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Abstract

The study on database technologies, or more generally, the technologies of data and information man-
agement, is an important and active research field. Recently, many exciting results have been reported. In
this fast growing field, Chinese researchers play more and more active roles. Research papers from Chinese
scholars, both in China and abroad, appear in prestigious academic forums.

In this paper, we, nine young Chinese researchers working in the United States, present concise surveys
and report our recent progress on the selected fields that we are working on. Although the paper covers only a
small number of topics and the selection of the topics is far from balanced, we hope that such an effort would
attract more and more researchers, especially those in China, to enter the frontiers of database research and
promote collaboration. For the obvious reason, the authors are listed alphabetically, while the sections are
arranged in the order of the author list.

1 Automatic Database Tuning and Administration1

After decades of development, today’s database systems all have numerous features, making it very difficult to
choose these features toward the need of the specific applications using them. For example, building indexes and
materialized views often dramatically improve the performance on a given query workload, but it is very difficult
to select the necessary indexes and views because such decision depends on how these queries are executed. On
the other hand, the cost of hardware has dropped dramatically. Thus the cost for human to tune and manage
the database systems often dominates the cost of ownership. To reduce such cost, it is desirable to automate
database tuning and administration.

Database tuning and administration includes physical database design and tuning system parameters. Phys-
ical database design includes selecting indexes, views, vertical partitioning and horizontal partitioning, parallel
database design, etc. Tuning system parameters includes selecting the serializability level, locking granularity,
placement of log files, buffer pool size, RAID levels, cache sizes and placement, etc.

There has been much work in the area of physical database design. Earlier work [7] uses a stand-alone cost
model to evaluate the goodness of a configuration. However, all such work has the drawback that it is difficult
to keep the stand-alone cost model consistent with the cost model used by the query optimizer.

More recent work proposed to use the query optimizer for cost estimation, and to use a search algorithm to
enumerate possible configurations. Such work include [4, 5, 8] in the area of index selection, [2] in the area of

1This section is contributed by Dr. Zhiyuan Chen, Microsoft Research, zhchen@microsoft.com.
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view selection, and [6] in the area of parallel database design.
In the area of system parameter tuning, there is plenty of work giving practical guidelines [3]. However, there

is relatively fewer attempt automating this [1].
There are many research problems unsolved in this area. First, very little work has been done in automatically

tuning system parameters, and it is challenging to predict the system performance after changing such parameters.
Second, little is known on how to adjust the system to changes of the workload. Ideally, the database system
shall be able to automatically adjust to such changes. Third, given the numerous features to tune, it remains
challenging to identify the system bottleneck as well as to tune all these together.

2 Integrating Information from Heterogeneous Data Sources2

The purpose of data integration (a.k.a. information integration, data mediation) is to support seamless access
to autonomous, heterogeneous information sources, such as legacy databases, corporate databases connected by
intranets, and sources on the Web. Many research systems (e.g., [10, 11, 13]) have been developed to achieve
this goal. These systems adopt a mediation architecture [19], in which a user poses a query to a mediator that
retrieves data from underlying sources to answer the query. A wrapper on a source is used to perform data
translation and local query processing.

Intensive research has been conducted on challenges that arise in data integration. The first challenge is
how to support interoperability of sources, which have different data models (relational, XML, etc.), schemas,
data representations, and querying interfaces. Wrapper techniques have been developed to solve these issues.
The second challenge is how to model source contents and user queries, and two approaches have been widely
adopted. In the local-as-view (LAV) approach, a collection of global predicates are used to describe source
contents as views and formulate user queries. Given a user query, the mediation system decides how to answer
the query by synthesizing source views, called answering queries using views. Many techniques have been
developed to solve this problem [9, 12], and these techniques can also be used in other database applications such
as data warehousing and query optimization. Another approach to data integration, called the global-as-view
(GAV), assumes that user queries are posed directly on global views that are defined on source relations. In this
approach, a query plan can be generated using a view-expansion process. Researchers mainly focus on efficient
query processing in this case. The third challenge is how to process and optimize queries when sources have
limited query capabilities. For instance, the Amazon.com source can be viewed as a database that provides
book information. However, we cannot easily download all its books. Instead, we can query the source by filling
out Web search forms and retrieving the results. Studies have been conducted on how model and compute
source capabilities, how to generate plans for queries, and how to optimize queries in the presence of limited
capabilities [14, 20].

Here we give three of the many open problems in data integration that need more research investigation. First,
most previous mediation systems adopt a centralized architecture. Recently, database applications are seeing
the emerging need to support data integration and sharing in distributed, peer-based environments. In such an
environment, autonomous peers (sources) connected by a network are willing to exchange data and services with
each other. Thus each peer is both a data source and a “mediator.” Several projects have been proposed to
study issues in this new architecture [17, 18]. Second, researchers are paying more attention on how to deal with
source heterogeneity by cleansing data. One particular problem is called data linkage, i.e., identifying and linking
duplicate records efficiently and effectively. Sources frequently contain approximately duplicate fields and records
that refer to the same real-world entity, but are not identical, such as “Tom M. Franz” versus “Franz, T.”, and
“Barranca Blvd., Irvine, CA” versus “Barranca Boulevard, Irvine, California”. Variations in representations may
arise from typographical errors, misspellings, abbreviations, and other reasons. This problem is especially severe
when data is automatically extracted from unstructured or semi-structured documents or Web pages. In order
to integrate information from sources, we need to “clean” the data before doing high-level processing. Recently
many results are developed on data cleansing and linkage [16, 15]. Third, the advent of XML introduces many
new problems that need to be solved to support data integration.

2This section is contributed by Dr. Chen Li, University of California, Irvine, chenli@ics.uci.edu.
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3 Mining Changes from Data Streams3

A growing number of emerging applications, such as sensor networks, networking flow analysis, and e-business
and stock market online analysis, have to handle various data streams. It is demanding to conduct advanced
analysis and data mining over fast and large data streams to capture the trends, patterns, and exceptions.
Recently, some interesting results have been reported for modelling and handling data streams (see [21] for a
comprehensive overview), such as monitoring statistics over streams and query answering (e.g., [23, 30, 24])).
Furthermore, conventional OLAP and data mining models have been extended to tackle data streams, such as
multi-dimensional analysis (e.g., [22]), clustering (e.g., [31]) and classification (e.g., [25, 32]).

While extending the existing data mining models to tackle data streams may provide valuable insights into
the streaming data, it is high time we considered the following fundamental question: Compared to the previous
studies on mining various kinds of data, what are the distinct features/core problems of mining data streams? In
other words, from mining data streams, do we expect something different than mining other kinds of data?

Previous studies (e.g., [21, 29]) argue that mining data streams is challenging in the following two respects.
On the one hand, random access to fast and large data streams may be impossible. Thus, multi-pass algorithms
(i.e., ones that load data items into main memory multiple times) are often infeasible. On the other hand, the
exact answers from data streams are often too expensive. Thus, approximate answers are acceptable. While
the above two issues are critical, they are not unique to data streams. For example, online mining very large
databases also requires ideally one-pass algorithms and may also accept approximations.

We argue that one of the keys to mining data streams is online mining of changes. For example, consider
a stream of regular updates of various aircrafts’ positions. An air traffic controller may be interested in the
clusters of the aircrafts at each moment. However, instead of checking details for “normal” clusters, she/he may
be more interested in those “abnormal” clusters, e.g., fast growing clusters indicating the forming of a traffic
jam. In general, while the patterns in snapshots of data streams are important and interesting, the changes to
the patterns may be more critical and informative. With data streams, people are often interested in mining
queries like “compared to the history, what are the distinct features of the current status?” and “what are the
relatively stable factors over time?” Clearly, to answer the above queries, we have to examine the changes.

Some previous works also involve change detection. For example, the emerging patterns [27] characterize
the changes from one data set to the other. In [28], Ganti et al. propose methods to measure the differences of
the induced models in data sets. Incremental mining studies how to update the models/patterns by factoring
in the incremental part of data. However, mining data streams requires online and dynamic detection and
summarization of interesting changes.

Interesting research problems on mining changes in data streams can be divided into three categories: mod-
elling and representation of changes, mining methods, and interactive exploration of changes.

First, while the term “changes” sounds general and intuitive, it is far from trivial to define and describe
changes in data streams. First, it is essential to propose concise query language constructs for describing the
mining queries on changes in data streams. There can be many kinds of changes in data streams, and different
users may be interested in different kinds. The user should be able to specify the changes she/he wants to
see. Moreover, the system should be able to rank changes based on interestingness. The operations should
be integrable into the existing data mining models and languages. An “algebra” for change mining may be
essential. Second, methods of summarizing and representing the changes need to be developed. In particular,
effective visualization of changes is very important. Third, while the model for mining “first order” changes is
common and useful, the model for mining “higher order” changes can be an important kind of knowledge in some
dynamic environments. For example, a stock market analyst may feel particularly interested in the changes in
the ranges of price vibration, while the range of price vibration itself is a description of changes.

Second, efficient and scalable algorithms are needed for mining changes in data streams, at various levels.
First, specific algorithms can be developed for specific change mining queries. While such query-specific ap-
proaches may not be systematic, it will provide valuable insights into the inherent properties, challenges and
basic methods of change mining. Second, general evaluation methods for “change mining queries” should be
developed based on the general model/query language/algebra. Third, facilities for various aspects of change

3This section is contributed by Dr. Jian Pei, State University of New York at Buffalo, jianpei@cse.buffalo.edu.
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mining, such as quality management, should be considered. For example, algorithms should be able to meet
user’s specification on level/granularities/approximation error bound of change mining.

Third, the results from change mining per se form data streams, which can sometimes be large and fast. It is
important to develop effective approaches to support user’s interactive exploration of the changes. For example,
a user may want to monitor the changes at an appropriate level. Once some interesting changes are detected,
she/he can closely inspect the related details.

To the best of our knowledge, the above problems have not been researched systematically so far. By no
means is the above list complete. We believe that thorough studies on these issues will bring about many
challenges, opportunities, and benefits to stream data processing, management, and analysis. Our recent studies
[33, 26] are concrete steps towards this direction.

4 Spatio-Temporal Indexing and Quering4

The spatio-temporal database (STDB) has received considerable attention during the past few years, due to
the emergence of numerous applications (e.g., flight control systems, weather forecast, mobile computing, etc.)
that demand efficient management of moving objects. These applications record objects’ geographical locations
(sometimes also shapes) at various timestamps, and support queries that explore their historical and future
(predictive) behaviors. The STDB significantly extends the traditional spatial database, which deals with only
stationary data and hence is inapplicable to moving objects, whose dynamic behavior requires re-investigation of
numerous topics including data modeling, indexes, and the related query algorithms. In this section, we survey
the existing solutions for these issues.

Depending on the temporal aspects of data, a STDB aims at either historical or predictive retrieval. Specif-
ically, given a set of objects o1, o2, . . . , oN (where N is termed the cardinality), a historical STDB stores, for
each object oi (1 ≤ i ≤ N), its extent oi.E(t) at all the timestamps t in the history. Following the convention
of spatial databases, each extent oi.E(t) can be a polygon describing the object’s actual shape at time t (e.g.,
the contour of a moving typhoon). Specially, if the shape is not important (e.g., cars, flights, etc.), oi.E(t)
degenerates to a point describing the location of oi at time t. In practice, the extents of the same object at
the successive timestamps can be compressed using various methods (e.g., if the object remains stationary at
several continuous timestamps, its extent is stored only once during this period). A predictive STDB, on the
other hand, stores, for each (usually point) object oi, its most recent updated location oi.L(tupd) (where tupd

is the time of the object’s last update), and the motion function describing its current movement. The most
popular motion function is the linear function [54, 39, 40], because it (i) can approximate any trajectory, and
(ii) requires the fewest number of parameters. Specifically, in addition to oi.L(tupd), the system only needs to
record the object’s velocity oi.vel, such that the object’s location at any future time t > tupd can be calculated as
oi.L(t) = oi.L(tupd)+ oi.vel · (t− tupd). Using such modeling, an object needs to issue an update to the database
only if the parameters of its motion function (e.g., oi.vel for linear movement) change.

Since the spatial database can be regarded as a special type of STDB where all the objects have zero
velocities, all the spatial query types naturally find their counterparts in STDB, except that they are augmented
with additional temporal predicates. Specifically, a window query (WQ) specifies a query region qR and time
interval qT (consisting of continuous timestamps), and finds all the objects whose extents (or locations for point
data) intersect qR during qT . Particularly, the selectivity of a WQ equals the number of retrieved objects
divided by the dataset cardinality, and its accurate estimation [38, 63, 42] is imperative to query optimization. A
k nearest neighbor (kNN) query specifies a query point qP and time interval qT , and finds the k objects whose
distances to qP during qT are the smallest. These problems become even more complex if query regions/points
(in WQ/kNN) are also moving. While the above queries involve only one dataset, the within-distance join
(WDJ), given two datasets S1, S2, reports all the object pairs (o1,o2) in the cartesian product S1×S2, such that
the distance between o1, o2 during a query time interval qT is smaller than certain threshold d. The selectivity
of a join is the number of retrieved pairs divided by the size of S1×S2. Similarly, the k closest pair (kCP) query
retrieves the k object pairs (o1,o2) such that the distance of o1, o2 during qT is the smallest, among all the pairs

4This section is contributed by Dr. Yufei Tao, Carnegie Mellon University, taoyf@cs.cmu.edu.
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in S1 × S2. Note that the above queries can be defined in both historical and predictive STDB.
In addition to queries inherited from conventional spatial databases, the dynamic nature of STDB also leads

to several novel query types. For historical databases, [48] introduces the navigational WQ, which specifies two
query regions qR1, qR2 and timestamps qT1, qT2, and retrieves all the objects that intersect qR1 at qT1, and also
intersect qR2 at qT2 (e.g., find all the vehicles that appeared in Harvard at 5pm yesterday and then appeared
in MIT 10 minutes later). In predictive STDB, [58] points out that the results of traditional queries (i.e., WQ,
kNN, WDJ, kCP) are usually inadequate because they may change (sometimes almost immediately) due to the
movements of objects and/or queries (e.g., a user’s nearest gas station may change as s/he drives on the highway).
Motivated by this, [58] proposes the time-parameterized (TP) query, which applies to any traditional query,
and returns, in additional to the result R, also (i) an expiry time T of R, and (ii) the change C of the result after
T . An example of TPNN is to report (i) the nearest station s, (ii) when s will cease to be the nearest (given
the user’s moving direction and speed), and (iii) the new nearest station after the expiry of s. The concept of
TP is extended to the continuous query in [55, 37, 60, 59], which is another general concept applicable to all
traditional queries, and aims at continuously tracking the result changes until certain conditions are satisfied. A
continuous WQ, for instance, may “return the aircrafts within 10 miles from flight UA183 now, and continuously
update this information until its arrival”. In TP and continuous processing, the moving direction of the query
can be clearly specified, which is not true in some applications (e.g., a tourist wandering around casually). The
concept useful in such scenarios is the location-based (LB) query [66], which applies to WQ and kNN, and finds
the query result as well as its validity region such that, as long as the query is in this region, its result will remain
the same. For example, a LB NN may return the nearest restaurant of a tourist, as well as a validity region in
which the restaurant will remain the nearest.

Numerous access methods have been proposed for efficient spatio-temporal query processing. A straightfor-
ward approach to index historical STDB is to create a spatial index (the most common ones include the R-tree
[41, 36]) at each timestamp in history, managing objects’ extents at that timestamp. This is the idea behind
the so-called partially persistent structures [52, 35], which, in order to reduce the space consumption, allow
the R-trees at consecutive timestamps to share common nodes, if the objects in these nodes do not incur extent
changes. The first partially persistent structure, the historical R-tree (HR-tree) [47], however, still involves
considerable data redundancy as analyzed in [62], which led to the development of the multi-version R-tree
(MVR-tree) [46], and its subsequent versions [57, 45, 43]. Besides the partially persistent methodology, histor-
ical STDB can also be indexed using a 3D R-tree by treating time just as an extra dimension (in addition to
the two spatial dimensions). Specifically, each record in the 3D R-tree [65] represents a 3D box, whose spatial
projection corresponds to the extent of a stationary object, and whose temporal projection denotes the time
interval during which the object is stationary. Similar ideas are used in the trajectory bundle tree (TB-tree)
[48], a structure optimized for navigational WQ queries. In practical STDB, [64] adapts the Quadtree [53] (a
spatial index) for indexing the movements of 1D objects, while the time-parameterized R-tree [51] (TPR-tree)
and its improved versions [50, 61] support objects of arbitrary dimensionality. Finally, indexing moving objects
has also been studied in theory [44, 34, 56, 49], which develop numerous interesting structures with provable
worst-case performance bounds. These bounds, however, usually involve large hidden constants, rendering these
“theoretical” solutions to be outperformed by the “practical” solutions introduced earlier.

5 Indexing XML by Tree Structures5

With the growing importance of XML in data exchange, much research has been done in providing flexible query
mechanisms to extract data from XML documents [69, 72, 71, 68, 67, 70]. We propose a novel index structure that
addresses a wide range of challenges in indexing semi-structured data [73]. Unlike state-of-the-art approaches
that disassemble a structured query into multiple sub-queries, and then join the results of these sub-queries to
provide the final answers, our method uses tree structures as the basic unit of query to avoid expensive join
operations.

XML provides a flexible way to define semi-structured data. Figure 1 shows an XML document representing
a purchase record. Many state-of-the-art approaches create indexes on paths or nodes in DTD trees. However,

5This section is contributed by Dr. Haixun Wang, IBM T.J. Watson Research Center, haixun@us.ibm.com.
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queries involving branching structures usually have to be disassembled into multiple sub-queries, each corre-
sponding to a single path in the graph. The results of these sub-queries are then combined by expensive join
operations to produce final answers. For the same reason, these methods are also inefficient in handling ‘*’ or
‘//’ queries, which too, correspond to multiple paths. Moreover, to retrieve semi-structured data efficiently, it
is essential to have index on both structure and content of the XML data. Nevertheless, many algorithms index
on structure only, or index on structure and content separately, which means attribute values are not used for
filtering in the most effective way.
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Figure 1: A Single Purchase Record

We transform XML data and queries into structure-encoded sequences by a depth-first traversal of their tree
structure, and represent each node by (Symbol, Prefix) where symbol encodes the node and prefix is the path
from the root node. We also convert XML queries to sequences. Most structural XML queries can be performed
through (non-contiguous) subsequence matching. The only exception occurs when a branch has multiple identical
child nodes [73]. The benefits of modeling XML queries through sequence matching is that structural queries can
be processed as a whole instead of being broken down to smaller query units (paths or nodes of XML document
trees). For example, Figure 2 is a sequential representation of the purchase record, where the underlining part
matches query “find purchase records of Boston sellers and NY buyers”.

(P, ε), (S, P ), (N, P S), (v1, P SN), (I, P S), (M, P SI),

(v2, P SIM), (N, P SI), (v3, P SIN), (I, P SI), (M, P SII),

(v4, P SIIM), (I, P S), (N, P SI), (v5, P SIN), (L, P S),

(v6, P SL), (B, P ), (L, P B), (v7, P BL), (N, P B), (v8, P BN)

Figure 2: Sequential Representation of Figure 1.

The index structure is built in three steps: i) adding all structure-encoded sequences into a suffix tree; ii)
labeling each node in the suffix tree by 〈n, size〉 through a preorder traversal where n is the preorder number
of the node, and size is the number of its descendents; and iii) for each node (Symbol, Prefix) labeled 〈n, size〉,
inserting it to the D-Ancestor B+Tree using (Symbol, Prefix) as the key, and then into the S-Ancestor B+Tree
using n as the key.

Suppose node x, labeled with 〈nx, sizex〉, is one of the nodes matching a query prefix q1, · · · , qi−1. To match
the next element qi in the query, we consult the D-Ancestor B+Tree using qi as a key. The D-Ancestor B+Tree
returns the root of an S-Ancestor B+Tree. We then issue a range query nx < n ≤ nx+sizex on the S-Ancestor
B+Tree to find the descendants of x immediately. For each descendant, we use the same process to match symbol
qi+1, until we reach the last element of the query.

If node y is one of the nodes that matches the last element in the query, then the document IDs associated
with y or any descendant node of y are answers to the query. Based on y’s label, say 〈ny, sizey〉, we know y’s
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Figure 3: The index structure

descendants are in the range of (ny, ny + sizey]. Thus, we perform a range query [ny, ny + sizey] on the DocId
B+Tree to retrieve all the document IDs for y and y’s descendants.

Representing XML documents by sequences and performing XML queries by subsequence matching create
many research issues. We are currently improving the index structure to support i) dynamic index, as the labeling
scheme described above prevents the index structure from supporting dynamic insertion and deletion [73]; ii)
better selectivity, as different (symbol,prefix) pairs have different selectivity, hence their order in the query
sequence has an impact on the query performance; iii) approximate queries, where approximate tree matching
can be simulated by approximate subsequence matching; and iv) top-K queries.

6 Clustering Biological Data6

Currently, bio-informatics has became one of the research areas that receive most of attention. In general,
bio-informatics aims to solve complicated biological problems, e.g., gene regulatory network induction, motif
discovery, etc, with computation algorithms. Many of the data is in the form of sequences, e.g., DNA sequences,
protein sequences, etc. It is widely believed that the functionality of these biological sequences are highly
depended on the its structures. Automatically extracting/analyzing the biological structures is an important
step in better understanding their functionality.

Clustering has been widely recognized as a powerful data mining technique and has been studied extensively
during recent years. The major goal of clustering is to create a partition of objects such that objects in each group
have similar features. The result can potentially reveal unknown object groups/categories that may lead to a
better understanding of the nature. In the context we address, each object is a symbol sequence and all potential
features of a sequence are encoded (implicitly) in the specific symbol layout in the sequence. It is interesting
to notice that these structural characteristics sometimes can uniquely determine the functional properties of the
sequence and often plays a decisive role in meaningful clustering of the sequence.

Significant challenges exist on how to abstract and represent distinctive structural characteristics (of sequences
of vastly different lengths) and to design an effective yet efficient similarity measure based on them. One possible
approach to tackle this difficulty is to use the edit distance [74] to measure the distance between each pair of
sequences. This, however, is not an ideal solution because, in addition to its inefficiency in calculation, the edit
distance only captures the optimal global alignment between a pair of sequences, but ignores many other local
alignments that often represent important features shared by the pair of sequences. These overlooked features
may be very crucial to produce meaningful clusters.

Another approach that has been widely used in document clustering is the keyword-based method. Instead
of being treated as a sequence, each text document is regarded as a set of keywords or phrases and is usually
represented by a weighted word vector. The similarity between two documents is measured based on keywords
and phrases shared by them and is often defined in some form of normalized dot-product. A direct extension
of this method to generic symbol sequences is to use short segments of fixed length q (generated using a sliding

6This section is contributed by Dr. Wei Wang, University of North Carolina at Chapel Hill, weiwang@cs.unc.edu.
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window through each sequence) as the set of “words” in the similarity measure. This method is also referred to as
the q-gram based method in the literature. While the q-gram based approach enables significant segments (i.e.,
keywords/phrases/q-grams) to be identified and used to measure the similarity between sequences regardless of
their relative positions in different sequences, valuable information may be lost as a result of ignoring sequential
relationship (e.g., ordering, correlation, dependency, etc.) among these segments, which impacts the quality of
clustering.

In [75], a new generative model is devised to measure the similarity between a cluster and a sequence.
Statistics properties of sequence construction are used to assess the similarity. Sequences belonging to one
cluster may subsume to the same probability distribution of symbols (conditioning on the preceding segment
of a certain length), while different clusters may follow different underlying probability distributions. This
feature, typically referred to as short memory, which is common to many applications, indicates that, for a
certain sequence, the empirical probability distribution of the next symbol given the preceding segment can be
accurately approximated by observing no more than the last L symbols in that segment. Significant features
of such probability distribution can be very powerful in distinguishing different clusters. By extracting and
maintaining significant patterns characterizing (potential) sequence clusters, one can easily determine whether
a sequence should belong to a cluster by calculating the likelihood of (re)producing the sequence under the
probability distribution that characterizes the given cluster.

In many applications, neither the number of clusters in the data set nor the percentage of outliers is known
in advance. For instance, the biologists usually do not know the number of protein families for a set of newly
mapped protein sequences. To solve this problem, a novel clustering algorithm (CLUSEQ) that produces a set
of possibly overlapped clusters is proposed and is able to automatically adjust the number of clusters and the
boundary to separate clustered sequences from outliers, benefiting from a unique combination of successive new
cluster generation and cluster consolidation. CLUSEQ is an iterative algorithm. At each iteration, it first random
generate a set of new seed clusters and add them to the set of existing clusters. Next, CLUSEQ reclusters all
sequences according to the set of clusters. Finally, the thresholds are adjusted to fit the current clusters. The
algorithm terminates when no improvement on the clustering is made in the current iteration.

CLUSEQ provides a sequence level generative model (by assuming the sequences belonging to a cluster
are generated by a conditional probability distribution). However, many biological data are present in more
complicated forms. For instance, the natural state of a protein is a folded 3D structure. This additional
complexity poses great challenges to the clustering task and mandates further investigation and development of
powerful methods.

7 Mining Sequential Patterns7

With the emergence of various applications, e.g., web log traces, system log traces, bio-informatics, etc., analyzing
sequential data becomes one of the urgent problems with grate practical implications. Sequential patterns is an
important model for analyzing the sequential data. In this section, we are surveying several techniques used for
mining various sequential patterns.

A sequence may have several periodic patterns. For instance, an event may occur at 6th, 12th, 18th, . . .
position in a sequence. Periodic pattern can further our understanding of the behavior of the underlining system
that generates the sequence. The periodic sequential patterns were introduced in [76]. In this work, a sequence
is partitioned into non-overlap contiguous portions of segments. Each segment has the same length, l. A pattern
of period l will occur once at each segment. Using this as a pruning condition, the search space for periodic
patterns can be reduced.

However, in many situations, the pattern may not exhibit the periodicity in the entire sequence. The pattern
may be only present during some portion of the sequence. For example, in a system trace log, the system
behavior may change over time. Two parameters, namely min rep and max dis, are employed to qualify valid
patterns and the event subsequence containing it, where this subsequence in turn can be viewed as a list of valid
segments of perfect repetitions interleaved by disturbance. Each valid segment is required to be of at least

7This section is contributed by Dr. Jiong Yang, University of Illinois at Urbana Champaign, jioyang@cs.uiuc.edu.
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min rep contiguous repetitions of the pattern and the length of each piece of disturbance is allowed only up to
max dis. The intuition behind this is that a pattern needs to repeat itself at least a certain number of times
to demonstrate its significance and periodicity. On the other hand, the disturbance between two valid segments
has to be within some reasonable bound. Otherwise, it would be more appropriate to treat such disturbance
as a signal of “change of system behavior” instead of random noise injected into some persistent behavior. The
parameter max dis acts as the boundary to separate these two phenomena. This type of pattern is called
asynchronous pattern [77].

To efficiently mine the asynchronous patterns, a dynamic programming algorithm is devised. First, a distance-
based pruning mechanism is proposed to discover all possible periods and the set of events that are likely to
appear in some pattern of each possible period. In order to find the longest valid subsequence for all possible
patterns, a level-wise approach is utilized. The Apriori property also holds on patterns of the same period. That
is, a valid segment of a pattern is also a valid segment of any pattern with fewer events specified in the pattern.
For example, a valid segment for (d1, d2, ∗) will also be one for (d1, ∗, ∗). Then, for each likely period, all valid
patterns with their longest supporting subsequences can be mined via an iterative process.

In many applications, users may be interested in not only the frequently occurred patterns, but also the
surprising patterns (i.e., beyond prior expectation) as well. A large number of occurrences of an “expected”
frequent pattern sometimes may not be as interesting as a few occurrences of an “expected” rare pattern. The
support model is not ideal for these applications because, in the support model, the occurrence of a pattern
carries the same weight (i.e., 1) towards its significance, regardless of its likelihood of occurrence. Intuitively,
the assessment of significance of a pattern in a sequence should take into account the expectation of pattern
occurrence (according to some prior knowledge). A new model is proposed in [78] to characterize the class of
so-called surprising patterns (instead of frequent patterns).

The measure of surprise should have the following properties. (1) The surprise of a pattern occurrence is
anti-monotonic with respect to the likelihood that the pattern may occur by chance (or by prior knowledge). (2)
The metric should have some physical meaning, i.e., not arbitrary created. It is fortunate that the information
metric which is widely studied and used in the communication field can fulfill both requirements. Intuitively,
information is a measurement of how likely a pattern will occur or the amount of “surprise” when a pattern
actually occurs. If a pattern is expected to occur frequently based on some prior knowledge or by chance, then
an occurrence of that pattern carries less information. Thus, we use information to measure the surprise of an
occurrence of a pattern. The information gain metric is introduced to represent the accumulated information of
a pattern in an event sequence and is used to assess the degree of surprise of the pattern.

Many problems in sequential pattern mining still remain as open problems. When the amount of data is
large, we only can afford to scan data once, e.g., the stream environment. In this type of application, it is not
only important to discover the new sequential patterns, but also interesting to discover how they evolve over the
time. For instance, at the beginning of a stream abc is a frequent pattern, but later it becomes abd. From this
change, we may conjecture that some user/system behavior has changed.

8 Derived Data Maintenance8

The use of derived data to facilitate access to base data is a recurring technique in many areas of computer science.
Used in hardware and software caches, derived data speeds up accesses to the base data. Used in replicated
systems, it improves reliability and performance of applications in a wide-area network. Used as index structures,
it provides fast alternative access paths to the base data. Used as materialized views [85] in databases or data
warehouses [82], it improves the performance of complex queries over the base data. Used as synopses [84], it
provides fast, approximate answer to queries or statistics necessary for cost-based query optimization. Derived
data varies in complexity: It can be a simple copy of the base data, in the cases of caching and replication, or
it can be the result of complex structural or content transformation of the base data, in the cases of indexes
and materialized views. Derived data also varies in precision: Caches and materialized views are usually precise,
while synopses are approximate.

8This section is contributed by Dr. Jun Yang, Duke University, junyang@cs.duke.edu.
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Regardless of the form of the derived data, however, a fundamental problem is efficient maintenance of the
derived data. If base data changes, we need to keep the derived data consistent with the new state of the base data.
Derived data maintenance is becoming an increasingly important and difficult problem. First, more and more
data is being generated at high speeds (e.g., sensor networks, network monitors, Web clickstreams, high-volume
transactions from multiple sources), making it extremely expensive to compute queries from scratch. A solution
is to store the query results as derived data, and incrementally maintain them as new data arrives, essentially
creating a one-pass algorithm. Second, computing is becoming increasingly pervasive, and there are more and
more clients accessing dynamically changing data simultaneously over a wide-area network. An approach is to
place replicas of data at various locations in the network based on client access patterns. Maintenance of derived
data in this case must scale up not only to the size, but also to the number of replicas. Third, as computing
resources keep getting cheaper, human resources become more expensive. Traditionally, systems often rely
on hand-tuning of derived data to achieve optimal performance, e.g., index tuning in databases. Nowadays,
excessive hand-tuning is no longer an option. This requirement calls for more self-tuning approaches to derived
data management.

At the first glance, derived data maintenance has been extensively studied and well understood in specific
contexts, e.g., index updates and materialized view maintenance in databases, cache coherence and replication
protocols in distributed systems. Although they share the same underlying theme, these techniques have been
developed largely independently by different research communities. However, an increasing number of newer and
more complex applications call for a creative combination of the traditionally separate ideas. A good example is
semantic caching [83], which has received tremendous interests recently for its application in caching dynamic
contents [86, 81, 80]. Semantic caching incorporates the idea of materialized views into a cache. Traditionally,
caching is done at the object level, and hence only supports access to objects by identifiers. If the cache receives
a declarative query, it is generally impossible to tell whether the cached data provides a complete answer to the
query; therefore, base data must be queried. Semantic caching supports declarative queries by maintaining the
cache as a pool of materialized views. From the semantic descriptions of materialized views, it is possible to
determine whether the query answers are complete, so base data is only queried when necessary. This feature
makes semantic caching a perfect solution for those applications that require declarative accesses to data.

With more thinking “outside the box,” we can discover more techniques such as semantic caching that
combine multiple flavors of derived data to provide better solutions to problems. For example, a lot of work in
data warehousing focuses on storing auxiliary data to make warehouse data self-maintainable [89, 79, 90], without
ever accessing base data. In many cases, e.g., materialized top-k and join views, we must store huge amounts of
auxiliary data to guarantee self-maintenance. Borrowing the caching idea, we could remove the rigid requirement
of self-maintenance, and manage auxiliary data as a semantic cache whose size is tunable by the application.
The warehouse data is no longer guaranteed to be self-maintainable since the cache may occasionally “miss,” i.e.,
the auxiliary data required for maintenance is not found in the cache. However, with a good cache management
policy, we may be able to achieve a low miss rate that lowers the expected overall cost of maintenance. We
have obtained some promising results for top-k view maintenance [92], and work is under way to generalize this
technique to other types of views including joins.

As another exmaple, we can apply indexing techniques to materialized view maintenance. Traditionally,
materialized views are simply stored as database tables (possibly with a B+-tree primary index). However,
updating such views can be very expensive, as clearly illustrated by our earlier work on maintaining materialized
temporal aggregate views [91]. For a temporal aggregate view, even a slight modification of the base table (e.g.,
on a single row) may affect a large number of rows in the view, making it prohibitively expensive to maintain
incrementally. The solution is to materialize the view, not as a regular table or B+-tree, but instead as a
novel index structure called the SB-tree, which supports efficient range updates to the aggregate view (in time
logarithmic in the size of the view).

For yet another example, consider applying view maintenance techniques to data replication. Instead of
propagating all updates immediately to each replica, we propagate them only when relevant views at the replica
are affected. We could also throw in approximation techniques borrowed from synopses to improve performance
further. Replicas can be approximations of the base data within the error bounds controlled by applications.
Recent work on TRAPP [88, 87] represents a step toward this general direction.
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9 Aggregation Query Processing9

In this section, we summarize some recent work on selection-based aggregation. The selection query has been one
of the most widely used queries in databases. For instance, find the gas stations that are within a given spatial
range. Such queries select a subset of records from a large collection of data based on a given selection condition.
In contrast, the aggregation query aims not at finding the actual records themselves, but at some aggregate value
of these records. For instance, find the total number of gas stations that are within a given range. Besides this
COUNT query, some other interesting queries are SUM, AVERAGE, MIN, and MAX.

A straightforward approach to solve the selection-based aggregation problem is: first find all the records that
satisfy the selection condition and then perform the aggregation on-the-fly. The problem with this approach
is that the query performance is at least linear to the size of the selection result. If many records satisfy the
selection condition, the performance is not satisfactory. A better approach is to build some specialized index
which can help compute the aggregation result without scanning through the records. Below we summarize some
major results on the latter approach.

The first problem we address is called Range-Temporal Aggregation (RTA): “given a set of temporal records,
each having a key, a time interval and a value, compute the total value of records whose keys are in a given
range and whose intervals intersect with a given time interval”. Previous work on temporal aggregation (the
most efficient one being [95]) aggregate on the whole key space. To solve the RTA problem using the previous
approaches, we would need to maintain a separate index for each possible key range, which is prohibitively
expensive. [97] proposed a new index structure called Multi-version SB-tree (MVSB-tree) the solve the RTA
problem in logarithmic time.

Another problem is the Hierarchical Temporal Aggregation (HTA). Here we are interested in computing
temporal aggregates (both with and without the key-range predicate) with fixed storage space. Since historical
data accumulates over time, while with fixed storage space we cannot keep all of them, we have to live with
storing partial information. One approach is to keep just the most recent information. However, it leads to lose
of the ability to answer queries for the past. In [96], we proposed to maintain the temporal aggregates under
multiple granularities, with more recent information being aggregated at finer granularities.

When we consider the aggregation over spatial objects, a related problem is the Box-Sum Aggregation, which
computes the total value of spatial objects whose regions intersect with a given region. One approach is to extend
the R-tree index (state-of-art spatial index used for the selection query) by maintaining summary information in
internal nodes of the tree. This approach was proposed by [93, 94] and is called the aggregation R-tree (aR-tree).
However, the worst-case performance is still linear to the number of records. In [98] we proposed a new index
structure called the BA-tree to this problem. The query performance is pretty much logarithmic to the number
of records, which is a big improvement.

A variation of the previous problem is the Functional Box-Sum Aggregation: “given a set of objects, each
having a box and a value function, and a query box q, compute the total value of all objects that intersect q, where
the value contributed by an object r is the integral of the value function of r over the intersection between r and
q”. Compared with the original box-sum problem, in some cases the new problem more accurately captures the
application needs. This is because an object contributes to the query result proportional to how large it intersects
the query rectangle. In [98], we proposed techniques to solve the functional box-sum problem. Basically, we
managed to reduce this problem to the original box-sum problem where no function was involved.

In summary, in this section we have summarized some major research results on the selection-based aggrega-
tion problem as reported in [97, 98, 96]. In all cases, the proposed specialized index structures have much better
query performance than the existing non-specialized indices. An interesting future direction is how to extend the
findings to the spatiotemporal aggregation problems. A simple case is to aggregate moving points. Each object
is a weighted moving point whose location is a function of time. An aggregation query asks to compute the total
weight of points which will move into a given area during a given time interval. A more complicated case is to
aggregate moving objects with non-zero extents.

9This section is contributed by Dr. Donghui Zhang, Northeastern University, donghui@ccs.neu.edu.
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