May 2004, Vol.19, No.3, pp.257-279 J. Comput. Sci. & Technol.

From Sequential Pattern Mining to Structured Pattern Mining:
A Pattern-Growth Approach

Jia-Wei Han', Jian Pei?, and Xi-Feng Yan!
Y University of Illinois at Urbana-Champaign, Urbana, IT, 61801, U.S.A.
2State University of New York at Buffalo, Buffalo, NY 14260-2000, U.S.A.

E-mail: {hanj, xyan}@cs.uiuc.edu; jianpei@cse.buffalo.edu

Received January 19, 2004.

Abstract Sequential pattern mining is an important data mining problem with broad applications. However,
it is also a challenging problem since the mining may have to generate or examine a combinatorially explosive
number of intermediate subsequences. Recent studies have developed two major classes of sequential pattern
mining methods: (1) a candidate generation-and-test approach, represented by (i) GSP, a horizontal format-based
sequential pattern mining method, and (ii) SPADE, a vertical format-based method; and (2) a pattern-growth
method, represented by PrefixSpan and its further extensions, such as gSpan for mining structured patterns.

In this study, we perform a systematic introduction and presentation of the pattern-growth methodology
and study its principles and extensions. We first introduce two interesting pattern-growth algorithms, FreeSpan
and PrefixSpan, for efficient sequential pattern mining. Then we introduce gSpan for mining structured patterns
using the same methodology. Their relative performance in large databases is presented and analyzed. Several
extensions of these methods are also discussed in the paper, including mining multi-level, multi-dimensional

patterns and mining constraint-based patterns.

Keywords

1 Introduction

Sequential pattern mining, which discovers fre-
quent subsequences as patterns in a sequence
database, is an important data mining problem
with broad applications, including the analysis of
customer purchase patterns or Web access pat-
terns, the analysis of sequencing or time-related
processes such as scientific experiments, natural
disasters, and disease treatments, the analysis of
DNA sequences, and so on.

The sequential pattern mining problem was first
introduced by Agrawal and Srikant in [1] based on
their study of customer purchase sequences, as fol-
lows: Given a set of sequences, where each sequence
consists of a list of elements and each element con-
sists of a set of items, and given a user-specified
min_support threshold, sequential pattern mining is
to find all frequent subsequences, i.e., the subse-
quences whose occurrence frequency in the set of
sequences is no less than min_support.

Let I = {i1,42,...,i,} be a set of all items.
An itemset is a subset of items. A sequence is
an ordered list of itemsets. A sequence s is denoted

data mining, sequential pattern mining, structured pattern mining, scalability, performance analysis

by (s1s2---s;), where s; is an itemset. s; is also
called an element of the sequence, and denoted
as (z1x2...x,,), where xy is an item. For brevity,
the brackets are omitted if an element has only one
item, i.e., element (z) is written as . An item can
occur at most once in an element of a sequence,
but can occur multiple times in different elements
of a sequence. The number of instances of items
in a sequence is called the length of the sequence.
A sequence with length [is called an [-sequence.
A sequence o = (ajas---a,) is called a subse-
quence of another sequence § = (byby - -b,,) and
[a super-sequence of «, denoted as o C (3, if
there exist integers 1 < j1 < jo < -+ < jp <M
such that ay C b;,, ay C bj,,...,a, Cb; .

A sequence database S is a set of tuples
(sid, s), where sid is a sequence_id and s a se-
quence. A tuple (sid,s) is said to contain a se-
quence «, if a is a subsequence of s. The support
of a sequence a in a sequence database S is the
number of tuples in the database containing «;, i.e.,
supportg(a) = |{(sid, s)|({sid,s) € S) A (a C s)}|.
It can be denoted by support(«) if the sequence
database is clear from the context. Given a positive

*Survey

The work was supported in part by the Natural Sciences and Engineering Research Council of Canada, the Networks

of Centres of Excellence of Canada, the Hewlett-Packard Lab, the U.S. National Science Foundation (Grant Nos. NSF IIS-
02-09199, NSF IIS-03-08001), and the University of Illinois. Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily reflect the views of the funding agencies.

258

integer min_support as the support threshold, a
sequence « is called a sequential pattern in se-
quence database S if supportg(a) > min_support.
A sequential pattern with length [is called an -
pattern.

FEzxzample 1. Let our running sequence database
be S given in Table 1 and min_support = 2. The
set of itemns in the database is {a,b,c,d, e, f, g}.

Table 1. A Sequence Database

Sequence_id Sequence
T (a(abe) (a0) ()
2 ((ad)c(bc)(ae))
3 ((ef)(ab)(df)cb)
s (cq(af)che)

A sequence (a(abc)(ac)d(cf)) has five elements:
(a), (abe), (ac), (d) and (cf), where items a and
¢ appear more than once respectively in different
elements. It is a 9-sequence since there are 9 in-
stances appearing in that sequence. Item a hap-
pens three times in this sequence, so it contributes
3 to the length of the sequence. However, the whole
sequence {(a(abc)(ac)d(cf)) contributes only one to
the support of (a). Also, sequence (a(bc)df) is a
subsequence of (a(abc)(ac)d(cf)). Since both se-
quences 1 and 3 contain subsequence s = {(ab)c), s
is a sequential pattern of length 3 (i.e., 3-pattern).

From this example, one can see that sequential
pattern mining problem can be stated as “given a
sequence database and the min_support threshold,
sequential pattern mining ¢s to find the com-
plete set of sequential patterns in the database.”

Notice that this model of sequential pattern
mining is an abstraction from the customer sho-
pping sequence analysis. However, this model may
not cover a large set of requirements in sequen-
tial pattern mining. For example, for studying
Web traversal sequences, gaps between traversals
become important if one wants to predict what
could be the next Web pages to be clicked. Many
other applications may want to find gap-free or
gap-sensitive sequential patterns as well, such as
weather prediction, scientific, engineering and pro-
duction processes, DNA sequence analysis, and so
on. Moreover, one may like to find approximate se-
quential patterns instead of precise sequential pat-
terns, such as in DNA sequence analysis where
DNA sequences may contain nontrivial proportions
of insertions, deletions, and mutations.

In our model of study, the gap between two
consecutive elements in a sequence is unimportant.
However, the gap-free or gap-sensitive frequent se-
quential patterns can be treated as special cases
of our model since gaps are essentially constraints

J. Comput. Sci. & Technol., May 2004, Vol.19, No.3

enforced on patterns. The efficient mining of gap-
sensitive patterns will be discussed in our later sec-
tion on constraint-based sequential pattern mining.
Moreover, the mining of approximate sequential
patterns is also treated as an extension of our ba-
sic mining methodology. Those and other related
issues will be discussed in the later part of the pa-
per.

Many previous studies contributed to the ef-
ficient mining of sequential patterns or other fre-
quent patterns in time-related datal'=1. Srikant
and Agrawall?l generalized their definition of se-
quential patterns in [1] to include time con-
straints, sliding time window, and user-defined tax-
onomy and present an Apriori-based, improved al-
gorithm GSP (i.e., generalized sequential patterns).
Mannila, et all3 presented a problem of min-
ing frequent episodes in a sequence of events,
where episodes are essentially acyclic graphs of
events whose edges specify the temporal precedent-
subsequent relationship without restriction on in-
terval. Bettini, et al! considered a generaliza-
tion of inter-transaction association rules. These
are essentially rules whose left-hand and right-hand
sides are episodes with time-interval restrictions.
Lu, et all®l proposed inter-transaction association
rules that are implication rules whose two sides
are totally-ordered episodes with timing-interval
restrictions. Garofalakis, et al['?l proposed the
use of regular expressions as a flexible constraint
specification tool that enables user-controlled fo-
cus to be incorporated into the sequential pattern
mining process. Some other studies extended the
scope from mining sequential patterns to mining
partial periodic patterns. OZden, et al intro-
duced cyclic association rules that are essentially
partial periodic patterns with perfect periodicity in
the sense that each pattern reoccurs in every cy-
cle, with 100% confidence. Han, et all'® devel-
oped a frequent pattern mining method for mining
partial periodic patterns that are frequent maxi-
mal patterns where each pattern appears in a fixed
period with a fixed set of offsets, and with suffi-
cient support. Zakil'3! developed a vertical format-
based sequential pattern mining method, called
SPADE, which can be considered as an extension
of vertical-format-based frequent itemset mining
methods, such as [6, 14].

Almost all of the above proposed methods for
mining sequential patterns and other time-related
frequent patterns are Apriori-like, i.e., based on the
Apriori principle, which states the fact that any
super-pattern of an infrequent pattern cannot be fre-

Jia-Wei Han et al.: Pattern-Growth Approach

quent, and based on a candidate generation-and-
test paradigm proposed in association miningt%!.

In our recent studies, we have developed and
systematically explored a pattern-growth approach
for efficient mining of sequential patterns in large
sequence database. The approach adopts a divide-
and-conquer, pattern-growth principle as follows,
sequence databases are recursively projected into
a set of smaller projected databases based on the
current sequential pattern(s), and sequential pat-
terns are grown in each projected database by ex-
ploring only locally frequent fragments. Based on
this philosophy, we first proposed a straightforward
pattern-growth method, FreeSpan (for Frequent
pattern-projected Sequential pattern mining)[m],
which reduces the efforts of candidate subsequence
generation. Then, we introduced another and more
efficient method, called PrefixSpan (for Prefix-
projected Sequential pattern mining), which offers
ordered growth and reduced projected databases.
To further improve the performance, a pseudo-
projection technique is developed in PrefixSpan.
A comprehensive performance study shows that
PrefixSpan in most cases outperforms the Apriori-
based GSP algorithm, FreeSpan, and SPADE[!3] (a
sequential pattern mining algorithm that adopts
vertical data format), and PrefixSpan integrated
with pseudo-projection is the fastest among all the
tested algorithms. Furthermore, our experiments
show that PrefixSpan consumes a much smaller
memory space in comparison with GSP and SPADE.

The pattern-growth methodology exposed in
PrefixSpan can also be used for structured pattern
mining: finding frequent subgraphs over a collec-
tion of graphs. Frequent subgraphs are common
topological structures buried in a graph dataset.
For example, in chemical informatics, we can view
each chemical compound as a graph which consists
The AIDS antiviral screen
data provided by Developmental Theroapeutics
Program in NCI/NIH tells us, among the chemical
compounds tested, which one is active to inhibit
HIV virus, and which one is not. By analyzing the
small chemical structures embedded in each com-

of atoms and bonds.

pound, we find that some structures appear more
commonly in the active dataset but rarely in the in-
active dataset. This kind of knowledge will deepen
our understanding of these structures and improve
our ability in drug design.

We develop an efficient structured pattern min-
ing algorithm, gSpan (mining frequent graph pat-
terns by subgraph Spanning). It was inspired by
PrefixSpan: It grows patterns from a single pat-

259

tern directly. gSpan extends the pattern-growth
methodology to combine graph pattern growing
and frequency counting into one procedure. Thus,
it avoids the significant overhead introduced by
candidate generation. The Apriori-like approach
has to use breadth-first search (BFS) strategy be-
cause of its intrinsic level-wise candidate genera-
tion: In order to know whether a k-edge graph is
frequent or not, it has to check all of its (k — 1)-
edge subgraphs to get the upper bound of its fre-
quency. Thus, before mining any k-edge subgraph,
the Apriori-like approach must finish mining (k—1)-
edge subgraphs. Therefore, BFS is necessary in
the Apriori-like approach. In contrast, the pattern-
growth approach is more flexible on the search
method: Both breadth-first search and depth-first
search (DFS) can work. Usually BFS has higher
memory consumption than DFS.

In the following sections, we will systematically
explore how to mine sequential patterns and struc-
tured patterns.

2 Previous Work: The Candidate
Generation-and-Test Approach

The candidate generation-and-test approach is
an extension of the Apriori-based frequent pattern
mining algorithm(! to sequential pattern analy-
sis. Similar to frequent patterns, sequential pat-
terns has the anti-monotone (i.e., downward clo-
sure) property as follows: every non-empty sub-
sequence of a sequential pattern is a sequential pa-
ttern.

Based on this property, there are two algorithms
developed for efficient sequential pattern mining:
(1) a horizontal data format based sequential pat-
tern mining method: GSP[!, and (2) a vertical data
format based sequential pattern mining method:
SPADE!3], We outline and analyze these two meth-
ods in this section.

2.1 GSP: A Horizontal Data Format Based
Sequential Pattern Mining Algorithm

From the sequential pattern mining point of
view, a sequence database can be represented
in two data formats: (1) a horizontal data for-
mat, and (2) a vertical data format. The
former uses the natural representation of the
data set as (sequence_id : a_sequence_of _objects),
whereas the latter uses the vertical represen-
tation of the sequence database: {object
(sequence_id, time_stamp)), which can be obtained

260

by transforming from a horizontal formatted se-
quence database.

GSP is a horizontal data format based se-
quential pattern mining developed by Srikant and
Agrawall?! by extension of their frequent itemset
mining algorithm, Apriori('5!. Based on the down-
ward closure property of a sequential pattern, GSP
adopts a multiple-pass, candidate-generation-and-
test approach in sequential pattern mining. The al-
gorithm is outlined as follows. The first scan finds
all of the frequent items which form the set of sin-
gle item frequent sequences. Each subsequent pass
starts with a seed set of sequential patterns, which
is the set of sequential patterns found in the previ-
ous pass. This seed set is used to generate new po-
tential patterns, called candidate sequences. Each
candidate sequence contains one more item than a
seed sequential pattern, where each element in the
pattern may contain one or multiple items. The
number of items in a sequence is called the length
of the sequence. So, all the candidate sequences
in a pass will have the same length. The scan of
the database in one pass finds the support for each
candidate sequence. All of the candidates whose
support in the database is no less than min_support
form the set of the newly found sequential patterns.
This set then becomes the seed set for the next
pass. The algorithm terminates when no new se-
quential pattern is found in a pass, or no candidate
sequence can be generated.

The method is illustrated using the following
example.

Ezample 2 (GSP). Given the database S and

4th scan, 6 candidates
4 length-4 sequential patterns

(a(bc)a)

3rd scan, 64 candidates

J. Comput. Sci. & Technol., May 2004, Vol.19, No.3

min_support in Example 1, GSP first scans S, co-
llects the support for each item, and finds the set of
frequent items, i.e., frequent length-1 subsequences
(in the form of “item : support’): (a) : 4, (b) : 4,
(c):3,(d):3,{e):3,(f):3,{g): 1.

By filtering the infrequent item g, we obtain the
first seed set Ly = {(a), (b), {c), (d),{e),{f)}, each
member in the set representing a 1-element sequen-
tial pattern. Each subsequent pass starts with the
seed set found in the previous pass and uses it to
generate new potential sequential patterns, called
candidate sequences.

For L,, a set of 6 length-1 sequential pat-
terns generates a set of 6 x 6 + 8% = 51 can-

didate sequences, Co = {(aa), (ab),...,{af), (ba),
(0b), ..., (f), ((ab)), ((ac)), .., {(ef))}-

The multi-scan mining process is shown in
Fig.1. The set of candidates is generated by a self-
join of the sequential patterns found in the previous
pass. In the k-th pass, a sequence is a candidate
only if each of its length-(k — 1) subsequences is a
sequential pattern found at the (k — 1)-th pass. A
new scan of the database collects the support for
each candidate sequence and finds the new set of
sequential patterns. This set becomes the seed for
the next pass. The algorithm terminates when no
sequential pattern is found in a pass, or when there
is no candidate sequence generated. Clearly, the
number of scans is at least the maximum length of
sequential patterns. It needs one more scan if the
sequential patterns obtained in the last scan still
generate new candidates.

<(ab)dc) <efbc>

21 length-3 sequential patterns |(aab)|

|(a(ab)}| | (aac) |

13 candidates not appear in database at all

2nd scan, 51 candidates
22 length-2 sequential patterns
9 candidates not appear in database at all

1st scan, 7 candidates
6 length-1 sequential patterns

|:| Candidate cannot pass support threshold

[]

Candidate does not appear in database at all

Fig.1. Candidates, candidate generation, and sequential patterns in GSP.

Jia-Wei Han et al.: Pattern-Growth Approach

GSP, though benefits from the Apriori pruning,
still generates a large number of candidates. In
this example, 6 length-1 sequential patterns gen-
erate 51 length-2 candidates, 22 length-2 sequen-
tial patterns generate 64 length-3 candidates, etc.
Some candidates generated by GSP may not appear
in the database at all. For example, 13 out of 64
length-3 candidates do not appear in the database.

The example shows that an Apriori-like sequen-
tial pattern mining method, such as GSP, though
reduces search space, bears three nontrivial, inher-
ent costs which are independent of detailed imple-
mentation techniques.

First, there are potentially huge sets of can-
didate sequences. Since the set of candidate se-
quences includes all the possible permutations of
the elements and repetition of items in a se-
quence, an Apriori-based method may generate a
really large set of candidate sequences even for
a moderate seed set. For example, if there are
1,000 frequent sequences of length-1, such as {(a,),
(a2), ..., {a1,000), an Apriori-like algorithm will gen-
erate 1,000 x 1,000 + L2099 — 1 499 500
candidate sequences, where the first term is de-
rived from the set (a1ai1), (a1az2),...,{(a1a1,000),
<a2a1>, <a2a2>, ceey <a17000a17000>, and the sec-
ond term is derived from the set ((ajaz)),
((a1a3)), - - -, ((ag99a1,000))-

Second, multiple scans of databases could be
costly. Since the length of each candidate sequence
grows by one at each database scan, to find a se-
quential pattern {(abc)(abc) (abc)(abc)(abe)}, an
Apriori-based method must scan the database at
least 15 times.

Last, there are inherent difficulties at mining
long sequential patterns. A long sequential pattern
must grow from a combination of short ones, but
the number of such candidate sequences is expo-
nential to the length of the sequential patterns to
be mined. For example, suppose there is only a
single sequence of length 100, (aias ... ai00), in the
database, and the min_support threshold is 1 (i.e.,
every occurring pattern is frequent), to (re-)derive
this length-100 sequential pattern, the Apriori-
based method has to generate 100 length-1 candi-
date sequences, 100 x 100—{—% = 14,950 length-

2 candidate sequences, (120) = 161,700 length-3

candidate sequences, and so on. Obviously, the to-
tal number of candidate sequences to be generated
is greater than Zjﬂﬂ (130) =2100 1 ~10%,

In many applications, it is not rare that one
may encounter a large number of sequential pat-

terns and long sequences, such as stock sequence

261

analysis. Therefore, it is important to re-examine
the sequential pattern mining problem to explore
more efficient and scalable methods. Based on
our analysis, both the thrust and the bottleneck of
an Apriori-based sequential pattern mining method
come from its step-wise candidate sequence gener-
ation and test. Then the problem becomes, “can
we develop a method which may absorb the spirit
of Apriori but avoid or substantially reduce the ez-
pensive candidate generation and test?”

2.2 SPADE: An Apriori-Based Vertical
Data Format Sequential Pattern
Mining Algorithm

The Apriori-based sequential pattern mining can
also be explored by mapping a sequence database
into the vertical data format which takes each
item as the center of observation and takes its
associated sequence and event identifiers as data
sets. To find sequence of length-2 items, one just
needs to join two single items if they are frequent
and they share the same sequence identifier and
their event identifiers (which are essentially rel-
ative timestamps) follow the sequential ordering.
Similarly, one can grow the length of itemsets from
length two to length three, and so on. Such an
Apriori-based vertical data format sequential pat-
tern mining algorithm, called SPADE (Sequential
PAttern Discovery using Equivalent classes) algo-
rithm 13! is illustrated using the following exam-
ple.

Ezample 3 (SPADE). Given our running se-
quence database S and min_support in Example
1, SPADE first scans S, transforms the database
into the vertical format by introducing EID (event
ID) which is a (local) timestamp for each event.
Each single item is associated with a set of SID (se-
quence_id) and EID (event_id) pairs. For example,
item “b” is associated with (SID, EID) pairs as fol-
lows: {(1,2),(2,3),(3,2),(3,5),(4,5)}, as shown in
Fig.2. This is because item b appears in sequence 1,
event 2, and so on. Frequent single items “a” and
“b” can be joined together to form a length-two
subsequence by joining the same sequence_id with
event_ids following the corresponding sequence or-
der. For example, subsequence ab contains a set of
triples (SID, EID(a), EID(b)), such as (1,1,2), and
so on. Furthermore, the frequent length-2 subse-
quences can be joined together based on the Apriori
heuristic to form length-3 subsequences, and so on.
The process continues until no frequent sequences
can be found or no such sequences can be formed

262 J. Comput. Sci. & Technol., May 2004, Vol.19, No.3
| SID | EID | Items | a b
1 1 a SID EID SID EID
1 2 abc 1 1 1 2
1 3 ac 1 2 2 3
1 4 d 1 3 3 2
1 5 cf 2 1 3 5
2 1 ad 2 4 4 5
2 2 c 3 2
2 3 be 4 3
2 4 ae ab ba
3 | 1 of SID ED(a) EID() SID EID(b) EID(a)
3 2 ab
3 3 & 1 1 2 1 2 3
2 1 3 2 3 4
3 4 c
3 5 b 3 2 5
7 1 - 4 3 5
4 2 g aba
1 3 af SID EID(a) EID(b) EID(a)
4 4 c 1 1 2 3
4 5 b 2 1 3 4
4 6 c

Fig.2. Vertical format of the sequence database and fragments of the SPADE mining process.

by such joins.

Some fragments of the SPADE mining process
are illustrated in Fig.2. The detailed analysis of
the method can be found in [13].

The SPADE algorithm may reduce the access
of sequence databases since the information re-
quired to construct longer sequences are localized
to the related items and/or subsequences repre-
sented by their associated sequence and event iden-
tifiers. However, the basic search methodology of
SPADE is similar to GSP, exploring both breadth-
first search and Apriori pruning. It has to generate
a large set of candidates in breadth-first manner in
order to grow longer subsequences. Thus most of
the difficulties suffered in the GSP algorithm will
reoccur in SPADE as well.

2.3 FSG: An Apriori-Based Structured
Pattern Mining Algorithm

FSG is an Apriori-based algorithm for finding
all connected subgraphs that appear frequently
in a graph database. It uses the same candi-
date generation-and-test strategy adopted by Apri-
ori. FSG requires a join operation which merges
two k-edge frequent subgraphs in order to gen-
erate a (k + 1)-edge candidate subgraph. If the
candidate subgraph is frequent, then all of its sub-
graphs must be frequent. By checking this down-
ward closure property, FSG may prune lots of in-
frequent candidate subgraphs. FSG is a typical
Apriori-based approach. There are other algorithms
using the same strategy but different pattern ex-

pansion blocks: vertices in [17], edges in [18], and
edge-disjoint paths in [19]. In the context of fre-
quent graph mining, Apriori-like algorithms suffer
from two kinds of considerable overheads: (1) join-
ing two k-edge frequent graphs to generate (k+1)-
edge graph candidates, and (2) checking the fre-
quency of these candidates separately. These two
operations usually are the performance bottlenecks
of Apriori-like algorithms.

3 Pattern-Growth Approach for Sequential
Pattern Mining

In this section, we introduce a pattern-growth
methodology for mining sequential patterns. It is
based on the methodology of pattern-growth min-
ing of frequent patterns in transaction databases
developed in the FP-growth algorithm??!, We in-
troduce first the FreeSpan algorithm and then a
more efficient alternative, the PrefixSpan algorithm.

3.1 FreeSpan: Frequent Pattern-Projected
Sequential Pattern Mining

For a sequence a = (s1---s;), the itemset
s$1U---Us; is called a’s projected itemset. FreeSpan
is based on the following property: if an itemset X
1s infrequent, any sequence whose projected itemset
1s a superset of X cannot be a sequential pattern.
FreeSpan mines sequential patterns by partitioning
the search space and projecting the sequence sub-
databases recursively based on the projected item-
sets.

Jia-Wei Han et al.: Pattern-Growth Approach

Let f_list = (z1,...,z,) be a list of all frequent
items in sequence database S. Then, the complete
set of sequential patterns in S can be divided into
n disjoint subsets: (1) the set of sequential pat-
terns containing only item 7, (2) those containing
item x5 but no item in {z3,...,2,}, and so on. In
general, the i-th subset (1 < ¢ < n) is the set of
sequential patterns containing item z; but no item
in {@ir1,...,Tn}-

Then, the database projection can be performed
as follows. At the time of deriving p’s projected
database from DB, the set of frequent items X of
DB is already known. Only those items in X will
need to be projected into p’s projected database.
This effectively discards irrelevant information and
keeps the size of the projected database minimal.
By recursively doing so, one can mine the projected
databases and generate the complete set of sequen-
tial patterns in the given partition without dupli-
cation. The details are illustrated in the following
example.

Ezample 4 (FreeSpan). Given the database S
and min_support in Example 1, FreeSpan first scans
S, collects the support for each item, and finds
the set of frequent items. This step is similar to
GSP. Frequent items are listed in support descend-
ing order (in the form of “item : support”), that is,
flist=(a:4,b:4,¢c:4,d:3,e:3, f:3). They
form six length-1 sequential patterns: (a):4, (b) : 4,
(c) :4,(d)y:3,(e):3,(f):3.

According to the f_list, the complete set of se-
quential patterns in .S can be divided into 6 disjoint
subsets: (1) the ones containing only item a, (2) the
ones containing item b but no item after b in f_list,
(3) the ones containing item ¢ but no item after ¢ in
f_list, and so on, and finally, (6) the ones containing
item f.

The sequential patterns related to the six par-
titioned subsets can be mined by constructing six
projected databases (obtained by one additional
scan of the original database). Infrequent items,
such as ¢ in this example, are removed from the
projected databases. The process for mining each
projected database is detailed as follows.

e Mining sequential patterns containing only
item a.

The (a)-projected database is {(aaa),(aa),{a),
(a)}. By mining this projected database, only one
additional sequential pattern containing only item
a, i.e., (aa):2, is found.

e Mining sequential patterns containing item b
but no item after b in the f_list.

263

By mining the (b)-projected database: {{a(ab)
a), {(aba), ((ab)b), (ab)}, four additional sequen-
tial patterns containing item b but no item after
b in f_list are found. They are {(ab) : 4, (ba) : 2,
((ab)) : 2, {(aba) : 2}.

e Mining sequential patterns containing item c

but no item after c in the f_list.

The mining of the (c)-projected database:
{{a(abe)(ac)e), fac(be)a), ((ab)eb), (acbe)}, pro-
ceeds as follows. One scan of the projected
database generates the set of length-2 frequent se-
quences, which are {{ac) : 4, {(bc)) : 2, (be) : 3,
(ce) : 3, (ca) : 2, (cb) : 3}. One additional scan of
the (c)-projected database generates all of its pro-
jected databases.

The mining of the (ac)-projected database:
{{a(abc)(ac)c), (ac(bc)ay, ((ab)cb), (acbc)} gen-
erates the set of length-3 patterns as follows:
{{acb):3, (acc):3, {(ab)c):2, (aca):2}. Four pro-
jected database will be generated from them.

The mining of the first one, the (acb)-projected
database: {(ac(bc)a), ((ab)cb), {acbc)} generates no
length-4 pattern. The mining along this line ter-
minates. Similarly, we can show that the mining
of the other three projected databases terminates
without generating any length-4 patterns for the
(ac)-projected database.

e Mining other subsets of sequential patterns.

Other subsets of sequential patterns can be
mined similarly on their corresponding projected
databases. This mining process proceeds recur-
sively, which derives the complete set of sequential
patterns.

The detailed presentation of the FreeSpan algo-
rithm, the proof of its completeness and correct-
ness, and the performance study of the algorithm
are in [16]. By the analysis of Example 4 and veri-
fied by our experimental study, we have the follow-
ing observations on the strength and weakness of
FreeSpan.

The strength of FreeSpan is that it searches a
smaller projected database than GSP in each sub-
sequent database projection. This is because that
FreeSpan projects a large sequence database re-
cursively into a set of small projected sequence
databases based on the currently mined frequent
item-patterns, and the subsequent mining is con-
fined to each projected database relevant to a
smaller set of candidates.

The magjor overhead of FreeSpan s that it
may have to generate many nontrivial projected
databases. If a pattern appears in each sequence of
a database, its projected database does not shrink

264

(except for the removal of some infrequent items).
For example, the { f}-projected database in this ex-
ample contains three same sequences as that in the
original sequence database, except for the removal
of the infrequent item ¢ in sequence 4. Moreover,
since a length-k subsequence may grow at any po-
sition, the search for length-(k + 1) candidate se-
quence will need to check every possible combina-
tion, which is costly.

3.2 PrefixSpan: Prefix-Projected
Sequential Patterns Mining

Based on the analysis of the FreeSpan algorithm,
one can see that one may still have to pay high
cost at handling projected databases. To avoid
checking every possible combination of a poten-
tial candidate sequence, one can first fix the order
of items within each element. Since items within
an element of a sequence can be listed in any or-
der, without loss of generality, one can assume that
they are always listed alphabetically. For example,
the sequence in S with Sequence_id 1 in our run-
ning example is listed as (a(abc)(ac)d(cf)) instead
of {a(bac)(ca)d(fc)). With such a convention, the
expression of a sequence is unique.

Then, we examine whether one can fix the order
of item projection in the generation of a projected
database. Intuitively, if one follows the order of the
prefix of a sequence and projects only the suffix of
a sequence, one can examine in an orderly manner
all the possible subsequences and their associated
projected databases. Thus we first introduce the
concept of prefix and suffix.

Suppose all the items within an element are
listed alphabetically. Given a sequence a =
(e1ea- - e,) (where each e; corresponds to a fre-
quent element in S), a sequence 8 = (eje)---el)
(m < n) is called a prefix of « if and only if (1)
el =e; for 1 <m—1); (2) e, C en; and (3) all
the frequent items in (e,, — e/,) are alphabetically
after those in e/, . Sequence v = (e €11+ €,) is
called the suffix of a w.r.t. prefix 3, denoted as
v = /B, where ell, = (e, —el,). ® We also denote
a = [-~. Note if § is not a subsequence of a, the
suffix of a w.r.t. 8 is empty.

Ezample 5. For a sequence s = {(a(abc)(ac)d
(cf)), (a), (aa), (a(ab)) and (a(abc)) are prefizes
of sequence s = (a(abc)(ac)d(cf)), but neither (ab)
nor (a(bc)) is considered as a prefix if every item
in the prefix (a(abc)) of sequence s is frequent in

S. Also, ((abc)(ac)d(cf)) is the suffiz w.r.t. the

J. Comput. Sci. & Technol., May 2004, Vol.19, No.3

prefix (a), ((_bc)(ac)d(cf)) is the suffiz w.r.t. the
prefix (aa), and ((_c)(ac)d(cf)) is the suffix w.r.t.
the prefix (a(ab)).

Based on the concepts of prefix and suffix, the
problem of mining sequential patterns can be de-
composed into a set of subproblems as shown be-
low.

e Let {(z1),(x2),...,{xz,)} be the complete
set of length-1 sequential patterns in a sequence
database S. The complete set of sequential pa-
tterns in S can be divided into n disjoint subsets.
The i-th subset (1 <7 < n) is the set of sequential
patterns with prefix (z;).

e Let a be a length-l sequential pattern and
{B1,B2,-..,Bm} be the set of all length-(4+ 1) se-
quential patterns with prefix a. The complete set
of sequential patterns with prefix «a, except for «
itself, can be divided into m disjoint subsets. The
j-th subset (1 < j < m) is the set of sequential
patterns prefixed with 3;.

Based on this observation, the problem can be
partitioned recursively. That is, each subset of
sequential patterns can be further divided when
necessary. This forms a divide-and-conquer frame-
work. To mine the subsets of sequential patterns,
the corresponding projected databases can be con-
structed.

Let a be a sequential pattern in a sequence
database S. The a-projected database, denoted
as S|a, is the collection of suffixes of sequences in S
w.r.t. prefix a. Let 8 be a sequence with prefix a.
The support count of 3 in a-projected database
S|, denoted as supportsla(ﬂ), is the number of
sequences v in S|, such that S C « - 7.

We have the following lemma regarding to the
projected databases.

Lemma 1 (Projected Database). Let o and
B be two sequential patterns in a sequence database
S such that a is a prefix of S.

1) Slg = (Sla)ls;

2) for any sequence vy with prefirx «, suppo-
rts(7y) = supportg (7v); and

3) The size of a-projected database cannot ex-
ceed that of S.

Proof sketch. The first part of the lemma fol-
lows the fact that, for a sequence ~, the suffix of
v w.r.t. B3, v/8, equals the sequence resulted from
the first doing projection of v w.r.t. a, ie., v/a,
and then doing projection v/a w.r.t. 3. That is

/B =(v/a)/B.

Ot el’ is not empty, the suffix is also denoted as ((-items ine”,)em+1 - en).

Jia-Wei Han et al.: Pattern-Growth Approach

The second part of the lemma states that to
collect the support count of a sequence -, only the
sequences in the database sharing the same prefix
should be considered. Furthermore, only those suf-
fixes with the prefix being a super-sequence of =
should be counted. The claim follows the related
definitions.

The third part of the lemma is on the size of
a projected database. Obviously, the a-projected
database can have the same number of sequences
as S only if a appears in every sequence in S. Oth-
erwise, only those sequences in S which are super-
sequences of o appear in the a-projected database.
So, the a-projected database cannot contain more
sequences than S. For every sequence v in S such
that v is a super-sequence of a, v appears in the
a-projected database in whole only if « is a prefix
of v. Otherwise, only a subsequence of v appears
in the a-projected database. Therefore, the size of
a-projected database cannot exceed that of S. O

Let us examine how to use the prefix-based
projection approach for mining sequential patterns
based on our running example.

Ezample 6 (PrefixSpan). For the same sequence
database S in Table 1 with min_sup = 2, sequential
patterns in S can be mined by a prefix-projection
method in the following steps.

Step 1. Find length-1 sequential patterns.

Scan S once to find all the frequent items

265

in sequences. Each of these frequent items is a
length-1 sequential pattern. They are (a):4, (b):4,
(c):4, (d):3, (e):3, and (f):3, where the notation
“(pattern):count” represents the pattern and its as-
sociated support count.

Step 2. Divide search space.

The complete set of sequential patterns can be
partitioned into the following six subsets according
to the six prefixes: (1) the ones with prefix (a), (2)
the ones with prefix (b}, ..., and (6) the ones with
prefix (f).

Step 3. Find subsets of sequential patterns.

The subsets of sequential patterns can be mined
by constructing the corresponding set of projected
databases and mining each recursively. The pro-
jected databases as well as sequential patterns
found in them are listed in Table 2, while the min-
ing process is explained as follows.

a) Find sequential patterns with prefiz {a).

Only the sequences containing (a) should be col-
lected. Moreover, in a sequence containing (a),
only the subsequence prefixed with the first oc-
currence of {(a) should be considered. For exam-
ple, in sequence {((ef)(ab)(df)cb), only the subse-
quence {(_b)(df)cb) should be considered for min-
ing sequential patterns prefixed with (a). Notice
that (_b) means that the last element in the prefix,
which is a, together with b, form one element.

Table 2. Projected Databases and Sequential Patterns

£)(ab)(df)cb), ((af)che)

Prefix Projected database Sequential patterns
(a) ((abc)(ac)d(cf)), ((-d)c(be)(ae)), ((-b)(df)cb), (a), (aa), {ab), (a(bc)), (a(bc)a), {aba), (abc), {(ab)),
((-f)ebe) ((ab)e), ((ab)d), ((ab)f), ((ab)dc), (ac), (aca), (acb),

(acc), {(ad), (adc), {(af

(&) ((-e)(ac)d(cf)), ((-c)(ae)), ((df)eb), (c) (6), (ba), (be), ((be)), ((be)a), (bd), (bdc), (bf)

() ((ac)d(cf)), {(be)(ae)), (b), (be) (c), {ca), {cb), {cc)

(d) ((cf)), (e(be)(ae)), ((-f)cb) (d), (db), (dc), (dcb)

(e) ((-F) (
(
(

(f) _((ab)(df)cb), (cbe)

The sequences in S containing (a) are projected
w.r.t. {a) to form the (a)-projected database, which
consists of four suffix sequences: ((abc)(ac)d(cf)),
(d)e(be)(ae)), (b)(df)cb) and ((_f)cbe).

By scanning the (a)-projected database once,
its locally frequent items are a:2, b:4, _b:2, c:4, d:2,
and f:2. Thus all the length-2 sequential patterns
prefixed with (a) are found, and they are: (aa):2,
(ab):4, ((ad)):2, {ac):4, (ad):2, and {(af):2.

Recursively, all sequential patterns with prefix
(a) can be partitioned into 6 subsets: (1) those pre-
fixed with (aa), (2) those with {ab), ..., and finally,

(6) those with (af). These subsets can be mined
by constructing respective projected databases and
mining each recursively as follows.

i. The {(aa)-projected database consists of two
non-empty (suffix) subsequences prefixed with
(aa): {{(-bc)(ac)d(cf)), {{(-e))}. Since there is no
hope to generate any frequent subsequence from
this projected database, the processing of the (aa)-
projected database terminates.

ii. The (ab)-projected database consists of three
suffix sequences: ((-c)(ac)d(cf)), {(-c)a), and {(c).

Recursively mining the (ab)-projected database re-

266

turns four sequential patterns: ((_c)), ((-¢)a), {(a},
and (c) (i.e., (a(bc)), (a(bc)a), (aba), and {(abc).)
They form the complete set of sequential patterns
prefixed with (ab).

iii. The ((ab))-projected database contains only
two sequences: ((_c¢)(ac) d(cf)) and ((df)cb), which
leads to the finding of the following sequential pat-
terns prefixed with ((ab)): (c), (d), (f), and {(dc).

iv. The (ac)-, (ad)- and (af)-projected data-
bases can be constructed and recursively mined
similarly. The sequential patterns found are shown
in Table 2.

b) Find sequential patterns with prefiz (b), {c),
(d), {e) and (f), respectively.

This can be done by constructing the (b)-, (c)-
(d)-, (e)- and (f)-projected databases and mining
them respectively. The projected databases as well
as the sequential patterns found are shown in Table
2.

Step 4. The set of sequential patterns is the
collection of patterns found in the above recursive
mining processes.

One can verify that it returns exactly the
same set of sequential patterns as what GSP and
FreeSpan do.

Based on the above discussion, the algorithm of
PrefixSpan is presented as follows.
Algorithm 1 (PrefixSpan).

sequential pattern mining.

Prefix-projected

Input: A sequence database S, and the minimum
support threshold min_support.

Output: The complete set of sequential patterns.

Method: Call PrefixSpan((}, 0, 5).

Subroutine PrefixSpan(a;, [, S|«)
The parameters are (1) « is a sequential pattern;
(2) 1 is the length of «; and (3) S|, is the a-
projected database if o # (), otherwise, it is the
sequence database S.

Method:

1. Scan S|, once, find each frequent item, b, such
that
a) b can be assembled to the last element of a to

form a sequential pattern o’; or
b) (b) can be appended to a to form a sequential
pattern o'

2. For each o, if o is frequent, output o/,
construct a’-projected database S|,s, and call
PrefixSpan(a/, ! + 1, 5|a).

Analysis. The correctness and completeness
of the algorithm can be justified based on Lemma
1. Here, we analyze the efficiency of the algorithm
as follows.

J. Comput. Sci. & Technol., May 2004, Vol.19, No.3

e No candidate sequence needs to be generated
by PrefixSpan.

Unlike Apriori-like algorithms, PrefixSpan only
grows longer sequential patterns from the shorter
frequent ones. It neither generates nor tests any
candidate sequence non-existent in a projected
database. Compared with GSP, which generates
and tests a substantial number of candidate se-
quences, PrefixSpan searches a much smaller space.

e Projected databases keep shrinking.

As indicated in Lemma 1, a projected database
is smaller than the original one because only the
suffix subsequences of a frequent prefix are pro-
jected into a projected database. In practice, the
shrinking factors can be significant because (1) usu-
ally, only a small set of sequential patterns grow
quite long in a sequence database, and thus the
number of sequences in a projected database usu-
ally reduces substantially when prefix grows; and
(2) projection only takes the suffix portion with re-
spect to a prefix. Notice that FreeSpan also employs
the idea of projected databases. However, the pro-
jection there often takes the whole string (not just
suffix) and thus the shrinking factor is less than
that of PrefixSpan.

e The major cost of PrefixSpan is the construc-
tion of projected databases.

In the worst case, PrefixSpan constructs a pro-
jected database for every sequential pattern. If
there exist a good number of sequential patterns,
the cost is non-trivial. Techniques for reducing the
number of projected databases will be discussed in
the next subsection.

3.3 Pseudo-Projection

The above analysis shows that the major cost
of PrefixSpan is database projection, i.e., forming
projected databases recursively. Usually, a large
number of projected databases will be generated in
sequential pattern mining. If the number and/or
the size of projected databases can be reduced, the
performance of sequential pattern mining can be
further improved.

One technique which may reduce the num-
ber and size of projected databases is pseudo-
projection. The idea is outlined as follows. Instead
of performing physical projection, one can register
the index (or identifier) of the corresponding se-
quence and the starting position of the projected
suffix in the sequence. Then, a physical projec-
tion of a sequence is replaced by registering a se-
quence identifier and the projected position index

Jia-Wei Han et al.: Pattern-Growth Approach

point. Pseudo-projection reduces the cost of pro-
jection substantially when the projected database
can fit in main memory.

This method is based on the following observa-
tion. For any sequence s, each projection can be
represented by a corresponding projection position
(an index point) instead of copying the whole suffix
as a projected subsequence. Consider a sequence
(a(abc)(ac)d(cf)). Physical projections may lead
to repeated copying of different suffixes of the se-
quence. An index position pointer may save physi-
cal projection of the suffix and thus save both space
and time of generating numerous physical projected
databases.

Ezample 7 (Pseudo-projection). For the same
sequence database S in Table 1 with min_sup = 2,
sequential patterns in S can be mined by pseudo-
projection method as follows.

Suppose the sequence database S in Table 1
can be held in main memory. Instead of construct-
ing the (a)-projected database, one can represent
the projected suffix sequences using pointer (se-
quence_id) and offset(s). For example, the projec-
tion of sequence s; = (a(abc)d(ae)(cf)) with re-
gard to the (a)-projection consists two pieces of
information: (1) a pointer to s; which could be the
sequence_id s1, and (2) the offset(s), which should
be a single integer, such as 2, if there is a single pro-
jection point; and a set of integers, such as {2, 3,6},
if there are multiple projection points. Each offset
indicates at which position the projection starts in
the sequence.

The projected databases for prefixes (a)-, (b)-,
(e)-, (d)-, (f)-, and (aa)- are shown in Table 3,
where $ indicates the prefix has an occurrence in
the current sequence but its projected suffix is
empty, whereas () indicates that there is no oc-
currence of the prefix in the corresponding se-
quence. From Table 3, one can see that the pseudo-
projected database usually takes much less space
than its corresponding physically projected one.

Pseudo-projection avoids physically copying
suffixes. Thus, it is efficient in terms of both run-
ning time and space. However, it may not be effi-
cient if the pseudo-projection is used for disk-based
accessing since random access disk space is costly.
Based on this observation, the suggested approach

267

is that if the original sequence database or the pro-
jected databases is too big to fit in memory, the
physical projection should be applied, however, the
execution should be swapped to pseudo-projection
once the projected databases can fit in memory.
This methodology is adopted in our PrefixSpan im-
plementation.

Notice that the pseudo-projection works effi-
ciently for PrefixSpan but not so for FreeSpan. This
is because for PrefixSpan, an offset position clearly
identifies the suffix and thus the projected subse-
quence. However, for FreeSpan, since the next step
pattern-growth can be in both forward and back-
ward directions, one needs to register more infor-
mation on the possible extension positions in order
to identify the remainder of the projected subse-
quences. Therefore, we only explore the pseudo-
projection technique for PrefixSpan.

4 Pattern-Growth Approach for
Structured Pattern Mining

In this section, we introduce a structured pat-
tern mining algorithm using the pattern-growth
methodology, which has a strong relation with the
sequential pattern mining algorithms presented in
Section 3.

As a general data structure, labeled graph can
be used to model structured patterns among data.
A labeled graph has labels associated with its edges
and vertices. We denote the vertex set of a graph
g by V(g), the edge set by E(g). A label function,
l, can map a vertex or an edge to a label. A graph
g is a subgraph of another graph ¢’ if there exists
a subgraph isomorphism from g to g'.

Definition 1 (Subgraph Isomorphism). A
subgraph isomorphism is an injective function f:
V(g) — V(g'), such that (1) Yu € V(g), l(u) =
U(f(w), and (2) V(u,0) € E(g), (f(u),f(v)) €
E(¢') and l(u,v) = U'(f(u), f(v)), where I and U
are the label functions of g and g’ respectively.

If g is a subgraph of ¢’, then ¢’ is a super-
graph of g, denoted by g C ¢’ (proper supergraph,
if g C ¢'). Given a labeled graph dataset, S =
{G1,Ga, ., Gn}, support(g) (or frequency(g)) de-
notes the percentage (or number) of graphs (in S)
in which g is a subgraph. The set of frequent

Table 3. A Sequence Database and Some of Its Pseudo-Projected Databases

Sequence_id Sequence (a) (b) (c) (d) (f) (aa)
1 (a(abc)(ac)d(cf)) 2,3,6 4 5,7 8 $ 3,6
2 ((ad)c(be)(ae)) 2 5 4,6 3 0 7
3 ((ef)(ab)(df)cb) 4 5 8 6 3,7 0
4 eg(af)cbc) 4 6 6 0 5 0

268

J. Comput. Sci. & Technol., May 2004, Vol.19, No.3

Fig.3. Sample graph dataset S.

graph patterns, F', includes all the graphs whose
support is no less than a minimum support thresh-
old, min_support.

Since most of interesting graph patterns are
connected graphs, we first study mining labeled
connected undirected graphs without multiple
edges. Our method can be easily extended for min-
ing other kinds of graph structures such as unla-
beled graphs, graphs with self-loops and multiple
edges, directed graphs, disconnected graphs, and
SO om.

Ezample 8. Fig.3 is a sample labeled graph
dataset, S, where three labeled graphs are pre-
sented. Among these graphs, each vertex and edge
are assigned a label. Let min_sup be 2. The alpha-
betic order is taken as the default lexicographical
order.

A graph g can be extended by adding a new
edge e. Let the new graph be denoted by g ¢, e.
Edge e may or may not introduce a new vertex
to g. If e introduces a new vertex, we denote the
new graph by g o, e, otherwise, g oz e. Algorithm
2 illustrates a naive frequent graph mining algo-
rithm. It finds all the frequent graphs, closed or
non-closed. For each discovered graph g, it per-
forms the extension recursively until all the fre-
quent graphs with g embedded are discovered.

Algorithm 2 (NaiveGraph). Naive structured

pattern mining.

Input: A graph database S, the frequent pattern
set F'; and the minimum support threshold
man_support.

Output: The complete set of structured patterns.

Method: Call NaiveGraph((),0, F').

Subroutine NaiveGraph(g, [, F')

The parameters are (1) g is a structured pattern;
(2) ! is the number of edges of g; and (3) F' is
the set of frequent patterns discovered so far.

Method:

1. Check whether g already existed in F, if yes,
return; else insert g into F'.

2. Scan S once, find every edge e such that e can
be assembled to g to form a structured pattern
g oz €.

3. For each structured pattern, g ¢, e, if it is fre-
quent, call NaiveGraph(g o e,l + 1, F).

NaiveGraph strictly follows the pattern-growth
methodology: a pattern is grown by exploring lo-
cally frequent fragments. NaiveGraph shares the
same processing steps with PrefixSpan (database
projection is omitted). NaiveGraph is simple, but
not efficient. The key issue is the inefficiency of
extending g to g ¢, e. The same graph can be ex-
tended in different ways. For an m-edge graph, it
may have n different ways to be built from (n —1)-
edge graphs if we do not consider isomorphism. We
call a graph that is discovered again a duplicate
graph. The first step in Algorithm 2 gets rid of
duplicate graphs. The number of duplicate graphs
may be huge. It raises some severe problems. First,
the generation and support computation of dupli-
cate graphs waste time. Second, it is nontrivial
to tell whether a graph is a duplicate. Generally,
we have to compute its canonical label and check
whether it was discovered before. Third, should
we extend g if we find g is a duplicate? If there
exists at least one graph that can grow only from
this duplicate graph, we still need to extend it. As
we can see, these three interleaved problems affect
the efficiency of the algorithm. They suggest that g
should be extended as conservatively as possible in
order to reduce the generation of duplicate graphs.
To satisfy this requirement, we developed gSpan
where an efficient canonical labeling system and a
lexicographic ordering in graphs are built. gSpan
has the following salient properties: (1) it reduces
the generation of duplicate graphs; (2) it does not
need to search previous discovered frequent graphs
in order to detect duplicates; and (3) it never ex-
tends any duplicate graph but still guarantees the
completeness.

In the following sections, we introduce sev-
eral techniques developed to represent and extend
graphs efficiently. It includes mapping a graph to
a DFS code (a sequence), building a lexicographic
ordering among these codes, and mining DFS codes
based on this lexicographic order.

4.1 DFS Subscripting

One can build a DFS tree when performing a

Jia-Wei Han et al.: Pattern-Growth Approach

() ("

a a
v
') o ()
b b
O O © O
Base graph
(a) (b)

b
IONRO

269

v3

(c) (d)

Fig.4. DFS subscripting.

depth-first search?!! in a graph. Fig.4(a) is a fre-
quent subgraph for the sample dataset S in Fig.3.
Figs.4(a)-4(d) are the same graph. The dark-
ened edges in Figs.4(b)—4(d) compose three differ-
ent DFS trees for this graph. When building a DFS
tree, the depth-first discovery of the vertices forms
a linear order. We use the magnitude of subscripts
to illustrate this order according to their discovery
timel?!l, § < j means v; is discovered before v;. We
denote G subscripted with a DFS tree T by G. T
is named a DFS subscripting of G.

Given G, we call the first node traversed in
Gr, v, the root, and the last node traversed, v,,
the right-most vertez. The straight path from vg to
vy, is named the right-most path. In Figs.4(b)—4(d),
three different subscriptings are generated. The
right-most path is (vg,v1,v3) in Figs.4(b) and 4(c),
and (vo,v1,v2,vs3) in Fig.4(d).

Given Gr, the forward edge (tree edgel?!]) set
contains all the edges in the DFS tree, denoted by
E%, and the backward edge (back edgel®']) set con-
tains all the edges which are not in the DFS tree,
denoted by E%. For example, the darkened edges
in Figs.4(b)—4(d) are forward edges while the un-
darkened ones are backward edges. From now on,
(vs,v;) (simply written as (4, 5)) is viewed as an or-
dered pair to represent an edge. If (v;,v;) € E(G)
and ¢ < j, it is a forward edge; otherwise, a back-
ward edge. The forward edge of v; means there
exists a forward edge (7,7) and ¢ < j. The back-
ward edge of v; means there exists a backward edge
(4,7) and ¢ > j. In Fig.4(b), (1,3) is the forward
edge of vy, but not of vs, and (2, 0) is the backward
edge of vs.

4.2 Right-Most Extension

In Algorithm 2, NaiveGraph requires extending g
in any possible position, which will result in a huge
number of duplicate graphs. We would like to show
that there is a more clever way to extend graphs.
gSpan restricts the extension as follows: Given g

and a DFS tree T in g, e can be extended from the
right-most vertex connecting to any other vertices
on the right-most path (backward extension); or e
can be extended from vertices on the right-most
path and introduces a new vertex (forward exten-
ston). We call these two kinds of restricted exten-
sion as right-most extension, denoted by g ¢, e (for
simplicity, we omit 7" here). This restricted exten-
sion is different from g, e described in NaiveGraph.

Ezxzample 9. If we want to extend the graph in
Fig.4(b), the backward extension candidates can
be (vs,vg). The forward extension candidates can
be edges extending from vz, vy, or vy with a new
vertex introduced.

Since we may have different DFS subscriptings
for the same graph, we want to select one from
them as base subscripting and conduct right-most
extension on the base subscripting. Otherwise,
right-most extension cannot reduce the generation
of duplicate graphs because there are many differ-
ent subscriptings to extend from the same graph.

4.3 DFS Code

For each subscripted graph, we can map it into
an edge sequence. We build an order among these
sequences and select the subscripting that gener-
ates the minimum sequence as its base subscript-
ing. There are two kinds of orders in this process:
(1) edge order, which maps edges in a subscripted
graph into a sequence; and (2) sequence order,
which builds the order among sequences. We in-
troduce edge order in this subsection and sequence
order in the next subsection.

Intuitively, the DFS tree has defined the discov-
ery order of forward edges. For the graph shown
in Fig.4(b), the forward edges are discovered in the
order (0,1),(1,2),(1,3). Now we can insert back-
ward edges into the order. Given a vertex v, all
of its backward edges should appear just before its
forward edges. If v does not have any forward edge,
we put its backward edges just after the forward

270

edge where v is the second vertex. For vertex vy
inFig.4(b), its backward edge (2,0) should appear
just after (1,2) since ve does not have any forward
edge. Among the backward edges from the same
vertex, we can enforce an order: Given v; and its
two backward edges, (4, 1), (%, J2), if j1 < ja2, then
edge (i,71) will appear before edge (i,72). So far,
we complete the ordering of the edges in a graph.
Based on this order, we can translate a graph into
a sequence. A complete sequence for Fig.4(b) is
(0,1),(1,2),(2,0),(1,3).

Formally we can define a linear order, <7, in
R? if we only consider the subscripts of edges.
e1 <1 e3 holds if one of the following statements is
true (assume e; = (i1,71), €2 = (%2, 72)):

(i) e1, ez € Eéﬁ, and j; < jg or iy > ig A j1 = Ja-

(ii) e1,es € B, and iy < iy or iy =g Aj1 < jo.

(iii) e; € Eb, €3 € EL, and iy < ja.

(iv) e; € E%, ez € Eb, and j; < ia.

Ezample 10. For simplicity, we represent an
edge by a 5-tuple, (i,34,1;,1(; jy,1;), where I; and I;
are the labels of v; and v; respectively and ; ;) is
the label of the edge between them. For example,
(vo,v1) in Fig.4(b) is represented by (0,1, X, a, X).
Table 4 shows the edge order for the DFS subscript-
ings in Figs.4(b)-4(d).

Table 4. DFS Code for Figs.4(b)-4(d

N

edge Y0 71 72
€o (0,1,X,a,X) (0,1,X,a,X) (0,1,Y,b,X)
e1 (1,2,X,a,Z2) (1,2,X,bY) (1,2,X,a,X)
e2 (2,0,7,b,X) (1,3,X,a,2) (2,3,X,b,2)
€3 (1737X:b:Y) (37072,b7X) (371727‘1,X)

Definition 2 (DFS Code). Given Gr, an
edge sequence (e;) can be constructed based on <,
such that e; <7 €;41, where i =0,...,|E| —1. (e;)
is a DFS code, denoted by code(G,T).

Table 4 shows three different DFS codes gener-
ated by DFS subscriptings in Figs.4(b)-4(d). As
one can see, actually we build a one-to-one map-
ping between a subscripted graph and a DFS code.
When the context is clear, we treat a subscripted
graph and its DFS code as the same. All the nota-
tions on subscripted graphs can also be applied to
DFS codes. The graph represented by a DFS code
a is written as gg.

4.4 DFS Lexicographic Order

We want to build an order among the DFS
codes generated for a graph so that we can de-
fine a minimum DFS code for this graph. Since

J. Comput. Sci. & Technol., May 2004, Vol.19, No.3

we are dealing with labeled graphs, the label in-
formation should be considered as one of the or-
dering factors, which can be used to break a tie
when two edges have the same subscript, but dif-
ferent labels. We let < take the first priority,
the vertex label [; take the second priority, the
edge label [(; ;) take the third, and the vertex la-
bel I; take the fourth to determine the order of two
edges. For example, the first edges for the three
DFS codes shown in Table 4 are (0,1,X,a,X),
(0,1,X,a,X), and (0,1,Y,b, X) respectively. All
of them share the same (0,1) subscript. So <r
cannot tell the difference among them. But using
label information, following the order of first ver-
tex label, edge label, and second vertex label, we
have (0,1,X,a,X) < (0,1,Y,b,X). Based on this
order, given DFS codes o = (ap,a1,...,a,) and
ﬂ = (bo,bl, e ,bn), if apgp = bo, ey Q1 = bt,1 and
a; < by (t < min(m,n)), then we say o < 5. Ac-
cording to this order definition, we have vy < 71 <
~o for the DFS codes listed in Table 4.

The above discussion builds an order on the
DFS codes of the same graph. We can extend
this order definition in the DFS codes of different
graphs. This ordering is one of our key contribu-
tions in gSpan. The formal definition of DFS code
order is given as follows.

Definition 3 (DFS Lexicographic Order).
Suppose Z = {code(G,T)|T is a DFS subscript-
ing of G}, t.e., Z is a set containing all DFS
codes of all connected labeled graphs. Suppose
there is a linear order (<) in the label set (L),
then the lexicographic combination of <t and <,
is a linear order (<) in N? x L x L x L (the
space of (i,4,li,1(i;),l;)). DFS Lexicographic
Order is a linear order defined as follows. If
a = code(Ga,Tn) = (ag,a1,...,am,) and B =
code(Gg,Tg) = (bo,b1,...,bn), a,B € Z, then
a < B iff either of the following is true.

(1) 3, 0 < t < min(m,n), ap = by for k <

t, ar < bt,‘

(#) ap = by, for 0 < k < m, and m < n.

Ezample 11. Assume we have a 2-edge graph
which has a DFS code ((0,1,X,a,X) (1,2,X,
b, X)). This graph is different from the graph
in Fig.4(a). Using the DFS lexicographic order,
we can compare ((0,1,X,a,X) (1,2, X,b, X)) with
any code in Table 4. It is greater than =y, but
smaller than ~;.

Definition 4 (Minimum DFS Code). Given
G, Z(G) = {code(G,T)|T is a DFS subscript-
ing of G }. Based on DFS lezicographic order,
min(Z(Q)) is called Minimum DFS Code of G.

Jia-Wei Han et al.: Pattern-Growth Approach

If code(G,Ty) = min(Z(G)), we call Ty the base
subscripting of G.

Code 7y in Table 4 is the minimum DFS code
of the graph in Fig.4(a). We use min(«a) to denote
the minimum DFS code of the graph represented
by code a. Minimum DFS code can be considered
as canonical label.

So far, we defined DFS code, minimum DFS
code, and base subscripting. For every graph, we
only conduct the right-most extension on its base
subscripting and ignore other possible subscript-
ings. From now on, the right-most extension of G
specifically means the right-most extension on the
base subscripting of G. Can this extension method
guarantee the completeness of the mining result?
The answer is “yes”. We first have the following
result.

Theorem 1 (Completeness). Performing
right-most extension in NaiveGraph guarantees the
completeness of mining result.

When performing the right-most extension in
NaiveGraph, it is possible that « is the minimum
(i-e., representing a base subscripting), but a¢,.e is
not. In this case, should we conduct the right-most
extension on this non-minimum DFS code (i.e., it
is not a base subscripting)? The answer is “no”.

Lemma 2. Performing only the right-most ex-
tension on the minimum DFS codes in NaiveGraph
guarantees the completeness of the mining result.

We achieved these two major results in gSpan.
The detailed proof and implementation are avail-
able in [22]. Algorithm 3 outlines the framework.
The difference between gSpan and NaiveGraph is the
right-most extension and the termination condition
on non-minimum DFS codes (Algorithm 3 lines 1-
2). We replace the existence judgement in Step 1,
Algorithm 2 with the inequation s # min(s). Ac-
tually, s # min(s) is more efficient to calculate.

Fig.5 shows the search space of gSpan, where
each link represents a possible right-most exten-
sion. The right-most extension takes place when
we extend (k — 1)-edge graphs to the k-edge ones.
If we find two DFS codes s and s’ represent the
same graph and s < s’, by Lemma 2, we can com-
pletely stop searching any descendant of s’. gSpan
can generate graphs strictly in DFS lexicographic
order: graphs with smaller minimum DFS codes
will be discovered first.

Algorithm 3 (gSpan).
tured pattern mining.

Graph-based struc-

Input: A graph database S, the frequent pat-
tern set F', and the minimum support
threshold min_support.

271

Output: The complete set of structured pat-

terns.

Method: Call gSpan((),0, F).

Subroutine gSpan(s, !, F)

The parameters are (1) s is a DFS code (a struc-
tured pattern); (2) ! is the number of edges of s;
and (3) F is the set of frequent patterns discovered
so far.

Method:

1. Check whether s is equal to min(s), if yes,
return; else insert s into F'.

2. Scan S once, find every edge e such that s
can be right-most extended with edge e to
form a structured pattern g ¢, e.

3. For each structured pattern, g ¢, e, if it is
frequent, call gSpan(g o e,l + 1, F).

1-edge

2-edge

n-edge

Fig.5. Search space.

5 Experimental Results and Performance
Analysis

Since GSP[2l and SPADE!? are the two most in-
fluential sequential pattern mining algorithms, we
conduct an extensive performance study to com-
pare PrefixSpan with them. In this section, we first
report our experimental results on the performance
of PrefixSpan in comparison with GSP and SPADE

and then present our performance results of gSpan.

5.1 Performance Comparison Among

PrefixSpan, FreeSpan, GSP, and SPADE

To evaluate the effectiveness and efficiency of
the PrefixSpan algorithm, we performed an exten-
sive performance study of four algorithms: PrefixS-
pan, FreeSpan, GSP and SPADE, on both real and
synthetic data sets, with various kinds of sizes and
data distributions.

All experiments were conducted on a 750MHz
AMD PC with 512MB main memory, running Mi-
crosoft Windows-2000 Server. Three algorithms,
GSP, FreeSpan, and PrefixSpan, were implemented

272

by us using Microsoft Visual C++ 6.0. The imple-
mentation of the fourth algorithm, SPADE, is ob-
tained directly from the author of the algorithm('3].

For the data sets used in our performance study,
we use two kinds of data sets: a real data set and
a group of synthetic data sets.

For real data set, we obtained the Gazelle data
set from Blue Martini Software. This data set is
used in KDD-CUP’2000 and contains totally 29,369
customers’ webpage click-stream data. For each
customer, there may be several sessions of web
click-stream and each session can have multiple
page views. Because each session is associated with
both starting and ending date/time, for each cus-
tomer we can sort its sessions of click-stream into
a sequence of page views according to the viewing
date/time. This dataset contains 29,369 sequences
(i.e., customers), 35,722 sessions (i.e., transactions
or events), and 87,546 page views (i.e., products
or items). There are in total 1,423 distinct page
views. More detailed information about this data
set can be found in [23].

For synthetic data sets, we have also used a
large set of synthetic sequence data generated by
a data generator similar in spirit to the IBM data
generator!!! designed for testing sequential pattern
mining algorithms. Various kinds of sizes and
data distributions of data sets are generated and
tested in this performance study. The convention
for the data sets is as follows: C2007'2.551011.25
means that the data set contains 200k customers
(i.e., sequences) and the number of items is 10, 000.
The average number of items in a transaction (i.e.,
event) is 2.5 and the average number of transac-
tions in a sequence is 10. On average, a frequent
sequential pattern consists of 4 transactions, and
each transaction is composed of 1.25 items.

To make our experiments fair to all the algo-
rithms, our synthetic test data sets are similar to
that used in the performance study in [13]. Addi-
tional data sets are used for scalability study and
for testing the algorithm behavior with varied (and
sometimes very low) support thresholds.

The first test of the four algorithms is on the
data set C'107'8S8I8, which contains 10k customers
(i-e., sequences) and the number of items is 1, 000.
Both the average number of items in a transaction
(i.e., event) and the average number of transac-
tions in a sequence are set to 8 On average, a
frequent sequential pattern consists of 4 transac-
tions, and each transaction is composed of 8 items.
Fig.6 shows the distribution of frequent sequences
of data set C10T8S8I18, from which one can see

J. Comput. Sci. & Technol., May 2004, Vol.19, No.3

that when min_support is no less than 1%, the
length of frequent sequences is very short (only 2-
3), and the maximum number of frequent patterns
in total is less than 10,000. Fig.7 shows the pro-
cessing time of the four algorithms at different sup-
port thresholds. The processing times are sorted
in time ascending order as “PrefixSpan < SPADE <
FreeSpan < GSP”. When min_support = 1%, Pre-
fixSpan (runtime = 6.8s) is about two orders of
magnitude faster than GSP (runtime = 772.72s).
When min_support is reduced to 0.5%, the data set
contains a large number of frequent sequences, Pre-
fixSpan takes 32.56s, which is more than 3.5 times
faster than SPADE (116.35s), while GSP never ter-
minates on our machine.

5 100,000 F 7T T T T T
[

2 X

S 10,000 F//%]
o ik

g A

g 1,000 0]
% | —— 0.5%

g i --x--- 1%

& w00p iy]
5 ;(e QP

5 ok --m- 2.5% E
Fg -~ 3%

=

Z 1 L 1 | 1 1 1 L L

2 4 6 8 10 12 14 16
Length of frequent k-sequences

Fig.6. Distribution of frequent sequences of data set
C10T'8S8I8.
1,000
’ ' ‘ﬁ I PlreﬁXSpaln—n— '
= SPADE ---x---
8 FreeSpan ---%---
x . GSP i
= 100 ' E
S - ,
E
=
=
~
0.5 1 1.5 2 2.5 3
Support threshold (%)
Fig.7. Performance of the four algorithms on data set
C107T'8S8I8.

The performance study on the real data set
Gazelle is reported as follows. Fig.8 shows the dis-
tribution of frequent sequences of Gazelle dataset
for different support thresholds. We can see that
this dataset is a very sparse dataset: only when
the support threshold is lower than 0.05% are there
some long frequent sequences. Fig.9 shows the per-

Jia-Wei Han et al.: Pattern-Growth Approach

formance comparison among the four algorithms
for Gazelle dataset. From Fig.9 we can see that
PrefixSpan is much more efficient than SPADE,
FreeSpan and GSP. The SPADE algorithm is faster
than both FreeSpan and GSP when the support
threshold is no less than 0.025%, but once the sup-
port threshold is no greater than 0.018%, it cannot
stop running.

T T T T T T T T
@ 106 ©0.018% -=-0.03% --0.04% A
g -+-0.025% - 0.035% -+ 0.045%
€ 105F T e e 0.05%
g I ’ AN
5 102 ! 7
qg; 103 ¥ kN 7
B M Ay
S 102 " AN
b5 \\\ @
E 10tf L
= N \ \
Z 1 I | L Yy - I N 1 1 X
2 6 10 14 18

Length of frequent k-sequences

Fig.8. Distribution of frequent sequences of data set Gazelle.

1’000 E T T T T T T
Eox PrefixSpan -o--
[&N SPADE -+-
FreeSpan -=--
. 100 ¢ o SN\ GSP -x-—- 3
[} k \\X“\
£ 10 et
- E B s 3
~ e, g
1k . b e =
T Tmome
DS
01 1 1 1 1 1 1
0.015 0.025 0.035 0.045

Support threshold (%)

Fig.9.
Gazelle.

Performance of the four algorithms on data set

Finally, we compare the memory usage among
the three algorithms, PrefixSpan, SPADE, and GSP
using both real data set Gazelle and synthetic data
set C'2007551012.5. Fig.10 shows the results for
Gazelle dataset, from which we can see that Pre-
fixSpan is efficient in memory usage. It consumes
almost one order of magnitude less memory than
both SPADE and GSP. For example, at support
0.018%, GSP consumes about 40MB memory and
SPADE just cannot stop running after it has used
more than 22MB memory while PrefixSpan only
uses about 2.7MB memory.

Fig.11 demonstrates the memory usage for

273

dataset C2007'551072.5, from which we can see
that PrefixSpan is not only more efficient but also
more stable in memory usage than both SPADE
and GSP. At support 0.25%, GSP cannot stop run-
ning after it has consumed about 362MB memory
and SPADE reported an error message “memory::
Array: Not enough memory” when it tried to al-
locate another bulk of memory after it has used
about 262MB memory, while PrefixSpan only uses
108MB memory. This also explains why in several
cases in our previous experiments when the sup-
port threshold becomes really low, only PrefixSpan
can finish running.

T T T T T T
45 - PrefixSpan -o-- 4
= | SPADE -+~
= GSP =
~ 35 e
[} ok
) .
o L ; 4
8 o5
B o
g i s /‘://* i
%» 5- CM/J»—/#’” e
5F. 4
oo D e & kit b el e § a—— .
0.05 0.04 0.03 0.02
Support threshold (%)
Fig.10. Memory usage comparison among PrefixSpan,

SPADE, and GSP for data set Gazelle.

400 T T T T T T T

| PrefixSpan -o--)
=y SPADE -+-

F GSP -=- .
\2/ 300 I3
T A
5 200 7
2 A
5 L : o
=
D 3
=

1 0.8 0.6 0.4
Support threshold (%)

Fig.11. PrefixSpan, SPADE, and GSP for
synthetic data set C'2007'551012.5.

Memory usage:

Based on our analysis, PrefixSpan only needs
memory space to hold the sequence datasets plus a
set of header tables and pseudo-projection tables.
Since the dataset C'2007'551072.5 is about 46MB,
which is much bigger than Gazelle (less than 1MB),
it consumes more memory space than Gazelle but
the memory usage is still quite stable (from 65MB
to 108MB for different thresholds in our testing).

274

However, both SPADE and GSP need memory space
to hold candidate sequence patterns as well as the
sequence datasets. When the min_support thresh-
old drops, the set of candidate subsequences grows
up quickly, which causes memory consumption up-
surge, and sometimes both GSP and SPADE cannot
finish processing.

In summary, our performance study shows that
PrefixSpan has the best overall performance among
the four algorithms tested. SPADE, though weaker
than PrefixSpan in most cases, outperforms GSP
consistently, which is consistent with the perfor-
mance study reported in [13]. GSP performs fairly
well only when min_support is rather high, with
good scalability, which is consistent with the per-
formance study reported in [2]. However, when
there are a large number of frequent sequences,
its performance starts deteriorating. Our memory
usage analysis also shows part of the reason why
some algorithms become really slow. It is because
the huge number of candidate sets may consume a
tremendous amount of memory. Also, when there
are a large number of frequent subsequences, all
the algorithms run slow. This problem can be par-
tially solved by closed frequent sequential pattern
mining.

5.2 Performance Study of gSpan

We compared the performance of gSpan with
FSG, an Apriori-based structured pattern mining
algorithm. All the experiments are done on a
1.7GHz Intel Pentium-4 PC with 1GB main mem-
ory, running RedHat 7.3. gSpan is implemented
in C++ with STL library support and compiled
by g++ with -O3 optimization. In each experi-
ment, we also show the performance of FSG, which
is kindly provided by Kuramochi et al.

The data set we tested is an AIDS antivi-
ral screen chemical compound dataset®, which
comes from Developmental Theroapeutics Program
in NCI/NIH. We select the most up-to-date release,
March 2002 Release. The dataset contains 43,905
chemical compounds. The results of the screening
tests can be categorized into three classes: CA:
confirmed active; CM: confirmed moderately ac-
tive; and CI: confirmed inactive. Among these
43,905 compounds, 423 of them belong to CA,
1,083 are of CM, and the remaining is in class CI.

We are interested in the frequent structures in
class CA and CM compounds. All the hydro-
gens in these compounds are removed. The most

J. Comput. Sci. & Technol., May 2004, Vol.19, No.3

popular atoms in these two datasets are C, O, N,
S, etc. There are 21 kinds of atoms in class CA
compounds whereas 25 in class CM. Three kinds
of bonds are popular in these compounds: single-
bond, double-bond, and aromatic-bond. On ave-
rage, each class CA compound has 40 vertices and
42 edges. The maximum one has 188 vertices and
196 edges. Each class CM compound has 32 ver-
tices and 34 edges on average. The maximum one
has 221 vertices and 234 edges.

Fig.12(a) shows the runtime with min_support
varying from 10% to 5%. As we can see, gSpan
outperforms FSG by a factor of 6 when min_support
is close to 5%. Fig.12(b) shows the memory con-
sumption of these two algorithms. gSpan consumes
much less main memory than FSG. The reduction is
around 2 orders of magnitude. The largest pattern
discovered with 5% support has 42 edges.

103 | .
=
£
£ 1071 T
=)
o
101 - b \X ‘‘‘‘‘‘‘‘‘ -
“““““ X
1 1 1 1 Il 1
0.04 0.06 0.08 0.10
Support threshold
(a)
T T T T T T
FSG ——
3
10 gSpan ---x---
)
g 102} 4
>
—
19
g
]
= 10t F i
Hmmeo L
1 1 1 1 Il 1
0.04 0.06 0.08 0.10

Support threshold

(b)

Fig.12. Mining patterns in class CA compounds. (a) Run-
time. (b) Memory.

Next, we conduct experiments on class CM
compounds. The performance is shown in Fig.13.
The largest pattern with 5% support has 23 edges.

©) http://dtp.nci.nih.gov/docs/aids/aids_data.html.

Jia-Wei Han et al.: Pattern-Growth Approach

That means the compounds in class CA share
larger chemical fragments. The compounds in class
CM are more diverse.

104 — T — . —
103F

102 1

Runtime (s)

101 -

0.04 0.06 0.08

Support threshold
(a)
103 T T T T T T T T

Memory (MB)

0.04 0.06 0.08

Support threshold
(b)

Fig.13. Mining patterns in class CM compounds. (a) Run-
time. (b) Memory.

We also run experiments of gSpan and FSG on a
series of synthetic datasets. The results are similar
to the ones shown in Figs.12 and 13.

6 Extensions of Sequential and Structured
Pattern Growth Approach

Compared with mining unordered frequent pat-
terns, mining sequential and structured patterns
is an important step towards mining sophisticated
frequent patterns in large databases. With the suc-
cessful development of sequential pattern-growth
and structured pattern-growth methods, it is in-
teresting to explore how such a method can be
extended to handle more sophisticated mining re-
quests. In this section, we will discuss a few exten-
sions of the pattern-growth approach.

275

6.1 Mining Multi-Dimensional, Multi-
Level Sequential and Structured
Patterns

In many applications, sequences are often asso-
ciated with different circumstances, and such cir-
cumstances form a multiple dimensional space. For
example, customer purchase sequences are associ-
ated with region, time, customer group, and oth-
ers. It is interesting and useful to mine sequential
patterns associated with multi-dimensional infor-
mation. For example, one may find that retired
customers (with age) over 60 may have very differ-
ent patterns in shopping sequences from the profes-
sional customers younger than 40. Similarly, items
in the sequences may also be associated with differ-
ent levels of abstraction, and such multiple abstrac-
tion levels will form a multi-level space for sequen-
tial pattern mining. For example, one may not be
able to find any interesting buying patterns in an
electronics store by examining the concrete models
of products that customers purchase. However, if
the concept level is raised a little high to brand-
level, one may find some interesting patterns, such
as “if one bought an IBM PC, it is likely she/he will
buy a new IBM Laptop and then a Cannon digital
camera within the next six months.”

There have been numerous studies at mining
frequent patterns or associations at multiple levels
of abstraction, [1, 24], and mining association or
correlations at multiple dimensional space, [25, 26].
One may like to see how to extend the framework
to mining sequential patterns in multi-dimensional,
multi-level spaces.

Interestingly, pattern-growth-based methods,
such as PrefixSpan, can be naturally extended to
mining such patterns. Here is an example illustrat-
ing one such extension.

Ezample 12 (Mining multi-dimensional, multi-
level sequential patterns). Consider a sequence
database SDB in Table 5, where each sequence is
associated with certain multi-dimensional, multi-
level information. For example, it may contain
multi-dimensional circumstance information, such
as cust-grp = business, city = Boston, and age-grp
= middle_aged. Also, each item may be associated
with multiple-level information, such as item b be-

ing IBM Laptop Thinkpad_X30.

Table 5. A Multi-Dimensional Sequence Database

cid cust-grp city age-grp sequence
10 business Boston middle_aged {(bd)cba)
20 professional Chicago young ((6f)(ce)(fg))
30 business Chicago middle_aged ((ah)abf)

40 education New York retired

((be)(ce))

276

PrefixSpan can be extended to mining sequen-
tial patterns efficiently in such a multi-dimensional,
multi-level environment. One such solution which
we call uniform sequential (or Uni-Seq)?") is out-
lined as follows. For each sequence, a set of multi-
dimensional circumstance values can be treated as
one added transaction in the sequence. For exam-
ple, for cid = 10, (business, Boston, middle_aged)
can be added into the sequence as one additional
transaction. Similarly, for each item b, its associ-
ated multi-level information can be added as ad-
ditional items into the same transaction that b re-
sides. Thus the first sequence can be transformed
into a sequence cidqg as, cidig: { (business, Boston,
middle_aged), ((IBM, Laptop, Thinkpad_X30),
(Dell, PC, Precision_330)) (Canon, digital_camera,
CD420), (IBM, Laptop, Thinkpad_X30), (Mi-
crosoft, RDBMS, SQLServer-2000)). With such
transformation, the database becomes a typical
single-dimensional, single-level sequence database,
and the PrefixSpan algorithm can be applied to ef-
ficient mining of multi-dimensional, multi-level se-
quential patterns.

The proposed embedding of multi-dimensional,
multi-level information into a transformed sequence
database, and then extension of PrefixSpan to min-
ing sequential patterns, as shown in Example 12,
has been studied and implemented in [27]. In the
study, we propose a few alternative methods, which
integrate some efficient cubing algorithms, such as
BUCE®! and H-cubing??, with PrefixSpan. A de-
tailed performance study in [27] shows that the
Uni-Seq is an efficient algorithm. Another interest-
ing algorithm, called Seq-Dim, which first mines se-
quential patterns, and then for each sequential pat-
tern, forms projected multi-dimensional database
and finds multi-dimensional patterns within the
projected databases, also shows high performance
in some situations. In both cases, PrefixSpan forms
the kernel of the algorithm for efficient mining of
multi-dimensional, multi-level sequential patterns.

Similar applications also exist in structured pat-
tern mining. For example, chemical compounds
may change their activities according to temper-
ature, pressure, density, and so on. At coarse lev-
els, some structures may share the similar behav-
ior. But at fine levels, they may behave differently.
Moreover, different structure patterns can be as-
sociated with multi-dimensional features, such as
different categories, different time durations, etc.
Thus it is important to mine structured patterns
in the multi-level, multi-dimensional context. Al-
though the methodology of extension of single-

J. Comput. Sci. & Technol., May 2004, Vol.19, No.3

level, single-dimensional mining algorithm towards
multi-level, multi-dimensional mining could be sim-
ilar to sequential and structured patterns. It is still
a research issue to develop efficient and scalable al-
gorithms for structured patterns.

6.2 Constraint-Based Mining of Sequential
and Structured Patterns

For many sequential pattern mining applica-
tions, instead of finding all the possible sequen-
tial patterns in a database, a user may often like
to enforce certain constraints to find desired pat-
terns. The mining process which incorporates user-
specified constraints to reduce search space and
derive only the user-interested patterns is called
constraint-based mining.

Constraint-based mining has been studied ex-
tensively in frequent pattern mining, such as[39=32],
In general, constraints can be characterized based
on the notion of monotonicity, anti-monotonicity,
succinctness, as well as convertible and inconvert-
ible constraints respectively, depending on whether
a constraint can be transformed into one of these
categories if it does not naturally belong to one of
them[®?l. This has become a classical framework
for constraint-based frequent pattern mining.

Interestingly, such a constraint-based mining
framework can be extended to sequential pattern
mining. Moreover, with pattern-growth frame-
work, some previously not-so-easy-to-push con-
straints, such as regular expression constraints(!2]
can be handled elegantly. Let us examine one such
example.

Ezample 13 (Constraint-based sequential pat-
tern mining). Suppose our task is to mine sequen-
tial patterns with a regular expression constraint
C = {a = {bb|(bc)d|dd}) with min_support = 2, in a
sequence database S (Table 1).

Since a regular expression constraint, like C, is
neither anti-monotone, nor monotone, nor succinct,
the classical constraint-pushing framework!*%! can-
not push it deep. To overcome this difficulty, Garo-
falakis, et al.l'?! develop a set of four SPIRIT algo-
rithms, each pushing a stronger relaxation of reg-
ular expression constraint R than its predecessor
in the pattern mining loop. However, the basic
evaluation framework for sequential patterns is still
based on GSP[? a typical candidate generation-
and-test approach.

With the development of the pattern-growth
methodology, such kinds of constraints can be
pushed deep easily and elegantly into the sequen-

Jia-Wei Han et al.: Pattern-Growth Approach

tial pattern mining process(®¥. This is because
in the context of PrefixSpan a regular expression
constraint has a nice property called growth-based
anti-monotonic. A constraint is growth-based anti-
monotonic if it has the following property: if a se-
quence « satisfies the constraint, o must be reach-
able by growing from any component which matches
part of the reqular expression.

The constraint C = (a x {bb|(bc)d|dd}) can be
integrated with the pattern-growth mining pro-
cess as follows. First, only the (a)-projected
database needs to be mined since the regular ex-
pression constraint C starting with @, and only
the sequences which contain frequent single item
within the set of {b,c,d} should retain in the (a)-
projected database. Second, the remaining mining
can proceed from the suffix, which is essentially
“Suffiz-Span” , an algorithm symmetric to PrefixS-
pan by growing suffixes from the end of the se-
quence forward. The growth should match the suf-
fix constraint “({bb|(bc)d|dd})”. For the projected
databases which matches these suffixes, one can
grow sequential patterns either in prefix- or suffix-
expansion manner to find all the remaining sequen-
tial patterns.

Notice that the regular expression constraint C
given in Example 13 is in a special form “(prefiz x
suffiz)” out of many possible general regular ex-
pressions. In this special case, an integration of
PrefixSpan and Suffiz-Span may achieve the best
performance. In general, a regular expression could
be of the form “(xaj * as * as*)”, where «; is a set
of instantiated regular expressions. In this case,
FreeSpan should be applied to push the instanti-
ated items by expansion first from the instantiated
items. A detailed discussion of constraint-based se-
quential pattern mining is in [33].

In structured pattern mining, we may apply the
wildcard constraint in gSpan using the similar in-
tegration method introduced above. gSpan is de-
signed for connected undirected structured pattern
mining. There are other kinds of interesting struc-
tured patterns. With little modification, gSpan can
be extended to mine those patterns. For example,
mining non-simple graphs, non-simple graphs may
contain self-loops (i.e., an edge joining a vertex to
itself) and multiple edges (i.e., several edges con-
necting to the same two vertices). In gSpan, we
always first grow backward edges and then forward
edges. In order to accommodate self-loops, the
growing order can be changed to backward edges,
self-loops, and forward edges. Multiple edges can
appear in these three kinds of edges. If we allow

277

two neighboring edges in a DFS code to share the
same vertices, the definition of DFS lexicographic
order can be extended to include multiple edges.
Thus gSpan can mine non-simple graphs efficiently
as well. By removing backward edges, gSpan is
ready to mine tree structures. The efficiency of
this dwarfed version of frequent graph mining was
demonstrated in [34].

7 Conclusions

We have introduced a pattern-growth approach
for efficient and scalable mining of sequential pat-
terns in large sequence databases. Instead of re-
finement of the Apriori-like, candidate generation-
and-test approach, such as GSP!?l and SPADE['3],
we promote a divide-and-conquer approach, called
pattern-growth approach, which is an extension
of FP-growth!2 an efficient pattern-growth algo-
rithm for mining frequent patterns without candi-
date generation.

An efficient pattern-growth method is devel-
oped for mining frequent sequential patterns, rep-
resented by PrefixSpan. PrefixSpan recursively
projects a sequence database into a set of smaller
projected sequence databases and grows sequen-
tial patterns in each projected database by ex-
ploring only locally frequent fragments. It mines
the complete set of sequential patterns and sub-
stantially reduces the efforts of candidate subse-
quence generation. Since PrefixSpan explores or-
dered growth by prefix-ordered expansion, it re-
sults in less “growth points” and reduced projected
databases in comparison with our previously pro-
posed pattern-growth algorithm, FreeSpan. Fur-
thermore, a pseudo-projection technique is pro-
posed for PrefixSpan to reduce the number of phys-
ical projected databases to be generated.

By employing the similar pattern-growth meth-
odology, gSpan can mine structured patterns effi-
ciently,. The DFS coding technique developed in
gSpan can smoothly transform a structured pat-
tern to a sequential pattern. With this coding tech-
nique, we can reuse the mining framework of Pre-
fixSpan in structured pattern mining and demon-
strate its efficiency again.

Our comprehensive performance study shows
that PrefixSpan outperforms the Apriori-based GSP
algorithm, FreeSpan, and SPADE in most cases, and
PrefixSpan integrated with pseudo-projection is the
fastest among all the tested algorithms for mining
the complete set of sequential patterns.

Based on our view, the implication of this

278

method is far beyond yet another efficient sequen-
tial pattern mining algorithm. It demonstrates the
strength of the pattern-growth mining methodol-
ogy since the methodology has achieved high per-
formance in both frequent-pattern mining and se-
quential pattern mining. Moreover, our discus-
sion shows that the methodology can be extended
to mining multi-level, multi-dimensional sequen-
tial patterns, mining sequential patterns with user-
specified constraints, and a few interesting appli-
cations. Therefore, it represents a promising ap-
proach for the applications that rely on the discov-
ery of frequent patterns and/or sequential patterns.

There are many interesting issues that need to
be studied further. Especially, the developments of
specialized sequential pattern mining methods for
particular applications, such as DN A sequence min-
ing that may admit faults, such as allowing inser-
tions, deletions and mutations in DNA sequences,
and handling industry/engineering sequential pro-
cess analysis are interesting issues for future re-
search.

References

[1] Agrawal R, Srikant R. Mining sequential patterns. In
Proc. 1995 Int. Conf. Data Engineering (ICDE’95),
Taipei, Taiwan, Mar. 1995, pp.3—14.

[2] Srikant R, Agrawal R. Mining sequential patterns:
Generalizations and performance improvements. In
Proc. 5th Int. Conf. Extending Database Technology
(EDBT’96), Avignon, France, Mar. 1996, pp.3-17.

[3] Mannila H, Toivonen H, Verkamo A I. Discovery of fre-
quent episodes in event sequences. Data Mining and
Knowledge Discovery, 1997, 1: 259—289.

[4] Wang J, Chirn G, Marr T, Shapiro B, Shasha D,
Zhang K. Combinatorial pattern discovery for scien-
tific data: Some preliminary results. 1994
ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’94), Minneapolis, MN, May, 1994, pp.115—
125.

[5] Bettini C, Wang X S, Jajodia S. Mining temporal rela-
tionships with multiple granularities in time sequences.
Data Engineering Bulletin, 1998, 21: 32—38.

[6] Zaki M J. Efficient enumeration of frequent sequences.
In Proc. T7th Int. Conf. Information and Knowledge
Management (CIKM’98), Washington D.C., Nov. 1998,
pp.68-75.

[7] Masseglia F, Cathala F, Poncelet P. The psp approach
for mining sequential patterns. In Proc. 1998 European
Symp. Principle of Data Mining and Knowledge Dis-
covery (PKDD’98), Nantes, France, Sept. 1998, pp.176—
184.

[8] Lu H, Han J, Feng L. Stock movement and n-
dimensional inter-transaction association rules. In Proc.
1998 SIGMOD Workshop Research Issues on Data
Mining and Knowledge Discovery (DMKD’98), Seattle,
WA, June 1998, pp.12:1-12:7.

9] Ozden B, Ramaswamy S, Silberschatz A. Cyclic associ-
ation rules. In Proc. 1998 Int. Conf. Data Engineering

In Proc.

J. Comput. Sci. & Technol., May 2004, Vol.19, No.3

(ICDE’98), Orlando, FL, Feb. 1998, pp.412-421.

[10] Han J, Dong G, Yin Y. Efficient mining of partial peri-
odic patterns in time series database. In Proc. 1999 Int.
Conf. Data Engineering (ICDE’99), Sydney, Australia,
April 1999, pp.106-115.

[11] Ramaswamy S, Mahajan S, Silberschatz A. On the
discovery of interesting patterns in association rules.
In Proc. 1998 Int. Conf. Very Large Data Bases
(VLDB’98), New York, NY, Aug. 1998, pp.368-379.

[12] Guha S, Rastogi R, Shim K. Rock: A robust clustering
algorithm for categorical attributes. In Proc. 1999 Int.
Conf. Data Engineering (ICDE’99), Sydney, Australia,
Mar. 1999, pp.512-521.

[13] Zaki M. SPADE: An efficient algorithm for mining fre-
quent sequences. Machine Learning, 2001, 40: 31-60.

[14] Zaki M J, Hsiao C J. CHARM: An efficient algorithm
for closed itemset mining. In Proc. 2002 SIAM Int.
Conf. Data Mining (SDM’02), Arlington, VA, April
2002, pp.457-473.

[15] Agrawal R, Srikant R. Fast algorithms for mining as-
sociation rules. In Proc. 1994 Int. Conf. Very Large
Data Bases (VLDB’94), Santiago, Chile, Sept. 1994,
pp-487—499.

[16] Han J, Pei J, Mortazavi-Asl B, Chen Q, Dayal U, Hsu M
C. FreeSpan: Frequent pattern-projected sequential pat-
tern mining. In Proc. 2000 ACM SIGKDD Int. Conf.
Knowledge Discovery in Databases (KDD’00), Boston,
MA, Aug. 2000, pp.355-359.

[17] Inokuchi A, Washio T, Motoda H. An apriori-based al-
gorithm for mining frequent substructures from graph
data. In Proc. 2000 European Symp. Principle of Data
Mining and Knowledge Discovery (PKDD’00), Lyon,
France, Sept. 1998, pp.13—23.

[18] Kuramochi M, Karypis G. Frequent subgraph discovery.
In Proc. 2001 Int. Conf. Data Mining (ICDM’01), San
Jose, CA, Nov. 2001, pp.313—-320.

[19] Vanetik N, Gudes E, Shimony S E. Computing frequent
graph patterns from semistructured data. In Proc. 2002
Int. Conf. Data Mining (ICDM’02), Maebashi, Japan,
Dec. 2002, pp.458-465.

[20] Han J, Pei J, Yin Y. Mining frequent patterns without
candidate generation. In Proc. 2000 ACM-SIGMOD
Int. Conf. Management of Data (SIGMOD’00), Dal-
las, TX, May 2000, pp.1-12.

[21] Cormen T, Leiserson C, Rivest R, Stein C. Introduction
to Algorithms, 2nd ed. The MIT Press, Cambridge,
MA, 2001.

[22] Yan X, Han J. gSpan: Graph-based substructure pat-
tern mining. In UIUC-CS Tech. Report: R-2002-2296,
A 4-page short version published in Proc. 2002 Int.
Conf. Data Mining (ICDM’02), Maebashi, Japan, 2002,
pp-721-724.

[23] Kohavi R, Brodley C, Frasca B, Mason L, Zheng Z.
KDD-Cup 2000 organizers’ report: Peeling the onion.
SIGKDD Ezplorations, 2000, 2: 86-98.

[24] Han J, Fu Y. Discovery of multiple-level association
rules from large databases. In Proc. 1995 Int. Conf.
Very Large Data Bases (VLDB’95), Zurich, Switzer-
land, Sept. 1995, pp.420—431.

[25] Kamber M, Han J, Chiang J Y. Metarule-guided min-
ing of multi-dimensional association rules using data
cubes. In Proc. 1997 Int. Conf. Knowledge Discov-
ery and Data Mining (KDD’97), Newport Beach, CA,
Aug. 1997, pp.207-210.

[26] Grahne G, Lakshmanan L V S, Wang X, Xie M H. On

dual mining: From patterns to circumstances, and back.

Jia-Wei Han et al.: Pattern-Growth Approach

(27]

28]

(29]

(30]

(31]

(32]

33]

34]

(35]

[36]

(37]

In Proc. 2001 Int. Conf. Data Engineering (ICDE’01),
Heidelberg, Germany, April 2001, pp.195-204.

Pinto H, Han J, Pei J, Wang K, Chen Q, Dayal U. Multi-
dimensional sequential pattern mining. In Proc. 2001
Int. Conf. Information and Knowledge Management
(CIKM’01), Atlanta, GA, Nov. 2001, pp.81-88.

Beyer K, Ramakrishnan R. Bottom-up computation
of sparse and iceberg cubes. In Proc. 1999
ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’99), Philadelphia, PA, June 1999, pp.359—
370,

Han J, Pei J, Dong G, Wang K. Efficient computa-
tion of iceberg cubes with complex measures. In Proc.
2001 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’01), Santa Barbara, CA, May 2001, pp.1-12.
Ng R, Lakshmanan L V S, Han J, Pang A. Exploratory
mining and pruning optimizations of constrained associ-
ations rules. In Proc. 1998 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’98), Seattle, WA, June
1998, pp.13-24.

Bayardo R J, Agrawal R, Gunopulos D. Constraint-
based rule mining on large, dense data sets. In Proc.
1999 Int. Conf. Data Engineering (ICDE’99), Sydney,
Australia, April 1999, 188-197.

Pei J, Han J, Lakshmanan L V S. Mining frequent item-
sets with convertible constraints. In Proc. 2001 Int.
Conf. Data Engineering (ICDE’01), Heidelberg, Ger-
many, April 2001, pp.433—442.

Pei J, Han J, Wang W. Constraint-based sequential
pattern mining in large databases. In Proc. 2002
Int. Conf. Information and Knowledge Management
(CIKM’02), McLean, VA, Nov. 2002, pp.18-25.

Asai T, Abe K, Kawasoe S, Arimura H, Satamoto H,
Arikawa S. Efficient substructure discovery from large
semi-structured data. In Proc. 2002 SIAM Int. Conf.
Data Mining (SDM’02), Part III, Arlington, VA, April
2002.

Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal
U, Hsu M C. PrefixSpan: Mining sequential patterns
efficiently by prefix-projected pattern growth. In Proc.
2001 Int. Conf. Data Engineering (ICDE’01), Heidel-
berg, Germany, April 2001, pp.215-224.

Yan X, Han J. gSpan: Graph-based substructure pat-
tern mining. In Proc. 2002 Int. Conf. Data Mining
(ICDM’02), Maebashi, Japan, Dec. 2002, pp.721-724.
Yan X, Han J. CloseGraph: Mining closed frequent
graph patterns. In Proc. 2003 ACM SIGKDD
Int. Conf. Knowledge Discovery and Data Mining
(KDD’08), Washington D.C., Aug. 2003.

Jia-Wei Han is a profes-
sor in computer science, Uni-
versity of Illinois at Urbana-
Champaign. He has been work-
ing on research into data mining,
data warehousing, database sys-
tems, with over 250 conference
and journal publications. He has

279

chaired or served on the PCs in many international
conferences, including ACM SIGKDD, ACM SIGMOD,
VLDB, ICDE, ICDM, SDM, and EDBT. He also served
or is serving on the editorial boards for Data Min-
ing and Knowledge Discovery, IEEE Transactions on
Knowledge and Data Engineering, Journal of Intelli-
gent Information Systems, and Journal of Computer
Science and Technology. He is currently serving on
the Board of Directors for the Executive Committee of
ACM Special Interest Group on Knowledge Discovery
and Data Mining (SIGKDD). Jiawei has received the
Outstanding Contribution Award at the 2002 ICDM,
ACM Service Award, and IBM Faculty Awards. He
is an ACM Fellow and the first author of the text-
book “Data Mining: Concepts and Techniques” (Mor-
gan Kaufmann, 2001).

Jian Pei received the B. Eng. and the M. Eng.
degrees, both in computer science, from Shanghai Jiao-
tong University, China, in 1991 and 1993, respectively,
and the Ph.D. degree in computing science from Simon
Fraser University, Canada, in 2002. He was a Ph.D.
candidate in Peking University in 1997-1999.

He is currently an Assistant professor of computer
Science and engineering, the State University of New
York at Buffalo, USA. He is a participating faculty in
the Center of Unified Biometrics and Sensors (CUBS),
at State University of New York at Buffalo. His re-
search interests include data mining, data warehousing,
online analytical processing, database systems, and bio-
informatics. His current research is supported in part
by the National Science Foundation (NSF).

He has published over 40 research papers in ref-
ereed journals, conferences, and workshops, served in
the program committees of over 30 international con-
ferences and workshops, and been a reviewer for some
leading academic journals. He is a member of the ACM,
the ACM SIGMOD, the ACM SIGKDD and the IEEE
Computer Society, and a guest area editor of the Jour-
nal of Computer Science and Technology.

Xi-Feng Yan received a B.E. degree in computer
engineering from Zhejiang University, China, in 1997,
and an M.S. degree in computer science from the State
University of New York at Stony Brook, NY, in 2001.
He is currently a Ph.D. candidate in the Department
of Computer Science at the University of Illinois at
Urbana-Champaign. His research interests include data
mining, structural/graph pattern mining, and their ap-
plications in database systems and bioinformatics.

