 with

constraint C ≡ avg(S) ≤ 20. Suppose the support threshold ξ = 2. In this example, we use

the value descending order R exactly as is used in Example 5.6. Constraint C is convertible

monotone w.r.t. order R.

After one scan of transaction database T , the set of frequent 1-itemsets is found. Among

the 7 frequent 1-itemsets, g, d, b, c and e satisfy the constraint C. According to the defini-

tion of convertible monotone constraints, frequent itemset having one of these 5 itemsets as
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a prefix must also satisfy the constraint. That is, the g-, d-, b-, c- and e-projected databases

can be mined without testing constraint C, because adding smaller items will only decrease

the value of avg. But a- and f -projected databases should be mined with constraint C test-

ing. However, as soon as its frequent k-itemsets for any k satisfy the constraint, constraint

checking will not be needed for further mining of their projected databases.

We present the algorithm FICM for mining frequent itemsets with convertible monotone

constraint as follows.

Algorithm 7 (FICM)

Input: A transaction database T , a support threshold ξ and a convertible monotone con-

straint C w.r.t. an order R over a set of items I.

Output: The complete set of frequent itemsets satisfying the constraint C.

Method: Call ficM (∅, T , 1);

Function ficM (α, T |α, check flag)

Parameters: α is the itemset as prefix, T |α is the α-projected database, and check flag

is the flag for constraint checking.

Method:

1. Scan T |α once, find frequent items in T |α. If check flag is 1, let I+
α be the set of

frequent items within T |α such that ∀a ∈ I+
α , C(α∪ {a}) = true, and I−α be the set of

frequent items within T |α such that ∀b ∈ I−α , C(α ∪ {b}) = false. If check flag is 0,

let I+
α be the set of frequent items within T |α and I−α be ∅.

2. ∀a ∈ I+
α , output α ∪ {a} as a frequent itemset satisfying the constraint.

3. Scan T |α once more, ∀a ∈ I|+α ∪ I|−α , generate α ∪ {a}-projected database T |α∪{a}.

4. For each item a in I|+α , call ficM (α ∪ {a}, T |α∪{a}, 0); For each item a in I|−α , call

ficM (α ∪ {a}, T |α∪{a}, 1);
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Rationale. The correctness and completeness of the algorithm can be shown based on the

similar reasoning in Section 5.3.2. Here, we analyze the difference between FICM with an

Apriori-like algorithm using constraint-checking as post-processing.

Both FICM and Apriori-like algorithms have to generate the complete set of frequent

itemsets, no matter whether the frequent itemsets satisfy the convertible monotone con-

straint. The frequent itemsets not satisfying the constraint cannot be pruned. This is the

inherent difficulty of convertible monotone constraint.

The advantage of FICM against Apriori-like algorithms lies in the fact that FICM only

tests some of frequent itemsets against the constraint. Once a frequent itemset satisfies

the constraint, it guarantees all of frequent itemsets having it as a prefix also satisfy the

constraint. Therefore, all that testing can be saved. An Apriori-like algorithm has to check

every frequent itemset against the constraint. In the situation such that constraint testing

is costly, such as spatial constraints, the saving over constraint testing could be non-trivial.

Exploration of spatial constraints is beyond the scope of this chapter.

5.3.4 Mining frequent itemsets with strongly convertible constraints

The main value of strong convertibility is that the constraint can be treated either as

convertible anti-monotone or monotone by choosing an appropriate order. The main point

to note in practice is when the constraint has a high selectivity (fewer itemsets satisfy it),

converting it into an anti-monotone constraint will yield maximum benefits by search space

pruning. When the constraint selectivity is low (and checking it is reasonably expensive),

then converting it into a monotone constraint will save considerable effort in constraint

checking. The constraint avg(S) ≤ v is a classic example.

5.4 Experimental Results

To evaluate the effectiveness and efficiency of the algorithms, we performed an extensive

experimental evaluation.

In this section, we report the results on a synthetic transaction database with 100K

transactions and 10K items8. The dataset is generated by the standard procedure described

in [AS94]. In this dataset, the average transaction size and average maximal potentially

8The dataset is downloadable at http://www.cs.sfu.ca/∼peijian/personal/publications/T25I20D100k.dat.gz.
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frequent itemset size are set to 25 and 20, respectively. The dataset contains a lot of

frequent itemsets with various lengths. This dataset is chosen since it is typical in data

mining performance study.

The algorithms are implemented in C. All the experiments are performed on a 233MHz

Pentium PC with 128MB main memory, running Microsoft Windows/NT.

To evaluate the effect of a constraint on mining frequent itemsets, we make use of

constraint selectivity, where the selectivity δ of a constraint C on mining frequent itemsets

over transaction database T with support threshold ξ is defined as

δ =
# of frequent itemsets NOT satisfying C

# of frequent itemsets

Therefore, a constraint with 0% selectivity means every frequent itemset satisfies the con-

straint, while a constraint with 100% selectivity means that the constraint cannot be satisfied

by any frequent itemset. The selectivity measure defined here is consistent with those used

in [NLHP98, LNHP99].

To facilitate the mining using projected databases, we employ a data structure called

FP-tree in the implementations of FICA and FICM. FP-tree is first proposed in [HPY00],

and also be adopted by [PH00, PHM00]. It is a prefix tree structure to record complete

and compact information for frequent itemset mining. A transaction database/projected

database can be compressed into an FP-tree, while all the consequent projected databases

can be derived from it efficiently. We refer readers to [HPY00] for details about FP-tree and

methods for FP-tree-based frequent itemset mining.

Since FP-growth [HPY00] is the FP-tree-based algorithm mining frequent itemsets and

much faster than Apriori, we include it in our experiment. It is thus more interesting to

compare the performance among FICA, FICM, and FP-growth than taking Apriori as the

only reference method.

5.4.1 Evaluation of FICA

To test the efficiency of FICA w.r.t. constraint selectivity in mining frequent itemsets with

convertible anti-monotone constraints, a test is performed over the dataset with support

threshold ξ = 0.1%. The result is shown in Figure 5.3. Various settings are used in the

constraint for various selectivity.

As shown in Figure 5.3, FICA achieves an almost linear scalability with the constraint

selectivity. As the selectivity goes up, i.e., when fewer itemsets satisfying the constraint,
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Figure 5.3: Scalability with constraint selectivity.

FICA cuts more search space, since if there is a frequent itemset s which does not satisfy

the constraint, it means all the frequent itemsets with s as a prefix can be pruned.

We also compare the runtime of Apriori and FP-growth in the same figure. Both methods

first compute the complete set of frequent itemsets and then use the constraint as a filter.

So, their runtime is constant w.r.t. constraint selectivity. However, only when the constraint

selectivity is 0%, i.e., when every frequent itemset satisfies the constraint, does FICA need

as same runtime as FP-growth. In all other situations, FICA always requires less time.

We also tested the scalability of FICA with support threshold and number of transac-

tions, respectively. The corresponding results are shown in Figure 5.4 and Figure 5.5. From

the figures, we can see that FICA is scalable in both cases. Furthermore, the higher the

constraint selectivity, the more scalable FICA is. This can be explained by the fact that

FICA always cuts more search spaces using constraints with higher selectivity.

5.4.2 Evaluation of FICM

As analyzed before, convertible monotone constraint can be used to save the cost of con-

straint checking, but it cannot cut the search space of frequent itemsets. In our experiments,

since we use relatively simple constraints, such as those involving avg and sum, the cost
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Figure 5.4: Scalability with support threshold.

of constraint checking is CPU-bounded. However, the cost of the whole frequent itemset

mining process is I/O-bounded. This makes the effect of pushing convertible monotone

constraint into the mining process hard to be observed from runtime reduction. In our

experiments, FICM achieves less than 3% runtime benefit in most cases.

However, if we look at the number of constraint tests performed, the advantage of FICM
can be evaluated objectively. FICM can save a lot of effort on constraint testing. Therefore,

in the experiments about FICM, the number of constraint tests is used as the performance

measure.

We test the scalability of FICM with constraint selectivity in mining frequent itemsets

with convertible monotone constraint. The result is shown in Figure 5.6, which indicates

that FICM has a linear scalability. When the constraint selectivity is low, i.e., most frequent

itemsets can pass the constraint checking, most of constraint tests can be saved. This is

because once a frequent itemset satisfies a convertible monotone constraint, every subsequent

frequent itemset derived from corresponding projected database has that frequent itemset

as a prefix and thus satisfies the constraint, too.

We also tested the scalability of FICM with support threshold. The result is shown in

Figure 5.7. The figure shows that FICM is scalable. Furthermore, the lower the constraint
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selectivity, the better the scalability FICM is.

In summary, our experimental results show that the method proposed in this chapter

is scalable for mining frequent itemsets with convertible constraints in large transaction

databases. The experimental results strongly support our theoretical analysis.

5.5 Mining Frequent Itemsets with Multiple Convertible Con-

straints

We have studied the push of single convertible constraints into frequent itemset mining.

“Can we push multiple constraints deep into the frequent pattern mining process?”

Multiple constraints in a mining query may belong to the same category (e.g. all are anti-

monotone) or to different categories. Moreover, different constraints may be on different

properties of items (e.g. some could be on item price, others on sales profits, the number of

items, etc.).

As shown in our previous analysis, unlike anti-monotone, monotone and succinct con-

straints, convertible constraints can be mined only by ordering items properly. However,

different constraints may require different or even conflicting item ordering. The question
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Figure 5.6: Scalability with constraint selectivity.

is how to deal with this nicely. In the following, we refer to a constraint with a high (low)

selectivity as a sharp (blunt) constraint.

In the sequel, we consider mining frequent itemsets with a constraint C1 ◦ C2, where

both C1 and C2 are convertible constraints, and ◦ ∈ {∧,∨}.

Case 1. There exists an order R such that both C1 and C2 are convertible w.r.t. R. In

such a case, there is no conflict between the two convertible constraints. So, we can

push both constraints into the mining process using the order R. We suggest some

heuristics as shown in Table 5.6.

Case 2. There exists a conflict on the order of items. Suppose C1 requires R1 and C2

requires R2, and R1 and R2 is incompatible. In such situations, we should try to

satisfy one constraint at first, and then using the order for the other constraint to

mine frequent itemsets in the corresponding projected database. The strategies are

shown in Table 5.7.

Interested readers may verify the strategies in Tables 5.6 and 5.7 with the similar rea-

soning as provided in Section 4. We need ways to estimate the selectivity of constraints. In

practice, methods such as sampling and business background knowledge often provide useful
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Figure 5.7: Scalability with support threshold.

estimation. Notice that queries may contain an anti-monotone or monotone constraint to-

gether with a convertible constraint. Since an anti-monotone or monotone constraint does

not impose requirements on item ordering, such a constraint can be treated similarly as

Case 1 (Table 5.6). Also, this discussion can be extended to the cases when there are more

than two constraints.

5.6 Summary

Although there have been interesting studies, such as [NLHP98, LNHP99, GLW00], on

mining frequent patterns with constraints, constraints involving holistic functions such as

median, algebraic functions such as avg, or even those involving distributive functions

like sum over sets with positive and negative item values are difficult to incorporate in

an optimization process in frequent itemset mining. The reason is such constraints do not

exhibit nice properties like monotonicity, etc. A main contribution of this chapter is showing

that by imposing an appropriate order on items, such tough constraints can be converted

into ones that possess monotone behavior. To this end, we made a detailed analysis and

classification of the so-called convertible constraints. We characterized them using prefix
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Categories of
constraints

C1 ∨ C2 C1 ∧ C2

Both are con-
vertible anti-
monotone

Test the blunt constraint first. Only
for itemsets violating both C1 and
C2, the corresponding projected
database can be pruned.

Test the sharp constraint first. For
itemsets violating either constraint,
their projected database can be
pruned.

Both are con-
vertible mono-
tone

Test the blunt constraint first. Once
an itemset satisfies either constraint,
all the follow-up testing can be
waived.

Test the sharp constraint first. Only
when an itemset satisfies both con-
straints, can all the following-up
testing be waived.

One is convert-
ible monotone,
while the other
is convertible
anti-monotone

Test the convertible monotone one
first. If it is satisfied, the following-
up testing can be waived.

Test the convertible anti-monotone
constraint first. If it is violated, the
corresponding projected database
can be pruned. The convertible anti-
monotone constraint-checking has to
be done all the time, even when the
convertible monotone one is satis-
fied/waived.

Table 5.6: Strategies for mining with multiple convertible constraints without conflict on
item ordering.

monotone functions and established their arithmetical closure properties. As a byproduct,

we shed light on the overall picture of various classes of constraints that can be optimized

in frequent set mining. While convertible constraints cannot be literally incorporated into

an Apriori-style algorithm, they can be readily incorporated into the FP-growth algorithm.

Our experiments show the effectiveness of the algorithms developed.

We have been working on a systematic implementation of constraint-based frequent

pattern mining in a data mining system. More experiments are needed to understand how

best to handle multiple constraints. An open issue is given an arbitrary constraint, how can

we quickly check if it is (strongly) convertible. We are also exploring the use of constraints

in clustering.
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Categories of
constraints

C1 ∨ C2 C1 ∧ C2

Both are con-
vertible anti-
monotone

Test the blunt constraint, say C1,
first, using order R1. When a fre-
quent itemset α violates C1, mine
frequent itemsets β in α-projected
database, using R2, such that α ∪ β
satisfies C2.

Test the sharp constraint, say C1, us-
ing order R1, all the time. Use C2 as
a post-filter.

Both are con-
vertible mono-
tone

Test the blunt constraint, say C1,
first, using order R1. When a fre-
quent itemset α violates C1, mine
frequent itemsets β in α-projected
database, using R2, such that α ∪ β
satisfies C2.

Test the sharp constraint, say C1, us-
ing order R1 first. When a frequent
itemset α satisfies C1, mine frequent
itemsets β in α-projected database,
using R2, such that α ∪ β satisfies
C2.

One is convert-
ible monotone,
while the other
is convertible
anti-monotone

Test the convertible monotone one,
say C1, first, using R1. If satis-
fied, the follow-up testing can be
waived. In the α-projected database
such that α violates C1, mine fre-
quent itemsets β using R2 such that
α ∪ β satisfies C2.

Test the convertible anti-monotone
constraint first. If it is violated, cor-
responding projected database can
be pruned. Use C2 as a post-filter.

Table 5.7: Strategies for mining with multiple convertible constraints with conflict on item
ordering.



Chapter 6

Pattern-growth Sequential Pattern

Mining

In previous chapters, we have developed efficient and effective pattern-growth methods for

frequent pattern mining. Can we extend pattern-growth methods to mine other kinds of

patterns? To examine the power of pattern-growth methods, in this chapter, we solve the

sequential pattern mining problem using pattern-growth methods.

Sequential pattern mining, which discovers frequent subsequences as patterns in a se-

quence database, is an important data mining problem with broad applications, including

the analysis of customer purchase patterns or Web access patterns, the analysis of the pro-

cesses of scientific experiments, natural disasters, disease treatments, DNA analysis, and so

on.

The sequential pattern mining problem was first introduced by Agrawal and Srikant in

[AS95]: Given a set of sequences, where each sequence consists of a list of elements and

each element consists of a set of items, and given a user-specified min support threshold,

sequential pattern mining is to find all of the frequent subsequences, i.e., the subsequences

whose occurrence frequency in the set of sequences is no less than min support.

Many studies have contributed to the efficient mining of sequential patterns or other

frequent patterns in time-related data [AS95, SA96b, MTV97, WCM+94, Zak98, MCP98,

LHF98, BWJ98, ORS98, RMS98, HDY99]. Srikant and Agrawal [SA96b] generalize their

definition of sequential patterns in [AS95] to include time constraints, sliding time window,

and user-defined taxonomy. Mannila, et al. [MTV97] present a problem of mining frequent

108
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episodes in a sequence of events, where episodes are essentially acyclic graphs of events

whose edges specify the temporal before-and-after relationship without timing-interval re-

strictions. Bettini, et al. [BWJ98] consider a generalization of inter-transaction association

rules. These are essentially rules whose left-hand and right-hand sides are episodes with

time-interval restrictions. Lu, et al. [LHF98] propose inter-transaction association rules

which are implication rules whose two sides are totally-ordered episodes with timing-interval

restrictions. Garofalakis, et al. [GRS99] propose the use of regular expressions as a flexible

constraint specification tool that enables user-controlled focus to be incorporated into the

sequential pattern mining process.

Recent works have also extended the scope from mining sequential patterns to mining

partial periodic patterns. Özden, et al. [ORS98] introduce cyclic association rules which are

essentially partial periodic patterns with perfect periodicity in the sense that each pattern

reoccurs in every cycle, with 100% confidence. Han, et al. [HDY99] developed a frequent

pattern mining method for mining partial periodicity patterns which are frequent maximal

patterns where each pattern appears in a fixed period with a fixed set of offsets, and with

sufficient support.

Almost all of the above proposed methods for mining sequential patterns and other time-

related frequent patterns are Apriori-like, i.e., based on the Apriori heuristic, which states

the fact that any super-pattern of an infrequent pattern cannot be frequent, and a candidate

generation-and-test paradigm proposed in association mining [AS94].

A typical Apriori-like sequential pattern mining method, such as GSP [SA96b], adopts

a multiple-pass, candidate generation-and-test approach, outlined as follows. The first scan

finds all of the frequent items which form the set of single item frequent sequences. Each

subsequent pass starts with a seed set of sequential patterns, which is the set of sequential

patterns found in the previous pass. This seed set is used to generate new potential patterns,

called candidate sequences. Each candidate sequence contains one more item than a seed

sequential pattern, where each element in the pattern may contain one item or multiple

items. The number of items in a sequence is called the length of the sequence. So, all the

candidate sequences in a pass will have the same length. The scan of the database in one

pass finds the support for each candidate sequence. All the candidates whose support in the

database is no less than min support form the set of the newly found sequential patterns.

This set then becomes the seed set for the next pass. The algorithm terminates when no

new sequential pattern is found in a pass, or when no candidate sequence can be generated.
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The Apriori-like sequential pattern mining method, though reduces search space, bears

three nontrivial, inherent costs which are independent of detailed implementation tech-

niques.

• A huge set of candidate sequences could be generated in a large sequence database. Since

the set of candidate sequences includes all the possible permutations of the elements

and repetition of items in a sequence, the Apriori-based method may generate a very

large set of candidate sequences even for a moderate seed set. For example, two

frequent sequences of length-1, 〈a〉 and 〈b〉, will generate 5 candidate sequences of

length-2: 〈aa〉, 〈ab〉, 〈ba〉, 〈bb〉, and 〈(ab)〉, where 〈(ab)〉 represents that two events a

and b happen in the same time slot. If there are 1000 frequent sequences of length-1,

such as 〈a1〉, 〈a2〉, . . . , 〈a1000〉, an Apriori-like algorithm will generate 1000× 1000 +
1000×999

2 = 1, 499, 500 candidate sequences, where the first term is derived from the set

〈a1a1〉, 〈a1a2〉, . . . , 〈a1a1000〉, 〈a2a1〉, 〈a2a2〉, . . . , 〈a1000a1000〉, and the second term is

derived from the set 〈(a1a2)〉, 〈(a1a3)〉, . . . , 〈(a999a1000)〉.

• Many database scans in mining. Since the length of each candidate sequence grows

by one at each database scan, to find a sequential pattern {(abc)(abc)(abc)(abc)(abc)},
the Apriori-based method must scan the database at least 15 times. This bears some

nontrivial cost.

• The Apriori-based method encounters difficulty when mining long sequential patterns.

This is because a long sequential pattern must grow up from a huge number of short

sequential patterns, but the number of such candidate sequences is exponential to the

length of the sequential patterns to be mined. For example, suppose there is only a

single sequence of length 100, 〈a1a2 . . . a100〉, in the database, and the min support

threshold is 1 (i.e., every occurring pattern is frequent), to (re-)derive this length-100

sequential pattern, the Apriori-based method has to generate 100 length-1 candidate

sequences, 100 × 100 + 100×99
2 = 14, 950 length-2 candidate sequences,


 100

3


 =

161, 700 length-3 candidate sequences1, . . . . Obviously, the total number of candidate

sequences to be generated is Σ100
i=1


 100

i


 = 2100 − 1 ≈ 1030.

1Notice that Apriori does cut a substantial amount of search space. Otherwise, the number of length-3
candidate sequences would have been 100× 100× 100 + 100× 100× 99 + 100×99×98

3×2
= 2, 151, 700.
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In many applications, it is not unusual that one may encounter a large number of se-

quential patterns and long sequences, such as in DNA analysis or stock sequence analysis.

Therefore, it is important to re-examine the sequential pattern mining problem to explore

more efficient and scalable methods.

Based on our analysis, both the thrust and the bottleneck of an Apriori-based sequential

pattern mining method come from its step-wise candidate sequence generation and test.

Given the success of pattern-growth methods in frequent pattern mining, can we develop a

pattern-growth method for sequential pattern mining which absorbs the spirit of Apriori but

avoid or substantially reduce the expensive candidate generation and test?

In this chapter, we systematically develop pattern-growth methods for mining sequen-

tial patterns efficiently. The new methods are non-Apriori and apply a divide-and-conquer,

pattern-growth principle. The general idea is that sequence databases are recursively pro-

jected into a set of smaller projected databases and sequential patterns are grown in each

projected databases by exploring only local frequent fragments. Two pattern growth schemes,

FreeSpan (for Frequent pattern-projected Sequential pattern mining) and PrefixSpan (for

Prefix-projected Sequential pattern mining), are proposed. They mine the complete set of

sequential patterns but greatly reduce the efforts of candidate subsequence generation. To

further improve mining efficiency, three kinds of database projections: level-by-level projec-

tion, bi-level projection, and pseudo-projection, are explored. A comprehensive performance

study shows that FreeSpan and PrefixSpan outperform Apriori-based GSP algorithm and

an integrated PrefixSpan is the fastest one in mining large sequence databases.

The remainder of the chapter is organized as follows. In Section 6.1, we define the se-

quential pattern mining problem and illustrate the ideas of Apriori-based sequential pattern

mining method GSP. In Section 6.2, we introduce our projection-based sequential pattern

mining with a general introduction to the two basic FreeSpan and PrefixSpan algorithms.

In Section 6.3, methods for scaling up pattern growth using bi-level projection and pseudo-

projection are proposed. Our experimental results and performance study are reported in

Section 6.4. We summarize the factors contributing to the success of the method and discuss

the related issues in Section 6.5. Our study is concluded in Section 6.6.
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6.1 Problem Definition and Related Works

In this section, we first define the problem of sequential pattern mining and then illustrate

the essential mining method GSP [SA96b] using an example.

6.1.1 Problem Definition

Let I = {i1, i2, . . . , in} be a set of all items. An itemset is a subset of items. A sequence

is an ordered list of itemsets. A sequence s is denoted by 〈s1s2 · · · sl〉, where sj is an itemset,

i.e., sj ⊆ I for 1 ≤ j ≤ l. sj is also called an element of the sequence, and denoted as

(x1x2 · · ·xm), where xk is an item, i.e., xk ∈ I for 1 ≤ k ≤ m. For brevity, the brackets

are omitted if an element has only one item. That is, element (x) is written as x. An

item can occur at most once in an element of a sequence, but can occur multiple times in

different elements of a sequence. The number of instances of items in a sequence is called

the length of the sequence. A sequence with length l is called an l-sequence. A sequence

α = 〈a1a2 · · · an〉 is called a subsequence of another sequence β = 〈b1b2 · · · bm〉 and β a

super-sequence of α, denoted as α v β, if there exist integers 1 ≤ j1 < j2 < · · · < jn ≤ m

such that a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , an ⊆ bjn .

A sequence database S is a set of tuples 〈sid, s〉, where sid is a sequence id and s

is a sequence. A tuple 〈sid, s〉 is said to contain a sequence α, if α is a subsequence of s,

i.e., α v s. The support of a sequence α in a sequence database S is the number of tuples

in the database containing α, i.e., supportS(α) = | {〈sid, s〉|(〈sid, s〉 ∈ S) ∧ (α v s)} |. It

can be denoted as support(α) if the sequence database is clear from the context. Given a

positive integer min support as the support threshold, a sequence α is called a sequential

pattern in sequence database S if the sequence is contained by at least min support tuples

in the database, i.e., supportS(α) ≥ min support. A sequential pattern with length l is

called an l-pattern.

Example 6.1 (Running example) Let our running database be sequence database S

given in the first two columns of Table 6.1 and min support = 2. The set of items in the

database is {a, b, c, d, e, f, g}.
A sequence 〈a(abc)(ac)d(cf)〉 has five elements: (a), (abc), (ac), (c) and (cf), where items

a and c appear more than once respectively in different elements. It is also a 9-sequence

since there are 9 instances appearing in that sequence. Item a happens three times in this
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Sequence id Sequence item-pattern
10 〈a(abc)(ac)d(cf)〉 {a, b, c, d, f}
20 〈(ad)c(bc)(ae)〉 {a, b, c, d, e}
30 〈(ef)(ab)(df)cb〉 {a, b, c, d, e, f}
40 〈eg(af)cbc〉 {a, b, c, e, f, g}

Table 6.1: A sequence database

sequence, so it contributes 3 to the length of the sequence. However, the whole sequence

〈a(abc)(ac)d(cf)〉 contributes only one to the support of 〈a〉. Also, sequence 〈a(bc)df〉 is

a subsequence of 〈a(abc)(ac)d(cf)〉. Since both sequences 10 and 30 contain subsequence

s = 〈(ab)c〉, s is a sequential pattern of length 3 (i.e., 3-pattern).

Problem Statement. Given a sequence database and a min support threshold, the prob-

lem of sequential pattern mining is to find the complete set of sequential patterns in the

database.

6.1.2 Algorithm GSP

With the Apriori heuristic, a typical sequential pattern mining method, GSP [SA96b],

proceeds as shown in the following example.

Example 6.2 (GSP) Given the database S and min support in Example 6.1, GSP first

scans S, collects the support for each item, and finds the set of frequent items (in the form

of item : support) as below,

a : 4, b : 4, c : 4, d : 3, e : 3, f : 3, g : 1

By filtering infrequent items, g, we obtain the first seed set L1 = {〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉, 〈f〉},
each representing a 1-element sequential pattern. Each subsequent pass starts with the seed

set found in the previous pass and uses it to generate new potential sequential patterns,

called candidate sequences.

For L1, a set of 6 length-1 sequential patterns generates a set of 6×6+ 6×5
2 = 51 candidate

sequences, C2 = {〈aa〉, 〈ab〉, . . . , 〈af〉, 〈ba〉, 〈bb〉, . . . , 〈ff〉, 〈(ab)〉, 〈(ac)〉, . . . , 〈(ef)〉}.
The multi-scan mining process is shown in Figure 6.1, with the following explanations.
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...... ............

......

......

1st scan, 7 candidates

Candidate cannot pass support threshold

6 length-1 sequential patterns

<aa> <ab> <af> <ba> <bb> <(ab)> <(ef)><ff>

3rd scan, 64 candidates
21 length-3 sequential patterns
13 candidates not appear in database at all

<aab> <a(ab)> <aac>

4 length-4 sequential patterns <a(bc)a>

Candidate does not appear in database at all

22 length-2 sequential patterns
9 candidates not appear in database at all

2nd scan, 51 candidates

4th scan, 6 candidates

<a> <b> <c> <d> <e> <f> <g>

<(ab)dc> <efbc>

Figure 6.1: Candidates and sequential patterns in GSP

• The set of candidates is generated by a self-join of the sequential patterns found in

the previous pass. In the k-th pass, a sequence is a candidate only if each of its

length-(k − 1) subsequences is a sequential pattern found at the (k − 1)-st pass.

• A new scan of the database collects the support for each candidate sequence and finds

the new set of sequential patterns. This set becomes the seed for the next pass. The

algorithm terminates when no sequential pattern is found in a pass, or when there is

no candidate sequence generated.

• The number of scans is at least the maximum length of sequential patterns. It needs

one more scan if the sequential patterns obtained in the last scan still generate new

candidates.

• GSP, though benefits from the Apriori pruning, still generates a large number of candi-

dates. In this example, 6 length-1 sequential patterns generate 51 length-2 candidates,

22 length-2 sequential patterns generate 64 length-3 candidates, etc.

• Candidates generated by GSP may not appear in the database at all. For example,

13 out of 64 length-3 candidates do not appear in the database.
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6.2 Mining Sequential Patterns by Projections

In this section, we introduce new approaches for mining sequential patterns efficiently in

large databases. The general idea is as follows. Instead of repeatedly scanning the entire

database and generating and testing large sets of candidate sequences, we adopt a divide-

and-conquer strategy: recursively project a sequence database into a set of smaller databases

and then mine each projected database to find frequent patterns.

We propose two methods, FreeSpan [HPMA+00] and PrefixSpan [PHMA+01], for projection-

based sequential pattern mining. Both methods create projected databases but they differ

at the criteria of database projection: FreeSpan creates projected databases based on the

current set of frequent patterns, whereas PrefixSpan does so based on frequent prefixes

only. Our study shows that although both FreeSpan and PrefixSpan are faster than GSP,

PrefixSpan is substantially faster than FreeSpan.

6.2.1 FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining

Given a sequence s, the set of items appearing in it is called the item-pattern of the

sequence, denoted as ι(s). For example, ι(〈a(abc)(ac)d(cf)〉) = {a, b, c, d, f}. Given a

sequence database S = {〈sidi, si〉}, we obtain the corresponding item-pattern database,

denoted as ι(S) = {〈sidi, ι(si)〉}, by substituting sequences by their item-patterns. For

example, the item-patterns of sequences in the sequence database S in Table 6.1 are listed

in the third column in the same table. For an itemset X (i.e. a set of items), the support

of X, denoted as supportι(S)(X) = |{〈sidi, ι(si)〉|X ⊆ ι(si)}|, is the number of tuples in ι(S)

containing X. Given a support threshold min support, an itemset X is called a frequent

item-pattern if and only if supportι(S)(X) ≥ min support.

The following lemma illustrate an interesting relationship between a sequential pattern

in a sequence database and its item-pattern in the corresponding item-pattern database.

Lemma 6.1 (Item-pattern) For a sequential pattern in a sequence database, its item-

pattern must be frequent in the corresponding item-pattern database.

Proof. Given a sequence database S and a support threshold min support. Let s be

a sequential pattern. Obviously, for every 〈sidi, si〉 ∈ S such that s v si, ι(s) ⊆ ι(si).

Therefore, we have supportι(S)(ι(s)) ≥ supportS(s), which is followed by the theorem.

Please note that the reverse statement of Lemma 6.1 is not true. For example, {a, b, c, d}
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is a frequent item-pattern in the item-pattern database of S in Table 6.1 with respect

to support threshold min support = 2. However, 〈abcd〉 is not frequent in the sequence

database S.

Lemma 6.1 provides a heuristic to prune the search space in mining sequential patterns:

If an item-pattern is infrequent, we do not need to examine its corresponding sequential

patterns. FreeSpan adopts the heuristic to mine sequential patterns by partitioning search

space and projecting sequence sub-databases recursively. We show how FreeSpan uses the

heuristic in mining sequential patterns by an example as follows.

Example 6.3 (FreeSpan) Given the database S and min support in Example 6.1, FreeSpan

first scans S, collects the support for each item, and finds the set of frequent items. This

step is similar to GSP. Frequent items are listed in support descending order (in the form

of item : support) as below,

F-list = a : 4, b : 4, c : 4, d : 3, e : 3, f : 3

According to F-list, the complete set of sequential patterns in S can be divided into 6

disjoint subsets: (1) the ones containing only item a, (2) the ones containing item b but no

item after b in F-list, (3) the ones containing item c but no item after c in F-list, and so on,

and finally, (6) the ones containing item f .

The subsets of sequential patterns can be mined by constructing projected databases.

Infrequent items, such as g in this example, are removed from construction of projected

databases. The mining process is detailed as follows.

• Finding sequential patterns containing only item a. By scanning sequence database

once, the only two sequential patterns containing only item a, 〈a〉 and 〈aa〉, are found.

• Finding sequential patterns containing item b but no item after b in F-list. That can be

achieved by constructing the {b}-projected database. For a sequence α in S containing

item b, a subsequence α′ is derived by removing from α all items after b in F-list. α′ is

inserted into the {b}-projected database. Thus, the {b}-projected database contains

four sequences: 〈a(ab)a〉, 〈aba〉, 〈(ab)b〉, and 〈ab〉. By scanning the projected database

once more, all sequential patterns containing item b but no item after b in F-list are

found. They are {〈b〉, 〈ab〉, 〈ba〉, 〈(ab)〉}.
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• Finding other subsets of sequential patterns. Other subsets of sequential patterns can

be found similarly, by constructing corresponding projected databases and mining

them recursively.

Please note that the {b}-, {c}-, . . . , {f}-projected databases are constructed simultane-

ously in one scan of the original sequence database. All sequential patterns containing only

item a are also found in that pass. This database projection process is performed recursively

on the projected-databases.

Based on the above example, we can make sequences projections based on item-patterns

as follows.

Definition 6.1 (Projection based on item-pattern) Let F-list be a list of items and

X a set of items. Item X̂ ∈ X is called the leading item in X with respect to F-list ,

if and only if there exists no item y ∈ X such that X̂ 6= y and y is before X̂ according to

F-list.

Let s be a sequence and X a set of items. The item-pattern projection of s against

X, denoted as s|X , is formed by removing all items y from s such that y 6∈ X and y is after

X̂ according to F-list.

Given a sequence database S = {〈sidi, si〉} and a set of items X. The item-pattern

projected database of S against X, denoted as S|X , is defined as {〈sidi, si|X〉|〈sidi, si〉 ∈
S}.

The FreeSpan algorithm is presented as follows.

Algorithm 8 (FreeSpan) Frequent pattern-projected sequential pattern mining.

Input: Sequence database S and support threshold min support

Output: The complete set of sequential patterns

Method: Call FreeSpan(S, ∅).

Procedure FreeSpan(proj db, freq item pat)

1. Scan projected database proj db once, find F-list, the list of frequent items except

for those in frequent item-pattern freq item pat;



CHAPTER 6. PATTERN-GROWTH SEQUENTIAL PATTERN MINING 118

2. Scan proj db again,

• Find sequential patterns with item-pattern x ∪ freq item pat, where x ∈
F-list;

• For each item x ∈ F-list, form projected database proj db|x∪freq item pat for

item-pattern x ∪ freq item pat;

3. For each item x ∈ F-list, call FreeSpan(proj db|x∪freq item pat, x∪freq item pat).

Analysis. The correctness of Algorithm FreeSpan lays in the following two aspects.

• Problem partitioning based on frequent item-patterns. Let F-list =

x1, . . . , xn be a list of all frequent items in sequence database S. Then, the

complete set of sequential patterns in S can be divided into n disjoint subsets:

the first is the set of sequential patterns containing only item x1, the second is

those containing item x2 but no item in {x3, . . . , xn}, and so on. In general, the

ith subset (1 ≤ i ≤ n) is the set of sequential patterns containing only item xi

but no item in {xi+1, . . . , xn}.
Partitioning based on frequent item-patterns can be applied to the partitions re-

cursively. Lemma 6.1 provides a theoretical support to that only those partitions

of frequent item-patterns need to be considered. As long as we find sequential

patterns in all partitions of frequent item-patterns, the global sequential pattern

mining problem is solved completely without redundancy.

• Forming and mining proper projected databases. To find the complete

set of sequential patterns in a partition for frequent item-pattern X, FreeSpan

forms an X-projected database. The X-projected database contains only the

segments of sequences potentially supporting sequential patterns in this partition.

Any irrelevant information is discarded. The projected database contains the

minimal information for finding those sequential patterns in the given partition.

Recursively mining projected databases generates the complete set of sequential

patterns in the given partition without duplication.

From Example 6.3 and the analysis of Algorithm FreeSpan, we have the following obser-

vations about the efficiency of FreeSpan. Our experimental results also verify our observa-

tions.



CHAPTER 6. PATTERN-GROWTH SEQUENTIAL PATTERN MINING 119

• FreeSpan searches a smaller projected database than GSP in each subse-

quent database projection. This is because that FreeSpan projects a large se-

quence database recursively into a set of small projected sequence databases based on

the currently mined frequent item-patterns, the subsequent mining is confined to each

projected database relevant to a smaller set of candidates.

• The major cost of FreeSpan is to deal with projected databases. If a pattern

appears in each sequence of a database, its projected database does not shrink (except

for the removal of some infrequent items). For example, the {f}-projected database in

this example is the same as the original sequence database, except for the removal of

infrequent item g. Moreover, since a length-k subsequence may grow at any position,

the search for length-(k + 1) candidate sequence will need to check every possible

combination, which is costly.

6.2.2 PrefixSpan: Prefix-Projected Sequential Patterns Mining

Since items within an element of a sequence can be listed in any order, without loss of

generality, we assume they are listed in alphabetical order. For example, the sequence in

S with Sequence id 10 in our running example is listed as 〈a(abc)(ac)d(cf)〉 in stead of

〈a(bac)(ca)d(fc)〉. With such a convention, the expression of a sequence is unique.

Definition 6.2 (Prefix, projection and suffix) Suppose all the items in an element are

listed alphabetically. Given a sequence α = 〈e1e2 · · · en〉, a sequence β = 〈e′1, e′2 · · · e′m〉
(m ≤ n) is called a prefix of α if and only if (1) e′i = ei for (i ≤ m− 1); (2) e′m ⊆ em; and

(3) all the items in (em − e′m) are alphabetically after those in e′m.

Given sequences α and β such that β is a subsequence of α, i.e., β v α. A subsequence

α′ of sequence α (i.e., α′ v α) is called a projection of α w.r.t. prefix β if and only if (1)

α′ is with prefix β and (2) there exists no proper super-sequence α′′ of α′ such that α′′ is a

subsequence of α and also with prefix β.

Let α′ = 〈e1e2 · · · en〉 be the projection of α w.r.t. prefix β = 〈e1, e2 · · · em−1e
′
m〉 (m ≤ n).

Sequence γ = 〈e′′mem+1 · · · en〉 is called the suffix of α w.r.t. prefix β, denoted as γ = α/β,

where e′′m = (em − e′m).2 We also denote α = β · γ.

2If e′′m is not empty, the suffix is also denoted as 〈( items in e′′m)em+1 · · · en〉.
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Especially, if β is not a subsequence of α, Both projection and suffix of α w.r.t. β are

empty, respectively.

For example, 〈a〉, 〈aa〉, 〈a(ab)〉 and 〈a(abc)〉 are prefixes of sequence 〈a(abc)(ac)d(cf)〉,
but neither 〈ab〉 nor 〈a(bc)〉 is considered as a prefix. 〈(abc)(ac)d(cf)〉 is suffix w.r.t. prefix

〈a〉, 〈( bc)(ac)d(cf)〉 is suffix w.r.t. prefix 〈aa〉, and 〈( c)(ac)d(cf)〉 is suffix w.r.t. prefix 〈ab〉.

Example 6.4 (PrefixSpan) For the same sequence database S in Table 6.1 with min sup =

2, sequential patterns in S can be mined by a prefix-projection method in the following steps.

1. Find length-1 sequential patterns. Scan S once to find all the frequent items in se-

quences. Each of these frequent items is a length-1 sequential pattern. They are 〈a〉 : 4,

〈b〉 : 4, 〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3, and 〈f〉 : 3, where the notation “〈pattern〉 : count”

represents the pattern and its associated support count.

2. Divide search space. The complete set of sequential patterns can be partitioned into

the following six subsets according to the six prefixes: (1) the ones with prefix 〈a〉, (2)

the ones with prefix 〈b〉, . . . , and (6) the ones with prefix 〈f〉.

prefix projected (suffix) database sequential patterns
〈a〉 〈(abc)(ac)d(cf)〉,

〈( d)c(bc)(ae)〉, 〈( b)(df)cb〉,
〈( f)cbc〉

〈a〉, 〈aa〉, 〈ab〉, 〈a(bc)〉, 〈a(bc)a〉, 〈aba〉, 〈abc〉,
〈(ab)〉, 〈(ab)c〉, 〈(ab)d〉, 〈(ab)f〉, 〈(ab)dc〉, 〈ac〉,
〈aca〉, 〈acb〉, 〈acc〉, 〈ad〉, 〈adc〉, 〈af〉

〈b〉 〈( c)(ac)d(cf)〉, 〈( c)(ae)〉,
〈(df)cb〉, 〈c〉

〈b〉, 〈ba〉, 〈bc〉, 〈(bc)〉, 〈(bc)a〉, 〈bd〉, 〈bdc〉, 〈bf〉

〈c〉 〈(ac)d(cf)〉, 〈(bc)(ae)〉, 〈b〉,
〈bc〉

〈c〉, 〈ca〉, 〈cb〉, 〈cc〉

〈d〉 〈(cf)〉, 〈c(bc)(ae)〉, 〈( f)cb〉 〈d〉, 〈db〉, 〈dc〉, 〈dcb〉
〈e〉 〈( f)(ab)(df)cb〉, 〈(af)cbc〉 〈e〉, 〈ea〉, 〈eab〉, 〈eac〉, 〈eacb〉, 〈eb〉, 〈ebc〉, 〈ec〉,

〈ecb〉, 〈ef〉, 〈efb〉, 〈efc〉, 〈efcb〉.
〈f〉 〈(ab)(df)cb〉, 〈cbc〉 〈f〉, 〈fb〉, 〈fbc〉, 〈fc〉, 〈fcb〉

Table 6.2: Projected databases and sequential patterns

3. Find subsets of sequential patterns. The subsets of sequential patterns can be mined by

constructing the corresponding set of projected databases and mining each recursively.

The projected databases as well as sequential patterns found in them are listed in

Table 6.2, while the mining process is explained as follows.
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(a) Find sequential patterns with prefix 〈a〉. Only the sequences containing 〈a〉 should

be collected. Moreover, in a sequence containing 〈a〉, only the subsequence pre-

fixed with the first occurrence of 〈a〉 should be considered. For example, in

sequence 〈(ef)(ab)(df)cb〉, only the subsequence 〈( b)(df)cb〉 should be consid-

ered for mining sequential patterns prefixed with 〈a〉. Notice that ( b) means

that the last element in the prefix, which is a, together with b, form one element.

The sequences in S containing 〈a〉 are projected w.r.t. 〈a〉 to form the 〈a〉-projected
database, which consists of four suffix sequences: 〈(abc)(ac)d(cf)〉, 〈( d)c(bc)(ae)〉,
〈( b)(df)cb〉 and 〈( f)cbc〉. By scanning 〈a〉-projected database once, all the

length-2 sequential patterns prefixed with 〈a〉 can be found. They are: 〈aa〉 : 2,

〈ab〉 : 4, 〈(ab)〉 : 2, 〈ac〉 : 4, 〈ad〉 : 2, and 〈af〉 : 2.

Recursively, all sequential patterns with prefix 〈a〉 can be partitioned into 6

subsets: (1) that prefixed with 〈aa〉, (2) that with 〈ab〉, . . . , and finally, (6)

that with 〈af〉. These subsets can be mined by constructing respective projected

databases and mining each recursively as follows.

i. The 〈aa〉-projected database consists of only one non-empty (suffix) sub-

sequences prefixed with 〈aa〉: 〈( bc)(ac)d(cf)〉. Since there is no hope to

generate any frequent subsequence from a single sequence, the processing of

the 〈aa〉-projected database terminates.

ii. The 〈ab〉-projected database consists of three suffix sequences: 〈( c)(ac)d(cf)〉,
〈( c)a〉, and 〈c〉. Recursively mining the 〈ab〉-projected database returns four

sequential patterns: 〈( c)〉, 〈( c)a〉, 〈a〉, and 〈c〉 (i.e., 〈a(bc)〉, 〈a(bc)a〉, 〈aba〉,
and 〈abc〉.) They form the complete set of sequential patterns prefixed with

〈ab〉.
iii. The 〈(ab)〉-projected database contains only two sequences: 〈( c)(ac)d(cf)〉

and 〈(df)cb〉, which leads to the finding of the following sequential patterns

prefixed with 〈(ab)〉: 〈c〉, 〈d〉, 〈f〉, and 〈dc〉.
iv. The 〈ac〉-, 〈ad〉- and 〈af〉- projected databases can be constructed and re-

cursively mined similarly. The sequential patterns found are shown in Table

6.2.

(b) Find sequential patterns with prefix 〈b〉, 〈c〉, 〈d〉, 〈e〉 and 〈f〉, respectively. This

can be done by constructing the 〈b〉-, 〈c〉- 〈d〉-, 〈e〉- and 〈f〉-projected databases
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and mining them respectively. The projected databases as well as the sequential

patterns found are shown in Table 6.2.

4. The set of sequential patterns is the collection of patterns found in the above recursive

mining process. One can verify that it returns exactly the same set of sequential

patterns as what GSP and FreeSpan do.

Now, let us justify the correctness and completeness of the mining process in Example

6.4. Based on the concept of prefix, we have the following lemma on the completeness of

partitioning the sequential pattern mining problem.

Lemma 6.2 (Problem partitioning)

1. Let {〈x1〉, 〈x2〉, . . . , 〈xn〉} be the complete set of length-1 sequential patterns in sequence

database S. The complete set of sequential patterns in S can be divided into n disjoint

subsets. The ith subset (1 ≤ i ≤ n) is the set of sequential patterns with prefix 〈xi〉.

2. Let α be a length-l sequential pattern and {β1, β2, . . . , βm} be the set of all length-(l+1)

sequential patterns with prefix α. The complete set of sequential patterns with prefix α,

except for α itself, can be divided into m disjoint subsets. The jth subset (1 ≤ j ≤ m)

is the set of sequential patterns prefixed with βj.

Proof. We show the correctness of the second half of the lemma. The first half is a special

case where α = 〈〉.
For a sequential pattern γ with prefix α, where α is of length l, the length-(l+1) prefix of

γ must be a sequential pattern, according to the Apriori heuristic. Furthermore, the length-

(l+1) prefix of γ is also with prefix α, according to the definition of prefix. Therefore, there

exists some j (1 ≤ j ≤ m) such that βj is the length-(l +1) prefix of γ. Thus, γ is in the jth

subset. On the other hand, since the length-k prefix of a sequence γ is unique, γ belongs

to only one determined subset. That is, the subsets are non-overlapping. So, we have the

lemma.

Based on Lemma 6.2, PrefixSpan partitions the problem recursively. That is, each subset

of sequential patterns can be further divided when necessary. This forms a divide-and-

conquer framework. To mine the subsets of sequential patterns, PrefixSpan constructs the

corresponding projected databases.
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Definition 6.3 (Projected database) Let α be a sequential pattern in sequence database

S. the α-projected database, denoted as S|α, is the collection of suffixes of sequences in

S w.r.t. prefix α.

To collect counts in projected databases, we have the following definition.

Definition 6.4 (Support count in projected database) Let α be a sequential pattern

in sequence database S, and β be a sequence with prefix α. The support count of β in

α-projected database S|α, denoted as supportS|α(β), is the number of sequences γ in S|α
such that β v α · γ.

Please note that, in general, the following holds in our running example.

supportS|α(β) ≤ supportS|α(β/α)

For example, supportS(〈(ad)〉) = 1 holds in our running example. However, 〈(ad)〉/〈a〉 = 〈d〉
and supportS|〈a〉(〈d〉) = 3.

We have the following lemma on projected databases.

Lemma 6.3 (Projected database) Let α and β be two sequential patterns in sequence

database S such that α is a prefix of β.

1. S|β = (S|α)|β;

2. for any sequence γ with prefix α, supportS(γ) = supportS|α(γ); and

3. The size of α-projected database cannot exceed that of S.

Proof. The first part of the lemma follows the fact that, for a sequence γ, the suffix of γ

w.r.t. β, γ/β, equals to the sequence resulted from first do projection of γ w.r.t. α, i.e., γ/α,

and then do projection γ/α w.r.t. β. That is γ/β = (γ/α)/β.

The second part of the lemma states that to collect support count of a sequence γ, only

the sequences in the database sharing the same prefix should be considered. Furthermore,

only those suffixes with the prefix being a super-sequence of γ should be counted. According

to the related definitions, the claim is correct.

The third part of the lemma is on the size of a projected database. Obviously, the α-

projected database can have the same number of sequences as S only if α appears in every
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sequence in S. Otherwise, only those sequences in S which are super-sequences of α also

appear in the α-projected database. So, α must have at most the same number of sequences

as S does. For every sequence γ in S such that γ is a super-sequence of α, γ appears in the

α-projected database in whole only if α is a prefix of γ. Otherwise, only a subsequence of

γ appears in the α-projected database. Therefore, the size of α-projected database cannot

exceed that of S.

Based on the above reasoning, we have the algorithm of PrefixSpan as follows.

Algorithm 9 (PrefixSpan) Prefix-projected sequential pattern mining.

Input: A sequence database S, and the minimum support threshold min sup

Output: The complete set of sequential patterns

Method:

Call PrefixSpan(〈〉, 0, S).

Subroutine PrefixSpan(α, l, S)

Parameters:

• α: a sequential pattern;

• l: the length of α;

• S|α: the α-projected database if α 6= 〈〉; otherwise, the sequence database S.

Method:

1. Scan S|α once, find the set of frequent items b such that

(a) b can be assembled to the last element of α to form a sequential pattern; or

(b) 〈b〉 can be appended to α to form a sequential pattern.

2. For each frequent item b, append it to α to form a sequential pattern α′, and output

α′;

3. For each α′, construct α′-projected database S|α′ , and call PrefixSpan (α′, l + 1, S|α′).
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Analysis. The correctness and completeness of the algorithm can be justified based on

Lemma 6.2 and Lemma 6.3, as shown in Theorem 6.1 later. Here, we analyze the efficiency

of the algorithm as follows.

• No candidate sequence needs to be generated by PrefixSpan. Unlike Apriori-like al-

gorithms, PrefixSpan only grows longer sequential patterns from the shorter frequent

ones. It neither generates nor tests any candidate sequence non-existent in a projected

database. Comparing with GSP, which generates and tests a substantial number of

candidate sequences, PrefixSpan searches a much smaller space.

• Projected databases keep shrinking. As indicated in Lemma 6.3, a projected database is

smaller than the original one because only the suffix subsequences of a frequent prefix

are projected into a projected database. In practice, the shrinking factors can be

significant because (1) usually, only a small set of sequential patterns grow quite long

in a sequence database, and thus the number of sequences in a projected database will

become quite small when prefix grows; and (2) projection only takes the suffix portion

with respect to a prefix. Notice that FreeSpan also employs the idea of projected

databases. However, the projection there often takes the whole string (not just the

suffix) and thus the shrinking factor is much less than that of PrefixSpan.

• The major cost of PrefixSpan is the construction of projected databases. In the worst

case, PrefixSpan constructs a projected database for every sequential pattern. If there

are a good number of sequential patterns, the cost is non-trivial. In the next section,

we will develop strategies to reduce the number of projected databases dramatically.

Theorem 6.1 (PrefixSpan) A sequence α is a sequential pattern if and only if PrefixSpan

says so.

Proof. (Direction if) A length-l sequence α (l ≥ 1) is identified as a sequential pattern by

PrefixSpan if and only if α is a sequential pattern in the projected database of its length-

(l − 1) prefix α−. If l = 1, the length-0 prefix of α is α− = 〈〉 and the projected database

is S itself. So, α is a sequential pattern in S. If l > 1, according to Lemma 6.3, S|α− is

exactly the α−-projected database, and supportS(α) = supportS|α− (α). Therefore, α is a

sequential pattern in S|α− means that it is also a sequential pattern in S. By this, we show

that a sequence α is a sequential pattern if PrefixSpan says so.
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(Direction only-if) Lemma 6.2 guarantees that PrefixSpan identifies the complete set of

sequential patterns in S. So, we have the theorem.

6.3 Scaling Up Pattern Growth by Bi-Level Projection and

Pseudo-Projection

As analyzed before, the major cost of PrefixSpan is to construct projected databases. If the

number and/or the size of projected databases can be reduced, the performance of sequential

pattern mining can be improved substantially. In this section, we develop two techniques

to reduce the cost of constructing projected databases: (1) a bi-level projection scheme

is proposed to reduce the number and the size of projected databases, and (2) a pseudo-

projection is proposed to explore virtual projection when the database to be projected fits

in main memory.

6.3.1 Bi-Level Projection

Before introducing the method formally, let us examine the following example.

Example 6.5 Let us re-examine mining sequential patterns in sequence database S in

Table 6.1. The first step is the same: Scan S to find the length-1 sequential patterns: 〈a〉,
〈b〉, 〈c〉, 〈d〉, 〈e〉 and 〈f〉.

At the second step, instead of constructing projected databases for each length-1 se-

quential pattern, we construct a 6× 6 lower triangular matrix M , as shown in Table 6.3.

a 2
b (4, 2, 2) 1
c (4, 2, 1) (3, 3, 2) 3
d (2, 1, 1) (2, 2, 0) (1, 3, 0) 0
e (1, 2, 1) (1, 2, 0) (1, 2, 0) (1, 1, 0) 0
f (2, 1, 1) (2, 2, 0) (1, 2, 1) (1, 1, 1) (2, 0, 1) 1

a b c d e f

Table 6.3: The S-matrix M .

The matrix M registers the supports of all the length-2 sequences which are assembled

using length-1 sequential patterns. A cell at the diagonal line has one counter. For example,
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M [c, c] = 3 indicates sequence 〈cc〉 appears in S in three sequences. Other cells have

three counters respectively. For example, M [a, c] = (4, 2, 1) means supportS(〈ac〉) = 4,

supportS(〈ca〉) = 2 and supportS(〈(ac)〉) = 1. Since the information in cell M [c, a] is

symmetric to that in M [a, c], a triangle matrix is sufficient. This matrix is called an S-

matrix.

By scanning sequence database S again, the S-matrix can be filled up, as shown in Table

6.3. All the length-2 sequential patterns can be identified from the matrix immediately.

For each length-2 sequential pattern α, construct α-projected database. For example,

〈ab〉 is identified as a length-2 sequential pattern by S-matrix. The 〈ab〉-projected database

contains three sequences: 〈( c)(ac)(cf)〉, 〈( c)a〉, and 〈c〉. By scanning it once, three frequent

items are found: 〈a〉, 〈c〉 and 〈( c)〉. Then, a 3 × 3 S-matrix for 〈ab〉-projected database is

constructed, as shown in Table 6.4.

a 0
c (1, 0, 1) 1

( c) (∅, 2, ∅) (∅, 1, ∅) ∅
a c ( c)

Table 6.4: The S-matrix in 〈ab〉-projected database.

Since there is only one cell with support 2, only one length-2 pattern 〈( c)a〉 can be gen-

erated and no further projection is needed. Notice that ∅ means that there is no possibility

to generate such pattern. So, we do not need to look at the database.

To mine the complete set of sequential patterns, other projected databases for length-2

sequential patterns should be constructed. It is to verify that such a bi-level projection

method produces exactly the same set of sequential patterns as the PrefixSpan algorithm

introduced in Section 6.2.2. However, in Section 6.2.2, to find the complete set of 53 sequen-

tial patterns, 53 projected databases are constructed. In this example, only the projected

databases for length-2 sequential patterns are needed. In total, only 22 projected databases

are constructed by bi-level projection.

Now, let us justify the mining process by bi-level projection.

Definition 6.5 (S-matrix, or sequence-match matrix) Let α be a length-l sequential

pattern, and α′1, α′2, . . . , α′m be all of length-(l +1) sequential patterns with prefix α within
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the α-projected database. The S-matrix of the α-projected database, denoted as M [α′i, α
′
j ]

(1 ≤ i ≤ j ≤ m), is defined as follows.

1. M [α′i, α
′
i] contains one counter. If the last element of α′i has only one item x, i.e.

α′i = 〈αx〉, the counter registers the support of sequence 〈α′ix〉 (i.e., 〈αxx〉) in the

α-projected database. Otherwise, the counter is set to ∅;

2. M [α′i, α
′
j ] (1 ≤ i < j ≤ m) is in the form of (A,B,C), where A, B and C are three

counters.

• If the last element in α′j has only one item x, i.e. α′j = 〈αx〉, counter A registers

the support of sequence 〈α′ix〉 in the α-projected database. Otherwise, counter

A is set to ∅;
• If the last element in α′i has only one item y, i.e. α′i = 〈αy〉, counter B registers

the support of sequence 〈α′jy〉 in the α-projected database. Otherwise, counter

B is set to ∅;
• If the last elements in α′i and α′j have same number of items, counter C registers

the support of sequence α′′ in the α-projected database, where sequence α′′ is α′i
but inserting into the last element of α′i the item in the last element of α′j but

not in that of α′i. Otherwise, counter C is set to ∅.

Lemma 6.4 Given a length-l sequential pattern α.

1. The S-matrix can be filled up after two scans of the α-projected database; and

2. A length-(l + 2) sequence β with prefix α is a sequential pattern if and only if the

S-matrix in the α-projected database says so.

Proof. The first half of the lemma is intuitive. Now, we show the second half of the lemma.

Suppose β is a length-(l + 2) sequential pattern with prefix α. β must be formed in

four ways: (1) adding two items x and y into the last element of α, such that x and y are

both alphabetically after the items in the last element of α; (2) adding one item x into the

last element of α, such that x is alphabetically after the items in the last element of α, and

adding one element containing only one item y as the last element of β; (3) adding two

elements xy to α; or (4) adding an element (x, y) as the last element of β. In cases (1), (2)

and (4), as well as while x 6= y in case (3), β has two length-(l + 1) subsequences β1 and



CHAPTER 6. PATTERN-GROWTH SEQUENTIAL PATTERN MINING 129

β2 such that both of them are sequential patterns with prefix α. According to Lemma 4.3,

β1 and β2 are identified as length-(l + 1) sequential patterns in the α-projected database.

Thus, there exists either cell M [β1, β2] or M [β2, β1] in S-matrix. Without loss of generality,

suppose we have M [β1, β2]. Since β is a sequential pattern and β can be assembled using β1

and β2, the corresponding counter in M [β1, β2] must pass the minimum support threshold.

Therefore, the S-matrix will identify β as a sequential pattern. When x = y in case (3), β

has only one length-(l + 1) subsequence β′ such that β′ is a sequential pattern with prefix

α. According to the definition of S-matrix, we have M [β′, β′] in the matrix and it registers

the support of β in the α-projected database. Lemma 4.3 says that the counter passes the

minimum support threshold, since β is a sequential pattern.

On the other hand, according to the definition of S-matrix, a counter registers support

count of a unique length-(l + 2) sequence with prefix α. Lemma 4.3 tells that the counter

passes the minimum support threshold if and only if it is a sequential pattern. So, we have

the lemma.

Lemma 6.4 provides theoretical guarantee for the correctness of bi-level projection. Do

we need to include every item in a suffix into the projected databases?

For example, let us consider the 〈ac〉-projected database in Example 6.5. The S-matrix

in Table 6.3 tells that 〈ad〉 is a sequential pattern but 〈cd〉 is not. According to the Apriori

heuristic [AS94], 〈acd〉 and any super-sequence of it can never be a sequential pattern.

The matrix also tells that 〈(cd)〉 is not frequent. So, we can exclude item d from the

〈ac〉-projected database. Here, we use the 3-way Apriori checking to prune items from

constructing projected databases. We state the principle using the following optimization.

Optimization 1 (Pruning items from projected database) 3-way Apriori check-

ing should be used to prune items from constructing projected databases, based on the

following two rules.

• In the α-projected database, where α is a length-l sequential pattern, let α′ be a

length-(l− 1) subsequence of α. If α′(x) is not frequent, then item x can be excluded

from suffixes except for those x’s in the first element of the suffixes and those x’s in

elements which are supersets of the last element of α.

• In the α-projected database, let α′ be formed by substitute an item in the last element

of α by x. If α′ is not frequent, then item x can be excluded from first elements of



CHAPTER 6. PATTERN-GROWTH SEQUENTIAL PATTERN MINING 130

suffixes.

This optimization applies 3-way Apriori checking to reduce projected databases further.

Only fragments of sequences necessary to grow longer patterns are projected.

6.3.2 Pseudo-Projection

The major cost of PrefixSpan is projection, i.e., forming projected databases recursively.

Here, we propose a pseudo-projection technique which reduces the cost of projection sub-

stantially when a projected database can be held in main memory.

By examining a set of projected databases, one can observe that suffixes of a se-

quence often appear repeatedly in recursive projected databases. In Example 6.4, sequence

〈a(abc)(ac)d(cf)〉 has suffixes 〈(abc)(ac)d(cf)〉 and 〈( c)(ac)d(cf)〉 as projections in the 〈a〉-
and 〈ab〉-projected databases, respectively. They are redundant subsequences. If the se-

quence database/projected database can be held in main memory, such redundancy can be

avoided by pseudo-projection.

The method is as follows. When the database can be held in main memory, instead of

constructing a physical projection by collecting all the suffixes, one can use pointers referring

to the sequences in the database as a pseudo-projection. Every projection consists of two

pieces of information: a pointer to the sequence in database and an offset that indicates the

beginning position of the suffix within the sequence.

For example, suppose the sequence database S in Table 6.1 can be held in main memory.

When constructing the 〈a〉-projected database, the projection of sequence s1 = 〈a(abc)(ac)d(cf)〉
consists of two pieces: a pointer to s1 and offset set to 2. The offset indicates that the pro-

jection starts from position 2 in the sequence, i.e., (abc)(ac)d. Similarly, the projection of

s1 in the 〈ab〉-projected database contains a pointer to s1 and offset set to 4 indicating the

suffix starts from item c in s1, i.e., (ac)d(cf).

Pseudo-projection avoids physically copying suffixes. Thus, it is efficient in terms of both

running time and space. However, it is not efficient if the pseudo-projection is used for disk-

based accessing since random access disk space is very costly. Based on this observation,

PrefixSpan always pursues pseudo-projection once the projected databases can be held in

main memory. Our experimental results show that an integrated solution combining disk-

based bi-level projection with pseudo-projection when data can fit into main memory, is

always a clear winner in performance.
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6.4 Experimental Results and Performance Study

In this section, we report our experimental results on the performance of PrefixSpan in

comparison with GSP and FreeSpan. It shows that PrefixSpan outperforms other previ-

ously proposed methods and is efficient and scalable for mining sequential patterns in large

databases.
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Figure 6.2: Runtime comparison among PrefixSpan, FreeSpan and GSP on data set
C10T8S8I8.

All the experiments are performed on a 233MHz Pentium PC machine with 128 megabytes

main memory, running Microsoft Windows/NT. All the methods are implemented using Mi-

crosoft Visual C++ 6.0.

We compare performance of four methods as follows.

• GSP. The GSP algorithm was implemented as described in [SA96b].

• FreeSpan. As reported in [HPMA+00], FreeSpan with alternative level projection is

more efficient than FreeSpan with level-by-level projection. In this chapter, FreeSpan

with alternative level projection is used.
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• PrefixSpan-1. PrefixSpan-1 is PrefixSpan with level-by-level projection, as described

in Section 6.2.2.

• PrefixSpan-2. PrefixSpan-2 is PrefixSpan with bi-level projection, as described in Sec-

tion 6.3.1.

The synthetic datasets used in our experiments were generated using the standard pro-

cedure described in [AS95]. The same data generator has been used in most studies on

sequential pattern mining, such as [SA96b, HPMA+00]. Agrawal and Srikant [AS95] give

more details on the generation of data sets.

We tested the four methods on various datasets. The results are consistent. In this

thesis, we report only the results on a representative dataset C10T8S8I8. In this data set,

the number of items is set to 1, 000, and there are 10, 000 sequences in the data set. The

average number of items within elements is set to 8 (denoted as T8). The average number

of elements in a sequence is set to 8 (denoted as S8). There are a good number of long

sequential patterns in it at low support thresholds.

The experimental results on scalability with different support thresholds are shown in

Figure 6.2. When the support threshold is high, only a limited number of short sequential

patterns appear. The four methods are close in terms of runtime. However, as the support

threshold decreases, the gaps become clear. Both FreeSpan and PrefixSpan are faster than

GSP. PrefixSpan methods are more efficient and more scalable than FreeSpan. We focus on

the performance of various PrefixSpan techniques in the remainder of this section.

As shown in Figure 6.2, the performance curves of PrefixSpan-1 and PrefixSpan-2 are

close when support threshold is not low. When the support threshold is low, since there

are many sequential patterns, PrefixSpan-1 requires a major effort to generate projected

databases. Bi-level projection can leverage the problem efficiently. As can be seen from

Figure 6.3, the increase of runtime for PrefixSpan-2 is moderate even when the support

threshold is pretty low.

Figure 6.3 also shows that using pseudo-projections for the projected databases that

can be held in main memory further improves the efficiency of PrefixSpan. As can be seen

from the figure, the performance of level-by-level and bi-level pseudo-projections are close.

The runtime of the two methods are very close when the support threshold is very low.

The bi-level projection method is more efficient when the savings due to fewer projected

databases overcomes the cost of mining and filling the S-matrix. That verifies our analysis
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Figure 6.3: Runtime comparison among PrefixSpan variations on data set C10T8S8I8.

of level-by-level and bi-level projection.

Since pseudo-projection improves performance when the projected database can be held

in main memory, it is of interest to consider whether such a method can be extended to

disk-based processing. That is, instead of doing physical projection and saving the projected

databases in hard disk, should we make the projected database in the form of disk address

and offset? To explore such an alternative, we pursue a simulation test as follows.

Let each sequential read, i.e., reading bytes in a data file from the beginning to the end,

cost 1 unit of I/O. Let each random read, i.e., reading data according to its offset in the

file, cost 1.5 units of I/O. Also, suppose that a write operation costs 1.5 I/O. Figure 6.4

shows the I/O costs of PrefixSpan-1 and PrefixSpan-2 as well as of their pseudo-projection

variations over data set C1kT8S8I8 (where C1k means 1 million sequences in the data

set). PrefixSpan-1 and PrefixSpan-2 beat their pseudo-projection variations clearly. It can

also be observed that bi-level projection outperforms level-by-level projection as the support

threshold becomes low. The huge number of random reads in disk-based pseudo-projections

is the major cost when the database is too big to fit into main memory.
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Figure 6.4: I/O cost comparison among PrefixSpan variations on data set C1kT8S8I8.

Figure 6.5 shows the scalability of PrefixSpan-1 and PrefixSpan-2 with respect to the

number of sequences. Both methods are linearly scalable. Since the support threshold is

set to 0.20%, PrefixSpan-2 performs better.

In summary, our performance study shows that PrefixSpan is more efficient and scalable

than FreeSpan and GSP, whereas FreeSpan is faster than GSP when the support threshold

is low and when there are many long patterns. Since PrefixSpan-2 uses bi-level projection

to dramatically reduce the number of projections, it is more efficient than PrefixSpan-1 in

large databases with low support threshold. Once the projected databases can fit in main

memory, pseudo-projection always leads to the most efficient solution. The experimental

results are consistent with our theoretical analysis.

6.5 Discussion

As supported by our analysis and performance study, both PrefixSpan and FreeSpan are

faster than GSP, and PrefixSpan is also faster than FreeSpan. Here, we summarize the
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Figure 6.5: Scalability of PrefixSpan variations.

factors contributing to the efficiency of PrefixSpan, FreeSpan, and GSP as follows.

• Both PrefixSpan and FreeSpan are pattern-growth methods, their searches are more

focused and thus more efficient than GSP. Pattern-growth method try to grow longer

patterns from shorter ones. Accordingly, they divide the search space and focus on

only the subspace potentially supporting further pattern growth at a time. Thus,

their search spaces are more focused. Technically, their search spaces are confined by

projected databases. A projected database for a sequential pattern α contains all and

only the necessary information for mining the sequential patterns that can be grown

from α. As mining proceeds to longer sequential patterns, projected databases become

smaller. In contrast, GSP always searches the original database at each iteration.

Many irrelevant sequences have to be scanned and checked, which is not fruitful.

This argument is supported by our performance study. Figure 6.2 indicates that the

average number of candidates per sequential pattern in GSP increases exponentially

when the support threshold goes down, while the average processing time for each

projected database in PrefixSpan goes down dramatically.

• Prefix-projected pattern growth is more elegant than frequent pattern-guided projection.
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Comparing with frequent pattern-guided projection, employed in FreeSpan, prefix-

projected pattern growth is more progressive. Even in the worst case, PrefixSpan

still guarantees that projected databases keep shrinking and only takes care suffixes.

When mining in dense databases where FreeSpan cannot gain much from projections,

PrefixSpan can still reduce both the length of sequences and the number of sequences

in projected databases dramatically.

For example, suppose the database contains only one sequence 〈a1a2 · · · a100〉 and the

support threshold is set to 1. Let us consider the projected databases without the

optimization of predominant prefix. The 〈a1〉-projected database contains sequence

〈a2a3 · · · a100〉, while the 〈a1a2〉-projected database contains 〈a3a4 · · · a100〉. As the

sequential pattern becomes longer, the sequences in corresponding projected databases

becomes shorter. PrefixSpan only needs to find patterns from those suffixes. However,

in FreeSpan, if the order of frequent items are a100, a99, . . . , a1, the {a1}-, {a1, a2}-, . . . ,

{a1, a2, . . . , a99}-projected databases all contain the original sequence 〈a1a2 · · · a100〉.
In such cases, the sequence in projected databases does not shrink. Furthermore,

FreeSpan has to take care pattern growth at every possible “pattern growth” point

in the pattern template. In a sequential pattern with n elements, there are in total

(2n+1) such points, where n of them enable inserting an item into an existing element

and a single-item element can be inserted into another (n + 1) possible points. This

is quite costly.

• The Apriori principle is integrated in bi-level projection PrefixSpan. The Apriori

heuristic is the essence in the Apriori-like methods. However, the Apriori-like methods

generate and test many candidates. Can we still fully utilize the Apriori heuristic but

avoid costly candidate generation-and-test?

Notice that mining on frequent-pattern projected database itself utilizes the Apriori

heuristic since only the subsequences related to the frequent patterns in the current

databases will be projected and be examined subsequently. Moreover, both our the-

oretical analysis and experimental results support our claim that bi-level projection

is more efficient than level-by-level projection in PrefixSpan. Bi-level projection inte-

grates Apriori heuristic in its pruning projected databases. Based on the heuristic,

bi-level projection achieves a 3-way checking to determine if a sequential pattern can

lead to a longer pattern and which items can be used to assemble longer patterns
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potentially. Only the fruitful projected databases will be constructed. Furthermore,

3-way checking is efficient since only corresponding cells in S-matrix are checked, while

no further assembling is needed.

6.6 Summary

We have studied methods for mining sequential patterns in large databases and developed

a pattern-growth approach for efficient and scalable mining of sequential patterns. Our

approach is not a direct extension of a candidate generation-and-test approach, such as GSP

[SA96a]. Instead, it is an exploration of a divide-and-conquer, pattern-growth approach,

which can be viewed in spirit as an extension of the FP-growth algorithm [HPY00] developed

for mining (non-sequential) frequent patterns in databases. Our new approach explores a

database projection method and grows sequential patterns from locally frequent fragments

in the projected databases.

Two pattern growth methods, FreeSpan and PrefixSpan, are proposed. Both methods

mine the complete set of sequential patterns but substantially reduce the efforts of candi-

date subsequence generation. PrefixSpan explores only the prefix-based projection and thus

leads to less search spaces and better efficiency than FreeSpan. To further improve efficiency,

three kinds of database projections: level-by-level projection, bi-level projection, and pseudo-

projection, are explored. Our comprehensive performance study shows that FreeSpan and

PrefixSpan outperform Apriori-based GSP algorithm, and PrefixSpan with database pro-

jection techniques, especially pseudo-projection when data fits in main memory or bi-level

projection otherwise, is the fastest one in mining large sequence databases.

There are many interesting issues which need to be studied further. For example, users

may often pose constraints on the sequential patterns to be found. It is an interesting

research problem to see how to make full use of these constraints in sequential pattern

mining. Also, many sequential pattern mining problems in applications, such as DNA

mining, may admit faults, such as allowing insertions, deletions and mutations in DNA

sequences. It is another interesting issue to develop efficient fault-tolerant sequential pattern

mining algorithms for many applications.



Chapter 7

Discussion

We have developed pattern-growth methods for efficient and effective frequent pattern min-

ing. In this chapter, we first summarize the major characteristics of pattern-growth methods,

then discuss some interesting extensions and applications of pattern-growth methods.

7.1 Characteristics of Pattern-growth Methods

We have developed a new class of pattern-growth methods for effective and efficient data

mining. We summarize the major characteristics of pattern-growth methods here.

• Pattern-growth methods adopt a divide-and-conquer methodology and partition both the

data sets and patterns into subsets recursively. In general, data mining has to search

a very huge space. Divide-and-conquer methodology enables the search algorithms to

focus on reduced subsets of goals within much smaller sub-spaces. That makes sharper

pruning feasible.

• Pattern-growth methods avoid candidate-generation-and-test. Instead, pattern-growth

methods take the patterns found as seeds and explore extensions of current patterns.

The benefits are from two aspects. On one hand, pattern-growth methods search much

less than candidate-generation-and-test methods do, since the number of candidates

could be huge. On the other hand, pattern-growth methods avoid most of the expen-

sive pattern matching operations. Instead, they search for local frequent items, which

is much cheaper.

138
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• Pattern-growth methods employ effective data structures to fully utilize the available

space. For example, both FP-tree and H-block try to fully use the available memory

and reduce irrelevant information. With highly condensed and well indexed data

structures, the search space is presented in a well organized way so that the pattern-

growth search can be much more efficient.

7.2 Extensions and Applications of Pattern-growth Methods

We have shown that pattern-growth methods are effective and efficient in frequent pattern

mining. Interestingly and surprisingly, pattern-growth methods are also applicable to mining

other kinds of knowledge and solving some other interesting data processing problems. In

this section, we discuss some examples.

7.2.1 Mining Closed Association Rules

Association mining may often derive an undesirably large set of frequent itemsets and as-

sociation rules. There is an interesting alternative, proposed recently by Pasquier, et al.

[PBTL99]: instead of mining the complete set of frequent itemsets and their associations,

association mining only needs to find frequent closed itemsets and their corresponding rules.

An important implication is that mining frequent closed itemsets has the same power as

mining the complete set of frequent itemsets, but it substantially reduces the redundant

rules generated and increases both efficiency and effectiveness of mining.

Let’s examine a simple example. Suppose that a database contains only two trans-

actions, {(a1, a2, . . . , a100), (a1, a2, . . . , a50)}, the minimum support threshold is 1 (i.e.,

every occurrence is frequent), and the minimum confidence threshold is 50%. The tradi-

tional association mining method will generate 2100− 1 ≈ 1030 frequent itemsets, which are

(a1), . . . , (a100), (a1, a2), . . . , (a99, a100), . . . , (a1, a2, . . . , a100), and a tremendous num-

ber of association rules, whereas the frequent closed itemset mining will generate only

two frequent closed itemsets: {(a1, a2, . . . , a50), (a1, a2, . . . , a100)}, and one association rule,

(a1, a2, . . . , a50) ⇒ (a51, a52, . . . , a100), since all others can be derived from this one easily.

In [PHM00], we studied efficient mining of frequent closed itemsets in large databases

using pattern-growth methods. To mine frequent closed itemsets, Pasquier, et al. [PBTL99]

proposed an Apriori-based mining algorithm, called A-close. Zaki and Hsiao [ZH99] pro-

posed another mining algorithm, ChARM, which improves mining efficiency by exploring an
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item-based data structure. According to our analysis, A-close and ChARM are still costly

when mining long patterns or with low minimum support thresholds in large databases. As

a continued study on frequent pattern mining without candidate generation [HPY00], we

proposed an efficient method for mining closed itemsets [PHM00]. Three techniques were

developed for this purpose: (1) the framework of a recently developed efficient frequent pat-

tern mining method, FP-growth [HPY00], is extended, (2) strategies are devised to reduce

the search space dramatically and identify the frequent closed itemsets quickly, and (3) a

partition-based projection mechanism is established to make the mining efficient and scal-

able for large databases. Our performance study showed that CLOSET is efficient, scalable

over large databases, and faster than the previously proposed methods.

7.2.2 Associative Classification Using Pattern-growth Methods

Associative classification has attracted increasing attention in the data mining community

due to its improved classification accuracy and its flexibility at handling unstructured data.

However, associative classification still suffers from the huge set of mined rules and over-

fitting since the classification is based on rules with highest confidence.

In [LHP01], we proposed a new associative classification method, CMAR, i.e., Classification

based on Multiple Association Rules, which performs associative classification based on

multiple strong association rules. The method extends an efficient frequent pattern min-

ing method, FP-growth, constructs a class distribution-associated FP-tree, and mines large

databases efficiently. Moreover, it applies a CR-tree structure to store and retrieve mined

association rules efficiently, and prunes rules effectively based on confidence, correlation and

database coverage. The classification is performed based on a weighted χ2 analysis using

multiple association rules.

Our experiments were performed on 26 databases in the popularly referenced UC-Irvine

machine learning database repository. The experimental results showed that CMAR is con-

sistent, highly effective at classification of various kinds of databases and has better average

classification accuracy in comparison with CBA and C4.5. Moreover, our performance study

showed that the method is highly efficient and scalable in comparison with other reported

associative classification methods.
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7.2.3 Mining Multi-dimensional Sequential Patterns

Sequential pattern mining, which finds the set of frequent subsequences in sequence databases,

is an important data-mining task and has broad applications. Usually, sequence patterns are

associated with different circumstances, and such circumstances form a multiple dimensional

space. For example, customer purchase sequences are associated with region, time, customer

group, and others. It is interesting and useful to mine sequential patterns associated with

multi-dimensional information.

In [PHP+01], we proposed the theme of multi-dimensional sequential pattern mining,

which integrates multi-dimensional analysis and sequential data mining. We also thoroughly

explored efficient methods for multi-dimensional sequential pattern mining. We examined

feasible combinations of efficient sequential pattern mining and multi-dimensional analysis

methods, as well as developed uniform methods for high-performance mining. Extensive

experiments showed the advantages as well as limitations of these methods. Some recom-

mendations on selecting proper method with respect to data set properties were drawn.

7.2.4 Computing Iceberg Cubes with Complex Measures

Data cube is an essential facility for online analytical processing. It is often too expensive

to compute and materialize a complete high-dimensional data cube. Computing an iceberg

cube is an effective way to derive nontrivial multi-dimensional aggregations for OLAP, data

mining, data compression, and other applications. An iceberg cube is a set of all cells in a

data cube that satisfy certain constraints, such as a minimum support threshold. Previous

studies developed some efficient methods for computing iceberg cubes for simple measures,

such as count and sum of nonnegative values. However, it is still a challenging problem to

efficiently compute iceberg cubes with complex measures, such as average, sum of mixture

of nonnegative and negative values, etc.

In [HPDW01], we studied efficient methods for computing iceberg cubes with some

popularly used complex measures and developed a methodology that uses a weaker but anti-

monotonic condition for testing and pruning search space. In particular, we investigated

efficient methods for computing iceberg cubes with the average measure and proposed a

top-k average pruning method. Moreover, we extended two previously studied methods,

Apriori and BUC, to Top-k Apriori and Top-k BUC, for the efficient computation of such
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iceberg cubes. To further improve the performance, two fast algorithms, H-cubing and H2-

cubing, were developed. They employ hyper-structures, H-tree and H-block, respectively.

Our performance study showed that BUC, H-cubing and H2-cubing are promising candidates

for scalable computation, and H2-cubing has the best performance in many cases.

7.3 Summary

In summary, pattern-growth methods adopt a divide-and-conquer methodology and parti-

tion both the data sets and the patterns into subsets recursively. They avoid candidate-

generation-and-test. In addition, they employ effective data structures to fully utilize the

available space.

Our studies show that pattern-growth methods are not only efficient but also effective.

They have strong implication to mining other kinds of knowledge and broad applications,

such as closed association rule mining, associative classification, multi-dimensional sequen-

tial pattern mining, and iceberg cube computation with complex measures.



Chapter 8

Conclusions

As our world is now in its information era, a huge amount of data is accumulated everyday.

A real universal challenge is to find actionable knowledge from a large amount of data. Data

mining is an emerging research direction to meet this challenge. Many kinds of knowledge

(patterns) can be mined from various data. In this thesis, we focus on the problem of

mining frequent patterns efficiently and effectively, and develop a new class of pattern-

growth methods.

In this chapter, we first summarize the thesis, and then discuss some interesting future

directions.

8.1 Summary of The Thesis

Mining frequent patterns in transaction databases, time-series databases, and many other

kinds of databases has been studied extensively in data mining research. Most previous

studies adopt an Apriori-like candidate set generation-and-test approach. However, can-

didate set generation is still costly, especially when there exists an abundance of patterns

and/or long patterns. In this thesis, we propose a class of pattern-growth methods for the

frequent pattern mining and make the following contributions.

• We propose a novel frequent-pattern tree (FP-tree) structure, which is an extended

prefix-tree structure for storing compressed, crucial information about frequent pat-

terns, and develop an efficient FP-tree-based mining method, FP-growth, for mining

the complete set of frequent patterns by pattern fragment growth. Efficiency of mining

143
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is achieved with three techniques: (1) a large database is compressed into a highly

condensed, much smaller data structure, which avoids costly, repeated database scans,

(2) our FP-tree-based mining adopts a pattern growth method to avoid the costly

generation of a large number of candidate sets, and (3) a partitioning-based, divide-

and-conquer method is used to decompose the mining task into a set of smaller tasks

for mining confined patterns in conditional databases, which dramatically reduces the

search space. Our performance study shows that the FP-growth method is efficient

and scalable for mining both long and short frequent patterns, and is about an order

of magnitude faster than the Apriori algorithm and also faster than some recently

reported new frequent-pattern mining methods.

• One major cost for FP-growth is that it has to build conditional FP-trees recursively.

To overcome this disadvantage, we propose a simple and novel hyper-linked data

structure, H-struct, and a new mining algorithm, H-mine, which takes advantage of

this data structure and dynamically adjusts links in the mining process. A distinct

feature of this method is that it has a very limited and precisely predictable space

overhead and runs really fast in memory-based setting. Moreover, it scales to very large

databases by database partitioning. When the data set becomes dense, (conditional)

FP-trees can be constructed dynamically as part of the mining process. Our study

shows that H-mine has high performance for various kinds of data. It outperforms

previously developed algorithms, and is highly scalable in mining large databases.

This study also proposes a new data mining methodology, space-preserving mining,

which may have strong impact on the future development of efficient and scalable data

mining methods.

• In many cases, frequent pattern mining may result in too many patterns. Recent work

has highlighted the importance of the constraint-based mining paradigm in the context

of mining frequent itemsets, associations, correlations, sequential patterns, and many

other interesting patterns in large databases. Constraint pushing techniques have been

developed for mining frequent patterns and associations with anti-monotonic, mono-

tonic, and succinct constraints. We study constraints which cannot be handled with

existing theory and techniques in frequent pattern mining. For example, avg(S) θ v,

median(S) θ v, sum(S) θ v (S may contain items of arbitrary values) are customarily

regarded as “tough” constraints as they cannot be pushed inside an algorithm such
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as Apriori. We develop a notion of convertible constraints and systematically ana-

lyze, classify, and characterize this class of constraints. We also develop techniques

which enable them to be readily pushed deep inside the recently developed FP-growth

algorithm for frequent itemset mining. Results from detailed experiments show the

effectiveness of the techniques we developed.

• Sequential pattern mining is an important data mining problem in time-related or

sequence databases with broad applications. It is also a difficult problem since one

may need to examine a combinatorially explosive number of possible subsequence pat-

terns. Most of the previously developed sequential pattern mining methods follow the

Apriori methodology since the Apriori-based method may substantially reduce the

number of combinations to be examined. However, Apriori still encounters perfor-

mance challenges when a sequence database is large and/or when sequential patterns

are numerous and/or long.

We systematically develop a pattern-growth approach for efficient mining of sequential

patterns in large databases. It is not based on the GSP (generalized sequential pat-

tern) algorithm [SA96a], a candidate generation-and-test approach extended from the

Apriori algorithm [AS94]. Instead, this new approach adopts a divide-and-conquer,

pattern-growth principle, by extending the FP-growth algorithm [HPY00] to mine

(order-dependent) sequential patterns. The general idea is that a sequence database

is recursively projected into a set of smaller projected databases. Sequential patterns

are grown in each projected database by exploring only local frequent fragments. Two

pattern growth methods, FreeSpan and PrefixSpan, are proposed. Both methods mine

the complete set of sequential patterns but substantially reduce the effort of candidate

subsequence generation. To further improve mining efficiency, three kinds of database

projections: level-by-level projection, bi-level projection, and pseudo-projection, are

explored. A comprehensive performance study shows that FreeSpan and PrefixSpan

outperform the Apriori-based GSP algorithm, and an integrated PrefixSpan is the

fastest algorithm for mining large sequence databases.
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8.2 Future Research Directions

With the success of pattern-growth methods, it is interesting to re-examine and explore

many related problems, extensions and applications. Some of them are listed here.

• Fault-tolerant frequent pattern mining. Real-world data tends to be dirty. Discovering

knowledge over large real-world data calls for fault-tolerant data mining, which is a

fruitful direction for future data mining research. Fault-tolerant extensions of data

mining techniques gain useful insights into the data.

In [PTH01], we introduced the problem of fault-tolerant frequent pattern mining.

With fault-tolerant frequent pattern mining, many novel, interesting and practical

knowledge can be discovered. For example, one can discover the following fault-

tolerant association rules: 85% of students doing well in three out of the four courses:

“data structure”, “algorithm”, “artificial intelligence”, and “database”, will receive

high grades in “data mining”.

Apriori was extended to FT-Apriori for fault-tolerant frequent pattern mining. Our

experimental results showed that FT-Apriori is a solid step towards fault-tolerant

frequent pattern mining. However, it is still challenging to develop efficient fault-

tolerant mining methods. The extensions and implications of related fault-tolerant

data mining tasks are very interesting for future research.

• Frequent pattern-based clustering. Although there are many clustering algorithms,

new challenges exist. On one hand, many real datasets, like web documents, often

have very high dimensionality (5000+) and missing dimensional values. On the other

hand, many novel applications, like organizing web documents in categories, distance

functions are hard to define properly, and clusters can have overlaps. Frequent pattern

mining is a very promising candidate technique for such problems.

Once a set of frequent patterns are found, we can organize objects into some clusters

according to the patterns they share. By using this technique, we avoid the problem

of defining distance functions and dealing with high dimensionality explicitly.

• Mining long sequences. Recently, some emerging applications requires effective and ef-

ficient mining of long sequences, such as bio-sequences. The candidate-generation-and-

test framework is not feasible to solve such problems, since the number of candidates
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is prohibitively large. One interesting approach would be to apply the pattern-growth

method to bypass trivial patterns during the mining for long target patterns.

8.2.1 Final Thoughts

“Discovery consists of seeing what everybody has seen and thinking what nobody has

thought.”1 Data mining is towards an effective and efficient tool for discovery. By min-

ing, we can see the patterns hidden behind the data more accurately, more systematically

and more efficiently. However, it is the data miner’s responsibility to distinguish the gold

from the dust.

“Every science begins as philosophy and ends as art.”2 So does data mining.

1By Albert von Szent-Györgyi (1893-1986), Hungarian-born American biochemist.
2By Will Durant, The Story of Philosophy, 1926.
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