
On Computing Condensed Frequent Pattern Bases

Jian Pei
State Univ. of New York at Buffalo

jianpei@cse.buffalo.edu

Guozhu Dong
Wright State Univ.

gdong@cs.wright.edu

Wei Zou
Jiangxi Normal Univ.
zouwei@jxnu.edu.cn

Jiawei Han
Univ. of Illinois

hanj@cs.uiuc.edu

Abstract

Frequent pattern mining has been studied extensively.
However, the effectiveness and efficiency of this mining is
often limited, since the number of frequent patterns gener-
ated is often too large. In many applications it is sufficient
to generate and examine only frequent patterns with support
frequency in close-enough approximation instead of in full
precision. Such a compact but close-enough frequent pat-
tern base is called acondensed frequent patterns-base.

In this paper, we propose and examine several alterna-
tives at the design, representation, and implementation of
such condensed frequent pattern-bases. A few algorithms
for computing such pattern-bases are proposed. Their ef-
fectiveness at pattern compression and their efficient com-
putation methods are investigated. A systematic perfor-
mance study is conducted on different kinds of databases,
which demonstrates the effectiveness and efficiency of our
approach at handling frequent pattern mining in large
databases.

1 Introduction

It has been well recognized that frequent pattern min-
ing plays an essential role in many important data min-
ing tasks (e.g., mining association [2]). However, it has
also been widely recognized that frequent pattern mining
often produces a huge number of patterns [15], which re-
duces not only the efficiency but also the effectiveness of
mining, since it is unrealistic to store and comprehend so
many patterns. Recently, efforts have been devoted to ad-
dress this problem. In general, interesting proposals can be
classified into two categories. First, concise representations
of frequent patterns have been explored, such asfrequent
closed patterns[12, 15, 14], that can be used to remove
sub-patterns which have the same support as some of their
super-patterns. Studies like [15] have shown that, by doing
so, the total number of patterns and rules can be reduced
substantially, especially in dense data sets. Second, con-
straints can be used to capture users’ focus, and effective
strategies have been developed to push various constraints
deep into the mining process [11, 9, 13].

Even though these approaches are useful, they may not
be powerful enough in many cases. The compression by
the closed-pattern approach may not be so effective since
there often exist slightly different counts between super-
and sub- patterns. Constraint-based mining, though useful,
can hardly be used for pre-computation since different users

may likely have different constraints.
Although it seems to be inherent that a large database

may contain numerous frequent patterns, it is easy to ob-
serve a simple fact in practice: “Most applications will not
needprecise support information of frequent patterns, a
good approximation on support count could be more than
adequate.” Here, by “good approximation”, we mean that
the frequency of every frequent pattern can be estimated
with aguaranteed maximal error bound. For example, for a
frequent pattern{diaper, beer}, instead of giving the exact
support count (e.g.,10000), a range, e.g.,10000± 1%, may
be good enough; the range is a user-specifiederror bound.

“Why is a condensed frequent pattern base acceptable
and often more preferable?” First, when mining large
database, a small deviation often has a very minor effect
on analysis. For an analyst, the exact information “diaper
and beer have been bought together10, 050 times out of the
10 million transactions” and an approximation “diaper and
beer have been bought together10, 050 ± 50 times” may
not have any essential difference. Analysis often has to deal
with approximation sooner or later, by truncation or round-
ing. What an analyst is really concerned is that a specified
error bound is guaranteed.

Second,condensing frequent pattern base leads to more
effective frequent pattern mining. By computing a con-
densed pattern base, the number of patterns can be reduced
dramatically, but the general information about frequent
patterns still retain. A much smaller base of patterns cer-
tainly helps users comprehend the mining results.

Third,computing a condensed frequent pattern base may
lead to more efficient frequent pattern mining. A condensed
frequent pattern base could be much smaller than the com-
plete frequent pattern base. Thus, one may need to compute
and access a much smaller pattern base, which leads to bet-
ter efficiency.

In summary, mining a condensed frequent pattern base
may make frequent pattern mining more realistic in real-
life applications. In this paper, we introduce the concept
of condensed frequent pattern-base with guaranteed max-
imal error boundand study theefficient computation of
such a condensed pattern-base, with the following contri-
butions. First, we introduce the conceptcondensed frequent
pattern-baseand devise systematic representations of such
frequent pattern-bases. We show that such representations
achieve satisfactory approximation with a guaranteed max-
imal error bound on the support. Second, we develop ef-
ficient algorithms for computing condensed pattern bases
from transaction databases directly. Our algorithms facili-

tate the relaxation of counting requirement and prune many
patterns in the mining. Third, we present a systematic per-
formance study to verify the effectiveness and efficiency of
condensed frequent pattern bases. Our results show that
computing condensed frequent pattern base is promising.
Previously, the ideas of approximating frequent patterns
have been probed in some related studies. For example, [10]
shows that approximative association rules are interesting
and useful. In [4], the notion of free-sets is proposed and
can lead to an error-bound approximation of frequencies.
However, none of the previous studies systematically ex-
plores the problem of designing and mining condensed fre-
quent pattern-based with guaranteed maximal error bound.

The remaining of this paper is organized as follows. The
problem of computing a condensed frequent pattern base
is introduced in Section 2. A level-by-level frequent pat-
tern base construction method is presented in Section 3.
In Section 4, we develop an effective and efficient method
for frequent pattern-base construction using max-patterns at
various layers. Section 5 presents a comprehensive perfor-
mance study to demonstrate the effectiveness and efficiency
of our approach. Section 6 concludes the study.

2 Problem Definition

We first review some standard terminology for frequent
pattern mining. LetI = {i1, . . . , in} be a set of literals,
called items. An itemset(or pattern) X, denoted asX =
ij1 · · · ijl

(i.e., by omitting set brackets), is a subset of items
in I. An itemset withl items is called anl-itemset. For two
patternsX andY such thatX ⊆ Y , Y is called asuper-
patternof X, andX asub-patternof Y .

A transactionT = (tid,X) is a tuple wheretid is a
transaction-idand X is an itemset. A transactionT =
(tid,X) is said tocontain itemsetY if Y ⊆ X. A trans-
action databaseTDB is a set of transactions. Thesupport
of an itemsetX in TDB, denoted assup(X), is the num-
ber of transactions inTDB containingX, i.e., sup(X) =
|{(tid, Y)|((tid, Y) ∈ TDB) ∧ (X ⊆ Y)}|.

Given a transaction databaseTDB and asupport thresh-
old min sup, an itemsetX is called afrequent itemsetor
a frequent patternif sup(X) ≥ min sup. The problem
of frequent pattern mining is to find the complete set of
frequent patterns fromTDB w.r.t. a user-specified support
thresholdmin sup. The set of all frequent patterns is called
a frequent pattern base, or FP-basein short.

It is often expensive to find the complete set of frequent
patterns, since an FP-base may contain a huge number of
frequent patterns. In this paper, we propose to overcome
the difficulty caused by “huge amount of frequent patterns”
as follows: we compute a smaller set of frequent patterns,
i.e., a “condensed FP-base”, and then use it to approximate
the supports of arbitrary frequent patterns.

Problem statement. Given a transaction database, a sup-
port threshold, and a user-specifiederror boundk, theprob-
lem of computing a condensed FP-baseis to find a subset
of frequent patternsB and a functionfB such that the fol-
lowing holds for each patternX:

fB(X) =

{ 0 if X is infrequent
[suplb, supub] s.t.(suplb ≤ sup(X) ≤ supub)

and(supub − suplb) ≤ k if X is frequent

ab:4 ac:2 ad:2 bd:3 cd:3

d:4b:5

null:7

abc:2 abd:2

bc:3

acd:1

c:4

bcd:2

abcd:1

a:5

(a) Lattice of frequent patterns

ab:4 ac ad bd cd

d:4ba

null

abc abd

bc

acd

c:4

bcd

abcd:1

ac bd cd

d:4b:5a:5

null

abc abd

bc

c:4

bcd

abcd:1

(b) Condensed FP-base Bd (c) Condensed FP-base Bm

acd:1

ab ad

Figure 1. Lattice of frequent patterns for Example 1.

The functionfB is called a(support) approximation func-
tion, and the setB acondensed FP-basew.r.t. fB.1

Example 1 Consider the transaction database shown in Ta-
ble 1. Let the support threshold bemin sup = 1 and the
error bound bek = 2. The lattice of totally15 frequent
patterns is shown in Figure 1(a).

Transaction-id Itemset
10 a
20 ab
30 abc
40 abcd
50 cd
60 abd
70 bcd

Table 1. A transaction database with seven transactions.

The setBd = {a : 5, b : 5, c : 4, d : 4, acd : 1, abcd : 1}
is a condensed FP-base. Patterns inBd are those labelled
with supports in Figure 1(b). For each patternX, the func-
tion fBd

is defined as follows:

fBd
(X) =





0 if there exists noX ′ ∈ Bd s.t.X ⊆ X ′
[sup(X), sup(X)] if X ∈ Bd

[sup(X0)− 2, sup(X0)], where(X0 ⊂ X and
sup(X0) = min(sup(X ′′)) for X ′′ ⊂ X
andX ′′ ∈ Bd), otherwise

For example,fBd
(abcde) = 0 for the infrequent pat-

tern abcde, since there is noX ′ ∈ Bd s.t. abcde ⊆ X ′;
fBd

(ac) = [4−2, 4] = [2, 4], sincec is a sub-pattern ofac in
Bd with the smallest support count (of4). Here, we used the
well known “Apriori” property thatsupp(X) ≥ supp(Y)
if X ⊆ Y . One can verify that,fBd

can approximate the
support count of each frequent pattern as required by the
definition given above. For example,sup(ab) is approxi-
mated by[3, 5] andsup(abc) is by [2, 4].

1Instead of an absolute error boundk, a relative, percentage-based error
boundk% can also be used to compute a condensed FP-base. In this case,
supub−suplb

suplb
≤ k% should be satisfied for frequent patterns.

Moreover,Bm = {c : 4, d : 4, ab : 4, abcd : 1} is
another condensed FP-base, as plotted in Figure 1(c). The
corresponding approximation functionfBm

is defined (for
each patternX) as follows:

fBm(X) =





0 if there exists noX ′ ∈ Bm s.t.X ⊆ X ′
[sup(X), sup(X)] if X ∈ Bm

[sup(X0), sup(X0) + 2] where (X0 ⊃ X
andsup(X0) = max{sup(X ′′) |
X ′′ ⊃ X,X ′′ ∈ Bm}), otherwise

Condensed FP-bases and approximation functions are
not unique. A superset of a condensed FP-base is also a base
w.r.t. the identical approximation function. A condensed
FP-base isminimal(w.r.t. an approximation functionf) if it
does not contain a proper subset which is also a condensed
FP-base w.r.t.f . Interestingly, even minimal condensed FP-
bases are not unique. For Example 1, bothBd andBm are
minimalcondensed FP-bases.

Among possible approximation bases, we prefer those
requiring as little space as possible. Such condensed FP-
bases offer significant compression effect, which can be
measured bycompression ratioδ, defined as

δ =
of patterns in the condensed FP-base

total # of frequent patterns
(1)

Clearly, the smaller the compression ratio, the better the
compression effect. We observe from Example 1 that con-
densed FP-bases can produce considerable space savings
even with a small error bound. For example,Bd achieves
a compression ratio of40%, whereasBm achieves26.7%.
Bm achieves better compression thanBd.

Previous research also considered computing reduced
sets of frequent patterns, including reduction based on fre-
quent closed itemsets [12] and containment based reduction
[3, 6]. An itemsetX is called aclosed patternif there exists
no proper supersetX ′ of X such thatsup(X) = sup(X ′),
while X is called amax-patternif there exists no super-
setX ′ of X such thatX ′ is also frequent. Interestingly, it
can be shown that the complete set of frequent closed pat-
terns is a minimal condensed FP-base with error bound0,
while the complete set of max-patterns is a minimal con-
densed FP-base with error bound(|TDB| − min sup),
wheremin sup is the support threshold. However, none of
these considers approximating supports of frequent patterns
with a user-specified error bound as we do here.

How can we construct condensed FP-bases effectively
and efficiently?This is the topic of the following sections.

3 Constructing a Condensed FP-Base Level-
by-level

We now consider an approach that constructs a con-
densed FP-base by examining all frequent patterns level-by-
level: A frequent pattern is added into the condensed FP-
base only if it cannot be approximated by its sub-patterns in
the base. The method is illustrated next.

Example 2 A condensed FP-baseBd for the transaction
databaseTDB in Table 1, for the support threshold of1
and the error bound of2 is constructed as follows (as shown

in Figure 1(b)), where the approximation functionfBd
is

defined in Example 1.
For each patternX, letX.ub denotemin{sup(X ′)|X ′ ∈

B, andX ′ ⊆ X}, i.e.,X.ub is the minimum of supports of
all sub-patterns ofX currently inBd.
Step 1.We initializeBd = ∅ and mine length-1 and length-
2 frequent patterns. Since length-1 frequent patterns are the
“most frequent-end borders” of frequent patterns and none
of their sub-patterns is in the base, we insert all of them (i.e.
a, b, c, andd) intoBd.

For each length-1 frequent patternx, x.ub = sup(x).
Step 2. For the next level, i.e., length-2 frequent patterns,
we havexy.ub = min(x.ub, y.ub) for each length-2 fre-
quent patternxy.

We do two types of insertions intoBd.
(i) A length-2 frequent patternX is added intoBd if

X.ub − sup(X) is over the error bound (i.e., if its sup-
port cannot be approximated by its sub-patterns in the base
Bd). In this example, since all length-2 frequent patterns can
be approximated properly by their length-1 sub-patterns, no
length-2 frequent pattern is inserted intoBd.

(ii) If a length-2 frequent pattern has no frequent length-
3 super-pattern, i.e., it is a max-pattern, then it is inserted
into Bd. Max-patterns are needed inBd since they are used
to determine whether a pattern is frequent. In this example,
no such length-2 frequent pattern exists.
Step 3.For the length-3 level, sinceacd.ub − sup(acd) =
4 − 1 > 2, pattern acd is inserted intoBd. Here,
abc.ub = min(ab.ub, ac.ub, bc.ub). After the insertion, we
setabc.ub = sup(abc) = 1. We then mine length-4 fre-
quent patterns and see that there is no length-3 max-pattern.
Step 4.The length-4 frequent patternabcd is a max-pattern
(since there is no length-5 frequent pattern), and it is in-
serted intoBd.

At the end, the baseBd contains6 patterns:a, b, c, d,
acd, andabcd. Since the search is downward from length-
1 patterns, we call the resulting base as adownward con-
densed FP-base.

Let us generalize the level-by-level condensed FP-base
construction method. We first define the approximation
functionϑ as follows.

Definition 1 Given a condensed FP-baseB, an error bound
k and a patternX.

ϑ(X) =





0 if there exists noX ′ ∈ B
s.t.X ′ ⊇ X

[sup(X), sup(X)] if X ∈ B
[m− k, m] if X 6∈ B, wherem =

min{sup(X ′) | X ′ ∈ B,
X ′ ⊂ X}

The following algorithm computes a condensed FP-base
with respect to approximation functionϑ.

Algorithm 1 (CFP-D: a Level-by-level downward search
method)

Input: transaction databaseTDB, support thresholdmin sup,
and error boundk;

Output: a condensed FP-baseB w.r.t. ϑ;
Method:

1. letB = ∅;
2. find length-1 frequent patterns and insert them intoB; for

each length-1 frequent patternX, let X.ub = sup(X);
3. let i = 2;
4. generate the setFi of length-i frequent patterns; for each

length-i frequent patternX, letX.ub = min(X ′.ub), where
X ′ ranges over length-(i− 1) sub-patterns ofX;
/* the calculation ofX.ub can be done as a byproduct of
candidate-generation */

5. if (X.ub − sup(X)) > k, then insertX into B and set
X.ub = sup(X);

6. for each length-(i − 1) frequent patternX s.t. X has no
super-pattern inFi, insertX intoB;
/* rationale:X is a max-pattern */

7. if Fi 6= ∅ then leti = i + 1 and goto Step 4;
8. returnB.

One advantage of the method shown in Example 2 is
that it is intuitive and can be easily integrated into the
Apriori algorithm. The correctness and effectiveness of the
algorithm are obvious. Limited by space, we omit the proof
here.

What kind of patterns are included inB computed by Al-
gorithm 1?A frequent patternX is called aseed patternif
for each proper sub-patternX ′ ⊂ X, sup(X ′) > sup(X).
Interestingly, it is easy to show thatevery pattern inB com-
puted by Algorithm 1 is either a seed pattern or a max-
pattern.

4 Constructing a Condensed FP-base Using
Max-patterns

While Algorithm 1 is intuitive and correct, it has to check
every frequent pattern. When there are many frequent pat-
terns, the mining cost is non-trivial.Can we avoid checking
every frequent pattern when constructing a condensed FP-
base?In this section we will answer this question positively
by providing a type of condensed FP-base and efficient min-
ing techniques to find such a base.

Intuitively, we are going to construct a condensed FP-
base consisting of maximal frequent patterns for a series
of support thresholds. More specifically, given a sup-
port thresholdmin sup and error boundk, we divide the
set of frequent patterns into a number of disjoint sub-
sets: (1) the set of patterns with support in the range
[min sup,min sup+k], (2) those with support in the range
[min sup + k + 1,min sup + 2k + 1], etc. Thei-th subset
contains those patterns with support in the range

[min sup + (i− 1)(k + 1), min sup + ik + i− 1] where
(1 ≤ i ≤ |TDB|+1−min sup

k+1).

Given a frequent pattern, we can approximate its support
with maximal error ofk, by determining which subset the
pattern belongs to. To determine which subset a pattern be-
longs to, we only need to record the max-patterns at various
layers w.r.t. the lower bounds of supports of the ranges. The
idea is illustrated in the following example.

Example 3 Given the transaction databaseTDB in Table
1, support threshold of1 and error bound of2, a condensed
FP-baseBm can be constructed as follows.

Since the support threshold is1 and the total number of
transactions in the database is7, we consider three ranges
of supports:[1, 3], [4, 6], and[7, 7]. We mine max-patterns
w.r.t. support threshold1, 4, and7, respectively. The only
max-pattern w.r.t. support threshold1 is abcd, the max-
patterns w.r.t. support threshold4 are ab, c and d, while
there is no max-pattern w.r.t. support threshold7. These
four patterns form a condensed FP-baseBm.

The baseBm is shown in Figure 1(c). The approxima-
tion function isfBm , as defined in Example 1. In essence,
for each given patternX we find the super-patternY of X
in Bm having the largest support, and use the range of the
support forY as the estimate of the support ofX.

We now generalize the ideas by providing the definition
of a condensed FP-base.

Definition 2 Given a transaction databaseTDB, support
thresholdmin sup and error boundk, let thenumber of
levelsbe

n level = b |TDB|+ 1−min sup

k + 1
c

Define
min sup1 = min sup

min sup2 = min sup + k + 1

. . .

min supi = min sup+(i−1)(k+1) for (1 ≤ i ≤ n level)

Then,B =
⋃i<n level

i=0 Mi is called anM-base, w.r.t. the
approximation functionζ defined below. HereMi is the set
of max-patterns w.r.t. support thresholdmin supi.

The nameM-baseis used because the base is based on
max-patterns.

Definition 3 Given an error boundk, an M-baseB, and a
patternX, let

ζ(X) =





0 if there exists noX ′ ∈ B
s.t.X ′ ⊇ X

[sup(X), sup(X)] if X ∈ B
[m, m + k] if X 6∈ B, wherem =

max{sup(X ′) | X ′ ∈ B,
X ′ ⊃ X}

It can be shown that each M-base is not only a proper
condensed FP-base w.r.t. functionζ but also a minimal one.
Limited by space, we omit the formal result here.

The remaining problem ishow to find the max-patterns
efficiently in the condensed FP-baseBm.

There are many methods for mining max-patterns, such
as MaxMiner [3], Depth-first Search [1], MAFIA [5], and
GenMax[7]. A näıve method to computeBm is to call a
max-pattern mining algorithm multiple times, once for each
lower bound of the ranges as a support threshold.

How do we mine the patterns of M-bases more efficiently
than the näıve method?Roughly speaking, we will pro-
pose an algorithm to mine the database only once, for all
the max-patterns w.r.t. the series of support thresholds. The
algorithm proceeds in a depth-first manner. Moreover, our
algorithm also uses additional pruning techniques. We will
demonstrate the spirit of our algorithm with the following
example.

Example 4 Consider the mining of max-patterns w.r.t. sup-
port thresholds of1 and4 in the M-baseBm for the transac-
tion databaseTDB of Table 1.

By scanning the transaction databaseTDB once, all fre-
quent items, namelya : 5, b : 5, c : 4, andd : 4, are
found. These items are sorted in support descending order,
producing the listF-list= a− b− c− d.

F-list can be used to divide all max-patterns into four
disjoint subsets: (1) the set of max-patterns containing item
a; (2) those containing itemb but noa; (3) those containing
item c but noa nor b; and (4) those containing itemd, i.e.,
the patternd itself, if it is a max-pattern. We mine these
four subsets of max-patterns one by one.
1. To find max-patterns containing itema, we form the
a-projected databaseTDBa by collecting all transactions
containing itema, namelyb, bc, bcd, andbd.

Itemsb, c, andd are local frequent items inTDBa. A
list F-lista = b − c − d is formed by sorting these local
frequent items in local support descending order. Based on
F-lista, all max-patterns containing itema can be further
divided into four disjoint subsets: (1) patterna itself, if it is
a max-pattern; (2) those containingab; (3) those containing
item ac but nob; and (4) patternad if it is a max-pattern.
We mine them one by one recursively.
1(a). The support ofb in TDBa is 4, denoted as
supTDBa(b) = 4. Sincesup(ab) = supTDBa(b) = 4,
patterna is not a max-pattern w.r.t. support threshold4.
1(b). To find max-patterns containingab, we form theab-
projected databaseTDBab, which containsc, cd, andd.
Itemsa andb are omitted inTDBab, since they appear in
every transaction in theab-projected database. There is no
item having support4 or over in TDBab. Thus,ab is a
max-pattern w.r.t. support threshold4 (the lower bound of
the second range of supports).

Itemsc andd are frequent inTDBab. We recursively
mine max-patterns by forming projected databases. It can
be checked thatabcd is a max-pattern w.r.t. support thresh-
old 1. Thus, the max-patterns containingab areab : 4 itself
andabcd : 1.
1(c). To find max-patterns containingac but notb, we form
ac-projected databaseTDBac, which containsd. Here,
items a, b and c are omitted sinceac appears in every
transaction andb occurs beforec in F -list. The only fre-
quent item inTDBac is d. However, ac ⊂ abcd and
4 > sup(ac) > sup(abcd) = 1. That means there exists no
max-pattern containingac but nob.
1(d). Since4 > sup(ad) > sup(abcd) = 1, ad is not a
max-pattern.

Therefore, the max-patterns containinga are ab and
abcd.
2. To find all max-patterns containingb but nota, we form

the b-projected database, which containsc, cd, d, andcd.
The local frequent items inTDBb are c and d, and F-
listb = c − d. The max-patterns containingb but not a
can be divided into three subsets: (1) patternb itself, if it is
a max-pattern; (2) those containingbc; and (3) patternbd, if
it is a max-pattern. Let us mine them one by one.

Sinceb ⊂ ab andab is a max-pattern,b is not a max-
pattern;

Since sup(bc) = supTDBb
(c) = 2, we have4 >

sup(bc) ≥ sup(bcd) > sup(abcd). It follows that there
are no max-pattern containingbc but nota.

Similarly, we can check thatbd is not a max-pattern.
Thus, there are no max-patterns containingb but nota.

3. To mine max-patterns containingc but nota nor b, we
can form thec-projected database and mine it recursively.
It can be verified thatc is the only such max-pattern.
4. similarly, it can be verified thatd is a max-pattern.

Thus the complete set of max-patterns for condensed FP-
baseBm = {ab : 4, abcd : 1, c : 4, d : 4}.

As shown in the example, the general framework is the
depth-first search. A list of frequent items in support de-
scending order, calledF-list, is used to divide the data as
well as the mining task. In general, givenF-list= x1 · · ·xn,
the set of max-patterns can be divided inton disjoint sub-
sets: thei-th subset contains max-pattern having itemxi but
none ofxj (0 < j < i).

To mine max-patterns containingX = xi1 · · ·xim

(items inX are listed according toF-list), anX-projected
database TDBX is formed: every transactiont =
(tid, Y) ∈ TDB such thatX ⊂ Y is projected toTDBX

as(tid, Y ′), only items afterxim in theF-list are inY ′. In
Example 4,F-list= a − b − c − d. Thus, theac-projected
databaseTDBac contains only one transactiond (see Step
2). Here, the transaction-id is omitted.

The pruning techniques used in the mining are verified
as follows.

First, how can we determine whether a frequent pattern
X is a local max-pattern?We have the following lemma,
while the proof is skipped due to lack of space.

Lemma 4.1 LetX be a frequent pattern andiX = max{i |
sup(X) ≥ min supi}. Then,X is a max-pattern w.r.t.
min supiX if and only ifX is not a sub-pattern of any max-
pattern w.r.t.min supiX andsupTDBX (x) < min supiX

for each itemx in TDBX .

In Step 1.b of Example 4, patternab is determined as a
max-pattern w.r.t. support threshold4 according to Lemma
4.1.

Second,can we prune some unpromising patterns as
early as possible?We have the following lemma.

Lemma 4.2 Let X be a frequent pattern andF-listX =
y1−. . .−ym be theF-list of local frequent items inTDBX .
For an itemyi in F-listX , if there exists a max-patternZ and
i (1 ≤ i ≤ n level) such that(X ∪ yi · · · ym) ⊆ Z and

min supi ≤ sup(Z) ≤ supTDBX
(yi) < min supi+1

then forY ⊆ yi · · · ym, X ∪ Y cannot be a max-pattern,
and thus(X ∪ yi)-, . . . ,(X ∪ ym)-projected databases can
be pruned.
Proof. We only need to notice the following two facts: (1)
for X andyi as stated in the lemma,X ∪ yi · · · ym ⊆ Z is
not a max-pattern, which follows Lemma 4.1, and (2) from
X andyi · · · ym, we cannot derive any max-pattern which
is a super-pattern ofZ, sinceX ∪ yi · · · ym ⊆ Z. Thus, we
have the lemma.

In Step 2 of Example 4, we do not need to form and
mine bc-projected database since (1) the frequent items in
b-projected database arec andd with support less than4;
and (2)bcd is not a max-pattern w.r.t. support threshold1.
Thus, Lemma 4.2 is applied here.

Based on the above analysis, we summarize the algo-
rithm for constructing an M-base as follows.

Algorithm 2 (CFP-M: a method for mining max-patterns
at various layers)

Input: transaction databaseTDB, support thresholdmin sup,
and error boundk%;

Output: an M-baseB w.r.t. ζ;

Method: Let I be the set of all items; callmine(TDB, ∅, I).

Function mine(DBX , X, IX)

// DBX : a projected database,X: a frequent pattern,IX : a
set of items to be processed

1. scanDBX once to find all frequent items withinIX ;

2. let Fe be the set of items appearing in every transaction in
DBX , i.e., Fe = {x | x ∈ IX , sup(x) = |DBX |}; let
Fr = FX − Fe;

3. let i = max{j | |DBX | ≥ min supj};
if min supi > sup(y) for each itemy ∈ Fr, andX ∪ Fe

is not contained in any max-pattern w.r.t. support threshold
min supi, then outputX ∪ Fe;
// X∪Fe is a max-pattern w.r.t.min supi. This step is based
on Lemma 4.1.

4. let F-listX be the list of items inFr in support descending
order;
for each itemx ∈F-listX (processed in the order) do

(a) if the pruning criteria of Lemma 4.2 is satisfied forX,
x (asyi), andFr (asF -listX), then return;

(b) otherwise, letDBXx ⊂ DB be the subset of transac-
tions containingx;
let IXx ⊂ Fr be the set of frequent items afterx in
FX ;
call mine(DBXx, Fe ∪ {x}, IXx);

5. return;

Analysis. The correctness of the algorithm follows the lemmas
having shown before. In this algorithm, we do not check every
frequent pattern. Instead, we only check frequent patterns with-
out a proper super-pattern having exact same support count. Fur-
thermore, by using Lemma 4.2, we prune patterns approximately
contained by other max-patterns.

The implementation of Algorithm 2 involves projected
databases and containment tests of frequent patterns. Ac-
cordingly, we propose the following two implementation
optimizations.

First, we useFP-tree [8] to compress database and pro-
jected databases. AnFP-tree is a prefix tree storing trans-
actions. Only frequent items in transactions are stored.
From FP-trees, projected databases can be derived effi-
ciently.

Second, one critical implementation issue of Algorithm
2 is that we need to identify max-patterns containing a given
pattern and staying in the same support range. In our imple-
mentation, we index max-patterns of the condensed FP-base
by support leveli (i.e., the pattern is w.r.t.min supi) and
length. Moreover, to facilitate the search, we organize all
max-patterns using a prefix tree, while all nodes with same
item label are linked together.

5 Empirical Evaluation

To evaluate the effectiveness and efficiency of condensed
FP-bases, we conducted a comprehensive set of experi-
ments. In this section, we report a summary of our results.
All experiments are conducted on a PC with Pentium III-
750 CPU and 188Mb main memory. All the programs are
coded using Microsoft Visual C++6.0. We use both syn-
thetic datasets and real datasets in the experiments. The
results are consistent. Due to lack of space, we only report
results on three datasets as follows.

To report results on effectiveness and efficiency of FP-
bases, we use two dense datasets,MushroomandConnect-
4, from the UC-Irvine Machine Learning Database Repos-
itory. A dataset is dense if it contains many long patterns
even though the support threshold is relatively high. The
Mushroomdataset contains8124 transactions, while the av-
erage length of transaction is23. TheConnect-4dataset has
67557 transactions and each transaction has43 items. Both
of them are typical dense datasets. Mining frequent patterns
from dense databases is very challenging.

To test the scalability of FP-bases, we also use a syn-
thetic datasetT10I4D100 − 1000k. This dataset is gen-
erated using the well-known IBM synthetic data generator
[2]. It is a sparse dataset simulating the market basket data.
The number of transactions in this dataset is up to1 million.

In our experiments, we compare the following three al-
gorithms for mining condensed FP-bases.

CFP-D: the level-by-level method for constructing con-
densed FP-baseBd, i.e., Algorithm 1.
CFP-CLOSET: we adapt the CLOSET algorithm [14] to
CFP-CLOSETfor mining condensed FP-baseBm as fol-
lows. CFP-CLOSET finds frequent closed patterns and
checks whether a frequent closed pattern is inBm according
to Lemma 4.1. It outputs only frequent closed patterns.
CFP-M: it is Algorithm 2, which finds condensed FP-base
Bm with all pruning and optimization.

Effect of Compression

The compression effects of condensed FP-bases can
be measured by compression ratio defined in Equation 1.
Please note that the smaller the compression ratio, the bet-
ter the compression effect.

First, we fix the support threshold and test the compres-
sion ratio with respect to various error bounds. The results
on datasetsMushroomandConnect-4are shown in Figure
2 and Figure 3, respectively.

Here, the error bound is set as a percentage of the to-
tal number of transactions in the dataset. If there are1000
transactions in the dataset, then an error bound of0.1%
means that the absolute error bound is1.

It is clearly shown that condensed FP-baseBm can
achieve much better compression ratio thanBd. For ex-
ample, in datasetMushroom, when the support threshold is
set to14%, there are in total103, 845 frequent patterns, and
2, 591 frequent closed patterns. As shown in Figure 2,Bm

is much smaller thanBd. For both condensed FP-bases, the
larger the error bound, the better the compression ratio.

Note when error bound is0%, Bm is exactly the set of
frequent closed patterns. As can be seen, frequent closed
itemsets can achieve a good compression ratio. Condensed
FP-baseBm can carry the benefit and take the advantage of
error bound to do an even better compression.

Since condensed FP-baseBm performs better thanBd,
we now focus on the compression effect ofBm with respect
to support threshold. The results are shown in Figure 4 and
5, respectively.

To help verify the compression effect, we also plot the
compression ratio of condensed FP-base using frequent
closed patterns. A condensed FP-base using frequent closed
patterns is with an error bound0. As clearly shown in the
two figures, the larger the error bound, the better the com-
pression. The results also confirm that, even with some
small error bound, condensed FP-baseBm can be much
smaller than the condensed FP-base of frequent closed pat-
terns.

The compression ratio also is sensitive to the distribu-
tion of frequent patterns with respect to a specific support
threshold. Fortunately, the general trend is that the lower
the support threshold, the better the compression. When
the support threshold is low, there are many frequent pat-
terns with similar support counts. Thus, one pattern in a
condensed FP-base may be a “representative” of many pat-
terns.

Similar trends can be observed for the compression ef-
fect of Bd, but the compression ratio ofBd is larger than
that ofBm in the same setting, i.e., the compression power
of Bd is weaker.

Efficiency of computing condensed FP-bases

We compare the runtime ofCFP-D, CFP-CLOSETand
CFP-M with respect to various error bounds in Figure 6.
The support threshold is set to93%. From the figure, we can
see that the trends are as follows. The runtime of bothCFP-
D andCFP-CLOSETare insensitive to the error bound. The
two methods find the complete set of frequent patterns and
frequent closed patterns, respectively, which are their dom-
inant costs. We note that the cost of computingX.ub for
patternX in CFP-D and that of the super-pattern checking
in CFP-CLOSETare very minor comparing to the expen-
sive pattern mining in these two algorithms.

CFP-D fully utilize the error bound to prune the search
space. The larger the bound, the faster the execution. Thus,
it is faster than the other two algorithms when the error

bound is not very small.
We observe a similar trend on datasetMushroom. Lim-

ited by space, we omit the details here. Moreover, since
CFP-D is dramatically slower thanCFP-CLOSETand
CFP-M, in the remainder of this subsection, our discussion
focuses onCFP-CLOSETandCFP-M.

In Figure 7, we compare the runtime ofCFP-CLOSET
and CFP-M with respect to support threshold. The error
bound is set to0.1% of the total number of transactions in
the dataset. When the support threshold is high, the run-
time of both methods are close. However, when the support
threshold is low, the runtime ofCFP-CLOSETincreases
dramatically, since it has to mine and check the complete
set of frequent closed patterns. The runtime ofCFP-M in-
creases moderately even when the support threshold is low,
since the pruning techniques help confine the search in a
small subset of frequent closed patterns.

Again, the similar trends are observed in experiments on
other datasets. We omit the details here.

Scaling-up Test

We also test the scalability of condensed FP-bases as
well as related algorithms.

First, we test the scalability of compression ratio of con-
densed FP-bases. (If the curve is flatter, we say that the
curve is more scalable, since the compression ratio is not
sensible to the database size.) In Figure 8, we show the
results on datasetConnect-4. We fix the support threshold
as90% of the number of transactions in the tests, and vary
the number of transactions from10% to 100% of that in the
original dataset. In the figure, we compare the compres-
sion ratio of an FP-base using frequent closed patterns and
Bm. Interestingly, as the number of transactions increases,
the compression ratio also increases. The reason is that,
when there are more transactions, there are more patterns
with various support. Thus, the compression effect is not as
good as that in the databases with small numbers of trans-
actions. Fortunately, both the number of frequent closed
patterns and that of patterns inBm do not increase dramati-
cally. Moreover,Bm is more scalable, since its compression
ratio increases in a more moderate way.

Second, we use the synthetic datasetT10I4D100 −
1000k to show the scalability of AlgorithmCFP-M. To
make a comparison to the traditional frequent pattern min-
ing, we include the runtime of CLOSET in the figure.
CLOSET computes the set of frequent closed patterns. The
results are shown in Figure 9. In this test, the error bound
for CFP-M is set to0.1%. From the figure, we can see
that both methods are scalable with respect to the number
of transactions in the datasets. Their runtime are also close.
CLOSET is faster when the database is large, since it does
not need to check against the error bound.CFP-M has a
scalability comparable to CLOSET and, at the same time,
achieves non-trivial compression.

In summary, from the experimental results, we can draw
the following conclusions. First, condensed FP-bases can
achieve non-trivial compression for frequent patterns.Bm

often performs considerably better thanBd, and thus is
more preferable. Second, the larger the error bound, the
more we compress. Error bound can help to make the con-
densed FP-bases more compact. Third,CFP-M is an effi-

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
om

pr
es

si
on

 ra
tio

 (%
)

Error bound (percentage of total # of transactions)

B_d
B_m

Figure 2. The com-
pression ratio of Bd and
Bm on dataset Mushroom
(min sup = 14%).

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
om

pr
es

si
on

 ra
tio

 (%
)

Error bound (percentage of total # of transactions)

B_d
B_m

Figure 3. The compres-
sion ratio of Bd and Bm

on Connect-4(min sup =
93%).

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16

C
om

pr
es

si
on

 ra
tio

 (%
)

Support threshold (%)

Freq. closed pat.
Error bound=0.1%
Error bound=1.0%

Figure 4. The compres-
sion ratio ofBm w.r.t. support
threshold on datasetMush-
room.

0

5

10

15

20

25

30

35

40

45

50

86 88 90 92 94 96 98 100

C
om

pr
es

si
on

 ra
tio

 (%
)

Support threshold (%)

Freq. closed pat
Error bound=0.3%
Error bound=1.0%

Figure 5. The compres-
sion ratio ofBm w.r.t. support
threshold on datasetConnect-
4.

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4

ru
nt

im
e

(s
ec

on
ds

)

Error bound (percentage of total # of transactions)

CFP-D
CFP-CLOSET

CFP-M

Figure 6. The run-
time w.r.t. error bound
on dataset Connect-4
(min sup = 93%).

0

5

10

15

20

25

0 5 10 15 20

ru
nt

im
e

(s
ec

on
ds

)

Support threshold (%)

CFP-CLOSET
CFP-M

Figure 7. The runtime w.r.t.
support threshold on dataset
Mushroom(err b = 0.1%).

0

2

4

6

8

10

12

14

0 20 40 60 80 100

C
om

pr
es

si
on

 ra
tio

 (%
)

Size of dataset (percentage of total # of transactions)

freq. closed pat.
B_m

Figure 8. The scal-
ability of compres-
sion ratio on Connect-4
(min sup = 90%).

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

R
un

tim
e

(s
ec

on
ds

)

Number of transactions (100k)

CLOSET
CFP-M

Figure 9. The scalabil-
ity of runtime on dataset
T10I4D100− 1000k.

cient and scalable algorithm for computing condensed FP-
baseBm. It is comparable to CLOSET in terms of runtime
and scalability, andBm achieves better compression effect
than the set of all frequent closed patterns. The optimiza-
tion and pruning techniques help makeCFP-Mefficient and
scalable. Overall,Bm andCFP-Mare the clear winners for
frequent pattern base compression and corresponding com-
putation.

6 Conclusions

In this paper, we introduced and considered the problem
of mining a condensed frequent pattern base. The notion of
condensed FP-base is introduced to significantly reduce the
set of patterns that need to be mined, stored, and analyzed,
while providing guaranteed error bound for frequencies of
patterns not in the bases. We considered two types of con-
densed FP-bases: the downward condensed FP-baseBd and
the max-pattern based condensed FP-baseBm. Interesting
algorithms and several novel optimization techniques are
developed to mine condensed FP-bases. Experimental re-
sults show that we can achieve substantial compression ratio
of condensation using the condensed FP-bases, and our al-
gorithms are efficient and scalable. We also discussed some
interesting extensions of our methods. As future work, it
would be interesting to explore other effective condensed
FP-bases and efficient mining methods.

Acknowledgements. The work was supported in part by
U.S. NSF IIS-02-09199, Microsoft Research, University of
Illinois, and NSERC and NCE/IRIS of Canada. The authors
would like to thank the anonymous reviewers’ comments
which help improve the quality of the paper.

References
[1] R.C. Agarwal, C.C. Aggarwal, V. V. V. Prasad. Depth first

generation of long patterns. InKDD’00.
[2] R. Agrawal and R. Srikant. Fast algorithms for mining asso-

ciation rules. InVLDB’94.
[3] R. J. Bayardo. Efficiently mining long patterns from

databases. InSIGMOD’98.
[4] J.-F. Boulicaut, A. Bykowski, C. Rigotti. Approximation of

frequency queris by means of free-sets. InPKDD’00.
[5] D. Burdick, M. Calimlim, J. Gehrke. Mafia: A maximal

frequent itemset algorithm for transactional databases. In
ICDE’01.

[6] G. Dong and J. Li. Efficient mining of emerging patterns:
Discovering trends and differences. InProc. KDD’99.

[7] K. Gouda and M.J. Zaki. Efficiently mining maximal frequent
itemsets. InICDM’01.

[8] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. InSIGMOD’00.

[9] L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang. Optimiza-
tion of constrained frequent set queries with 2-variable con-
straints. InSIGMOD’99.

[10] H. Mannila and H. Toivonen. Multiple uses of frequent sets
and condensed representations. InKDD’96.

[11] R. Ng, L. V. S. Lakshmanan, J. Han, A. Pang. Exploratory
mining and pruning optimizations of constrained associations
rules. InSIGMOD’98.

[12] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal. Discovering
frequent closed itemsets for association rules. InICDT’99.

[13] J. Pei, J. Han, L. V. S. Lakshmanan. Mining frequent itemsets
with convertible constraints. InICDE’01.

[14] J. Pei, J. Han, R. Mao. CLOSET: An efficient algorithm for
mining frequent closed itemsets. InDMKD’00.

[15] M. Zaki. Generating non-redundant association rules. In
KDD’00.

