H-Mine: Hyper-Structure Mining of Frequent Patternsin L arge Databases

Jian Pei'*, Jiawei Han*, Hongjun Lu*, Shojiro Nishio®, Shiwei Tang', Dongging Yang'
T Peking University, Beijing, China (pei @db.pku.edu.cn, {tsw, dgyang} @pku.edu.cn)
* Simon Fraser University, B.C., Canada ({peijian, han} @cs.sfu.ca)

* Hong Kong University of Science and Technology, Hong Kong (luhj @cs.ust.hk)

§ Osaka University, Osaka, Japan (nishio@ise.eng.osaka-u.ac.jp)

Abstract

Methods for efficient mining of frequent patterns have
been studied extensively by many researchers. However,
the previously proposed methods still encounter some per-
formance bottlenecks when mining databases with different
data characteristics, such as dense vs. sparse, long vs. short
patterns, memory-based vs. disk-based, etc.

In this study, we propose a simple and novel hyper-
linked data structure, H-struct, and a new mining algo-
rithm, H-mine, which takes advantage of this data struc-
ture and dynamically adjusts links in the mining process.
A distinct feature of this method is that it has very limited
and precisely predictable space overhead and runs really
fast in memory-based setting. Moreover, it can be scaled up
to very large databases by database partitioning, and when
the data set becomes dense, (conditional) FP-trees can be
constructed dynamically as part of the mining process. Our
study shows that H-mine has high performance in various
kinds of data, outperforms the previously developed algo-
rithms in different settings, and is highly scalable in mining
large databases. This study also proposes a new data min-
ing methodology, space-preserving mining, which may have
strong impact in the future development of efficient and scal-
able data mining methods.

1 Introduction

As an important data mining problem, frequent pattern
mining plays an essential role in many data mining tasks,
such as mining associations [3, 8], sequential patterns [15,
12], max-patterns and frequent closed patterns [4, 11, 17],
classification [7, 16], and clustering [2].

There have been many algorithms developed for fast
mining of frequent patterns, which can be classified into
two categories. The first category, candidate generation-
and-test approach, such as Apriori [3] as well as many
subsequent studies, are directly based on an anti-monotone
Apriori property [3]: if a pattern with £ items is not fre-
quent, any of its super-pattern with (£ + 1) or more items
can never be frequent. A candidate-generation-and-test ap-
proach iteratively generates the set of candidate patterns of
length (k£ + 1) from the set of frequent patterns of length
k (k > 1), and check their corresponding occurrence fre-

quencies in the database.

The Apriori algorithm achieves good reduction on the
size of candidate sets. However, when there exist a large
number of frequent patterns and/or long patterns, candidate-
generation-and-test methods may still suffer from generat-
ing huge numbers of candidates and taking many scans of
large databases for frequency checking.

Recently, another category of methods, pattern-growth
methods, such as FP-growth [6] and TreeProjection [1],
have been proposed. A pattern-growth method uses the
Apriori property. However, instead of generating candidate
sets, it recursively partitions the database into sub-databases
according to the frequent patterns found and searches for lo-
cal frequent patterns to assemble longer global ones.

Nevertheless, these proposed approaches may still en-
counter some difficulties in different cases.

First, huge space is required to serve the mining. An
Apriori-like algorithm generates a huge number of candi-
dates for long or dense patterns. To find a frequent pattern

.,(1100}, up to 50 x ( 15000 )
units of space is needed to store candidates. FP-growth
[6] avoids candidate generation by compressing the transac-
tion database into an FP-tree and pursuing partition-based
mining recursively. However, if the database is huge and
sparse, the FP-tree will be large and the space requirement
for recursion is a challenge. None is superior in all the
cases.

Second, real databases contain all the cases. Real data
sets can be sparse and/or dense in different applications. For
example, for telecommunication data analysis, calling pat-
terns for home users vs. business users could be very differ-
ent: some are frequent and dense (e.g., to family members
and close friends), but some are huge and sparse. Simi-
lar situations arise for market basket analysis, census data
analysis, classification and predictive modeling, etc. It is
hard to select an appropriate mining method on the fly if no
algorithm fits all.

Third, large applications need more scalability. Many
existing methods are efficient when the data set is not
very large. Otherwise, their core data structures (such as
FP-tree) or the intermediate results (e.g., the set of can-
didates in Apriori or the recursively generated conditional
databases in FP-growth) may not fit in main memory and
easily cause thrashing.

of size 100, such as {ay, ..



This poses a new challenge: “Can we work out a bet-
ter method which is (1) efficient in all occasions (dense vs.
sparse, huge vs. memory-based data sets), and (2) space
requirement is small, even for very large databases?”

In this paper, we propose a new data structure, H-struct,
and a new mining method, H-mine, to overcome these dif-
ficulties, with the following progress.

First, a memory-based, efficient pattern-growth algo-
rithm, H-mine(Mem), is proposed for mining frequent pat-
terns for the data sets that can fit in (main) memory. A sim-
ple, memory-based hyper-structure, H-struct, is designed
for fast mining. H-mine(Mem) has polynomial space com-
plexity and is thus more space efficient than pattern-growth
methods like FP-growth and TreeProjection when mining
sparse data sets, and also more efficient than Apriori-based
methods which generate a large number of candidates. Ex-
perimental results show that, in many cases, H-mine has
very limited and exactly predictable space overhead and is
faster than memory-based Apriori and FP-growth.

Then, based on H-mine(Mem), we propose H-mine, a
scalable algorithm for mining large databases by first parti-
tioning the database, mining each partition in memory using
H-mine(Mem), and then consolidating global frequent pat-
terns.

Third, for dense data sets, H-mine is integrated with
FP-growth dynamically by detecting the swapping condi-
tion and constructing FP-trees for efficient mining.

Such efforts ensure that H-mine is scalable in both large
and medium sized databases and in both sparse and dense
data sets. Our comprehensive performance study confirms
that H-mine is highly scalable and is faster than Apriori and
FP-growth in all the occasions.

The remaining of the paper is organized as follows. Sec-
tion 2 is devoted to H-mine(Mem), an efficient algorithm
for memory-based frequent pattern mining. In Section 3,
H-mine(Mem) is extended to huge, disk-based databases,
together with some further optimizations techniques. Our
performance study is reported in Section 4. We discuss re-
lated issues and conclude our study in Section 5.

2 H-mine(Mem):
Structure Mining

Memory-Based Hyper-

In this section, H-mine(Mem) (memory-based hyper-
structure mining of frequent patterns) is developed, and in
Section 3, the method is extended to handle large and/or
dense databases.

We first define the problem of frequent pattern mining.

Definition 2.1 Let 7 = {z4,...,z,} be aset of items. An
itemset X is a subset of items, i.e., X C I. For the sake of
brevity, an itemset X = {z1,zs,..., 2} is also denoted
as X = ziza---xm. A transaction T = (tid, X) is a
2-tuple, where tid is a transaction-id and X an itemset. A
transaction 7' = (tid, X) is said to contain itemset Y if
and only if Y C X. A transaction database T'DB is a
set of transactions. The number of transactions in 7D B
containing itemset X is called the support of X, denoted as
sup(X). Given a transaction database 7" B and a support
threshold min_sup, an itemset X is a frequent pattern, or
a pattern in short, if and only if sup(X) > min_sup.

The problem of frequent pattern mining is to find the
complete set of frequent patterns in a given transaction
database with respect to a given support threshold.

Our general idea of H-mine(Mem) is illustrated in the
following example.

Example 1 Let the first two columns of Table 1 be our run-
ning transaction database 7D B. Let the minimum support
threshold be min_sup = 2.

[ Trans ID | Items | Frequent-item projection |
100 Cvdaeafvgvi C,d,ﬁ,g
200 a,c,d,e,m a,c,d,e
300 a,b,d,e g,k a,d,e, g
400 a,c,d,h a,c,d

Table 1. The transaction database T'D B as our
running example.

Following the Apriori property [3], only frequent items
play roles in frequent patterns. By scanning 7'D B once,
the complete set of frequent items {a : 3,¢ : 3,d : 4,¢ :
3,9 : 2} can be found and output, where the notation a : 3
means item a’s support (occurrence frequency) is 3. Let
freq(X) (the frequent-item projection of X') be the set of
frequent items in itemset X. For the ease of explanation, the
frequent-item projections of all the transactions of Table 1
are shown in the third column of the table.

Following the alphabetical order of frequent items!
(called F-list): a-c-d-e-g, the complete set of frequent pat-
terns can be partitioned into 5 subsets as follows: (1) those
containing item a; (2) those containing item ¢ but no item
a; (3) those containing item d but no item a nor ¢; (4) those
containing item e but no item @ nor ¢ nor d; and (5) those
containing only item g.

If the frequent-item projections of transactions in the
database can be held in main memory, they can be orga-
nized as shown in Figure 1. All items in frequent-item pro-
jections are sorted according to the F-list. For example, the
frequent-item projection of transaction 100 is listed as cdeg.
Every occurrence of a frequent item is stored in an entry
with two fields: an item-id and a hyper-link.
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Figure 1. H-struct.

1As you may aware, any ordering should work, and the alphabetical
ordering is just for the convenience of explanation.



A header table H is created, where each frequent item
entry has three fields: an item-id, a support count, and a
hyper-link. When the frequent-item projections are loaded
into memory, those with the same first item (in the order of
F-list) are linked together by the hyper-links as a queue, and
the entries in header table H act as the heads of the queues.
For example, the entry of item a in the header table H is
the head of a-queue, which links frequent-item projections
of transactions 200, 300, and 400. These three projections
all have item a as their first frequent item (in the order of
F-list). Similarly, frequent-item projection of transaction
100 is linked as c-queue, headed by item ¢ in H. The d-,
e- and g-queues are empty since there is no frequent-item
projection that begins with any of these items.

Clearly, it takes one scan (the second scan) of the trans-
action database 7'DB to build such a memory structure
(called H-struct). Then the remaining of the mining can
be performed on the H-struct only, without referencing any
information in the original database. After that, the five sub-
sets of frequent patterns can be mined one by one as follows.

First, let us consider how to find the set of frequent pat-
terns in the first subset, i.e., all the frequent patterns contain-
ing item a. This requires to search all the frequent-item pro-
jections containing item «, i.e., the a-projected database?,
denoted as T D B|,. Interestingly, the frequent-item projec-
tions in the a-projected database are already linked in the
a-queue, which can be traversed efficiently.

To mine the a-projected database, an a-header table H,
is created, as shown in Figure 2. In H 4, every frequent item,
except for a itself, has an entry with the same three fields as
H, i.e., item-id, support count and hyper-link. The support
countin H , records the support of the corresponding item in
the a-projected database. For example, item ¢ appears twice
in a-projected database (i.e., frequent-item projections in
the a-queue), thus the support count in the entry ¢ of H,
is 2.
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Figure 2. Header table H, and ac-queue.

By traversing the a-queue once, the set of locally fre-
quent items, i.e., the items appearing at least 2 times, in the
a-projected database is found, whichis {c¢ : 2, d : 3, ¢ : 2}
(Note: ¢ : 1 is not locally frequent and thus will not be con-
sidered further.) This scan outputs frequent patterns {ac : 2,
ad : 3, ae : 2} and builds up links for H, header as shown
in Figure 2.

2The a-projected database consists of all the frequent-item projections
containing item a, but these are all “virtual” projections since no physical
projections are performed to create a new database.

Similarly, the process continues for the ac-projected
database by examining the e-queue in H,, which creates
an ac-header table H,., as shown in Figure 3.
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Figure 3. Header table H,..

Since only item d : 2 is locally frequent item in the ac-
projected database, only acd : 2 is output, and the search
along this path completes.

Then the recursion backtracks to find patterns contain-
ing a and d but no ¢. Since the queue started from d in the
header table H,, i.e., the ad-queue, links all frequent-item
projections containing items @ and d (but excluding item ¢
in the projection), one can get the complete ad-projected
database by inserting frequent-item projections having item
d in the ac-queue into the ad-queue. This involves one more
traversal of the ac-queue. Each frequent-item projection
in the ac-queue is appended to the queue of the next fre-
quent item in the projection according to F-list. Since all
the frequent-item projections in the ac-queue have item d,
they are all inserted into the ad-queue, as shown in Figure
4.
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Figure 4. Header table H, and ad-queue.

It can be seen that, after the adjustment, the ad-queue
collects the complete set of frequent-item projections con-
taining items a and d. Thus, the set of frequent patterns
containing items a and d can be mined recursively. Please
note that, even though item ¢ appears in frequent-item pro-
jections of ad-projected database, we do not consider it as
a locally frequent item in any recursive projected database
since it has been considered in the mining of the ac-queue.
This mining generates only one pattern ade : 2. Notice also
the third level header table H,4 can use the table H,. since
the search for H,. was done in the previous round. Thus



we only need one header table at the third level. Later we
can see that only one header table is needed for each level
in the whole mining process.

For the search in the ae-projected database, since e con-
tains no child links, the search terminates, with no patterns
generated.

After the frequent patterns containing item a are found,
the a-projected database, i.e., a-queue, is no longer needed
in the remaining of mining. Since the c-queue includes all
frequent-item projections containing item ¢ except for those
projections containing both items a and ¢, which are in the
a-queue. To mine all the frequent patterns containing item ¢
but no a, and other subsets of frequent patterns, we need to
insert all the projections in the a-queue to the proper queues.

We traverse the a-queue once more. Each frequent-item
projection in the queue is appended to the queue of the next
item in the projection following a in the F-list, as shown
in Figure 5. For example, frequent-item projection acde is
inserted into e-queue and adey is inserted into d-queue.
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Figure 5. Adjusted hyper-links after mining a-
projected database.

By mining the c-projected database recursively (with
shared header table at each level), we can find the set of
frequent patterns containing item ¢ but no a. Notice item a
will not be included in the c-projected database since all the
frequent patterns having a have already been found.

Similarly, the mining goes on. It is easy to see that the
above mining process finds the complete set of frequent pat-
terns without duplication. The remaining mining process is
left as an exercise to interested readers.

Notice also that the depth-first search for mining the first
set of frequent patterns at any depth can be done in one
database scan by constructing the header tables at all levels
simultaneously.

The general idea of H-mine(Mem) is shown in the above
example. Limited by space, we omit a formal presentation
of H-mine(Mem) as well as a complexity analysis of the
algorithm. Comparing with other frequent pattern mining
methods, the efficiency of H-mine(Mem) comes from the
following aspects.

First, H-mine(Mem) avoids candidate generation and
test by adopting a frequent-pattern growth methodology,
a more efficient method shown in previous studies [6, 1].
H-mine(Mem) absorbs the advantages of pattern growth.

Second, H-mine(Mem) confines its search in a dedi-
cated space. Unlike other frequent pattern growth meth-

ods, such as FP-growth [6], it does not need to physically
construct memory structures of projected databases. It fully
utilizes the information well organized in the H-struct, and
collects information about projected databases using header
tables, which are light-weight structures. That also saves a
lot of efforts on managing space.

Third, H-mine(Mem) does not need to store any fre-
quent patterns in memory. Once a frequent pattern is found,
it is output to disk. In contrast, the candidate-generation-
and-test method has to save and use the frequent patterns
found in the current round to generate candidates for the
next round.

The above analysis is verified by our extensive perfor-
mance study, as presented in Section 4.

3 From H-mine(Mem) to H-mine: Efficient
Mining in Different Occasions

In this section, we first extend our algorithm
H-mine(Mem) to H-mine, which mines frequent-patterns
in large data sets that cannot fit in main memory. Then,
we explore how to integrate FP-growth when the data sets
being mined become very dense.

3.1 H-mine: Mining in Large Databases

H-mine(Mem) is efficient when the frequent-item pro-
jections of a transaction database plus a set of header ta-
bles can fit in main memory. However, we cannot expect
this is always the case. When they cannot fit in memory,
a database partitioning technique can be developed as fol-
lows.

Let 7"D B be the transaction database with » transactions
and min_sup be the support threshold. By scanning T'D B
once, one can find L, the set of frequent items.

Then, TDB can be partitioned into & parts, TDBy,
..., TDBy, such that, for each TDB; (1 < i < k), the
frequent-item projections of transactions in 7'D B; can be
held in main memory, where 7'D B; has n; transactions, and
Zf: n; = n. We can apply H-mine(Mem) to T'DB; to
find %requent patterns in 7'D B; with the minimum support
threshold min_sup; = |min_sup x 7*| (i.e., each parti-
tioned database keeps the same relative minimum support
as the global database).

Let F; (1 < i < k) be the set of (locally) frequent pat-
terns in T'DB;. Based on the property of partition-based
mining [13], P cannot be a (globally) frequent pattern in
T DB with respect to the support threshold min_sup if
thereexistsno ¢ (1 < ¢ < k) suchthat P isin F;. Therefore,
after mining frequent patterns in 7"D B;’s, we can gather the
patterns in F;’s and collect their (global) support in T'DB
by scanning the transaction database 7" B one more time.

Based on the above observation, we can extend
H-mine(Mem) to H-mine.

Note that our partition-based mining share some similar-
ities with a partitioned Apriori method proposed in [13] in
which a transaction database is first partitioned, every par-
tition is mined using Apriori, then all the locally frequent
patterns are gathered to form globally frequent candidate
patterns before counting their global support by one more



scan of the transaction database. However, there are two
essential differences between these two methods.

As also indicated in [13], it is not easy to get a good par-
tition scheme using the partitioned Apriori [13] since it is
hard to predict the space requirement of Apriori. In con-
trast, it is straightforward for H-mine to partition the trans-
action database, since the space overhead is very small and
predictable during mining.

On the other hand, H-mine first finds globally frequent
items. When mining partitions of a database, H-mine ex-
amines only those items which are globally frequent. In
skewed partitions, many globally infrequent items can be
locally frequent in some partitions, H-mine does not spend
any effort to check them but the partitioned Apriori [13]
does.

Furthermore, we can do better in consolidating globally
frequent patterns from local ones, as illustrated in the fol-
lowing example.

Example 2 A large transaction database 7'DB is parti-
tioned into four parts, P;, P», P3 and P,. Let the support
threshold be 100. The four parts are mined respectively us-
ing H-mine(Mem). The locally frequent patterns as well as
the partition-ids where they are frequent are shown in Table
2. The accumulated support count for a pattern is the sum of
support counts from partitions where the pattern is locally
frequent.

[ Localfreq. pat. [ Partitions [ Accumulated sup. cnt |
Clb P17P2,P3,P4 280
ac P17P2,P3,P4 320
Cld P17P2,P3,P4 260
abc Pl, P37 P4 120
abcd Pl, P4 40

Table 2. Local frequent patterns in partitions.

Pattern ab is frequent in all the partitions. Therefore, it
is globally frequent. Its global support count is its accumu-
lated support count, i.e., 280. So do patterns ac and ad.

Pattern abc is frequent in all partitions except in P,. The
accumulated support count of abe covers the occurrences of
the pattern in partitions Py, P; and P,. Thus, the pattern
should be checked only in P,. The global support count
of abc is its accumulated count plus its support count in Ps.
Similarly, pattern abed need to be checked in only partitions
Py and Ps.

In the third scan of H-mine, after scanning partition Ps,
suppose the support count of pattern abed in partition P is
20. Since abed is not frequent in partition Ps, its support
count in Ps must be less than the local support threshold. If
the local support threshold is 30, we do not need to check
pattern abed in partition Ps, since abed has no hope to be
globally frequent.

As can be seen from the example, we have the following
optimization methods on consolidating globally frequent
patterns.

First, accumulate the global support count from local
ones for the patterns frequent in every partition.

Second, only check the patterns against those partitions
where they are infrequent.

Third, use local support thresholds to derive the upper
bounds for the global support counts of locally frequent pat-
terns. Only check those patterns whose upper bound pass
the global support threshold.

With the above optimization, the number of patterns to
be consolidated can be reduced dramatically. As shown in
our experiments, when the data set is relatively evenly dis-
tributed, only up to 20% of locally frequent patterns have to
be checked in the third scan of H-mine.

In general, the following factors contribute to the scala-
bility and efficiency of H-mine.

As shown in Section 2, H-mine(Mem) has small space
overhead and is efficient in mining partitions which can be
held in main memory. With the current memory technology,
it is likely that many medium-sized databases can be mined
efficiently by this memory-based frequent-pattern mining
mechanism.

No matter how large the database is, it can be mined by at
most three scans of the database: the first scan finds globally
frequent items; the second mines partitioned database us-
ing H-mine(Mem); and the third verifies globally frequent
patterns. Since every partition is mined efficiently using
H-mine(Mem), the mining of the whole database is highly
scalable.

One may wonder that, since the partitioned Apriori [13]
takes two scans of T'DB, whereas H-mine takes three
scans, how can H-mine outperform the one proposed in
[13]? Notice that the major cost in this process is the min-
ing of each partitioned database. The last scan of TDB
for collecting supports and generating globally frequent pat-
terns is fast because the set of locally frequent patterns can
be inserted into one compact structure, such as a hashing
tree. Since H-mine generates less partitionsand mines each
partition very fast, it has better overall performance than
the Apriori-based partition mining algorithm. This is also
demonstrated in our performance study.

3.2 Handling dense data sets: Dynamic integra-
tion of H-struct and FP-tree-based mining

As indicated in several studies [5, 6, 11], finding frequent
patterns in dense databases is a challenging task since it
may generate dense and long patterns which may lead to
the generation of very large (and even exponential) number
of candidate sets if an Apriori-like algorithm is used. The
FP-growth method proposed in our recent study [6] works
well in dense databases with a large number of long patterns
due to the effective compression of shared prefix paths in
mining.

In comparison with FP-growth, H-mine does not gen-
erate physical projected databases and conditional FP-trees
and thus saves space as well as time in many cases. How-
ever, FP-tree-based mining has its advantages over min-
ing on H-struct since FP-tree shares common prefix paths
among different transactions, which may lead to space and
time savings as well. As one may expect, the situation un-
der which one method outperforms the other depends on the
characteristics of the data sets: if data sharing is rare such as
in sparse databases, the compression factor could be small
and FP-tree may not outperform mining on H-struct. On



the other hand, there are many dense data sets in practice.
Even though the data sets might not be dense originally, as
mining progresses, the projected databases become smaller,
and data often becomes denser as the relative support goes
up when the number of transactions in a projected database
reduces substantially. In such cases, it is beneficial to swap
the data structure from H-struct to FP-tree since FP-tree’s
compression by common prefix path sharing and then min-
ing on the compressed structures will overweigh the benefits
brought by H-struct.

The question becomes what should be the appropriate
situations that one structure is more preferable over the
other and how to determine when such a structure/algorithm
swapping should happen. A dynamic pattern density analy-
sis technique is suggested as follows.

In the context of frequent pattern mining, a (projected)
database is dense if the frequent items in it have high rel-
ative support. The relative support can be computed as
the ratio of absolute support against number of transactions
(or frequent-item projections) in the (projected) database.
When the relative support is high, such as 10% or over,
i.e., the projected database is dense, and the number of
(locally) frequent items is not large (so that the resulting
FP-tree is not bushy), then FP-tree should be constructed
to explore the sharing of common prefix paths and database
compression. On the other hand, when the relative support
of frequent items is low, such as far below 1%, it is sparse,
and H-struct should be constructed for efficient H-mine.
However, in the middle lies the gray area, and which struc-
ture and method should be used will depend on the size of
the frequent-item projection database, the size of the main
memory and other performance factors.

4 Performance Study

To evaluate the efficiency and scalability of H-mine, we
have performed an extensive performance study. In this sec-
tion, we report our experimental results on the performance
of H-mine in comparison with Apriori and FP-growth. It
shows that H-mine outperforms Apriori and FP-growth
and is efficient and highly scalable for mining very large
databases.>

All the experiments are performed on a 466MHz Pen-
tium PC machine with 128 megabytes main memory and
20G hard disk, running Microsoft Windows/NT. H-mine
and FP-growth are implemented by us using Visual C++6.0,
while the version of Apriori that we used is a well-known
version, “GNU Lesser General Public License”, available at
http://fuzzy.cs.uni-magdeburg.de/~borgelt/. All reports of
the runtime of H-mine include both the time of construct-
ing H-struct and mining frequent-patterns. They also in-
clude both CPU time and 1/O time.

We have tested various data sets, with consistent results.
Limited by space, only the results on some typical data sets
are reported here.

3A prototype of H-mine is also tested by a third party in US (a com-
mercial company) on business data. Their results are consistent with ours.
They observed that H-mine is more than 10 times faster than Apriori and
other participating methods in their test when the support threshold is low.

4.1 Mining in main memory

In this sub-section, we report results on mining transac-
tion databases which can be held in main memory. H-mine
is implemented as stated in Section 2. For FP-growth, the
FP-trees can be held in main memory in the tests reported in
this sub-section. We modified the source code for Apriori
so that the transactions are loaded into main memory and
the multiple scans of database are pursued in main memory.

Data set Gazelle is a sparse data set. It is a web store visit
(clickstream) data set from Gazelle.com. It contains 59, 602
transactions, while there are up to 267 item per transaction.

Figure 6 shows the run time of H-mine, Apriori and
FP-growth on this data set. Clearly, H-mine wins the other
two algorithms, and the gaps (in term of seconds) become
larger as the support threshold goes lower.

Apriori works well in such sparse data sets since most of
the candidates that Apriori generates turn out to be frequent
patterns. However, it has to construct a hashing tree for
the candidates and match them in the tree and update their
counts each time when scanning a transaction that contains
the candidates. That is the major cost for Apriori.

FP-growth has a similar performance as Apriori and
sometime is even slightly worse. This is because when
the database is sparse, FP-tree cannot compress data as ef-
fectively as what it does on dense data sets. Constructing
FP-trees over sparse data sets recursively has its overhead.

Figure 7 plots the high water mark of space usage of
H-mine, Apriori and FP-growth in the mining procedure.
To make the comparison clear, the space usage (axis Y) isin
logarithmic scale. From the figure, we can see that H-mine
and FP-growth use similar space and are very scalable in
term of space usage with respect to support threshold. Even
when the support threshold reduces to very low, the memory
usage is still stable and moderate.

The memory usage of Apriori does not scale well as the
support threshold goes down. Apriori has to store level-wise
frequent patterns and generate next level candidates. When
the support threshold is low, the number of frequent patterns
as well as that of candidates are non-trivial. In contrast,
pattern-growth methods, including H-mine and FP-growth,
do not need to store any frequent patterns or candidates.
Once a pattern is found, it is output immediately and never
read back.

What are the performance of these algorithms over dense
data sets? We use the synthetic data set generator described
in [3] to generate a data set 72571510k, which contains
10, 000 transactions and each transaction has up to 25 items.
There are 1, 000 items in the data set and the average longest
potentially frequent itemset is with 15 items. It is a rela-
tively dense data set.

Figure 8 shows the runtime of the three algorithms on
this data set. When the support threshold is high, most pat-
terns are of short lengths, Apriori and FP-growth have sim-
ilar performance. When the support threshold becomes low,
most items (more than 90%) are frequent. Then, FP-growth
is much faster than Apriori. In all cases, H-mine is the
fastest one. It is more than 10 times faster than Apriori and
4-5 times faster than FP-growth.

Figure 9 shows the high water mark of space usage of the
three algorithms in mining this data set. Again, the space
usage is drawn in logarithmic scale. As the number of pat-
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terns goes up dramatically as support threshold goes down,
Apriori requires an exponential amount of space. H-mine
and FP-growth use stable amount of space. In dense data
set, an FP-tree is smaller than the set of all frequent-item
projections of the data set. However, long patterns means
more recursions and more recursive FP-trees. That makes
FP-growth require more space than H-mine in this case.
On the other hand, since the number of frequent items is
large in this data set, an FP-tree, though compressing the
database, still has many branches in various levels and be-
comes bushy. That also introduces non-trivial tree browsing
cost.

In very dense data set, such as Connect-4 (from UC-
Irvine:  (www.ics.uci.edu/~mlearn/MLRepository.html),
and pumsb (from IBM Almaden Research Center:
www.almaden.ibm.com/cs/quest/demos.html), H-mine
builds FP-trees since the numbers of frequent items
are very small. Thus it has the same performance as
FP-growth. Previous studies, e.g., [4], show that Apriori is
incapable of mining such data sets.

4.2 Mining very large databases

To test the efficiency and scalability of the algorithms
on mining very large databases, we generate data set
T'25115D1280k using the synthetic data generator. It has
1, 280, 000 transactions with similar statistic features as the

data set 725715D10k.

We enforce memory constraints on H-mine so that
the total memory available is limited to 2, 4, 8 and 16
megabytes, respectively. The memory covers the space for
H-struct and all the header tables, as well as the related
mechanisms. Since the FP-tree built for the data set is too
big to fit in main memory, we do not report the performance
of FP-growth on this data set. We do not explicitly compose
any memory constraint on Apriori.

Figure 10 shows the scalability of both H-mine (with
main memory size constraint 2 megabytes) and Apriori with
respect to number of transactions in the database. Various
support threshold settings are tested. Both algorithms have
linear scalability and H-mine is a clear winner. From the
figure, we can see that H-mine is more efficient and scalable
at mining very large databases.

To study the effect of memory size constraint on the min-
ing efficiency and scalability of H-mine in large databases,
we plot Figure 11. The figure shows the scalability of
H-mine w.r.t. support threshold with various memory con-
straints, i.e., 2, 4, 8 and 16 megabytes, respectively. As
shown in the figure, the runtime is not sensitive to the mem-
ory limitation when support threshold is high. When the
support threshold goes down, as available space increases,
performance gets better.

Our experimental results also show that H-mine has a
very light workload in its third scan to consolidate global
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frequent patterns. We consider the ratio of the number of
patterns to be checked in the third scan over that of all dis-
tinct locally frequent patterns, where a locally frequent pat-
tern is to be checked in the third scan if it is not frequent
in every partition. Figure 12 shows the ratio numbers. In
general, as the support threshold goes down, the ratio goes
up. That means mining with low support threshold may lead
to more patterns frequent in some partitions. On the other
hand, less memory (small partition) leads to more partitions
and also increase the ratio.

As shown in the figure, only a limited portion of locally
frequent patterns, e.g., less than 35% in our test case, needs
to be tested in the third scan. This leads to a low cost of the
third scan in our partition-based mining.

In summary, our experimental results and performance
study verify our analysis and support our claim that H-mine
is an efficient algorithm for mining frequent patterns. It is
highly scalable in mining very large databases.

5 Discussion and Conclusions

In this paper, we have proposed a simple and novel
hyper-linked data structure, H-struct, and a new frequent
pattern mining algorithm, H-mine, which takes advantage
of H-struct data structure and dynamically adjusts links in
the mining process. As shown in our performance study,
H-mine has high performance and is scalable in all kinds
of data, with very limited and predictable space overhead,
and outperforms the previously developed algorithms with
various settings.

A major distinction of H-mine from the previously
proposed methods is that H-mine re-adjusts the links at
mining different “projected” databases and has very small
space overhead, even counting temporary working space.
H-mine absorbs the nice features of FP-growth. It is essen-
tially a frequent-pattern growth approach since it partitions
its search space according to both patterns to be searched
for and the data set to be searched on, by a divide-and-
conguer methodology, without generating and testing can-
didate patterns. However, unlike FP-growth, H-mine does
not create any physical projected databases nor construct-
ing conditional (local) FP-trees. H-mine is not confined
itself to H-structonly. Instead, it watches carefully the
changes of data characteristics during mining and dynam-

ically switches its data structure from H-struct to FP-tree
and its mining algorithm from mining on H-structto
FP-growth when the data set becomes dense and the num-
ber of frequent items becomes small.

H-mine can be scaled-up to very large databases due to
its small and precisely predictable run-time memory over-
head and its database partitioned mining technique.

Based on the above analysis, one can see that H-mine
represents a new, highly efficient and scalable min-
ing method. Its structure- and space-preserving mining
methodology may have strong impact on the development
of new, efficient and scalable data mining methods for min-
ing other kinds of patterns, such as closed-itemsets [11],
max-patterns [4], sequential patterns [14, 12], constraint-
based mining [9, 10], etc. This should be an interesting
direction for further study.
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