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Abstract—Effective identification of coexpressed genes and coherent patterns in gene expression data is an important task in

bioinformatics research and biomedical applications. Several clustering methods have recently been proposed to identify coexpressed

genes that share similar coherent patterns. However, there is no objective standard for groups of coexpressed genes. The

interpretation of co-expression heavily depends on domain knowledge. Furthermore, groups of coexpressed genes in gene expression

data are often highly connected through a large number of “intermediate” genes. There may be no clear boundaries to separate

clusters. Clustering gene expression data also faces the challenges of satisfying biological domain requirements and addressing the

high connectivity of the data sets. In this paper, we propose an interactive framework for exploring coherent patterns in gene

expression data. A novel coherent pattern index is proposed to give users highly confident indications of the existence of coherent

patterns. To derive a coherent pattern index and facilitate clustering, we devise an attraction tree structure that summarizes the

coherence information among genes in the data set. We present efficient and scalable algorithms for constructing attraction trees and

coherent pattern indices from gene expression data sets. Our experimental results show that our approach is effective in mining gene

expression data and is scalable for mining large data sets.

Index Terms—Bioinformatics, gene expression (microarray) data, clustering, interactive data mining.
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1 INTRODUCTION

MICROARRAY technology can simultaneously monitor the
expression levels of thousands of genes during

important biological processes and across collections of
related samples. An important task of analyzing gene
expression data is the detection of coexpressed genes and
coherent gene expression patterns. A group of coexpressed
genes exhibits a common expression pattern, while a coherent
gene expression pattern (or, briefly, coherent pattern) charac-
terizes the collective trend of the expression levels of a
group of coexpressed genes. In other words, a coherent
pattern is a “template,” while the expression profiles of the
corresponding coexpressed genes conform to the template
with only small divergences.

For example, Iyer et al.’s data set [17] records the
expression profiles of 517 human genes with respect to a 12-
point time-series. In [17], Iyer et al. gave a list of 10 groups
of coexpressed genes and the corresponding coherent gene
expression patterns in the data set, which has been well
accepted as the ground truth. In Fig. 1, we plot three groups
of coexpressed genes and their corresponding coherent
patterns from the ground truth. The top row shows the
expression profiles of genes in each of the three groups. The
profiles in each group appear to share a common trend
shown in the bottom row, which is the point-wise median of
the profiles. The error bars indicate the standard deviations.

Why are clustering coexpressed genes and finding coherent
patterns interesting and meaningful? As indicated by previous
studies, coexpressed genes may belong to the same or
similar functional categories and indicate co-regulated
families [35], while coherent patterns may characterize
important cellular processes and suggest the regulating
mechanism in the cells [26].

To find coexpressed genes and identify coherent pat-
terns, various clustering algorithms (e.g., [1], [4], [8], [18],
[31], [32], [34], [35]) have been developed to partition a set of
genes into clusters. Each cluster is considered as a group of
coexpressed genes, and the corresponding coherent pattern
can be simply the centroid of the cluster. Previous studies
have confirmed that clustering algorithms are useful in
identifying coexpressed gene groups and coherent patterns.
However, the specific characteristics of gene expression
data and special requirements arising from the domain of
biology still pose challenges to the effective clustering of
gene expression data.

1.1 Challenge 1: It Is Subtle to Unfold the
Hierarchies of Coexpressed Genes and
Coherent Patterns

A microarray data set typically contains multiple groups of
coexpressed genes and their corresponding coherent pat-
terns. As a general observation, there is usually a hierarchy of
coexpressed genes and coherent patterns in a typical gene
expression data set. For example, as shown in Fig. 2, a group
of coexpressed genes S taken from Iyer’s data set can be
split into two subgroups S1 and S2, and S2 can be further
split into two subsubgroups S21 and S22. The expression
profiles of genes within each smaller subgroup become
increasingly more uniform and the patterns more coherent
when compared with the higher-level groups. Therefore,
these groups of coexpressed genes form a hierarchy. At the
upper levels of the hierarchy, large groups of genes
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generally conform to “rough” coherent expression patterns.

At lower hierarchical levels, these larger groups are broken

into smaller subgroups. Those smaller groups of coex-

pressed genes conform to “fine” coherent patterns; these

patterns inherit some features from the “rough” patterns

and add some distinct characteristics.
The apparent simplicity of this organization is compli-

cated by the lack of a rigorous definition or objective standard to

unambiguously identify coexpressed gene groups. The inter-

pretation of co-expression often depends on the knowledge

from domain experts. Typically, three situations may

happen in the analysis of gene expression data:

. Biologists can often bring some prior knowledge to
the analysis of a microarray data set. For example,
some genes are known to be closely related in
function, while some genes are known not to stay
in the same cluster. If such prior knowledge is
integrated into the clustering process, the mining
results may be substantially improved.

. A microarray experiment often involves thousands
of genes. However, only a small subset (perhaps
several hundred) of those genes may play important
roles in the underlying biological processes. In an
initial examination, biologists may browse through
the “rough” patterns in the data set. They may then
choose several patterns of particular interest and
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Fig. 1. Examples of coexpressed gene groups and corresponding coherent patterns.

Fig. 2. The hierarchy of a coexpressed gene group.



decompose them into “finer” patterns in further
analysis. In other words, biologists may have
different requirements for the coherence of different
parts of the data set.

. The domain knowledge of biologists is typically
incomplete. That is, the functions of many genes in a
data set are still unclear, and there could be various
hypotheses regarding the functions of those genes.
For example, in Fig. 2, the subset of genes S2 can be
split into two subsubsets S21 and S22. The genes in
S21 and S22 exhibit similar expression profiles. The
critical difference is that the genes in S21 are up-
regulated1 at the third time point, while the
expression levels of genes in S22 peak at the fourth
time point. Two hypotheses could explain this
phenomenon. It is possible that the genes in S22 are
up-regulated by the genes in S21.

2 If this is the case, it
is meaningful to split S2 into S21 and S22 may have
similar functions, and it would be appropriate not to
split S2. Given such uncertainties, biologists would
prefer an exploratory tool which can illustrate the
possible options for partitioning the data set and
assist in evaluating the range of hypotheses based on
the underlying data structure.

Can we provide a flexible tool which allows biologists to
interactively unfold the hierarchy of groups of coexpressed genes
and derive the corresponding coherent patterns? Various users
maywant to explore the structure of a data set using a variety
of criteria according to their research goals and background
knowledge.

1.2 Challenge 2: It Is Difficult to Address the High
Connectivity of Gene Expression Data Sets

In gene expression data, there are typically a large amount
of genes which stay between the groups of coexpressed
genes. These genes are called “intermediate” genes since
they build “bridges” across different coexpressed gene

groups. An example taken from yeast expression data
(CDC28 [33]) is shown in Fig. 3. The two genes in the first
row have very different expression profiles and, thus,
cannot belong to the same coexpressed gene group.
However, in the same data set, we can find a series of
genes in which each gene is quite similar to its predecessor;
such a series is illustrated in the lower rows of Fig. 3.

The biological role of “intermediate” genes can be
different. On the one hand, some “intermediate” genes
may participate in multiple cellular processes and, thus,
should be classified into multiple clusters. On the other
hand, the majority of “intermediate” genes may not involve
in any biological processes of interest and, thus, do not
belong to any clusters. In other words, these “intermediate”
genes are simply noise. For example, in [7], only 416 out of
6,220 monitored transcripts were recognized as five cell-
cycle regulated clusters, while the remaining 5,804 located
around the clusters were considered as noise. Among the
416 cell-cycle regulated genes, 22 belong to multiple cell
cycle phases. The large amount of “intermediate” genes
pose a big challenge: Gene expression data are often highly
connected, and it is difficult to determine the borders between
clusters. Most existing methods make the decisions by force
and may fall in one of the following two situations:

. The data set is decomposed into numerous small
clusters. Some clusters will consist of groups of
coexpressed genes, while many clusters will be made
up of intermediate genes. Since there is no absolute
standard, such as size or compactness, with which to
rank the resulted clusters, it may require significant
user effort to distinguish meaningful clusters from
those trivial ones.This situation is illustrated inFig. 4a.

. The data set is decomposed into several large
clusters, each of which contains both coexpressed
genes and many intermediate genes. However, the
heavy representation of intermediate genes may lead
to the skewing of cluster centroids. These “warped”
centroids do not accurately represent the coherent
patterns in the groups of coexpressed genes. This
situation is exemplified in Fig. 4b.
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1. A gene is called “up-regulated” when its expression level increases
significantly.

2. The genes in S21 are up-regulated at the third time point. The product
of those genes may in turn cause the up-regulation of the genes in S22 at the
fourth time point.

Fig. 3. The gradual change from one expression profile to a completely different profile.



For both situations, the crisp borders forced between
clusters do not allow a single gene to participate in multiple
clusters.

In this paper, we examine the challenges of mining
coherent patterns from gene expression data and make the
following contributions:

. We propose a framework of interactive exploration for
the analysis of microarray data. This approach
supports exploration by users as guided by their
domain knowledge and accommodates disparate
user requirements for varying degrees of coherence
in different parts of the data set.

. We develop a novel strategy for handling “inter-
mediate” genes. A user first identifies coherent
patterns. He/she can then determine the borders of
groups of coexpressed genes on the basis of the
distance between a gene and the coherent patterns.
In particular, an “intermediate” gene is allowed to
participate in more than one cluster.

. We design a coherent pattern index to give users
ranked indications of the existence of coherent
patterns. To derive a coherent pattern index, we
adopt a density-based model to describe the coher-
ence relationship between genes and devise an
attraction tree structure to summarize the coherence
information for the interactive exploration.

. We conduct an extensive performance study on both
synthetic data sets and some real-world gene expres-
sion data sets to verify our design. The experimental
results indicate that our approach is effective and
scalable in mining gene expression data.

The remainder of the paper is organized as follows: In
Section 2, we review related work. The attraction tree
structure is introduced in Section 3. In Section 4, we present
the interactive exploration of coherent patterns using the
coherent pattern index. An extensive performance study is
reported in Section 5. We discuss some related issues in
Section 6 and conclude the paper in Section 7.

2 RELATED WORK

Clustering is the process of grouping data objects into a set
of disjoint clusters, so that objects within a cluster have high
similarity, while objects in different clusters are dissimilar.
To find coexpressed genes and discover coherent expres-
sion patterns, a number of clustering algorithms have been
applied—some are adapted from the previous methods and
the others are newly devised. These algorithms can be
classified into three categories: partition-based approaches,
hierarchical approaches, density-based approaches, and pattern-
based approaches.

2.1 Partition-Based Approaches

The partition-based algorithms divide a data set into several
mutually exclusive subsets based on certain clustering
assumptions (e.g., there are k clusters in the data set) and
optimization criteria (e.g., minimize the sum of distances
between objects and their cluster centroids). We can further
divide the partition-based methods into four subcategories:
the K-means algorithm and its derivatives [15], [22], [25], [32],
[35], the Self-Organizing Map (SOM) and its extensions [14],
[20], [34], [36], graph-based algorithms [4], [13], [31], [39], and
model-based algorithms [10], [12], [23], [41].

Although partition-based approaches have been shown
useful in identifying coexpressed genes and coherent
expression patterns, they may not be effective in addressing
the two challenges discussed in Section 1. Many partition-
based approaches (such as K-means, SOM, and model-
based algorithms) require users to input the number of
clusters, which is often unknown a priori. Additionally, a
partition-based approach usually makes brute force deci-
sions on the cluster borders and, thus, may fall into one of
the two situations illustrated in Fig. 4.

2.2 Hierarchical Approaches

Hierarchical approaches organize objects into a hierarchy of
nested clusters called a dendrogram. Depending on how the
dendrogram is formed, hierarchical approaches can be
further divided into agglomerative methods [3], [8], [27] and
divisive methods [1], [14], [18]. Hierarchical approaches
typically have two fundamental components: a strategy
for merging or splitting nodes and a principle for cutting
the dendrogram to derive clusters.

Most hierarchical approaches adopt a specific merge/
split strategy to form the dendrogram. The strategy is
intrinsic to the algorithm and, thus, determines the
clustering results. For example, different agglomerative
approaches adopt different measures for cluster proximity,
such as single link, complete link, minimum-variance, etc.
The divisive approaches, such as SPC [1], [5], DHC [18] and
SOTA [14], are characterized by their splitting criteria. The
diverse range of clustering algorithms suggests that a given
set of data objects in high-dimensional space can be
partitioned in multiple ways. For gene expression data,
different partitions may correspond to various hypotheses
regarding gene functions. Biologists may be interested in
evaluating a range of the hypotheses and selecting the most
appropriate one on the basis of their domain knowledge.
However, most existing approaches generate the hierarch-
ical structure in a deterministic manner, so that users are
not exposed to the universe of possible options.

Another component of the hierarchical approaches is a
method for cutting the dendrogram to derive clusters. As
illustrated in Fig. 5a, users employing TreeView, a popular
analysis tool, have to traverse the graphical dendrogram
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Fig. 4. Handling intermediate genes. (a) Deriving many (small clusters) and (b) deriving large clusters.



through visual inspection and derive the coexpressed
genes. Although this gives users the flexibility of applying
their domain knowledge, for a large data set with
thousands of genes, a manual search on the graph is
extremely ineffectively. Alternatively, Seo and Shneiderman
[30] proposed the minimum similarity bar to cut the
dendrogram and derive clusters (Fig. 5b). However, the
minimum similarity bar is essentially a global parameter
that restricts the minimum distance between derived
clusters. It cannot adapt to various local structures within
the data set, and the value of the bar is often difficult to
determine.

2.3 Density-Based Approaches

The density-based approaches describe the distribution of a
given data set by the “density” of data objects. The clustering
process involves a search of the “dense areas” in the object
space [9]. In [2], Ankerst et al. introduced the algorithm
OPTICS, which does not generate clusters explicitly, but
instead creates an ordering of the data objects and illustrates
the cluster structureof thedata set.However,whenapplied to
ahighly-connecteddata set,OPTICSmayenter anotherdense
area through “intermediate” data objects before traversing
the current dense area thoroughly. Therefore, all genes
following a single coherent pattern may not be accommo-
dated consecutively in the order.

Another density-based approach, DENCLUE [16], mea-
sures object density from a global perspective. Data objects
are assumed to “influence” each other, and the density of a
data object is the sum of influence from all data objects in
the data set. DENCLUE is robust to intermediate data
objects. However, it outputs all clusters at the same level.
Therefore, it cannot support an exploration of hierarchical
cluster structures which exploits users’ domain knowledge.

2.4 Pattern-Based Approaches

It is well-known in molecular biology that any cellular
process may take place only in a subset of the attributes
(samples or time points), and a gene may participate in
multiple cellular processes. Recently, a series of pattern-
based clustering algorithms have been proposed to capture
coherence exhibited by a subset of genes on a subset of
attributes.

In [6], Cheng and Church introduced the concept of mean
squared residue score to measure the coherence between
genes and attributes (either time series or samples). Given a
set of genes and a set of conditions, a bicluster is a subset of
genes coherent with a subset of attributes. A heuristic
algorithm is also proposed. Yang et al. [40] have proposed a
move-based, heuristic algorithm to find biclusters more
efficiently. Both of these algorithms cannot be guaranteed to
find the complete set of biclusters in a data set.

In [38], Wang et al. proposed a novel model of pattern-
based cluster. A subset of objects O and a subset of
attributes A form a pattern-based cluster ðO;AÞ if, for any
objects x, y 2 O and any attributes a, b 2 A, the difference
of changes of values on attributes a and b between objects
x and y is smaller than a threshold �. In a recent study
[24], Pei et al. proposed mining nonredundant pattern-
based clusters by an efficient algorithm MaPle. In
addition, Liu and Wang [21] have proposed the concept
of order-preserving clusters, which is a generalization of
pattern-based clusters. In [42], the pattern-based approach
was extended to mining gene-sample-time series micro-
array data.

3 THE ATTRACTION TREE

To enable the interactive exploration of coherent gene
expression patterns, information regarding the coherence
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Fig. 5. Popular hierarchical tools. (a) Eisen’s TreeView and (b) Seo et al.’s approach.



among genes must be extracted and organized. In this
section, we will introduce a density-based method for
constructing an attraction tree structure. Once the attraction
tree is built, the original data set will no longer need to be
referenced. We will first describe the measure of the
distance between two genes and the definition of the
density of genes. The structure of the attraction tree will
then be explicated.

3.1 The Distance Measure

Analysts of gene expression data are generally interested in
the overall shapes of expression profiles rather than the
absolute magnitudes. The commonly used Euclidean dis-
tance does not work well for scaling and shifting profiles
[38]. Instead, Pearson’s correlation coefficient is often used to
measure the similarity between two expression profiles.

The definition of gene density starts with the measure-
ment of the distance between two genes. For this purpose,
Pearson’s correlation, a similarity measure, has to be
transformed into a distance measure. Given an object3 O,
we normalize the object to O0 so that each O0 has a mean of 0
and a variance of 1 over all attributes. The similarity and
distance between the data objects are then defined
respectively as

similarityðOi;OjÞ ¼ dP ðO0
i; O

0
jÞ and

distanceðOi;OjÞ ¼ dEðO0
i; O

0
jÞ;

ð1Þ

where dP ðO0
i; O

0
jÞ and dEðO0

i; O
0
jÞ are the Person’s correlation

coefficient and the Euclidean distance between O0
i and O0

j,
respectively. After normalization, the definitions of simi-
larity and distance are consistent; i.e., given objects O1, O2,
O3, and O4, similarityðO1; O2Þ > similarityðO3; O4Þ implies
distanceðO1; O2Þ < distanceðO3; O4Þ.

3.2 The Density Definition

The density of a data object O reflects the distribution of the
other objects in O’s neighborhood. The radius-based measure
defines the density of O as the number of data objects
within O’s "-neighborhood, where " is a radius parameter
specified by the user. As an alternative measure, the k-
nearest-neighbor density (KNN) uses the distance between an
object and its kth nearest neighbor; in this definition, a
smaller distance indicates a higher density. However, these
two approaches are sensitive to the global parameters " and
k, respectively, and it is usually difficult for users to specify
appropriate parameter values.

A recently proposed method, DENCLUE [16], defines an
influence function to describe the influence between
two objects. The density of an object O is the sum of
influences from all the objects in the data. DENCLUE avoids
parameters such as " and k. However, including the
influence of distant data objects may corrupt the “real”
cluster structure.

Basically, we want to measure the density of an object O
as the sum of influences from objects within its own cluster,
while ignoring the contribution of objects in other clusters.
In [31], Shamir and Sharan use an EM algorithm to estimate
the average pairwise similarity �SS between data objects

within the same cluster. In this paper, we will use this
method and, consequently, modify the density definition
formulated by DENCLUE as

fðOi;OjÞ ¼ e�
distanceðOi;OjÞ2

2�2 ; ð2Þ

densityðOÞ ¼
X

Oj2D;similarityðO;OjÞ� �SS

fðO;OjÞ; ð3Þ

where similarityðO;OjÞ and distanceðOi;OjÞ are defined by
(1). Objects Oi and Oj are called neighbors if

similarityðOi;OjÞ � �SS:

We will address the determination of an appropriate value
for parameter � in Section 4.3.

3.3 Attraction Tree

Based on our density definition, a geneOi is “influenced” by
its neighbors. The direction of the united influence from all
neighbors of Oi is an m-dimensional vector determined by

IðOiÞðdÞ ¼
X

Oj2D;similarityðOi;OjÞ� �SS

1

fðO;OjÞ
O

ðdÞ
j ð1 � d � mÞ;

ð4Þ

where m is the number of attributes of object Oj and Od
j is

the dth attribute of Oj.
Intuitively, the direction of the united influence on object

Oi indicates the dense region in Oi’s neighborhood. If Oi

moves toward the direction of IðOiÞ, Oi is likely to reach an
area with higher density. In particular, if an object Oi has a
higher density than all of its neighbors, Oi is a local
maximum. There are two special cases of a local maximum.
In the first case, if an object Oi has no neighbors at all, Oi is a
noise object. In the second case, if an object Oi has a higher
density than any other object in the data set, Oi is the global
maximum, denoted by Omax. We say a data object Oi is
“attracted” by its attractor Oj (denoted by Oi ! Oj)
according to the following definition:

AttractorðOiÞ¼

Oi if Oi¼Omax

argmaxO12A1 similarityðO1;OiÞ if Oi is a Noise object

argmaxO22A2 similarityðO2;IðOiÞÞ if Oi is not a local maximum

argmaxO12A1 similarityðO1;IðOiÞÞ otherwise:

8>><
>>:

In the above definition, A1 is the set of local maximums
O1 such that O1 has a higher density than Oi, while A2 is the
set of Oi’s neighbors O2 such that O2 has a higher density
than Oi. The attraction from an object to another (i.e.,
Oi ! Oj) forms a partial order. Given any data object
Oi 6¼ Omax, we can recursively trace the attractor of Oi until
we reach Omax. Therefore, we can derive an attraction tree T
where each node corresponds to an object Oi such that

ParentðOiÞ ¼
nil if Oi ¼ Omax

AttractorðOiÞ otherwise:

�

We define the weight of each edge eðOi;OjÞ as the
similarity between Oi and Oj.

To locate the attractor of object O, all neighbors of O
must be searched. However, for a large and highly-
connected data set, this operation can be expensive. As an
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3. Hereafter, we use the terms “objects” and “genes” interchangeably.



approximation, we only keep the K nearest objects Oj 2
AðOÞ with respect to O. There are two extreme settings
for K. When K ¼ 1, the attractor of O becomes the
nearest higher-density neighbor of O. At the other
extreme, when K ¼ 1, the approximation is ignored,
and all neighbors of O are exhaustively searched to find
the attractor of O.

Intuitively, if K is set to a small number, we only need to
search a relatively small neighborhood for the attractor. As
a result, an object Oi may first be attracted to a “lower-level”
local maximum Oi1, which covers a relatively small
neighborhood A1 (Fig. 6); while Oi1 will then be attracted
to a “upper-level” local maximum Oi2, which covers a
larger neighborhood A2. However, when we assign a large
number of K, we will need to search a larger neighborhood
for the attractor. In this situation, the object Oi is more likely
to be directly attracted to the “upper-level” local maxima
Oi2. That is, a smaller K favors a more detailed local
structure, and, on average, a data object is attracted to the
root of the attraction tree through more intermediate steps.
In contrast, a large K “shortcuts” the attractor paths
between a data object and the root and tends to delineate
rough structures.

3.4 An Example

To illustrate the concept of the attraction tree, let us
consider a synthetic data set D as represented in parallel
coordinates in Fig. 7. This data set contains three coherent
patterns, P1, P2, and P3. We denote the groups of objects
which conform to coherent pattern Pi as Gi and represent
the objects conforming to P1, P2, and P3 by the solid lines.
There is also some noise in data set D, and this is
represented by the dot lines. Suppose O1, O2, and O3 are
the objects which have the locally maximal density in G1,
G2, and G3, respectively. In the resulting attraction tree,

other objects in G1, G2, and G3 will be attracted (directly or

indirectly) to O1, O2, and O3, respectively. Thus, O1, O2, and

O3 become the roots of attraction subtrees T1, T2, and T3,

respectively, where T1, T2, and T3 contain all the objects of

G1, G2, and G3.
Fig. 8a is the attraction tree (K ¼ 1) for D. In this

example, the density of O2 is greater than that of both O1

and O3. Thus, O2 has the globally maximal density and

becomes the root of the tree. O1 and O3 are attracted to O2

and become the roots of subtrees. Fig. 8b is the attraction

tree for D with K ¼ 1, and it reveals a structure similar to

that in Fig. 8a. However, objects in Fig. 8b tend to be

attracted directly to upper-level attractors, giving that tree a

flatter structure.
This example demonstrates two characteristics of the

attraction tree structure. First, the attraction tree is self-
closed. A group of objects conforming to the same coherent
pattern forms a attraction subtree. Objects conforming to
different coherent patterns are not mixed in the same
attraction subtree. Second, the attraction tree is robust to
noise. The root of each attraction subtree has the locally
maximal density and represents the coherent pattern for
that attraction subtree. Objects matching the coherent
pattern stay connected with each other, while noise objects
are connected either to the roots of the subtrees or to each
other. A child Oj of a subtree root Oi must conform to the
same coherent pattern as Oi if the edge ðOi;OjÞ has a high
weight. Otherwise, Oj must be a noise object. Even in a
noisy environment, the density of noise will still be
relatively lower than that of the coexpressed objects.
Therefore, the attraction tree structure will remain stable,
and the representatives of coherent patterns will not be
perturbed by the presence of noise.
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Fig. 6. The effect of K.
Fig. 7. A simplified synthetic gene expression data set.

Fig. 8. The attraction tree for the data set in Fig. 7. (a) K ¼ 1 and (b) K ¼ 1.



4 INTERACTIVE EXPLORATION OF COHERENT

PATTERNS

We now describe the application of the concepts defined in
Section 3 to the interactive exploration of coherent patterns.
Our goal is to plot a coherent pattern index graph, where the
genes are ordered into an index list such that the genes
sharing a coherent pattern stay close to each other in the list.
Each gene is assigned a coherent pattern index value such
that, if there is a consecutive sublist of genes sharing a
coherent pattern, the first gene in the sublist has a
significantly high index value and the following genes has
a low index value. For example, the coherent pattern index
graph for the synthetic data set in Fig. 7 is shown in Fig. 9.
In the coherent index graph, a sharp pulse strongly
indicates the existence of a coherent pattern. Such pluses
can guide users in deriving coherent patterns and their
corresponding coexpressed genes. Users can recursively
examine the selected subsets of coexpressed genes as well
as their subpatterns in depth.

4.1 Generating the Index List

Ordering genes into a list allows us to plot the genes and
examine the probability of each to be a “leader” in a group
of coexpressed genes in a two-dimensional space. An
ordered index list can be generated based on the following
observations:

1. In the attraction tree, the edges connecting a pair of
objects O1 and O2 conforming to the same coherent
pattern P have heavy weights (represented by thick
lines in Fig. 8). Genes connected by those edges
should remain in close proximity in the list.

2. The edges connecting a pair of intermediate (noise)
objects O1 and O2 or connecting a pattern correlated
object and an intermediate (noise) object have
moderate weights (represented by thin lines in
Fig. 8). Genes connected by those edges should also
remain in proximity in the list but should be more
separated than those addressed in case 1.

3. The edges connecting a pair of objects O1 and O2

conforming to different coherent patterns P1 and P2

have light weights (represented by dashed yellow
lines in Fig. 8). Genes connected by those edges
should be widely separated in the list.

On the basis of these observations, we have developed
the gene-ordering algorithm shown in Fig. 10. This
algorithm maintains a list, called processedV ertices, to
record the visiting order of the nodes in the attraction tree
T . We start from the root of T . All the edges connecting the
root with its children are put into a heap, where the edges
are sorted in descending order of weight. We then
iteratively extract the edge with the highest weight from
the heap. At this point, the start vertex of the edge must
have been processed since, otherwise, the edge could not
have been put into the heap. We put the end vertex of the
edge currentV ertex into the list processedV ertices and put
all the edges connecting currentV ertex and its children into
the edgeHeap. The loop continues until all of the edges in
the tree have been visited. The resulting processedV ertices
is the index list of the genes.

Fig. 11 shows the objects in the index list derived from

the attraction tree in Fig. 8. For each object, the similarity

value plotted in the figure is the similarity between the

object and its parent in the attraction tree. The similarity
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Fig. 10. The gene-ordering algorithm.

Fig. 11. The similarity curve for Fig. 7.



curve can be divided into three-level terraces separated by
two valleys. Each valley corresponds to the edge connecting
different attraction subtrees. Since such edges have sig-
nificantly lower weights than other edges, our search
strategy does not allow the nodes in subtree T2 to be
visited before all the nodes in subtree T1 have been visited.
Similarly, the visit to subtree T3 cannot start until the visit to
subtree T2 is finished.

While the similarity curve is informative, it is not always
effective, especially with large data sets. For example, the
similarity curve shown in Fig. 12 is messy. This is because
the similarity curve cannot distinguish coexpressed genes
from a chance pair of similar intermediate genes. To solve
this problem, we design the coherent pattern index graph in
the next section, where the beginning of a potential coherent
pattern will be indicated clearly.

4.2 The Coherent Pattern Index and Its Graph

As previously noted, in the construction of an attraction tree
and index list, coexpressed genes are located in subtrees
and, thus, are arranged as neighbors in the index list. This
structure becomes the genesis of the coherent pattern index.
In an index list, we may observe a subsequence S of
consecutive genes which are more coherent to their parents
in the attraction tree than the genes preceding subsequence
S. This configuration strongly suggests that S is the starting
segment of a group of coexpressed genes.

The above observation leads us to focus on the
recognition of probes, short subsequences of genes which
appear at the beginning of a group of coexpressed genes. In
a similarity curve, the similarity between a gene and its
parent is plotted. For a gene gi in an index list g1 � � � gn, let
SimðgiÞ be gi’s similarity value in the similarity curve.
SimðgiÞ ¼ 0 if ði < 1Þ or ði > nÞ. Let p be the minimum size
of the probe. For each gene gi in the index list g1 � � � gn, we
define the coherent pattern index CPIðgiÞ as follows:

CPIðgiÞ ¼
Xp
j¼1

SimðgiþjÞ �
Xp�1

j¼0

Simðgi�jÞ: ð5Þ

Intuitively, a high coherent pattern index value indicates
a strong potential that a given gene is the start of a group of
coexpressed genes. The graph plotting the coherent pattern
index values with respect to the index list is called the
coherent pattern index graph. The valleys in the similarity
curve correspond to the sharp pulses in the coherent pattern
index graph. In particular, from the above definition, the
first ðp� 1Þ genes in the index list always generate the first
sharp pulse. Fig. 13 is the coherent pattern index graph

derived from Fig. 12 with p ¼ 5. The coherent pattern index
graph clearly indicates the existence of coherent patterns.

4.3 Drilling Down to Subgroups

Fig. 13 clearly indicates that there are five major coherent
patterns in the data set. However, can we further investigate
the groups of coexpressed genes conforming to the coherent
patterns and identify subgroups of coexpressed genes that conform
to any subpatterns?

Suppose a user accepts the five major coherent patterns
reported by the system and clicks on the corresponding
peaks in the coherent pattern index graph. The system will
split the attraction tree T for the entire data set into
five exclusive attraction subtrees. Each subtree corresponds
to one coherent pattern, and the genes conforming to that
coherent pattern are gathered in that subtree. The original
data set is thus partitioned into five subsets.

The user may now select the first subset of genes D1

(indicated by the dashed box in Fig. 13) in order to move to
a finer level of analysis. Fig. 14 shows the local coherent
pattern index graph for the selected subset of genes. It
should be noted that Fig. 14 is not simply a higher-
resolution extract from Fig. 13. Rather, D1 is assembled from
the attraction tree such that genes conforming to the
coherent pattern are selected. The attraction tree, index list,
and coherent pattern index graph are then generated, with
only the genes in the selected subset considered. The user
can specify local parameters (e.g., �) for computing the
influence and density in the subset of genes.

According to the influence function (2), a smaller � will
boost the relative influence of a gene on its neighborhood. A
detailed discussion of the effect of � on the influence
calculation can be found in [16]. We use the standard
deviation of the pairwise distance between genes to
determine the value of �. When the data set is split into
smaller subsets, the standard deviation will decrease.

With the help of index graphs, users can recursively
explore the coherent patterns until satisfying results are
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Fig. 12. The similarity curve for Iyer’s data set. Fig. 13. The coherent pattern index graph for Iyer’s data set.

Fig. 14. The coherent pattern index graph for a subset of genes in Iyer’s

data set.



achieved. The coherent patterns and the corresponding

coexpressed gene groups form a hierarchical tree T , where

each node on T at level k contains a subset of genes Gk
i

conforming to the same coherent pattern Pk
i . We select the

expression profile of the root object of the attraction subtree

with respect to Gk
i as the representative of the coherent

pattern Pk
i .

As the final step of our approach, the following method

is adopted to report groups of coexpressed genes from the

identified coherent patterns in T . First, for each coherent

expression pattern Pj, all the genes in the data set are

ordered according to their similarity to Pj. Those genes with

a similarity value greater than �SS, the estimated average

similarity between genes within the same cluster, are

assigned to cluster Gj. Second, Pj is adjusted to the centroid

of the genes in Gj. The above two steps repeat until the

assignments of genes do not change. Finally, Pj and Gj are

returned as a coherent expression pattern and the corre-

sponding group of coexpressed genes. In particular, genes

similar to more than one coherent pattern will participate in

multiple clusters, while genes not similar to any coherent

pattern are considered as noise and filtered out.

5 PERFORMANCE EVALUATION

We tested our approach with both synthetic data sets and

real-world gene expression data sets. The prototype system,

GPX (for Gene Pattern eXplorer), was implemented in Java.

The experiments were conducted on a Sun workstation with

a 440MHz CPU and 256 MB main memory.
In this section, we report the experimental results. In

particular, we will compare the coherent patterns de-

tected by our system with the results produced by six

previous algorithms: two classical partition-based ap-

proaches, K-means and SOM, two graph-based ap-

proaches, CAST (Cluster Affinity Search Technique) [4]

and CLICK (Cluster Identification via Connectivity Ker-

nels) [31], a clustering algorithm newly developed for

gene expression data, ADAPT (Adaptive quality-based

clustering) [32], and a hierarchical approach SOTA (Self

Organizing Tree Algorithm) [14].
We implemented the K-means and SOM algorithms and

set the number of clusters as equal to the number of coherent

patterns in the ground truth. CAST was implemented

according to the algorithm described in [4]. The program

was run with a wide range of settings for parameter t (the

affinity threshold) and the result best matches the ground

truth was selected. CLICK was downloaded from http://

www.cs.tau.ac.il/rshamir/expander/expander.html. We

accepted the default parameter setting in the software. Adapt

has a Web interface at http://www.esat.kuleuven.ac.be/

thijs/Work/Clustering.html. We set the minimum number

of genes in a cluster as five and accepted the default value of

0:95 as the minimum probability of gene belonging to a

given cluster. SOTA has a Web interface at http://

gepas.bioinfo.cnio.es/cgi-bin/sotarray. We accepted the

default parameter settings suggested by the Web site.

5.1 The Data Sets

The algorithms listed above were applied to both synthetic
data sets and to two real-world gene expression data sets,
Iyer’s data set [17] and Spellman’s data set [33].

Iyer et al. [17] monitored the expression levels of
8,600 distinct human genes during a 12-point time-series
of serum stimulation. Those genes whose expression levels
significantly changed during the time-series were selected
for cluster analysis. Only 517 genes survived this signifi-
cance test; other genes were filtered out. In other words,
Iyer’s data set contains 517 data objects with 12 attributes. In
[17], the authors gave a list of 10 coexpressed gene groups
and the corresponding coherent patterns. We adopted this
as the ground truth for our experiments.

Spellman et al. [33] reported the genome-wide
6,220 mRNA transcript levels during the cell cycle of the
budding yeast S. cerevisiae synchronized by three indepen-
dent methods. From these data sets, we have selected the
cdc15 time-series since it contains the largest number of cell
cycles and the most coherent expression patterns. From the
6,200 genes monitored, 800 were found to be cell-cycle-
dependent. The expression levels of those 800 peak at one of
the following fivephases: theearlyM=G1 phase, theG1 phase,
theS phase, theG2 phase, or theM phase. All of the cell-cycle
correlated genes, together with their peaking phases, are
listed at http://genome-www.stanford.edu/cellcycle/.
From this set, we filtered out those genes which miss more
than one-third of the measured expression values. The
remaining 747 genes naturally form five coexpressed gene
groups and conform to five coherent patterns. We used this
data set to test the capabilities of our approach and other
algorithms to detect these five cell-cycle correlated patterns.

We also generated synthetic data sets to test the
effectiveness and efficiency of our algorithm. Two para-
meters were used to describe a cluster Ci; the minimum
similarity �i between two data objects in the same cluster
and the number Ni of data objects in the cluster. The
constraints �i � 0:6 and Ni � 5 were applied to generate
clusters. Prior to the generation of a synthetic data set, users
were asked to input Nc, the total number of clusters in the
data set, and Nnoise, the number of noise objects in the data
set. Then, for each cluster Ci, the data generator randomly
picks up a pair of valid �i and Ni and generates the objects
in Ci. Finally, the data generator adds Nnoise noise objects to
the data set.

5.2 Effect of Parameters

The algorithms we have developed use two parameters.
The first is K, the number of nearest neighbors used to
construct the attraction tree. If a data object O and its
attractor OA belong to the same cluster in the ground truth,
then the edge ðOA;OÞ on the attraction tree “correctly”
discovers the coherence relationship between O and OA. To
examine the influence of K on the resulting attraction tree,
we calculate the correctness as the percentage of “correctly“
discovered edges on the attraction trees for the two real
data sets, as shown in Fig. 15a. We can see that the
correctness of the attraction trees is insensitive to the number
of candidate attractors.

In fact, the selection of K’s value depends on each user’s
requirements for the granularity of co-expression. As we
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discussed in Section 3.3, a small K favors a detailed local

structure and, on average, it takes more levels for a data

object to be attracted to the root of the attraction tree. By

contrast, a large K value “shortcuts” the attractor paths

from a data object to the root and tends to delineate rough

patterns. Fig. 15b illustrates the average length of attractor

paths from each data object to the root of the attraction tree

with respect to different Ks. For Iyer’s data, users prefer

clusters with small granularity; therefore, we set K ¼ 1. For

other data sets, we set K ¼ 10 as the default value. Note

that the “correctness” of the attraction tree is insensitive to

K, so the mining results are robust with respect to different

settings of K.
Another parameter in our algorithm is the minimum size

of probe p, which is used to derive the pattern index graph

from the object ordering. Fig. 16 illustrates the effect of p.

We can see that a small value of p, such as 3, results in a

detailed pattern index graph. A relatively large value of p,

such as 15, summarizes the “rough” coherent patterns in the

data set and hides the local details. In other words, different

settings of p adjust only the “resolution” of the index graph,

while the major pulses remain unchanged. In practice, users

can set the value of p to be the minimum size of the clusters.

Hereafter, we will set p ¼ 5.

5.3 Comparing Pattern Index Graph with OPTICS

Fig. 17ashows the reachability-plotsgeneratedbyOPTICS for
Iyer’s and Spellman’s data sets.OPTICS has two parameters,
the neighborhood radius " and theminimumnumber of data
objects MinPts. We tried a wide range of parameter values
and selected those that best accordedwith theground truth. If
we use a tighter setting, i.e., a smaller " and/or a greater
MinPts, many data objects will be considered as noise by
OPTICS. A looser setting with an increased " and/or a
decreasedMinPts has little impact on the plots.

For Iyer’s and Spellman’s data sets, we can hardly tell the
cluster structure from the corresponding reachability plots.
We further examined the object ordering generated by
OPTICS by comparing it with the ground truth. We found
that each dent in the reachability plots corresponds to a
small subset of some “real” cluster. Due to the high
connectivity of the gene expression data, OPTICS often
enters another cluster while the visiting of the current
cluster has not yet been exhausted. Many data objects
belonging to different clusters are thus mixed in the object
ordering.

Fig. 17b illustrates the pattern index graphs generated by
our method from the two real-world gene expression data
sets. For both data sets, the index graphs show strong
pulses. Each pulse corresponds to a major pattern in the
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Fig. 15. The effect of the number of nearest neighbors K on attraction trees. (a) Correctness of attraction trees. (b) Average length of paths on

attraction trees.

Fig. 16. The effect of minimum size of probe p on pattern index graphs. (a) Iyer’s data. (b) Spellman’s data.



ground truth, and the objects between two neighboring
pulses tend to conform to a common pattern.

5.4 Comparison with Other Algorithms

We compared the coherent patterns identified by our
approach with the ground truth and with the results
produced by other methods. The ground-truth patterns
provided in [17], [33] were used as the domain knowledge
to guide the growth of the hierarchical tree of coexpressed
genes and coherent patterns. That is, we split the nodes on
the tree on the basis of the corresponding pattern index
graphs until the tree “matches” the domain knowledge the
best. We will introduce how to measure the quality of
match in the following paragraph. The coherent patterns
were then returned as described in Section 4.3. To make a
fair comparison, for those algorithms with default para-
meter values, such as CLICK, ADAPT, and SOTA, we
simply adopted the default values; for those without default
parameter values, such as K-means, SOM, and CAST, we
tuned the parameters as follows: For K-means and SOM, we
set the parameter, i.e., the number of clusters K, as the
number of coherent patterns in the ground truth; for CAST,
we increased the parameter t with a small step (0:01) within
its full range, i.e., from 0 to 1, and ran the algorithm
repeatedly. The result which best “matches” the ground
truth was picked.

Suppose fP1; . . . ; Png is the set of coherent patterns in the
ground truth and f ~P1P1; . . . ; ~PmPmg is the set of coherent patterns
identified by a particular mining method. For each pattern
Pi in the ground truth, we identified the pattern ~PjPj in the
mining results which most closely resembles Pi, and called
~PjPj the “match” for Pi. Fig. 18 illustrates the hierarchy of
coexpressed gene groups in Iyer’s data. The pulses selected
to split the (sub) data sets are marked in the corresponding

coherent pattern index graphs. Fig. 19 lists the similarity
between the ground-truth patterns for Iyer’s data set and
the corresponding “matches” identified by the various
tested methods. We say a ground-truth pattern Pi is
“accurately identified” if there exists a matching pattern
~PjPj such that the similarity between Pi and ~PjPj is greater than
0:9. The patterns accurately identified by each algorithm are
indicated in a bold font. The numbers in parenthesis in the
first row indicate the number of coherent patterns returned
by each method. Not every pattern returned by one of these
algorithms necessarily matches a ground-truth pattern.

A comparison of the patterns reported by each approach
with the ground truth indicates that:

. Our method and SOTA were the only two ap-
proaches that accurately identified all 10 ground-
truth patterns. However, SOTA overestimated the
number of coherent patterns; it reported 50 coherent
patterns with 80 percent false positives, while our
system reported 10 patterns with zero false positives.

. Many of the methods failed to identify ground-truth
patterns 5 and 9. These ground-truth patterns are
shared by a small number of coexpressed genes and
are similar to patterns 3 and 6, respectively. There-
fore, most clustering algorithms merged them into
patterns 3 and 6, respectively.

. All methods other than our approach and CLICK
split the genes sharing ground-truth coherent pat-
tern 2 into several smaller subsets. This is because
the coherence of the genes in this group is much
weaker than that of other clusters.

We then tested the full range of algorithms on Spellman’s

data set. Again, our system was the only one to accurately
identify all the ground-truth patterns with a low false
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positive rate (see Figs. 20 and 21). Ground-truth patterns 1

and 4 in this data set are difficult to identify. Pattern 1

corresponds to the genes peaking at the early M=G1 phase,

which is an intermediate phase between the M (pattern 5)

and G1 (pattern 2) phases. Some tested approaches assigned

the genes following pattern 1 to either pattern 2 or pattern 5.

Pattern 4 is a “weak” pattern which is conformed to by a

small number of genes. Some approaches cannot effectively

adapt to different cluster granularities and, thus, fail to

identify pattern 4.
As discussed in Section 1, the interpretation of coherent

patterns and coexpressed genes depends on the domain

knowledge. Users may have different requirements for

cluster granularity in different parts of the data set. Our

system addresses this challenge by adopting an interactive

approach and supporting flexible exploration incorporating

the domain knowledge of users.

5.5 Efficiency and Scalability

We tested the efficiency and scalability of our method using
synthetic data sets of various sizes. In fact, our algorithm
proceeds in two steps: First, in the preprocessing step, we
normalize the data objects and calculate the pairwise
distance between data objects. In the exploration step, we
construct the attraction tree structure and generate the
pattern index graph to support interactive exploration.
Figs. 22a and 22b illustrate the computation time for the
preprocessing and exploration steps. As indicated there,
our algorithm is scalable with respect to the number of
genes, and the computation time is dominated by the
preprocessing step.
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Fig. 18. The hierarchy of coexpressed gene groups in Iyer’s data set.

Fig. 19. Coherent patterns discovered in Iyer’s data set by different approaches.



6 DISCUSSION

6.1 Two Types of Gene Expression Data

Gene expression data come in two types. Gene-time data

result from the monitoring of gene expression levels in

identical samples during a time-series. Alternatively, the

expression levels of genes may be collected from a set of

samples (e.g., from healthy people and people with cancer)

at a designated time point; this produces gene-sample data. In

our density-based model, we treat the genes as data objects

and assume that the attributes, either time-points or

samples, are independent. Therefore, our method is applic-
able to both types of gene expression data. In this paper, we
tested the effectiveness of our method only on gene-time
data, such as Iyer’s and Spellman’s data sets, because
ground truth information on coherent patterns and coex-
pressed is not currently available for gene-sample data set.
However, our empirical study has shown that the
two challenges presented in Section 1 apply to both types
of gene expression data. Furthermore, the experimental
results using synthetic data have indicated the general
effectiveness of our method, especially when the data set
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Fig. 20. The hierarchy of coexpressed gene groups in the Spellman’s data set.

Fig. 21. Coherent patterns discovered in Spellman’s data set by different approaches.

Fig. 22. The scalability of the two steps in our algorithm.



contains a large amount of noise. Therefore, it is likely that
this density-based interactive approach will also be effective
with gene-sample data.

6.2 Effectiveness versus Efficiency

As discussed in Section 5, the computation time required by
our algorithm is dominated by the computation of the
pairwise similarity between objects, which is OðN2Þ. As a
result, our method is not as efficient as some clustering
algorithms with linear complexity. However, a gene
expression data set typically contains several thousand of
genes and less than 100 time-points or samples. Despite the
rapid development of microarray technology, the natural
limit on the total number of an organisms’s genes (30,000 to
100,000) places a cap on the practical size of a gene
expression data set. Compared with some conventional
large-scaled transaction database or multimedia database,
the size of a gene expression data set will not be too large.
Therefore, biologists are much more concerned with the
accuracy of the mining results than the efficiency of the
mining process. From Fig. 22b, we can see that once the data
set is preprocessed, the exploration step only takes linear
time. That is, users can “drill down” and “roll up” the
hierarchical tree of coherent patterns with quick feedback
until a useful result has been achieved.

6.3 Integration of Domain Knowledge and Multiple
Data Sources

Clustering is generally recognized as an “unsupervised”
learning problem.However, biologists often have some prior
knowledge about a gene expression data set. Additionally,
recent technological advances have enabled the collection of
various types of data at a genome-wide scale; examples
include protein-protein interactions from the yeast two-hybrid
assay [37] and mass spectrometry [11]. The integration of
domain knowledge and multiple data sources may achieve
more robust results [28], [29].

In this paper, we proposed an interactive approach,
which takes the first step toward this integration of
knowledge. However, the construction of the attraction tree
and the generation of the pattern index graph are based
purely on the expression profiles of genes. In the future, we
plan to examine methods to further integrate the domain
knowledge of users and other types of data sets to enhance
the robustness and meaningfulness of the index graph.

7 CONCLUSION

Identifying coexpressed gene groups and discovering
coherent patterns are two important tasks in mining gene
expression data. In this paper, we have analyzed the
challenges of clustering gene expression data and have
proposed an interactive framework to help users explore
coherent patterns based on their domain knowledge. Unlike
many other clustering approaches, our method does not
start by partitioning the data set into clusters of coexpressed
genes. Instead, it prompts users with potential coherent
patterns. Thus, our approach avoids arbitrary decisions
regarding cluster borders and performs well in the
environment with a large number of “intermediate” genes.
Our empirical study has demonstrated that our method can

identify most of the coherent patterns in a data set with

higher accuracy than the state-of-the-art methods.

ACKNOWLEDGMENTS

The research of Daxin Jiang and Aidong Zhang is partly

supported by the US National Science Foundation (NSF)

Grants DBI-0234895 and NIH Grant 1 P20 GM067650-01A1.

The research of Jian Pei is partly supported by NSF Grant

IIS-0308001, an NSERC Discovery Grant, a President’s

Research Grant, an Endowed Research Fellowship Award,

and a startup grant in Simon Fraser University. All

opinions, findings, conclusions, and recommendations in

this paper are those of the authors and do not necessarily

reflect the views of the funding agencies. A preliminary

version of this paper appears as [19].

REFERENCES

[1] U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack,
and A.J. Levine, “Broad Patterns of Gene Expression Revealed by
Clustering Analysis of Tumor and Normal Colon Tissues Probed
by Oligonucleotide Array,” Proc. Nat’l Academy of Sciences USA,
vol. 96, no. 12, pp. 6745-6750, June 1999.

[2] M. Ankerst, M.M. Breunig, H.P. Kriegel, and J. Sander, “OPTICS:
Ordering Points to Identify the Clustering Structure,” Proc.
SIGMOD, pp. 49-60, 1999.

[3] Z. Bar-Joseph, E.D. Demaine, D.K. Gifford, N. Srebro, A.M. Hamel,
and T.S. Jaakkola, “K-ary Clustering with Optimal Leaf Ordering
for Gene Expression Data,” Bioinformatics, vol. 19, no. 9, pp. 1070-
1078, 2003.

[4] A. Ben-Dor, R. Shamir, and Z. Yakhini, “Clustering Gene
Expression Patterns,” J. Computational Biology, vol. 6, nos. 3-4,
pp. 281-297, 1999.

[5] M. Blatt, S. Wiseman, and E. Domany, “Super-Paramagnetic
Clustering of Data,” Physical Rev. Letters, vol. 76, 1996.

[6] Y. Cheng and G.M. Church, “Biclustering of Expression Data,”
Proc. Eighth Int’l Conf. Intelligent Systems for Molecular Biology
(ISMB), vol. 8, pp. 93-103, 2000.

[7] R.J. Cho, M.J. Campbell, E.A. Winzeler, L. Steinmetz, A. Conway,
L. Wodicka, T.G. Wolfsberg, A.E. Gabrielian, D. Landsman, D.J.
Lockhart, and R.W. Davis, “A Genome-Wide Transcriptional
Analysis of the Mitotic Cell Cycle,” Molecular Cell, vol. 2, no. 1,
pp. 65-73, July 1998.

[8] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein, “Cluster
Analysis and Display of Genome-Wide Expression Patterns,” Proc.
Nat’l Academy of Sciences USA, vol. 95, no. 25, pp. 14863-14868, Dec.
1998.

[9] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise,” Proc. Second Int’l Conf. Knowledge Discovery and Data
Mining, pp. 226-231, 1996.

[10] C. Fraley and A.E. Raftery, “How Many Clusters? Which
Clustering Method? Answers Via Model-Based Cluster Analysis,”
The Computer J., vol. 41, no. 8, pp. 578-588, 1998.

[11] A.C. Gavin et al., “Functional Organization of the Yeast Proteome
by Systematic Analysis of Protein Complexes,” Nature, vol. 415,
no. 6868, pp. 123-124, Jan. 2002.

[12] D. Ghosh and A.M. Chinnaiyan, “Mixture Modelling of Gene
Expression Data from Microarray Experiments,” Bioinformatics,
vol. 18, pp. 275-286, 2002.

[13] E. Hartuv and R. Shamir, “A Clustering Algorithm Based on
Graph Connectivity,” Information Processing Letters, vol. 76, nos. 4-
6, pp. 175-181, 2000.

[14] J. Herrero, A. Valencia, and J. Dopazo, “A Hierarchical Unsu-
pervised Growing Neural Network for Clustering Gene Expres-
sion Patterns,” Bioinformatics, vol. 17, pp. 126-136, 2001.

[15] L.J. Heyer, S. Kruglyak, and S. Yooseph, “Exploring Expression
Data: Identification and Analysis of Coexpressed Genes,” Genome
Research, vol. 9, no. 11, pp. 1106-1115, 1999.

JIANG ET AL.: AN INTERACTIVE APPROACH TO MINING GENE EXPRESSION DATA 1377



[16] A. Hinneburg and D.A. Keim, “An Efficient Approach to
Clustering in Large Multimedia Database with Noise,” Proc.
Fourth Int’l Conf. Knowledge Discovery and Data Mining, 1998.

[17] V.R. Iyer et al., “The Transcriptional Program in the Response of
Human Fibroblasts to Serum,” Science, vol. 283, pp. 83-87, 1999.

[18] D. Jiang, J. Pei, and A. Zhang, “DHC: A Density-Based
Hierarchical Clustering Method for Time Series Gene Expression
Data,” Proc. Third IEEE Symp. Bio-Informatics and Bio-Engineering
(BIBE ’03), 2003.

[19] D. Jiang, J. Pei, and A. Zhang, “Interactive Exploration of
Coherent Patterns in Time-Series Gene Expression Data,” Proc.
Ninth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining (KDD ’03), 2003.

[20] T. Kohonen, Self-Organization and Associative Memory. Berlin:
Spring-Verlag, 1984.

[21] J. Liu and W. Wang, “OP-Cluster: Clustering by Tendency in High
Dimensional Space,” Proc. Third IEEE Int’l Conf. Data Mining
(ICDM ’03), 2003.

[22] J.B. MacQueen, “Some Methods for Classification and Analysis of
Multivariate Observations,” Proc. Fifth Berkeley Symp. Math.
Statistics and Probability, pp. 281-297, Univ. of California, Berkeley,
Univ. of California Press, Berkeley, 1967.

[23] G.J. McLachlan, R.W. Bean, and D. Peel, “A Mixture Model-Based
Approach to the Clustering of Microarray Expression Data,”
Bioinformatics, vol. 18, pp. 413-422, 2002.

[24] J. Pei, X. Zhang, M. Cho, H. Wang, and P.S. Yu, “MaPle: A Fast
Algorithm for Maximal Pattern-Based Clustering,” Proc. Third
IEEE Int’l Conf. Data Mining (ICDM ’03), 2003.

[25] P.A. Ralf-Herwig, C. Muller, C. Bull, H. Lehrach, and J. O’Brien,
“Large-Scale Clustering of cDNA-Fingerprinting Data,” Genome
Research, vol. 9, pp. 1093-1105, 1999.

[26] M.F. Ramoni, P. Sebastiani, and I.S. Kohane, “Cluster Analysis of
Gene Expression Dynamics,” Proc. Nat’l Academy of Science, vol. 99,
no. 14, pp. 9121-9126, July 2002.
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