
Maintaining K-Anonymity against Incremental Updates

Jian Pei1 Jian Xu2 Zhibin Wang2 Wei Wang2 Ke Wang1

1 Simon Fraser University, Canada, {jpei, wangk}@cs.sfu.ca
2 Fudan University, China, {xujian, 052021125, weiwang1}@fudan.edu.cn

Abstract

K-anonymity is a simple yet practical mechanism to pro-
tect privacy against attacks of re-identifying individuals by
joining multiple public data sources. All existing methods
achieving k-anonymity assume implicitly that the data ob-
jects to be anonymized are given once and fixed. However,
in many applications, the real world data sources are dy-
namic.

In this paper, we investigate the problem of maintain-
ing k-anonymity against incremental updates, and propose
a simple yet effective solution. We analyze how infer-
ences from multiple releases may temper the k-anonymity
of data, and propose the monotonic incremental anonymiza-
tion property. The general idea is to progressively and con-
sistently reduce the generalization granularity as incremen-
tal updates arrive. Our new approach guarantees the k-
anonymity on each release, and also on the inferred table
using multiple releases. At the same time, our new approach
utilizes the more and more accumulated data to reduce the
information loss.

1 Introduction

Privacy protection for individuals has become a seri-
ous concern in many applications. Particularly, protection
against privacy attacks of re-identifying individuals by join-
ing multiple public data sources has been emphasized in ex-
tensive practice. For example, according to [17], more than
85% of the population of the United States can be uniquely
identified using the combination of their zipcode, gender,
and date of birth.

To protect privacy against this type of attacks, the mech-
anism of k-anonymity was proposed [14, 17]. A data set is
k-anonymous (k ≥ 1) if, on the quasi-identifier attributes
which are the minimal set of attributes in the table that can
be joined with external information to re-identify individual
records, each record in the data set is indistinguishable from
at least (k − 1) other records within the same data set. The
larger the value of k, the better the privacy is protected.

Since the concept of k-anonymity has been proposed,
a few k-anonymization algorithms have been developed
(please see a brief review in Section 3). Generally, to
achieve k-anonymity, those methods generalize or suppress
some values in the quasi-identifiers. The major goal of the
anonymization methods is to meet the k-anonymity require-
ment and simultaneously minimize the information loss or
maximize the utility of the anonymized data.

Real world data sources are often dynamic. However, all
of the existing methods assume that the set of objects to be
anonymized are given once and fixed. This assumption of-
ten heavily constrains the applicability of those anonymiza-
tion methods in many dynamic applications.

Example 1 (Motivation) Suppose a medical management
board maintains a database of cases of certain types of
diseases. To protect the privacy, the cases have to be
anonymized before being released.

The database is incrementally updated periodically. In
order to use the existing methods to publish the updates,
two approaches may be developed.

Method 1: Anonymizing incremental updates. Once
a batch of new cases are inserted, we may anonymize the
batch so that it satisfies the k-anonymity. To elaborate,
suppose Table 1 records the cases when the database is
created, and the 2-anonymity is required. Table 2 is a 2-
anonymization of Table 1.

After an incremental update, two new cases (Eddy and
Frank in Table 3, shown in bold) are added. Table 4 shows
a 2-anonymization of the new tuples.

Although by this approach the privacy of all patients are
protected, the cases in the incremental update are over gen-
eralized. In the anonlymized update data, the gender in-
formation of the new cases has to be removed and the age
information has to be generalized to a quite large range.

Table 5 shows a 2-anonymization of the updated
database. Interestingly, Table 5 is less generalized than both
Tables 2 and 4. Intuitively, with more data but a fixed pa-
rameter k, we only need to generalize less to meet the k-
anonymity requirement.

Thus, the major drawback of the approach anonymizing
incremental updates is twofold: it over generalizes the in-

1

Name Zipcode Gender Age Disease
Anna 20433 female 21 bird-flu
Bob 20437 male 48 HIV

Carol 20433 female 26 insomnia
Daisy 20437 female 31 cancer

Table 1. The patient database: version 1.

Case-id Zipcode Gender Age Disease
1 2043* NA [21-48] bird-flu
2 2043* NA [21-48] HIV
3 2043* female [26-31] insomnia
4 2043* female [26-31] cancer

Table 2. A 2-anonymization of Table 1.
Name Zipcode Gender Age Disease
Eddy 20437 male 54 obesity
Frank 20435 female 31 SARS

Table 3. An incremental update.

Case-id Zipcode Gender Age Disease
5 2043* NA [31-54] obesity
6 2043* NA [31-54] SARS

Table 4. A 2-anonymization of the update.
Case-id Zipcode Gender Age Disease

1 20433 female [21-26] bird-flu
2 20437 male [48-54] HIV
3 20433 female [21-26] insomnia
4 2043* female 31 cancer
5 20437 male [48-54] obesity
6 2043* female 31 SARS

Table 5. A 2-anonymization of the updated
database.

Case-id Zipcode Gender Age Disease
1 20433 female [21-26] bird-flu
2 20437 male 48 HIV
3 20433 female 26 insomnia
4 2043* female 31 cancer
5 20437 male [48-54] obesity
6 2043* female 31 SARS

Table 6. Inferring information on the quasi-
identifier attributes from Tables 2 and 5.

cremental updates, and cannot use the incremental data to
reduce the information loss in the anonymization of the ex-
isting data.

Method 2: Publishing anonymizations of current ver-
sions. As publishing the anonymization of the whole
database may reduce the information loss, one may suggest
that, after each incremental update, the current database is
anonymized and published. For example, Tables 2 and 5 are
published.

Analysis may be conducted on the previous releases of
data. In order to make such data analysis on the previous
releases still useful, it is important to link the occurrences of
the same case in different releases together. Here, a unique
case-id is attached to each case in multiple releases.

Unfortunately, this approach cannot preserve privacy
sufficiently. By simply comparing the records in Tables 2
and 5 using the case-ids, we can infer the information on
the quasi-identifier attributes of the cases, as shown in Ta-
ble 6, while the details of the inferences will be discussed
in Example 2. Table 6 is not 2-anonymous anymore.

Using the information across multiple releases may re-
flect privacy. Even the case-ids are not present, the privacy
leaking may still happen since, for example, the other infor-
mation like disease in this example may help to infer cases.

The major drawback of the approach publishing
anonymizations of current versions is that the k-anonymity
requirement may be failed due to the possible inferences
using multiple releases.

As illustrated, directly using the existing methods can-
not deal well with k-anonymization against incremental up-

dates. We need to understand the potential attacks due to
inferences using multiple releases and the opportunities to
reduce information loss due to the enlarging available data.

In this paper, we investigate the problem of maintaining
k-anonymity for incremental updates, and propose a sim-
ple yet effective solution. We analyze how inferences from
multiple releases may temper the k-anonymity of data, and
propose the monotonic incremental anonymization prop-
erty. The general idea is to progressively and consistently
reduce the generalization granularity as incremental updates
arrive. Our new approach guarantees the k-anonymity on
each release, and also on the inferred table using multiple
releases. At the same time, our new approach utilizes the
more and more accumulated data to reduce the information
loss. We report a systematic empirical study using both syn-
thetic data sets and real data sets.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the problem definition. We review the
related work in Section 3. In Section 4, we investigate in
what situations k-anonymity may be broken by inferences
using multiple releases of data, and propose the monotonic
incremental anonymization property. Our new approach is
developed in Section 5. we report a systematic empirical
study in Section 6. The paper is concluded in Section 7.

2 Problem Definition

Generally, we consider anonymizing a table
T (A1, . . . , Am, B1, . . . , Bl), where A1, . . . , Am are the
quasi-identifier specified by the application (administrator),
and B1, . . . , Bl are the sensitive attributes.

2

An anonymization function F maps a tuple
t = (a1, . . . , am, b1, . . . , bl) to a tuple F(t) =
(a′1, . . . , a

′
m, b1, . . . , bl). The anonymization of table

T by function F is F(T) = {F(t)|t ∈ T}. Given a
positive integer k, F(T) is k-anonymous if for any tuple
t ∈ T , there exist at least (k − 1) other tuples s ∈ T such
that F(t)A1,...,Am

= F(s)A1,...,Am
.

Since an anonymization function does not change any
values on the sensitive attributes B1, . . . , Bl, hereafter
we only consider the quasi-identifier attributes and omit
the sensitive ones. The table T can be written as
T (A1, . . . , Am, . . .) for short.

In this paper, we consider a series tables T , ∆T1,
∆T2, . . ., where T is a table as it is created, and ∆T1,
∆T2, . . . are the incremental updates (insertions only) to
the table. We assume that the incremental updates share
the same schema as table T .

After each update, a new release of the table is published.
In order words, releasesF(T),F1(T∪∆T1),F2(T∪∆T1∪
∆T2), . . . are released in sequence. For each object in the
data set, an object-id is used to identify the occurrences of
the object in different releases so that the data analysis at
the user side based on the previous releases can be reused.

For the sake of simplicity, Fi(T ∪i
j=1 ∆Ti), the release

after the i-th incremental update (i ≥ 1), is also denoted by
Fi(Ti).

Importantly, we assume the following.

Assumption 1 (Anonymizations of updates) When com-
puting Fi(Ti), we only know T , F(T), ∆T1, F1(T1), . . . ,
∆Ti−1, Fi−1(Ti−1), and ∆Ti. ∆Ti+1 and later incremen-
tal updates, and their anonymizations, are unknown.

Using multiple releases and the object-ids, inferences
can be made to narrow down the quasi-identifier attributes
of some objects, as elaborated in Example 1 (Table 6).

Example 2 (Inferences) Let us examine how Table 6 can
be derived from Tables 2 and 5.

For case 1, the information on every quasi-identifier at-
tribute in Table 5 is more detailed than that in Table 2. Thus,
the record of case 1 in Table 5 is the more specific informa-
tion about the case that can be inferred from the two tables.

For case 2, the record in Table 5 is more specific than
the record in Table 2 on attributes Zipcode and gender. On
attribute age, Table 2 gives range [21-48] and Table 5 gives
range [48-54]. The intersection of the two ranges gives the
most specific information. Thus, we infer from the two ta-
bles that case 2 has the quasi-identifier attribute values Zip-
code 20437, male, and age 48.

Similarly we can infer the other cases.

Generally, an anonymization may generalize an attribute
value to a range. For an object o appearing in multiple

releases, let R1, . . . , Rn be the ranges of the generalized
values of o on a quasi-identifier attribute A in those re-
leases. Then, we infer that the value of o is in range ∩n

i=1Ri.
Clearly, ∩n

i=1Ri is the minimum range on the attribute that
can be inferred from the multiple releases of o.

We can conduct inferences on objects one by one
from all the releases that an object appears, and
attribute by attribute on all the quasi-identifier at-
tributes. We denote the most specific information in-
ferred from multiple releases Fi1(Ti1), . . . ,Fin

(Tin
) as ta-

ble I(Fi1(Ti1), . . . ,Fin(Tin)). It is called the inference ta-
ble from those releases.

To protect privacy, we require that the k-anonymity is
maintained against incremental updates. Let k be a posi-
tive integer. Releases F(T),F1(T ∪∆T1),F2(T ∪∆T1 ∪
∆T2), . . . are k-anonymous against incremental updates if
the following three conditions are always satisfied. (1)
F(T) is k-anonymous; (2) for each i ≥ 1, Fi(Ti), the re-
lease after the i-th incremental update, is k-anonymous; and
(3) for each nonempty set of positive integers {i1, . . . , in},
I(Fi1(T1), . . . ,Fin(Tn)), the inference table using the re-
leases, is still k-anonymous.

We define the problem of maintaining k-anonymity for
incremental updates as, given a positive integer k, a table
T and a series of updates ∆T1, ∆T2, . . ., compute a se-
ries of anonymizations F(T),F1(T ∪∆T1),F2(T ∪∆T1∪
∆T2), . . ., one anonymization after each update, such that
they are k-anonymous against incremental updates.

Please note that the setting defined here is just one among
the many possible application scenarios of incremental up-
dates. Here we assume that the adversary does not have
any temporal background knowledge (e.g., Eddy was sent
to hospital in week 2). Generally, with different scenarios,
we may need different strategies to maintain k-anonymity.

3 Related Work

Samarati and Sweeney proposed K-anonymization [13,
15, 17, 16]. Generally, data items are recoded to achieve
anonymization. Suppression is a specific form of recoding
that recodes a data item to null value (i.e., unknown).

In [13, 15], the full-domain generalization was devel-
oped, which maps the whole domain of each quasi-identifier
attribute to a more general domain in the domain generaliza-
tion hierachy. Full-domain generalization guarantees that
all values of a particular attribute still belong to the same
domain after generalization.

To achieve full-domain generalization, two types of par-
titioning can be applied. First, the single-dimensional
partitioning [4, 7] divides an attribute into a set of non-
overlapping intervals, and each interval is replaced by a
summary value (e.g., the mean, the median, or the range).
On the other hand, the (strict) multidimensional partition-

3

ing [10] divides the domain into a set of non-overlapping
multidimensional regions, and each region is generalized
into a summary tuple.

Generally, anonymization is accompanied by informa-
tion loss. Various models have been proposed to mea-
sure the information loss. For example, the discernabil-
ity model [4] assigns to each tuple t a penalty based on
the size of the group that t is generalized, i.e., the num-
ber of tuples equivalent to t on the quasi-identifier. That is,
CDM =

∑
E∈group-bys on quasi-identifier |E|2.

Alternatively, the normalized average equivalence class
size metric was given in [10]. The intuition of the metric
is to measure how well the partitioning approaches the best
case where each tuple is generalized in a group of k indis-
tinguishable tuples. That is, CAV G = number of tuples in
the table / (number of group-bys on quasi-identifier ×k).

The quality of anonymization can also be evaluated by
its usefulness in data analysis applications, such as classifi-
cation [6, 19]. Recently, [8, 11, 21] investigated the utility
of anonymized data.

The ideal anonymization should minimize the infor-
mation loss or maximize the utility. However, the the-
oretical analysis [2, 12, 10, 3, 1] indicates that the opti-
mal anonymization under many non-trivial quality models
is NP-hard. A few approximation methods were devel-
oped [3], such as datafly [16], annealing [20], and Mondrian
multidimensional k-anonymity [10]. Interestingly, some
optimal methods [4, 9] with exponential cost in the worst
case were proposed. The experimental results in those stud-
ies show that they are feasible and can achieve good perfor-
mance in practice.

Most of the previous studies considered only one-time
anonymization. The incremental updates are not addressed.
To the best of our knowledge, [18] is the only existing study
addressing the incremental update issue. However, [18] is
essentially different from our study here. In [18], updates
are “horizontal”, i.e., the set of objects are fixed and new
attributes are added over time. In our study here, updates
are “vertical”, i.e., new objects are added over time and the
attributes are fixed. Thus, the two studies are orthogonal.

4 Anonymization for Incremental Updates

In this section, we first investigate in what situations the
k-anonymity in an inference table using two releases may
be broken. Then, we propose the monotonic incremen-
tal anonymization property which can always maintain k-
anonymity. Hereafter, we assume that the anonymizations
use multidimensional partitioning [10]. That is, for two tu-
ples t1 = t2, any anonymization maps them identically.
This scheme has been used extensively in previous meth-
ods, such as [13, 15]. Single-dimensional partitioning [4, 7]
can be viewed as a special case of multidimensional parti-

refinement

subgroup expandingabsorbing new tuples

widow

independent new group

all situations

tuples in Delta T

refinement

tuples in T

group change

inconsistent generalization

consistent generalization

Figure 1. The situations discussed in Sec-
tion 4.1.

tioning. We use the terms “tuple” and “object” interchange-
ably.

4.1 K-Anonymity Breaking Inferences

Consider a table T and an incremental update ∆T . Let
F(T) and F1(T ∪∆T) be the k-anonymous releases of T
and T ∪ ∆T , respectively. For each tuple t ∈ (T ∪ ∆T),
we analyze in what situations t is not k-anonymous in
I(F(T),F1(T ∪∆T)), the inference table using F(T) and
F1(T ∪∆T). Our discussion on the various situations fol-
lows a divide-and-conquer hierarchy in Figure 1.

Clearly, we can divide the tuples in (T ∪ ∆T) into two
excluding groups: the ones in T and the ones in ∆T .

4.1.1 Inferences on Tuples in T

For a tuple t ∈ T , the (generalization) group of t in F ,
denoted by GF(T)(t) = {s ∈ T |F(t) = F(s)}, is the set
of tuples that are generalized to the same tuple as t by F .

Consider GF(T)(t) and GF1(T∪∆T)(t), the generaliza-
tion groups of t in F and F1, respectively. One of the fol-
lowing situations happens.

If GF(T)(t) = GF1(T∪∆T)(t), i.e., the same group of
tuples in T are generalized together in both anonymizations,
then clearly the k-anonymity holds in the inference table for
t. An object t is called being consistently generalized in two
anonymizations F and F1 if GF(T)(t) = GF1(T∪∆T)(t).

Example 3 (Consistent generalization) We can always
produce a consistent generalization for every tuple. In Ex-
ample 1, the method 1 (anonymizing incremental updates)
conducts a consistent generalization for every tuple. When
the incremental update in Table 3 arrives, the new tuples are
anonymized (as shown in Table 4). The union of Tables 2
and 4 is the anonymization of the table after the update.

As we analyzed before, a naı̈ve consistent generalization
may over-generalize the incremental updates and cannot use
the incremental data to reduce the information loss in the
anonymization.

4

If t is not consistently generalized, that is, t is gen-
eralized with different other tuples in different releases,
which is called inconsistent generalization, then two sub-
situations may happen.

A tuple t is generalized in two anonymizationsF andF1

with group change if there exists a tuple t′ ∈ GF(T)(t) but
t′ 6∈ GF1(T∪∆T)(t), and there is no tuple s ∈ ∆T such that
s ∈ GF1(T∪∆T)(t).

Example 4 (Group change generalization) Case 1 is
generalized with case 2 together in Table 2, and is gener-
alized with case 3 together in Table 5. This results in that
case 1 is different from cases 2 and 3 in the inference table
using the two releases (Table 6), and thus case 1 is not
2-anonymous in the inference table.

Similarly, case 3 is not 2-anonymous in the infer-
ence table due to the change of its groupmate in the two
anonymizations.

Lemma 1 (Group change generalization) A tuple o is not
k-anonymous in the inference table using two anonymiza-
tions F(T) and F1(T ∪ ∆T) if t is generalized in the two
anonymizations with group change, and |GF(T)(t)| = k.

Lemma 1 identifies one situation where the k-anonymity
is broken. Please note that the lemma holds only the multi-
dimensional partitioning is adopted.

As the second sub-situation of inconsistent generaliza-
tion, t is generalized together with some tuples in ∆T in
anonymization F1(T ∪∆T). We say t absorbs new tuples.

Example 5 (Absorbing new tuples) Consider case 2 in
Example 1. It is generalized with case 1 as a group in Ta-
ble 2, and with case 5, a new case in the incremental update,
in Table 5. The 2-anonymity of case 2 is broken in the in-
ference table since case 5, the new case, is not right within
the ranges where case 2 is generalized in Table 2. In other
words, case 2 is in two different generalization groups in
the two tables, and thus the intersection which appears in
the inference table covers less than enough cases.

Case 4 is also generalized together with a new case in
Table 5. However, the situation is different. The new case
here, case 6, is in the range where case 4 is generalized
in Table 2. Intuitively, the new group in Table 5 can be
regarded as a subgroup in Table 2. With case 5 in the in-
cremental update, the subgroup has enough tuples to satisfy
the 2-anonymity. In the inference table, although the infor-
mation about case 4 is refined, but the 2-anonymity is kept.
Such a situation where information loss is reduced and k-
anonymity is maintained is highly desirable.

We have two situations for absorbing new tuples.
A tuple t is generalized with subgroup expanding in

anonymizations F(T) and F1(T ∪∆T) if (1) for every ob-
ject t′ ∈ GF1(T∪∆T)(t), either t′ ∈ GF(T)(t) or t′ ∈ ∆T ;
and (2) F1(t) is not a subrange of F(t).

Lemma 2 (Subgroup expanding) If a tuple t is general-
ized with subgroup expanding in anonymizations F(T) and
F1(T ∪∆T), and among the tuples in GF1(T∪∆T)(t), there
are less than k tuples in the range of F(t), then the k-
anonymity of t is broken in the inference table using the
two anonymizations.

A tuple t is generalized with (subgroup) refinement in
anonymizations F(T) and F1(T ∪ ∆T) if for any t′ ∈
GF1(T∪∆T)(t), either t′ ∈ GF(T)(t) or t′ is in the range
of F(t). It can be shown that t is k-anonymous in the infer-
ence table using the two anonymizations.

4.1.2 Inferences on Tuples in ∆T

When a tuple t in the incremental update ∆T is general-
ized, whether t is k-anonymous in the inference table de-
pends on the other tuples in the generalization group of t
(i.e., GF1(T∪∆T)(t)). Three situations may happen.

First, t is generalized only with some other new tuples in
the incremental update, such as Table 4 in our running ex-
ample. That is, GF1(T∪∆T)(t) ⊆ ∆T . This is a consistent
generalization (e.g., case 6 in Example 3).

Second, t is generalized with some existing tuples, but
the generalization is a subgroup refinement. Then, the k-
anonymity also holds for t in the inference table.

Last, t is generalized with some existing tuples, but
the generalization is not a subgroup refinement. The k-
anonymity of t may not hold in the inference table since the
k-anonymity of the existing tuples cannot be maintained in
the inference table.

Example 6 (Widow) In our running example, case 5 is
generalized together with case 2 in Table 5. Since case 2
is generalized with subgroup expanding (Example 5), and
the 2-anonymity of case 2 is broken in the inference table,
the 2-anonymity of case 5 in the inference table is broken,
too.

In anonymizations F(T) and F1(T ∪ ∆T), a tuple t ∈
∆T is called a widow if there exists a tuple t′ ∈ T such that
t′ ∈ GF1(T∪∆T)(t) and the k-anonymity of t′ is broken in
the inference table using F(T) and F1(T ∪∆T).

Lemma 3 (Widow) In anonymizations F(T) and F1(T ∪
∆T), if tuple t ∈ ∆T is a widow, and in the set
of tuples GF1(T∪∆T)(t), the k-anonymity of more than
(|GF1(T∪∆T)(t)| − k) tuples are broken in the inference
table using the two anonymizations, then the k-anonymity
of t is also broken in the inference table.

4.2 Monotonic Incremental Anonymiza-
tion

As analyzed before, the k-anonymity of tuples can be
broken in the inference tables of multiple anonymizations

5

in various ways. However, consistent generalization and
subgroup refinement can maintain k-anonymity in inference
tables. A feasible idea is that, when subgroup refinement
can be conducted, then the anonymization takes the advan-
tages of the incremental updates to reduce information loss;
otherwise consistent generalization is used to maintain the
k-anonymity.

Formally, for anonymization F(T) and incremental up-
date ∆T , anonymization F1(T ∪ ∆T) is monotonic with
respect to F(T) if (1) for any tuple t ∈ T , F1(t) = F(t)
or F1(t) is a subrange of F(t) on every quasi-identifier at-
tribute; and (2) for any tuples t1, t2 ∈ T , if F(t1) 6= F(t2)
then F1(t1) 6= F1(t2).

Releases F(T),F1(T ∪∆T1),F2(T ∪∆T1 ∪∆T2), . . .
are monotonic incremental anonymizations if F1(T ∪∆T1)
is monotonic with respect to F(T), and for any i ≥ 1,
Fi+1(T ∪(∪i+1

j=1∆Tj)) is monotonic with respect to Fi(T ∪
(∪i

j=1∆Tj)).
Monotonic incremental anonymizations have a nice

property: the inference table is the same as the last
anonymization in a series. Formally, if anonymization
F1(T ∪ ∆T) is monotonic with respect to F(T), then
I(F(T),F1(T ∪∆T)) = F1(T ∪∆T).

It is easy to verify the following.

Lemma 4 (Transitivity) IfF1(T∪∆T1) is monotonic with
respect to F(T), and F2(T ∪ ∆T1 ∪ ∆T2) is monotonic
with respect to F1(T ∪∆T1), then F2(T ∪∆T1 ∪∆T2) is
monotonic with respect to F(T).

Using the properties of consistent generalization and
subgroup refinement, as well as the transitivity of mono-
tonic incremental anonymizations, we can show the follow-
ing desirable property.

Theorem 1 (Monotonic incremental anonymizations)
If F(T),F1(T ∪ ∆T1),F2(T ∪ ∆T1 ∪ ∆T2), . . . are
monotonic incremental anonymizations, and each of them
is k-anonymous, then they are k-anonymous against
incremental updates.

5 An Incremental Anonymization Algorithm

In this section, we present a simple yet efficient algo-
rithm to anonymize a data set with a series of incremental
updates. The algorithm satisfies the monotonic incremental
anonymization requirement discussed in Section 4.2.

We describe our method in two steps. First, we discuss
how to anonymize the initial data set. Then, we address how
to anonymize incremental updates.

5.1 Anonymizing the Initial Data Set

In principle, we can use any global recoding or
constrained local recoding anonymization algorithms to

Y N

Y N

(b) Anonymization tree(a) Anonymization

x

y

y0

x0

a

b

c
d

e f

y>=y0

x>=x0

{a, b}

{c, d} {e, f}

Figure 2. Anonymizing the initial data set.
anonymize the initial data set, as long as the multidimen-
sional partitioning requirement is maintained.

For example, we can use the top-down greedy partition-
ing method Mondrian [10]. The method recursively parti-
tions the quasi-identifier space into disjoint regions with the
constraint that each region contains at least k tuples. The
partitioning procedure resembles the kd-tree [5] construc-
tion at large.

Example 7 (Initial data set) Figure 2(a) shows partition-
ing 6 points in a 2-d space into 3 regions such that each
region contains 2 points.

Once the partitioning is done, the points at the same re-
gion are generalized into a group. This partitioning achieves
a 2-anonymization of the data set.

According to the partitioning, we can maintain the
groups and the tuples in a binary anonymization tree, as
shown in Figure 2(b).

Generally, after the recursive partitioning, each region
contains at least k tuples (and at most (2k − 1) distinct tu-
ples). We can maintain the groups and the tuples in the
groups using a binary tree according to the partitioning. The
complexity of the method is O(|T | log |T |) for a table T .

5.2 Anonymizing Incremental Updates

After a batch of incremental updates, we compute a new
anonymization when it is needed.

Example 8 (Updates) Continued with Example 7, suppose
an incremental update consisting of objects g, h, i, j, k, l
arrives as shown in Figure 3(a). In order to generate a
new anonymization, we first insert the new objects into
the anonymization tree in Figure 2(b). The updated tree is
shown in Figure 3(b).

If we generalize the objects at the same node as a group
in the adjusted anonymization tree, the k-anonymity against
incremental updates is satisfied. As 2-anonymity is re-
quired, however, we notice that some nodes may have 4 or
more objects. Those nodes are over-generalized and can be
further partitioned.

Therefore, we can further partition the nodes of more
than 2 objects, as shown in Figure 3(c). The method to par-
tition one node is the same as the one anonymizing the ini-
tial data set. This partitioning is a subgroup refinement. The
k-anonymity against incremental update is maintained.

6

j

i
h

g

f
e

d

c
b

a

(a) An incremental update

k

(d) Updated anonymization
anonymiztion tree

(c) Further partition the

NY
{c, j}{d, k}

x>=x1

NY
{b, h, i}{a, g}

y>=y1
NY

NY
x>=x0

y>=y0

{e, f, l}

the anonymization tree
(b) Inser new tuples into

y0

x0

y

x
l NY

NY
x>=x0

{a, b, g, h, i}y>=y0

{e, f, l}{c, d, j, k}

x1

x0

y0

y

x

y1

l

k

j

i
h

g

f
e

d

c
b

a

Figure 3. Anonymizing an incremental up-
date.

In the resulted anonymization tree, each node contains
up to 3 objects, which cannot be further partitioned. Then,
we generalize each node and output the anonymization as
shown in Figure 3(d).

As elaborated in Example 8, to anonymize the incremen-
tal updates, we conduct the following steps.

First, we insert the new tuples in the incremental up-
date into the groups formed in the previous anonymization.
Since the groups and the tuples in the previous anonymiza-
tion are organized in a binary anonymization tree, the cost
of is O(|∆T | log |T |), where T and ∆T are the original data
set and the incremental update set, respectively.

Second, for each group, we check whether the group has
more than (2k−1) tuples. If so, then we apply the Mondrian
partitioning method recursively to refine the group, i.e., par-
titioning into subgroups such that each subgroup contains at
least k and cannot be further partitioned.

The refinement step can be regarded as growing the bi-
nary tree of groups and tuples in groups. If a leaf node has
more than (2k − 1) tuples, it may be further partitioned.
The result is an extended binary anonymization tree of new
groups on all tuples (including the ones in the incremental
update).

All tuples in a new group are generalized to the same in
the new anonymization. The complexity of the incremental
update anonymization step is O((|∆T |+2k−1) log(|∆T |+
2k − 1)).

It is easy to see that by our method produces only mono-
tonic incremental anonymizations.

6 Empirical Study

In this section, we report a systematic empirical study on
the effectiveness and the efficiency of our proposed method

on anonymizing incrementally updated data.
We compare two methods: our method as described in

Section 5 and the state-of-the-art top-down multidimen-
sional partitioning method Mondrian [10]. Both methods
were implemented using Microsoft Visual C++ .NET 2003.
All the experiments were conducted on a PC with a Pentium
PM 1.5 GHz CPU and 512 MB main memory, running the
Microsoft Windows XP operating system.

6.1 Results on Real Data Set Adults

In our experiments, we use the Adults census data set
from the UC Irvine machine learning repository which has
become a de facto benchmark for k-anonymization. The
data set was configured as described in [4]. The salary class
attribute was dropped, and the tuples with missing values
were removed. The resulted data set contains 30, 162 tuples.

6.1.1 Privacy Leakages

To examine the privacy leakage when releases are indepen-
dently anonymized, in Figure 4, we randomly chose 12, 000
tuples as the initial data set T , and chose another 6, 000
tuples as the incremental update set ∆T . We anonymized
both T and (T ∪∆T) using Mondrian. Then, for each tuple
in (T ∪ ∆T), we checked whether it is k-anonymous. If
so, then the tuple is called safe. Otherwise, it is unsafe. We
ran the experiment 10 times. The figure reports the average
ratio of the safe tuples to all the tuples with respect to pa-
rameter k for k-anonymity. The larger the ratio, the better
the privacy is preserved.

When k is very small (2 or 5 in this experiment), the
chance that a generalization group is broken is small, and
thus the ratio of safe tuples is high. However, when k be-
comes large, the ratio decreases because many generaliza-
tion groups are broken. When k is 10 or over, over 40%
tuples are unsafe.

The ratio also depends on the relative size of the incre-
mental update against the initial data set. In Figure 5, We
varied the incremental update size from 10% to 90% of the
initial data set size (i.e., from 1, 200 tuples to 10, 800 tu-
ples) where k is set to 10. As the incremental update size
becomes large, more tuples become unsafe. When the in-
cremental update size is large, many tuples in the update
may form generalization groups by themselves without in-
volving any tuples in the initial data set. Thus, the ratio of
safe tuples does not decrease dramatically.

Figure 6 shows the ratio of safe tuples with respect to
the size of the initial data set, where the incremental update
size is kept as 50% of the initial data set. The ratio is stable
(about 60-70%). That shows the privacy leakage is persis-
tent in independent anonymized data releases.

As guaranteed by the monotonic incremental
anonymization property, our method always maintains

7

2 5 10 25 50 100
0

20

40

60

80

100

120

140

k

R
at

io
 o

f s
af

e
tu

pl
es

(%
)

Ours
Mondrian

Figure 4. Privacy leakage
with respect to k.

10% 30% 50% 70% 90%
0

20

40

60

80

100

120

140

update proportion

R
at

io
 o

f s
af

e
tu

pl
es

(%
)

Ours
Mondrian

Figure 5. Privacy leakage
with respect to incremental
update size.

4000 8000 12000 16000 20000
0

20

40

60

80

100

120

140

initial database size

R
at

io
 o

f s
af

e
tu

pl
es

(%
)

Ours
Mondrian

Figure 6. Privacy leak-
age with respect to initial
database size.

2 5 10 25 50 100
0

0.5

1

1.5

2

2.5

3
x 10

6

k

D
is

ce
rn

ab
ili

ty
 P

en
al

ty

Ours
Mondrian

Figure 7. Anonymization
quality with respect to k.

10% 30% 50% 70% 90%
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

update proportion

D
is

ce
rn

ab
ili

ty
 P

en
al

ty

Ours
Mondrian

Figure 8. Anonymization
quality with respect to incre-
mental update size.

4000 8000 12000 16000 20000
0

1

2

3

4

5

6
x 10

5

initial database size

D
is

ce
rn

ab
ili

ty
 P

en
al

ty

Ours
Mondrian

Figure 9. Anonymization
quality with respect to initial
database size.

2 5 10 25 50 100
0

20

40

60

80

100

120

140

160

k

T
im

e(
m

s)

Ours
Mondrian

Figure 10. Runtime with
respect to k.

10% 30% 50% 70% 90%
0

50

100

150

update proportion

T
im

e(
m

s)

Ours
Mondrian

Figure 11. Runtime with re-
spect to incremental update
size.

4000 8000 12000 16000 20000
0

50

100

150

200

initial database size

T
im

e(
m

s)

Ours
Mondrian

Figure 12. Runtime with
respect to initial database
size.

the k-anonymity against incremental updates. The ratio
of safe tuples in our method is always 100%. This set of
experiments clearly show that privacy leakage is severe if
we simply anonymize releases of data independently.

This observation strongly justifies the necessity of devel-
oping effective methods to maintain k-anonymity against
incremental updates.

6.1.2 Anonymization Quality

We use the discernability penalty score [4] as the measure
of the quality of anonymization.

Figures 7, 8, and 9 report the discernability penalty score
of the anonymizations with respect to parameter k, the rela-
tive size of incremental updates, and the initial data set size,
respectively. The data sets used in those experiments are the

same as those generating Figures 4, 5, and 6, respectively.
Our method anonymizes T and (T ∪∆T). The discern-

ability penalty score of the anonymization of (T ∪ ∆T) is
reported. For comparison, we applied the Mondrian method
on (T ∪∆T). The discernability penalty scores are reported
in the figures. In other words, the anonymization formed by
Mondrian here does not guarantee the anonymity against
incremental updates.

The two methods have very similar performance, and the
independent anonymizations always have a little bit smaller
discernability penalty score. In order to maintain the k-
anonymity against incremental updates, our method does
not have the full freedom to generalize tuples in (T ∪∆T).
Instead, only consistent generalization and subgroup refine-
ment can be used. The difference of the discernability
penalty scores is the tradeoff of the anonymization quality

8

for the k-anonymity against incremental updates. However,
in all cases, the differences in discernability penalty scores
are very small. Our method achieves the anonymization
quality highly comparable to independently anonymizating
the whole table (T ∪ ∆T). At the same time, it maintains
the k-anonymity against incremental updates.

This set of experiments clearly show that our method is
effective in anonymizing incremental updates. The cost in
anonymization quality of maintaining k-anonymity against
incremental updates is very small.

6.1.3 Anonymization Efficiency

Figures 10, 11, and 12 report the runtime of anonymizing
incremental updates using our method. For comparison, we
also report the runtime of Mondrian to anonymize the whole
data set (T ∪∆T). The data sets used in those experiments
are the same as those used to generate Figures 4, 5, and 6,
respectively.

For an incremental update, our method only needs to in-
sert the new tuples into the existing anonymization tree, and
further partition those leaf nodes having more than (2k−1)
tuples. Thus, as expected, the runtime of our incremental
anonymization method is much faster than anonymizing the
whole data set again using the Mondrian method.

In Figure 10, when k is small (e.g., 2), many leaf nodes in
the anonymization tree have more than (2k−1) tuples after
the new tuples are inserted. Those nodes need to be further
partitioned into smaller groups. Thus, the runtime is long.
When k becomes larger, fewer leaf nodes have more than
(2k − 1) tuples after the update. Moreover, less partition-
ing steps are needed to partition those nodes into subgroups
having less than 2k tuples. Thus, the runtime decreases.

Figure 11 shows that the runtime of our method is linear
with respect to the relative size of incremental updates, and
is much shorter than anonymizing the whole data set. Im-
portantly, the new tuples in the incremental update are dis-
patched into leaf nodes in the existing anonymization tree.
Thus, our method often does not need to anonymize a large
subset of tuples. This explains the big difference in runtime.
Similarly, the results in Figure 12 can be explained.

This set of experiments verify that our method is efficient
in anonymizing incremental updates. It is much faster than
anonymizing the whole data set again after each update.

6.2 Results on Synthetic Data Sets

To further test the performance of our method on data
sets with various distributions, we used an extensive set of
synthetic data sets. Limited by space, here we only report
the results on two kinds of synthetic data sets. The results
on other synthetic data sets are consistent.

The first group of synthetic data sets we used are in uni-
form distribution. The second group of data sets are in

Gaussian distribution (σ = 2.0). In all those data sets,
we used 4 attributes. The domain of each attribute is real
numbers in range [0, 15]. By default, we generated 10, 000
tuples as the initial data set T .

Following the same methodology in Figures 4, Fig-
ures 13 and 14 show the ratio of safe tuples in the inde-
pendent anonymizations of the whole data sets in uniform
and Gaussian distributions, respectively. The incremental
update contains 5, 000 tuples (50% of the size of the initial
data sets). Clearly, privacy leakage is non-trivial. Moreover,
the more bias the data, the more privacy is leaked. In bias
data sets, the new tuples in an incremental update may have
better chances to be similar to some existing tuples. Thus, if
different releases are anonymized independently, more gen-
eralization groups in the previous release may be broken.
Thus, bias data sets provide more chances for inferences if
the releases are not anonymized carefully.

Following the methodologies in Figures 7 and 8, Fig-
ures 15, 16, and 17 show the anonymization quality on syn-
thetic data sets. Consistently, our method can achieve the
k-anonymity against incremental updates by a minor com-
pensation in discernability penalty score.

Last, following the methodologies in Figures 10, 11,
and 12, Figures 18, 19, 20, and 21 show the efficiency of
our method on synthetic data sets. The results are consis-
tent with the results on the real data set.

In summary, the extensive performance study clearly
shows that privacy leakage is severe if incremental updates
are not handled carefully. Moreover, our method is effective
and efficient in maintaining k-anonymity against incremen-
tal updates.

7 Conclusions

In this paper, we identify and investigate the novel and
practical problem of maintaining k-anonymity against in-
cremental updates, and propose a simple yet effective so-
lution. Maintaining k-anonymity against various types of
incremental updates is an important and practical problem.
Although good progress on some scenarios have been made
in [18] and this paper, the problem at large remains open
and challenging. For example, if an adversary has some
temporal background knowledge (e.g., he knows Eddy was
sent to hospital in Week 2 in our running example), even the
subgroup refinement may leak privacy. As future work, we
will investigate how to preserve privacy against incremental
updates for other application scenarios.

References

[1] C. C. Aggarwal. On k-anonymity and the curse of dimen-
sionality. In VLDB ’05.

[2] G. Aggarwal, et al. Anonymizing tables. In ICDT’05.

9

2 5 10 25 50 100
0

20

40

60

80

100

120

140

k

R
at

io
 o

f s
af

e
tu

pl
es

(%
)

Ours
Mondrian

Figure 13. Privacy leakage
with respect to k (uniform
distribution).

2 5 10 25 50 100
0

20

40

60

80

100

120

140

k

R
at

io
 o

f s
af

e
tu

pl
es

(%
)

Ours
Mondrian

Figure 14. Privacy leakage
with respect to k (Gaussian
distribution).

2 5 10 25 50 100
0

0.5

1

1.5

2

2.5
x 10

6

k

D
is

ce
rn

ab
ili

ty
 P

en
al

ty

Ours
Mondrian

Figure 15. Anonymization
quality with respect to k
(uniform distribution).

2 5 10 25 50 100
0

0.5

1

1.5

2

2.5
x 10

6

k

D
is

ce
rn

ab
ili

ty
 P

en
al

ty

Ours
Mondrian

Figure 16. Anonymization
quality with respect to k
(Gaussian distribution).

10% 30% 50% 70% 90%
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

update proportion

D
is

ce
rn

ab
ili

ty
 P

en
al

ty

Ours
Mondrian

Figure 17. Anonymization
quality with respect to
incremental update size
(Gaussian distribution).

2 5 10 25 50 100

10

20

30

40

50

60

70

80

90

100

k

T
im

e(
m

s)

Ours
Mondrian

Figure 18. Runtime with
respect to k (uniform distri-
bution).

2 5 10 25 50 100
0

10

20

30

40

50

60

70

80

k

T
im

e(
m

s)

Ours
Mondrian

Figure 19. Runtime with re-
spect to k (Gaussian distribu-
tion).

10% 30% 50% 70% 90%
0

10

20

30

40

50

60

70

update proportion

T
im

e(
m

s)

Ours
Mondrian

Figure 20. Runtime with re-
spect to incremental update
size (Gaussian distribution).

10000 30000 50000 70000 90000
0

100

200

300

400

500

600

700

initial database size

T
im

e(
m

s)

Ours
Mondrian

Figure 21. Runtime with re-
spect to initial database size
(Gaussian distribution).

[3] G. Aggarwal, et al. Approximation algorithms for k-
anonymity. Journal of Privacy Technology, (2005112001).

[4] R. J. Bayardo and R. Agrawal. Data privacy through optimal
k-anonymization. In ICDE’05, pages 217–228.

[5] J. H. Freidman, et al. An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw.,
3(3):209–226, 1977.

[6] B. C. M. Fung, et al. Top-down specialization for informa-
tion and privacy preservation. In ICDE’05, pages 205–216.

[7] V. S. Iyengar. Transforming data to satisfy privacy con-
straints. In KDD’02, pages 279–288.

[8] D. Kifer and J. Gehrke. Injecting utility into anonymized
datasets. In SIGMOD’06.

[9] K. LeFevre, et al. Incognito: Efficient full-domain k-
anonymity. In SIGMOD’05.

[10] K. LeFevre, et al. Mondrian multidimensional k-anonymity.
In ICDE’06.

[11] K. LeFevre, et al. Workload-aware anonymization. In
KDD’06, pages 277–286.

[12] A. Meyerson and R. Williams. On the complexity of optimal
k-anonymity. In PODS’04, pages 223–228.

[13] P. Samarati. Protecting respondents’ identities in microdata
release. IEEE Transactions on Knowledge and Data Engi-
neering, 13(6):1010–1027, 2001.

[14] P. Samarati and L. Sweeney. Generalizing data to provide
anonymity when disclosing information. In PODS’98.

[15] P. Samarati and L. Sweeney. Protecting privacy when
disclosing information: k-anonymity and its enforcement
through generalization and suppression. In Technical Report
SRI-CSL-98-04, 1998.

[16] L. Sweeney. Achieving k-anonymity privacy protection us-
ing generalization and suppression. International Journal
on Uncertainty, Fuzziness, and Knowledge-based Systems,
10(5):571–588, 2002.

[17] L. Sweeney. K-anonymity: a model for protecting pri-
vacy. International Journal on Uncertainty, Fuzziness, and
Knowledge-based Systems, 10(5):571–588, 2002.

[18] K. Wang and B. C. M. Fung. Anonymizing sequential re-
leases. In KDD’06, pages 414–423.

[19] K. Wang, et al. Bottom-up generalization: A data mining
solution to privacy protection. In ICDM’04, pages 249–256.

[20] W. E. Winkler. Using simulated annealing for k-anonymity.
Technical Report Statistics 2002-7, U.S. Census Bureau, Sta-
tistical Research Division, 2002.

[21] J. Xu, et al. Utility-based anonymization using local recod-
ing. In KDD’06, pages 785–790.

10

