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Abstract may likely have different constraints.

Although it seems to be inherent that a large database

Frequent pattern mining has been studied extensively.may contain numerous frequent patterns, it is easy to ob-
However, the effectiveness and efficiency of this mining isserve a simple fact in practiceMost applications will not
often limited, since the number of frequent patterns gener-needprecise support information of frequent patterns, a
ated is often too large. In many applications it is sufficient good approximation on support count could be more than
to generate and examine only frequent patterns with supportadequate. Here, by “good approximatiof) we mean that
frequency in close-enough approximation instead of in full the frequency of every frequent pattern can be estimated
precision. Such a compact but close-enough frequent pat-With aguaranteed maximal error boun&or example, for a
tern base is called aondensed frequent patterns-base frequent patterqdiaper, bee}, instead of giving the exact

In this paper, we propose and examine several alterna- SUPPOrt count (e.910000), arange, .910000 £ 1%, may
tives at the design, representation, and implementation of°€ 900d enough; the range is a user-specéfeor bound
such condensed frequent pattern-bases. A few algorithms “Why is a condensed frequent pattern base acceptable
for computing such pattern-bases are proposed. Their ef-and often more preferablé? First, when mining large
fectiveness at pattern compression and their efficient com-database, a small deviation often has a very minor effect
putation methods are investigated. A systematic perfor-on analysis For an analyst, the exact informatiodiaper
mance study is conducted on different kinds of databasesand beer have been bought together050 times out of the
which demonstrates the effectiveness and efficiency of our0 million transaction$and an approximationdiaper and
approach at handling frequent pattern mining in large beer have been bought togethigr, 050 + 50 times may
databases. not have any essential difference. Analysis often has to deal

with approximation sooner or later, by truncation or round-
ing. What an analyst is really concerned is that a specified
1 Introduction error bound is guaranteed.
Secondgcondensing frequent pattern base leads to more

It has been well recognized that frequent pattern min- effective frequent pattern miningBy computing a con-
ing plays an essential role in many important data min- densed pattern base, the number of patterns can be reduced
ing tasks (e.g., mining association [2]). However, it has dramatically, but the general information about frequent
also been widely recognized that frequent pattern mining patterns still retain. A much smaller base of patterns cer-
often produces a huge number of patterns [15], which re-tainly helps users comprehend the mining results.
duces not only the efficiency but also the effectiveness of  Third, computing a condensed frequent pattern base may
mining, since it is unrealistic to store and comprehend so lead to more efficient frequent pattern minidgcondensed
many patterns. Recently, efforts have been devoted to adfrequent pattern base could be much smaller than the com-
dress this problem. In general, interesting proposals can beplete frequent pattern base. Thus, one may need to compute
classified into two categories. First, concise representationsand access a much smaller pattern base, which leads to bet-
of frequent patterns have been explored, suckrexpent ter efficiency.

closed pattern412, 15, 14], that can be used to remove  |n symmary, mining a condensed frequent pattern base
sub-patterns which have the same support as some of theif,qy make frequent pattern mining more realistic in real-
super-patterns. Studies like [15] have shown that, by doing|ife applications. In this paper, we introduce the concept
so, the total number of patterns and rules can be reducegy condensed frequent pattern-base with guaranteed max-
substantially, especially in dense data sets. Second, conimg| error boundand study theefficient computation of
straints can be used to capture users’ focus, and effectivey;,ch a condensed pattern-baseth the following contri-
strategies have_bgen developed to push various constraintgtions. First, we introduce the concepndensed frequent
deep into the mining process [11, 9, 13]. pattern-baseand devise systematic representations of such

Even though these approaches are useful, they may nofrequent pattern-bases. We show that such representations
be powerful enough in many cases. The compression byachieve satisfactory approximation with a guaranteed max-
the closed-pattern approach may not be so effective sincamal error bound on the support. Second, we develop ef-
there often exist slightly different counts between super- ficient algorithms for computing condensed pattern bases
and sub- patterns. Constraint-based mining, though usefulfrom transaction databases directly. Our algorithms facili-
can hardly be used for pre-computation since different users
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tate the relaxation of counting requirement and prune many ‘ :
patterns in the mining. Third, we present a systematic per- as b5 o4 d4
formance study to verify the effectiveness and efficiency of

condensed frequent pattern bases. Our results show that
computing condensed frequent pattern base is promising. ac2 ad2 adl bed2
Previously, the ideas of approximating frequent patterns
have been probed in some related studies. For example, [10]
shows that approximative association rules are interesting

ab4 a2 a2 bc3  bd3  cd3

abcd:1
(a) Lattice of frequent patterns

and useful. In [4], the notion of free-sets is proposed and null null
can lead to an error-bound approximation of frequencies. T T
However, none of the previous studies systematically ex- as b5 c4 a4 a b o4 a4
plores the problem of designing and mining condensed fre- & x%ad Be ﬁbd & v w e M
guent pattern-based with guaranteed maximal error bound.

The remaining of this paper is organized as follows. The LR mR 2
problem of computing a condensed frequent pattern base abed:1 abed: 1
is introduced in Section 2. A level-by-level frequent pat- (b) Condensed FP-base Bd (c) Condensed FP-base Bm

tern base construction method is presented in Section 3.
In Section 4, we develop an effective and efficient method
for frequent pattern-base construction using max-patterns at
various layers. Section 5 presents a comprehensive perfor- . , o
mance study to demonstrate the effectiveness and efficiencyf he functionf is called a(support) approximation func-
of our approach. Section 6 concludes the study. tion, and the seB8 acondensed FP-baser.t. fz.! "

Figure 1. Lattice of frequent patterns for Example 1.

2 Problem Definition Example 1 Consider the transaction database shown in Ta-
i . . ble 1. Let the support threshold bein_sup = 1 and the
We first review some standard terminology for frequent orror pound bek — 2. The lattice of totallyl5 frequent

pattern mining. Letl = {i,...,4,} be a set of literals, atterns is shown in Figure 1(a).
calleditems An itemset(or patterr) X, denoted asX = P 9 @)

i, -+ 15 (i.e., by omitting set brackets), is a subset of items
in 1. An itemset withl items is called a-itemset For two

[ Transaction-id] ltemset]

patternsX andY such thatX C Y, Y is called asuper- %8 “b
patternof X, and X asub-patterrof Y. 30 cfbc

A transactionT = (tid, X) is a tuple whereid is a 70 abed
transaction-idand X is an itemset. A transactioll = 50 cd
(tid, X) is said tocontainitemsetY if Y C X. A trans- 60 abd
action databasd' DB is a set of transactions. Tiseipport 70 bed

of an itemsetX in T DB, denoted asup(X), is the num-
ber of transactions i' DB containingX, i.e., sup(X) =
[{(tid,Y)|((tid,Y) € TDB) A (X C Y)}].

Given a transaction databds® B and asupport thresh-
old min_sup, an itemsetX is called afrequent itemsebr
a frequent patternf sup(X) > min_sup. The problem
of frequent pattern mining is to find the complete set of
frequent patterns frorfi' D B w.r.t. a user-specified support . ; / /
thresholdnin_sup. The set of all frequent patterns is called 0 if t)fgere ex;s(ts no>f(Xe Bst.t.X cX
afrequent pattern bas®r FP-basein short. B [SUP(X)’ S“g( )] )'( eh X c X and

It is often expensive to find the complete set of frequent f8(X) = [sup(Xo) =2, sup(Xo)], where(X, C X an

: : sup(Xo) = min(sup(X")) for X" c X

patterns, since an FP-base may contain a huge number of andX” € By), otherwise
frequent patterns. In this paper, we propose to overcome '
the difficulty caused by “huge amount of frequent patterns” )
as follows: we compute a smaller set of frequent patterns, For example,fi, (abede) = 0 for the infrequent pat-
i.e., a “condensed FP-base”, and then use it to approximatd®rn abcde, since there is naX’ € By s.t.abede C X'

the supports of arbitrary frequent patterns. fB.(ac) = [4=2,4] = [2,4], sincecis a sub-pattern afcin
By with the smallest support count (¢f. Here, we used the

Problem statement. Given a transaction database, a sup- well known “Apriori” property thatsupp(X) > supp(Y)

Table 1. A transaction database with seven transactions.

ThesetB; = {a:5,b:5,c:4,d:4,acd: 1,abed : 1}
is acondensed FP-basePatterns in3, are those labelled
with supports in Figure 1(b). For each pattéfnthe func-
tion f, is defined as follows:

port threshold, and a user-specifedor boundk, theprob- if X C Y. One can verify thatfs, can approximate the
lem of computing a condensed FP-bas¢o find a subset  support count of each frequent pattern as required by the
of frequent pattern$ and a functionfs such that the fol-  gefinition given above. For exampleyp(ab) is approxi-
lowing holds for each patter: mated by[3, 5] andsup(abc) is by [2, 4].

0 if X isinfrequent 1instead of an absolute error boukygh relative, percentage-based error
I8(X) = [supiy, supyp] S-t. (supp < sup(X) < supyp) boundk% can also be used to compute a condensed FP-base. In this case,

and (sup.p, — supp) <k if X is frequent % < k% should be satisfied for frequent patterns.



Moreover,3,,, = {c : 4,d : 4,ab : 4,abed : 1} is in Figure 1(b)), where the approximation functigp, is
another condensed FP-base, as plotted in Figure 1(c). Thelefined in Example 1.
corresponding approximation functigfg,, is defined (for For each patterX, let X .ub denotemin{sup(X')| X’ €
each patterd) as follows: B,andX’ C X}, i.e., X.ub is the minimum of supports of

0 ifth ists no%’ € B SLX C X' all sub-patterns ok currently inj3,.
if there exists no\{’ € B,, s.t. X C N B ; ! )
[sup(X), sup(X)] if X € Bo Step 1.We initialize B; = () and mine length-and length

2 frequent patterns. Since lengtHrequent patterns are the

f8,.(X) = [SUP(é(O)’ 5“1’({0) +2] where (Yo 5 X “most frequent-end bordérsf frequent patterns and none
anc SUP(XOQ,_ max{sup(X") | of their sub-patterns is in the base, we insert all of them (i.e.
X" > X,X" €By}), otherwise a, b, ¢, andd) into B,

For each length-frequent pattern, z.ub = sup(x).

Condensed FP-bases and approximation functions arz%tep 2. For the next level, i.e., length{requent patterns,

not unique. A superset of a condensed FP-base is also a ba h b — mi b b) f h lenath2 f
w.rt. the identical approximation function. A condensed W& Naveéry.ub = min(z.ub, y.ub) for each lengtte fre-
FP-base isninimal (w.r.t. an approximation functioffi) if it quent patterrry. _ . _

does not contain a proper subset which is also a condensed We do two types of insertions int8;.

FP-base w.r.tf. Interestingly, even minimal condensed FP- (i) A length-2 frequent patternX is added intoB, if
bases are not unique. For Example 1, b8thand3,,, are X.ub — sup(X) is over the error bound (i.e., if its sup-
minimalcondensed FP-bases. port cannot be approximated by its sub-patterns in the base

Among possible approximation bases, we prefer thoseBa)- In this example, since all lengthfrequent patterns can
requiring as little space as possible. Such condensed FPbe approximated properly by their lengtfsub-patterns, no
bases offer significant compression effect, which can belength2 frequent pattern is inserted inf.
measured bgompression ratia, defined as (i) If a length-2 frequent pattern has no frequent length-

3 super-pattern, i.e., it is a max-pattern, then it is inserted
__ #of patterns in the condensed FP-base 1 into B4. Max-patterns are needed By since they are used
- total # of frequent patterns (1) to determine whether a pattern is frequent. In this example,
no such lengtt2 frequent pattern exists.
Clearly, the smaller the compression ratio, the better the Step 3. For the length3 level, sinceancd.ub — sup(acd) =
compression effect. We observe from Example 1 thatcon-4 — 1 > 2, patternacd is inserted intoB,;. Here,
densed FP-bases can produce considerable space savingsc.ub = min(ab.ub, ac.ub, be.ub). After the insertion, we
even with a small error bound. For exampl;, achieves setabc.ub = sup(abc) = 1. We then mine length-fre-
a compression ratio of0%, whereas,,, achieves26.7%. quent patterns and see that there is no lesgtiax-pattern.

B, achieves better compression than Step 4.The length4 frequent patterabed is a max-pattern

Previous research also considered computing reducedsince there is no length-frequent pattern), and it is in-
sets of frequent patterns, including reduction based on fre-serted inta,,.

quent closed itemsets [12] and containment based reduction ¢ the end. the bass, contains6 patterns:a, b, ¢, d

[3, 6]. AnitemsetX is called eclosed patterif there exists  ,.; "andabed. Since the search is downward from length-

no proper superset’ of X such thatup(X) = sup(X’), 1 patterns, we call the resulting base adcavnward con-
while X is called amax-patternif there exists no super-  4ansed FP-base .

set X’ of X such thatX’ is also frequent. Interestingly, it

can be shown that the complete set of frequent closed pat- Let neralize the level-by-level condensed EP-b
terns is a minimal condensed FP-base with error baynd et us generaiize the 'evel-by-Ievel condense -base

while the complete set of max-patterns is a minimal con- construction method. We first define the approximation
densed FP-base with error bou(dDB| — min_sup), functiond as follows.

wheremin_sup is the support threshold. However, none of e )

these considers approximating supports of frequent patternd€finition 1 Given a condensed FP-baSgean error bound

with a user-specified error bound as we do here. k and a patterc.
How can we construct condensed FP-bases effectively ) )
and efficiently?This is the topic of the following sections. 0 if ';h;—:-(r/eD@g(sts noX’ € B
s.t.
3 Constructing a Condensed FP-Base Level- I(X) = [sup(X), sup(X)] if X € B
by-level ) [m—Ek,m] if X ¢ B, wherem =
min{sup(X’) | X' € B,
We now consider an approach that constructs a con- X' c X}
densed FP-base by examining all frequent patterns level-by-
level: A frequent pattern is added into the condensed FP- u
base only if it cannot be approximated by its sub-patterns in
the base. The method is illustrated next. The following algorithm computes a condensed FP-base

with respect to approximation functiah
Example 2 A condensed FP-basB, for the transaction
database/'D B in Table 1, for the support threshold of  Algorithm 1 (CFP-D a Level-by-level downward search
and the error bound &fis constructed as follows (as shown method)



Input: transaction databasED B, support thresholdnin_sup, Example 3 Given the transaction databagé B in Table

and error bound; 1, support threshold df and error bound of, a condensed
Output: a condensed FP-bagew.r.t. v, FP-bases,,, can be constructed as follows.
Method: Since the support thresholdisand the total number of

1. 1etB = 0 transactions in the databaseriswe consider three ranges
R _ _ of supports:[1, 3], [4, 6], and[7, 7]. We mine max-patterns
2. find lengthd frequent patterns and insert them irtto for w.r.t. support threshold, 4, and7, respectively. The only
each lengtht frequent pattern,, let X.ub = sup(X); max-pattern w.r.t. support thresholdis abcd, the max-
3. leti =2; patterns w.r.t. support thresholdare ab, ¢ and d, while
4. generate the sefF; of length4 frequent patterns; for each  there is no max-pattern w.r.t. support threshdld These
length4 frequent pattertk, let X.ub = min(X'.ub), where four patterns form a condensed FP-b&ge

X' ranges over lengté — 1) sub-patterns of\’; The bases,, is shown in Figure 1(c). The approxima-
[* the calculation ofX.ub can be done as a byproduct of  tion function isfz,,, as defined in Example 1. In essence,
candidate-generation */ _ _ for each given patter® we find the super-patterri of X

5. if (X.ub — sup(X)) > k, then insertX into B and set  in 3,, having the largest support, and use the range of the
X.ub = sup(X); support forY” as the estimate of the supportst "

6. for each lengthi — 1) frequent patternX s.t. X has no
super-pattern icF;, insertX into ; We now generalize the ideas by providing the definition
/* rationale: X is a max-pattern */ of a condensed FP-base.

7. if F; # 0 thenleti = i + 1 and goto Step 4;

8. returnB. n Definition 2 Given a transaction databa%&) B, support

_ ~ thresholdmin_sup and error bound, let the number of
One advantage of the method shown in Example 2 islevelsbe
that it is intuitive and can be easily integrated into the

Apriori algorithm. The correctness and effectiveness of the |TDB| + 1 — min_sup

algorithm are obvious. Limited by space, we omit the proof n-level = | kE+1 J
here. ]
What kind of patterns are included fhcomputed by Al D€fine . o
gorithm 1?A frequent patterrX is called aseed patterrif nin-supy = min-sup
for each proper sub-patte®y’ C X, sup(X’) > sup(X). min_sups = min_sup + k + 1
Interestingly, it is easy to show thatery pattern irt3 com-
puted by Algorithm 1 is either a seed pattern or a max-
pattern. min_sup; = min_sup+(i—1)(k+1) for (1 < i < n_level)
4 Constructing a Condensed FP-base Using Then,B — [J<"*"*! A, is called arM-base w.r.t. the
Max-patterns approximation functiorf defined below. Herg\; is the set

While Algorithm 1 is intuitive and correct, it has to check ©f Max-patterns w.r.t. support threshoidn_sup;.
every frequent pattern. When there are many frequent pat- . ,
terns, the mining cost is non-triviaCan we avoid checking The nameM-baseis used because the base is based on
every frequent pattern when constructing a condensed Fp-max-patterns.
base?In this section we will answer this question positively . .
by providing a type of condensed FP-base and efficient min-Définition 3 Given an error bound, an M-baseB, and a

ing techniques to find such a base. patternX, let
Intuitively, we are going to construct a condensed FP- ! , ,
base consisting of maximal frequent patterns for a series 0 if ther,e exists noX" ¢ 5
of support thresholds. More specifically, given a sup- SLX' 20X
port thresholdmin_sup and error bound:, we divide the () = [sup(X), sup(X)] if X € B
set of frequent patterns into a number of disjoint sub- [m, m + k| if X ¢ B, wherem =
sets: (1) the set of patterns with support in the range max{sup(X') | X" € B,
[min_sup, min_sup+k], (2) those with support in the range X' > X}
(min_sup + k + 1, min_sup + 2k + 1], etc. Thei-th subset
contains those patterns with support in the range It can be shown that each M-base is not only a proper

condensed FP-base w.r.t. functiobut also a minimal one.
Limited by space, we omit the formal result here.
The remaining problem iow to find the max-patterns
Given a frequent pattern, we can approximate its support€fficiently in the condensed FP-balg,.
with maximal error ofk, by determining which subset the There are many methods for mining max-patterns, such
pattern belongs to. To determine which subset a pattern beas MaxMiner [3], Depth-first Search [1], MAFIA [5], and
longs to, we only need to record the max-patterns at variousGenMax[7]. A ndve method to computé,, is to call a
layers w.r.t. the lower bounds of supports of the ranges. Themax-pattern mining algorithm multiple times, once for each
idea is illustrated in the following example. lower bound of the ranges as a support threshold.

[min_sup + (i — 1)(k + 1), min_sup + ik + ¢ — 1] where
. _ |TDB|+1—min_su
(1 <i< | | k+1ml'n s?p).



How do we mine the patterns of M-bases more efficiently the b-projected database, which containsd, d, andcd.
than the n@ve method?Roughly speaking, we will pro- The local frequent items if"DB, are ¢ andd, and F-
pose an algorithm to mine the database only once, for alllist, = ¢ — d. The max-patterns containirigbut nota
the max-patterns w.r.t. the series of support thresholds. Thecan be divided into three subsets: (1) patteitself, if it is
algorithm proceeds in a depth-first manner. Moreover, our a max-pattern; (2) those containibg and (3) patterid, if

algorithm also uses additional pruning techniques. We will
demonstrate the spirit of our algorithm with the following
example.

Example 4 Consider the mining of max-patterns w.r.t. sup-
port thresholds of and4 in the M-bases,,, for the transac-
tion databas& D B of Table 1.

By scanning the transaction databd¥e B once, all fre-
qguent items, namely : 5, b : 5, ¢ : 4, andd : 4, are

it is @ max-pattern. Let us mine them one by one.

Sinceb C ab andab is a max-patternp is not a max-
pattern;

Since sup(bc) = suprpp,(c) = 2, we haved >
sup(be) > sup(bed) > sup(abed). It follows that there
are no max-pattern containirbg but nota.

Similarly, we can check that is not a max-pattern.
Thus, there are no max-patterns contairtifgit nota.
3. To mine max-patterns containingbut nota nor b, we

found. These items are sorted in support descending ordergan form thec-projected database and mine it recursively.

producing the lisE-list=a — b — ¢ — d.

F-list can be used to divide all max-patterns into four
disjoint subsets: (1) the set of max-patterns containing item
a; (2) those containing itefbut noa; (3) those containing
item ¢ but noa nor b; and (4) those containing iter) i.e.,
the patternd itself, if it is a max-pattern. We mine these
four subsets of max-patterns one by one.

1. To find max-patterns containing item we form the
a-projected databasé& DB, by collecting all transactions
containing itenu, namelyb, be, bed, andbd.

Itemsb, ¢, andd are local frequent items i'DB,. A
list F-list, = b — ¢ — d is formed by sorting these local

frequent items in local support descending order. Based on

F-list,, all max-patterns containing item can be further
divided into four disjoint subsets: (1) pattetritself, if it is

a max-pattern; (2) those containing; (3) those containing
item ac but nob; and (4) patterrud if it is a max-pattern.
We mine them one by one recursively.

1(a). The support ofb in TDB, is 4, denoted as
suprpp,(b) = 4. Sincesup(ab) = suprpp,(b) = 4,
patterna is not a max-pattern w.r.t. support threshald
1(b). To find max-patterns containingh, we form theab-
projected databas&'D B,;, which contains:, cd, andd.
Itemsa andb are omitted inl"D B, since they appear in
every transaction in theb-projected database. There is no
item having supportt or over inTDB,,. Thus,ab is a
max-pattern w.r.t. support thresholdthe lower bound of
the second range of supports).

Itemsc andd are frequent inl’DB,;,. We recursively

It can be verified that is the only such max-pattern.
4. similarly, it can be verified that is a max-pattern.

Thus the complete set of max-patterns for condensed FP-
baseB,, = {ab: 4,abed : 1,c: 4,d : 4}. n

As shown in the example, the general framework is the
depth-first search. A list of frequent items in support de-
scending order, calleB-list, is used to divide the data as
well as the mining task. In general, givedist= z; - - - x,,,
the set of max-patterns can be divided intaisjoint sub-
sets: the-th subset contains max-pattern having iteput
none ofz; (0 < j < i).

To mine max-patterns containing’ Xy X,
(tems in X are listed according t&-list), an X -projected
database TDByx is formed: every transaction
(tid,Y) € TDB such thatX C Y is projected taI' DBx
as(tid,Y"’), only items afterr;  in theF-listare inY”’. In
Example 4 F-list= a — b — ¢ — d. Thus, theac-projected
databasel’ D B, contains only one transactieh(see Step
2). Here, the transaction-id is omitted.

The pruning techniques used in the mining are verified
as follows.

First, how can we determine whether a frequent pattern
X is a local max-patternWe have the following lemma,
while the proof is skipped due to lack of space.

Lemma 4.1 Let X be a frequent pattern angy = max{i |
sup(X) > min_sup;}. Then, X is a max-pattern w.r.t.

mine max-patterns by forming projected databases. It canin-sup;, ifand only if X is not a sub-pattern of any max-

be checked thatbed is a max-pattern w.r.t. support thresh-
old 1. Thus, the max-patterns containiagareab : 4 itself
andabed : 1.
1(c). To find max-patterns containing: but notb, we form
ac-projected databas€DB,., which containsd. Here,
items a, b and c are omitted sinceixc appears in every
transaction and occurs before: in F-list. The only fre-
qguent item inTDB,. is d. However,ac C abcd and
4 > sup(ac) > sup(abed) = 1. That means there exists no
max-pattern containingc but nob.
1(d). Since4 > sup(ad) > sup(abed) = 1, ad is not a
max-pattern.

Therefore, the max-patterns containingare ab and
abcd.

2. To find all max-patterns containirigbut nota, we form

pattern w.rt.min_sup;, andsuprpp, (x) < min_sup;
for each itemr in TDBy.

In Step 1.b of Example 4, patterd is determined as a
max-pattern w.r.t. support threshaldaccording to Lemma
4.1.

Second,can we prune some unpromising patterns as
early as possible®e have the following lemma.

Lemma 4.2 Let X be a frequent pattern ané-listy =
y1—- .. —Ym be theF-listof local frequent items i D Bx .
For an itemy; in F-listy, if there exists a max-pattetriand
m) C Z and

min_sup; < sup(Z) < suprppy (yi) < min_sup;+1



then forY C y; -y, X UY cannot be a max-pattern, The implementation of Algorithm 2 involves projected

and thus(X Uy;)-, ..., (X Uy,,)-projected databases can databases and containment tests of frequent patterns. Ac-
be pruned. cordingly, we propose the following two implementation
Proof. We only need to notice the following two facts: (1) Optimizations.

for X andy; as stated in the lemm& Uy, ---y,, C Zis First, we usd=P-tree [8] to compress database and pro-

not a max-pattern, which follows Lemma 4.1, and (2) from jected databases. AfP-tree is a prefix tree storing trans-
X andy; - - - y.,, We cannot derive any max-pattern which actions. Only frequent items in transactions are stored.
is a super-pattern of, sinceX Uy; - - - y,, € Z. Thus, we From FP-trees, projected databases can be derived effi-
have the lemma. ] ciently.

Second, one critical implementation issue of Algorithm

In Step 2 of Example 4, we do not need to form and 2is that we need to identify max-patterns containing a given
mine be-projected database since (1) the frequent items in pattern and staying in the same support range. In our imple-

b-projected database areandd with support less thad; mentation, we index max-patterns of the condensed FP-base
and (2)bed is not a max-pattern w.r.t. support threshald by support levei (i.e., the pattern is w.r.tnin_sup;) and
Thus, Lemma 4.2 is applied here. length. Moreover, to facilitate the search, we organize all

Based on the above analysis, we summarize the a|go__max—patterns using a prefix tree, while all nodes with same
rithm for constructing an M-base as follows. item label are linked together.

. . 5 Empirical Evaluation
Algorithm 2 (CFP-M a method for mining max-patterns P

at various layers) To evaluate the effectiveness and efficiency of condensed
Input: transaction databasED B, support thresholdnin_sup, FP-bases, we CondUCted a comprehensive set of experi-
and error bound%: ments. In this section, we report a summary of our results.
All experiments are conducted on a PC with Pentium IlI-
Output: an M-baseB w.r.t. ¢; 750 CPU and 188Mb main memory. All the programs are
Method: Let I be the set of all items; cathine(T DB, 0, ). coded using Microsoft Visual C++6.0. We use both syn-

_ ) thetic datasets and real datasets in the experiments. The
Function mine(DBx, X, Ix) results are consistent. Due to lack of space, we only report
/I DBx: a projected databas&: a frequent pattern[x: a results on three datasets as follows.

set of items to be processed To report results on effectiveness and efficiency of FP-
bases, we use two dense datagdisshroomand Connect-
4, from the UC-Irvine Machine Learning Database Repos-
2. let F. be the set of items appearing in every transaction in itory. A dataset is dense if it contains many long patterns
DBx,i.e,F. = {z | x € Ix,sup(z) = |DBx|}; let even though the support threshold is relatively high. The
Fr = Fx - Fe; Mushroomdataset containgl 24 transactions, while the av-
3. leti = max{j | |DBx| > min_sup;}; erage length of transaction8. TheConnect-4lataset has
if min_sup: > sup(y) for each itemy € F,, andX U F. 67557 transactions and each transaction fi&gems. Both

is not contained in any max-pattern w.r.t. support threshold of them are typical dense datasets. Mining frequent patterns

1. scanD Bx once to find all frequent items withify ;

min_sup;, then outputy U F.; from dense databases is very challenging.
Il X UF, is a max-pattern w.r.tnin_sup;. This step is based To test the scalability of FP-bases, we also use a syn-
on Lemma 4.1. thetic datase'10/4D100 — 1000k. This dataset is gen-

erated using the well-known IBM synthetic data generator
[2]. Itis a sparse dataset simulating the market basket data.
The number of transactions in this dataset is uprdillion.

In our experiments, we compare the following three al-
gorithms for mining condensed FP-bases.

4. let F-listx be the list of items inF,. in support descending
order;

for each itemz €F-listx (processed in the order) do

(a) if the pruning criteria of Lemma 4.2 is satisfied faf,

z (asy;), andF;. (asF-listx), then return; CFP-D: the level-by-level method for constructing con-
(b) otherwise, letDBx, C DB be the subset of transac- densed FP-bad#y, i.e., Algorithm 1.
tions containingr; CFP-CLOSET. we adapt the CLOSET algorithm [14] to
let Ix, C F, be the set of frequent items afterin CFP-CLOSETfor mlnlng condensed FP-bad, as fol-
Fyx: lows. CFP-CLOSET finds frequent closed patterns and
call mine(DBxa, Fo U {z}, Ixa); checks whether a frequent closed pattern i§jnaccording
’ ’ to Lemma 4.1. It outputs only frequent closed patterns.
5. return; CFP-M: it is Algorithm 2, which finds condensed FP-base

B,, with all pruning and optimization.
Analysis. The correctness of the algorithm follows the lemmas .
having shown before. In this algorithm, we do not check every Effect of Compression
frequent pattern. Instead, we only check frequent patterns with- ~ The compression effects of condensed FP-bases can
out a proper super-pattern having exact same support count. Furbe measured by compression ratio defined in Equation 1.
thermore, by using Lemma 4.2, we prune patterns approximately Please note that the smaller the compression ratio, the bet-

contained by other max-patterns. n ter the compression effect.



First, we fix the support threshold and test the compres-
sion ratio with respect to various error bounds. The results
on dataset$Mushroomand Connect-4are shown in Figure
2 and Figure 3, respectively.

bound is not very small.

We observe a similar trend on datab&iishroom Lim-
ited by space, we omit the details here. Moreover, since
CFP-D is dramatically slower tharCFP-CLOSETand

Here, the error bound is set as a percentage of the to-CFP-M, in the remainder of this subsection, our discussion
tal number of transactions in the dataset. If therela(®) focuses orCFP-CLOSETandCFP-M.

transactions in the dataset, then an error bound. b, In Figure 7, we compare the runtime 6FP-CLOSET
means that the absolute error bound.is and CFP-M with respect to support threshold. The error

It is clearly shown that condensed FP-baBg can bound is set t®.1% of the total number of transactions in
achieve much better compression ratio than For ex- the dataset. When the support threshold is high, the run-
ample, in datasé¥lushroom when the support threshold is time of both methods are close. However, when the support
set to14%, there are in total 03, 845 frequent patterns, and threshold is low, the runtime o£FP-CLOSETincreases
2,591 frequent closed patterns. As shown in Figurd3g, dramatically, since it has to mine and check the complete
is much smaller tha®,;. For both condensed FP-bases, the set of frequent closed patterns. The runtimeC&iP-M in-
larger the error bound, the better the compression ratio.  creases moderately even when the support threshold is low,

Note when error bound 8%, B,, is exactly the set of ~ since the pruning techniques help confine the search in a
frequent closed patterns. As can be seen, frequent closegmall subset of frequent closed patterns.
itemsets can achieve a good compression ratio. Condensed Again, the similar trends are observed in experiments on
FP-baseB,,, can carry the benefit and take the advantage of other datasets. We omit the details here.
error bound to do an even better compression.

Since condensed FP-baBg, performs better thai,, N
we now focus on the compression effect®)f, with respect We also test the.scalablllty of condensed FP-bases as
to support threshold. The results are shown in Figure 4 andwell as related algorithms.

5, respectively. First, we test the scalability of compression ratio of con-

To help verify the compression effect, we also plot the densed FP-bases. (If the curve is flatter, we say that the
compression ratio of condensed FP-base using frequengurve is more scalable, since the compression ratio is not
closed patterns. A condensed FP-base using frequent closesensible to the database size.) In Figure 8, we show the
patterns is with an error bourd As clearly shown in the  results on datas&onnect-4 We fix the support threshold
two figures, the larger the error bound, the better the com-as90% of the number of transactions in the tests, and vary
pression. The results also confirm that, even with somethe number of transactions frond% to 100% of that in the
small error bound, condensed FP-badg can be much  original dataset. In the figure, we compare the compres-
smaller than the condensed FP-base of frequent closed pasion ratio of an FP-base using frequent closed patterns and
terns. B,,. Interestingly, as the number of transactions increases,

The compression ratio also is sensitive to the distribu- 1€ compression ratio also increases. The reason is that,
tion of frequent patterns with respect to a specific support WNen there are more transactions, there are more patterns
threshold. Fortunately, the general trend is that the lower With various support. Thus, the compression effect s not as
the support threshold, the better the compression. Whergood as that in the databases with small numbers of trans-
the support threshold is low, there are many frequent pat_actlons. Fortunately, both the number of frequent closed
terns with similar support counts. Thus, one pattern in a Palterns and that of patternsi,, do not increase dramati-

condensed FP-base may be a “representative” of many patgal_ly._Moreover,_Bm is more scalable, since its compression
terns. ratio increases in a more moderate way.

Similar trends can be observed for the compression ef- . Second, we use the synthetic data#a/4D100 —
fect of By, but the compression ratio d8, is larger than 1000k to show the scalability of AlgorithmCFP-M. To
that of B,, in the same setting, i.e., the compression power make a comparison to the traditional frequent pattern min-

of B, is weaker. -

Scaling-up Test

ing, we include the runtime of CLOSET in the figure.

CLOSET computes the set of frequent closed patterns. The
results are shown in Figure 9. In this test, the error bound
for CFP-M is set t00.1%. From the figure, we can see

that both methods are scalable with respect to the number
of transactions in the datasets. Their runtime are also close.
CLOSET is faster when the database is large, since it does

Efficiency of computing condensed FP-bases

We compare the runtime @&@FP-D, CFP-CLOSETand
CFP-M with respect to various error bounds in Figure 6.
The support threshold is set38%. From the figure, we can
see that the trends are as follows. The runtime of tR- not need to check against the error bour@EP-M has a
D andCFP-CLOSETare insensitive to the error bound. The - e japility comparable to CLOSET and, at the same time,
two methods find the complete set of frequent patterns and, .hieves non-trivial compression
frequent closed patterns, respectively, which are their dom- '
inant costs. We note that the cost of computikig:b for In summary, from the experimental results, we can draw
patternX in CFP-D and that of the super-pattern checking the following conclusions. First, condensed FP-bases can
in CFP-CLOSETare very minor comparing to the expen- achieve non-trivial compression for frequent patterfs,
sive pattern mining in these two algorithms. often performs considerably better tha, and thus is

CFP-D fully utilize the error bound to prune the search more preferable. Second, the larger the error bound, the
space. The larger the bound, the faster the execution. Thusmore we compress. Error bound can help to make the con-
it is faster than the other two algorithms when the error densed FP-bases more compact. ThE&P-M is an effi-
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