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Wireless sensor networks promise an unprecedented opportunity to monitor physical environments via
inexpensive wireless embedded devices. Given the sheer amount of sensed data, efficient classification of
them becomes a critical task in many sensor network applications. The large scale and the stringent
energy constraints of such networks however challenge the conventional classification techniques that
demand enormous storage space and centralized computation.

In this paper, we propose a novel decision-tree-based hierarchical distributed classification approach,
in which local classifiers are built by individual sensors and merged along the routing path forming a
spanning tree. The classifiers are iteratively enhanced by combining strategically generated pseudo data
and new local data, eventually converging to a global classifier for the whole network. We also introduce
some control factors to facilitate the effectiveness of our approach.

Through extensive simulations, we study the impact of the introduced control factors, and demonstrate
that our approach maintains high classification accuracy with very low storage and communication over-
head. The approach also addresses a critical issue of heterogeneous data distribution among the sensors.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The recent advances in transceiver and embedded hardware
designs have made massive production of inexpensive wireless
sensors possible. A wireless sensor network (WSN) consists of a
number of sensor nodes (few tens to thousands) storing, process-
ing and relaying the sensed data, often to a base station for further
computation [1,2]. Wireless sensor networks can be used in many
applications, such as wildlife monitoring [3], military target track-
ing and surveillance [4], hazardous environment exploration [5],
and natural disaster relief [6]. Given the huge amount of sensed
data, classifying them becomes a critical task in many of these
applications.

As an example, for wildlife monitoring, the sensor nodes contin-
uously sense the physical phenomena such as temperature, humid-
ity and sunlight, and meanwhile may also count the number of
animals. The number reflects the suitability of the current environ-
ment for the animals, for example, if it is greater than a threshold,
the environment is classified as suitable, and otherwise not. After
learning the relation between the physical phenomena and the
classes from such training data, we may later determine the suit-
ability of the inquired environment from the external source. These
ll rights reserved.
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inquires are the unseen data which only have the physical phenom-
ena but do not have the class label. The sensor data collection and
object count have been extensively studied in the literature, e.g.,
the Great Duck Island Project [3], yet efficient classification for
wireless sensor networks has not been well addressed.

Classification is typically done in two steps: first, a classifier is
constructed to summarize a set of predetermined classes, by learn-
ing from a set of training data; then, the classifier is used to deter-
mine the classes of newly arrived data. Within this framework,
there have been significant efforts in improving its speed and accu-
racy, most of which assume centralized storage and computation.
The wireless sensor networks however pose a series of new chal-
lenges, particularly for the first step. First, the number of sensor
nodes is huge, but each of them has only limited storage that can
hardly accommodate all the training data of the whole network.
Second, the sensor nodes are generally powered by non-recharge-
able batteries, and energy efficiency is thus of paramount impor-
tance, which makes the straightforward solution of sending all
the training data to the powerful base station quite inefficient
[7,8]. In short, conventional centralized solution is not directly
applicable in this new type of network environment.

To address the above challenges, in this paper, we present a no-
vel decision-tree-based hierarchical distributed classification in
energy-constrained sensor networks. Our approach organizes the
sensor nodes and performs classification in a localized, iterative
and bottom-up manner, utilizing a decision tree method, in partic-
ular, an enhanced C4.5 algorithm. Starting from each leaf node, a
classifier is built based on its local training data. An upstream node,
ata classification in wireless sensor networks, Comput. Commun. (2010),
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Fig. 1. An example of a decision tree.
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upon receiving the classifiers from its children, will use them with
its own data to build a new classifier. These local classifiers will be
iteratively enhanced from bottom to top and finally reach the base
station, making a global classifier for all the data distributed across
the sensor nodes. Since only the classifiers, instead of the sensed
data, will be forwarded upstream, the energy consumption for
transmission can be significantly reduced.

Our analysis suggests that, given certain amount of sensor
nodes of the same locations, a high tree will save more energy
but a wide tree will achieve higher accuracy. We propose a span-
ning tree constructing approach, in which each node selects a por-
tion of the candidate children as the children to control the shape
of the spanning tree. Another key difficulty lies in training a new
classifier from a mix of downstream classifiers and the local train-
ing dataset, which cannot be directly accomplished by the existing
learning algorithms that work on dataset only. We address this
problem by generating a pseudo training dataset from each down-
stream classifier. We develop a smart generation algorithm, which
ensures that the pseudo data closely reflect the characteristics of
the original local data. We also introduce a control parameter that
adaptively balances the recovery quality and the amount of the
data. Through extensive simulations, we demonstrate that our ap-
proach maintains high classification accuracy, with very low stor-
age and communication overhead.

We also notice that, in practice, the data distribution across dif-
ferent sensor nodes is not necessarily homogeneous. For example,
depending on the location, the data sensed by one node may al-
ways have low temperature and low humidity, and the data sensed
by another node at a different location may always have high tem-
perature and high humidity. We show strong evidence that such
heterogeneity can easily lead to misclassification, and we propose
an enhanced C4.5 algorithm to mitigate its impact. To our knowl-
edge, it is the first solution addressing this distribution issue.

The remaining part of the paper is organized as follows. Section
2 gives a brief introduction of classification. Section 3 describes our
approach, including constructing spanning tree, building local clas-
sifier, generating pseudo data, and building the global classifier
hierarchically. We evaluate our approach and present the results
in Section 4. Section 5 reviews the related works in the literature.
Finally, Section 6 concludes the paper.

2. Classification basics

2.1. Classification

Classification, which is the task of assigning objects to one of
several predefined categories, is a pervasive problem that encom-
passes many diverse applications [9,10]. Data classification is a
two-step process. In the first step, a model is built describing a pre-
determined set of data classes or concepts, and the model is con-
structed by analyzing database samples described by attributes.
Each sample is assumed to belong to a predefined class, as deter-
mined by one of the attributes, called the class label attribute.
The samples analyzed to build the model collectively form the
training data set. Since the class label of each sample is provided,
this step is also known as supervised learning. Typically, the learned
model is represented in the form of decision trees, classification
rules, or mathematical formula.

In the second step, the model is used for classification. First, the
predictive accuracy of the model (or classifier) is estimated. A sim-
ple way is to use a test set of class-labeled samples, which are ran-
domly selected and are independent of the training samples. The
accuracy of a model on a given test set is the percentage of test
set samples that are correctly classified by the model. If the accu-
racy of the model is considered acceptable, the model can be used
to classify future data of which the class label is not known.
Please cite this article in press as: X. Cheng et al., Hierarchical distributed d
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2.2. Decision tree

Decision tree is one of the most important models for classifica-
tion, and also serves as the foundation for our classification meth-
od. A decision tree is a mapping from observations about an item to
conclusions about its target value. A decision tree has three types
of nodes: (1) a root node that has no incoming edges, (2) internal
nodes, each of which has one incoming edge and more than one
outgoing edges, (3) leaf nodes, each of which has one incoming
edge and no outgoing edge. In a decision tree, each leaf node is as-
signed a class label. The root and internal nodes, contain attribute
test conditions to separate data that have different characteristics.

Classifying a test data is straightforward once a decision tree
has been constructed. Starting from the root node, the test condi-
tion is applied to the data and follows the appropriate branch
based on the outcome of the test. This will lead to either another
internal node, for which a new test condition is applied, or a leaf
node. The class label associated with the leaf node is then assigned
to the record. Fig. 1 shows a decision tree example. For instance, it
indicates that if the temperature is between 15 and 30 and the sun-
light is weak, the environment is classified as suitable (Yes) for
animals.

The challenge lies in constructing the decision tree is how to
find the best attribute to split the sample data. The following de-
scribes two common criteria.

[Information gain:] The information gain is the simplest crite-
rion. It uses the entropy measure, which can be calculated as

EntropyðSÞ ¼
Xc

i¼1

�pilog2pi;

where S is the dataset, c is the number of classes and pi is the
proportion of each class. The information gain is then calculated
as

GainðS;AÞ ¼ EntropyðSÞ �
X

v2VðAÞ

jSv j
jSj EntropyðSvÞ;

where V(A) is the set of all possible values for attribute A, and Sv

is the subset of S for which attribute A has value v.
[Gain ratio:] There exists natural bias in information gain, as it
favors attributes with many values. For example in weather
forecast, the attribute ‘‘data” may have the highest information
gain, but it will lead to a very broad decision tree of depth one
and is inapplicable to any future data. There are some advanced
criteria, such as gain ratio, which penalizes attributes by incor-
porating split information
ata classification in wireless sensor networks, Comput. Commun. (2010),
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Split InformationðS;AÞ ¼ �
Xc

i¼1

jSv j
jSj log2

jSv j
jSj :

This information is sensitive to how broadly and uniformly the
attribute splits the data. The gain ratio is calculated as

Gain RatioðS;AÞ ¼ Information GainðS;AÞ
Split InformationðS;AÞ :

Note that this ratio is not defined when the split information is
zero, and the ratio may tend to favor attributes for which the
split information is very small. Consequently, to deal with this
situation, the information gain is calculated for all attributes,
and then the method only selects the best one.

There are various methods to build a decision tree. Among
them, ID3, proposed by Quinlan [11], is the simplest and most fa-
mous one. The ID3 algorithm recursively constructs a tree in a
top-down divide-and-conquer manner. It uses information gain
as the measure to determine the best attribute, and then creates
a node for each possible attribute value, and partitions the training
data into descendant nodes. There are three conditions to stop the
recursion: (1) all samples at a given node belong to the same class;
(2) no attribute remains for further partitioning; (3) there is no
sample at the node.

Later, Quinlan proposed an extension of ID3 algorithm, C4.5
[12]. It performs similarly to ID3 except using gain ratio to deter-
mine the best attribute. C4.5 algorithm also makes some improve-
ments to ID3, including that it can handle numerical attributes by
creating a threshold and splitting the data into those whose attri-
bute value is above the threshold and those that are less than or
equal to it. C4.5 can also prune the decision tree after creation,
which reduces the size of the tree.

However, both original ID3 and C4.5 algorithms cannot be used
to directly combine the local classifiers, nor do they preserve the
data attribute distribution to support pseudo data recovery. In this
paper, we will present a substantially enhanced version to address
these challenges.
3. Decision-tree-based hierarchical distributed classification

In this section, we first present the system overview, and then
introduce our classification approach in detail, showing how to
construct the spanning tree, how to build the local decision tree,
how to generate the pseudo data, and how to build the classifier
in a bottom-up manner. We discuss the accuracy and the energy
consumption afterwards.
Table 1
List of notations

Notation Explanation

N The number of sensor nodes, excluding the base station
ni Sensor node ði ¼ 1;2; . . . ;NÞ
n0 Base station
3.1. System overview

We consider N sensor nodes n1;n2; . . . ;nN distributed in a field.
Each node covers an area of the field and is responsible for collect-
ing data within the area. The data reporting follows a spanning tree
rooted at the base station n0. The routing protocol for forming
spanning tree will be presented in Section 3.2.

Each sensor node ni first collects its local training data Di. If
node ni is a leaf node, it builds a classifier Ci by a learning algorithm
@, which we will illustrate in Section 3.3. The node then sends Ci to
its parent node, say nj. We use a decision tree to represent the clas-
sifier,1 which, compared to the original data, is of a much smaller
size.
1 We will use ‘‘classifier” and ‘‘decision tree” interchangeably throughout this paper
provided the context is clear. Also note that, the decision tree and the spanning tree
are two concepts, as the former is the classifier and the latter is the system structure.

Please cite this article in press as: X. Cheng et al., Hierarchical distributed d
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An upstream node nj, upon receiving the classifiers from its chil-
dren, combines the children’s classifiers with its local training data
Dj to build an enhanced classifier Cj. These local classifiers will be
iteratively enhanced from bottom to top and finally reach the base
station, making a global classifier for all the data distributed across
the sensors. Since only the classifiers will be forwarded upstream,
the energy consumption for transmission can be significantly re-
duced. The sensor nodes may continuously sense new data and for-
ward to upstream.

The challenge here lies in training the enhanced classifier from a
mix of downstream classifiers and the local dataset, which cannot
be directly accomplished by the existing training algorithms that
work on dataset only. To address this problem, a pseudo training
dataset will be generated from each downstream classifier. For
each child node ni, node nj will generate a set of pseudo training
data D0i from the classifier Ci, and then combine all these data with
its own training data to build the enhanced classifier. Obviously,
the pseudo data, recovered from classifiers, should closely reflect
the characteristics of the original local data, e.g., the distribution
of different classes and the attribute values. The amount of the
pseudo data is also an important concern given that a sensor node
generally has a limited memory. We will address these detailed is-
sues in Section 3.4.

We list the major notations in Table 1. Also note that, in this pa-
per, we do not consider issues like node failure or packet loss,
which have been extensively addressed in the literature [7,8,13].

3.2. Constructing spanning tree

Before we present the approach to construct the spanning tree,
we first discuss how the shape of the tree affects the result of the
classification; specifically, how the height and width of the tree
affect the energy consumption and the accuracy of the classifier.

Given a certain amount of sensor nodes, it is intuitive that if the
tree height is small, the tree width is large, and vice versa. Suppose
in Fig. 2, node 0 is the base station and there are n other sensor
nodes in one line with equal interval, and the distance between
the base station and the last one is L. We assume there are two
kinds of spanning tree, one is that each sensor node is the child
of the other one that is closer to the base station, representing a
high tree T1, and the other is that all these sensor nodes are the
child of the base station, representing a wide tree T2.

In general, the energy consumption of computation is signifi-
cantly smaller than that of transmission, and the transmission en-
ergy consumption is proportional to the transmitted data size and
square of the distance [8]. In T1, the energy consumption isPn

i¼1s � L
n

2, where s is the data size transmitted by a sensor node.
While in T2, the energy consumption is

Pn
i¼1s � i�L

n
2, which is clearly

larger than that of T1. Therefore, to save more energy, a high tree is
demanded. On the other hand, noise in the classification is inevita-
ble, and the noise will be accumulated along the spanning tree.
Hence the larger the height is, the less accurate the classifier will
be, and our evaluation demonstrates this. Therefore, we need an
approach to control the shape of the spanning tree during its
construction.
Di The training data collected by node ni

D0i The pseudo data generated from classifier Ci

Ci The local classifier built by node ni

C0 The global classifier built at the base station

ata classification in wireless sensor networks, Comput. Commun. (2010),
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Fig. 2. Analysis of the spanning tree height.
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In our spanning tree constructing approach, the base station
first broadcasts tree construction message containing the source
(base station) and the depth (0). Upon receiving the message, the
sensor nodes within the range of the base station send response
messages back to the base station, and these nodes are candidate
children. The base station selects all or some of these sensor nodes
as its children, and the number of children will affect the shape of
the spanning tree. A random selection is simple but effective,
which avoids the issue of load balance. The base station then sends
confirmation messages to the all the candidate nodes, informing
them whether or not they have been selected as the children.
The selected nodes are the depth 1 nodes.

Then iteratively, the sensor nodes broadcast tree construction
message to select their children, until all the sensor nodes have a
parent node, and this forms the entire spanning tree. Note that,
the sensor node always prefers a parent with a smaller depth, to
achieve a shorter distance. However, that parent might not neces-
sarily select the node as child, hence the process of constructing
spanning tree is in a top-down manner. The advantage of our span-
ning tree constructing approach is that, the tree width can be con-
trolled by setting the maximum number of the selected children
from those who respond the message, and from another perspec-
tive, this also controls the height of the spanning tree.

3.3. Building decision tree

In our system, the local decision trees are built by the widely-
used C4.5 algorithm [12]. The basic C4.5 algorithm, however, does
not keep the information about the attribute distribution and the
amount of the original training data, preventing pseudo data recov-
ering from a classifier.

To solve this problem, we let each leaf node record the count of
each class (i.e., the number of positive and negative labels in this
application scenario). Therefore, we have the knowledge about
the amount of the samples for building each branch of the decision
tree, and thus we can make the distribution of the generated pseu-
do data resemble the original ones.

Moreover, in the basic C4.5 algorithm, if all the samples belong
to the same class, the recursion stops (e.g., when temperature is
low in Fig. 1). Hence, the information of other attributes will be
missing, which can cause problems with heterogeneous data dis-
tribution across different sensor nodes. For example, if all the train-
ing data sensed by a sensor node are below 10� in temperature and
below 20% in humidity, and the class labels are all negative, using
the basic C4.5 algorithm, only one attribute, say temperature, will
appear in the decision tree, and the information of humidity is
completely missing. This will likely lead to a set of pseudo data
generated with humidity uniformly distributed from 0% to 99%,
which is clearly not the case for the original data.

Therefore, for the stop condition of the recursion, we eliminate
the first one (referred to Section 2) in our enhanced C4.5 algorithm.
The new stop condition thus becomes when no attribute remains
for further partitioning or when there is no sample.

In Algorithms 1 and 2 below, we describe the enhanced C4.5
algorithm for building the decision tree. Note that a brief illustra-
tion of the key steps of the basic C4.5 is in Section 2, and more de-
tails can be found in Quinlan’s work [12].
Please cite this article in press as: X. Cheng et al., Hierarchical distributed d
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Algorithm 1. LearningAlgorithm (D)
ata
Require: training dataset D
call EnhancedC45 (root, D, 0)
prune decision tree root
return root
Algorithm 2. EnhancedC45 (pt, D, depth)
Require: pointer to the decision tree node pt, training dataset D,
depth of the decision tree node depth
if number of data jDj ¼ 0 then

return
end if
if depth = number of attributes of the training data then

get the class label with the most count in D! attribute of pt
record the count of each class label for pt
return

end if
calculate gain ratio for each attribute
get the attribute with the greatest gain ratio ! target attribute
if target attribute is category attribute then

for all target attribute value branches do
add a child pt0

set the value of the branch v i

partition D! D0 with value v i

call EnhancedC45 ðpt0; D0; depthþ 1Þ
end for

else {//numerical category}
for all target attribute value branches do

add a child pt0

set the value range of the branch ½v i;v iþ1Þ
partition D! D0 satisfying the value range ½v i;v iþ1Þ
call EnhancedC45 ðpt0; D0; depthþ 1Þ

end for
end if
3.4. Generating pseudo data

The pseudo data generation is one of the most important steps
in our framework. A critical challenge here is to generate data that
are as close to the original data as possible. In particular, the distri-
bution of each attribute should closely resemble that of the original
data.

Another issue is how many pseudo data should be generated.
Intuitively, the fewer data we generate from the child nodes, the
less weight they have. Since data from one node should not be con-
sidered less important than those from another, we need to gener-
ate the same amount of the pseudo data as the original data.
Therefore, a sensor node close to the base station has to generate
a huge amount of pseudo data, i.e., the same amount of the original
data at all its descendants (not only the immediate children). This
is often impossible given the limited memory of the embedded
sensor nodes. To this end, we introduce a preservation factor, rang-
ing from 0 to 1 (the base station always has a factor of 1), to control
the amount of the generated pseudo data.
classification in wireless sensor networks, Comput. Commun. (2010),
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Algorithm 3. GeneratePseudoData (C, pf)
P
d

Require: decision tree received from one child C, preservation
factor pf

for all leaf nodes node of decision tree C do
get rule R of node
get class label counts ! c1; c2; . . . ; cL

randomly generate pf �
PL

i¼1ci data satisfying R
assign class label lkðk ¼ 1; . . . ; LÞ, to the data with probability

as the proportion of the class label ck=
PL

i¼1ci

add these data to pseudo data set D0

end for
return pseudo data set D0
Algorithm 3 summarizes our method to generate the pseudo
data. For illustration, suppose the decision tree’s leaf node repre-
sents a rule of when temperature is between 10 and 20, humidity
is between 20 and 40, and sunlight is normal, there are 10 positive
class labels and 90 negative ones. As such, the class label is nega-
tive. Assuming the preservation factor is set to 0.6, we then ran-
domly generate (10 + 90) � 0.6 = 60 data that satisfy the attribute
requirement. It follows that each data has a probability 10/
100 = 0.1 to be assigned a class label as positive and 0.9 to be
negative.

The original data are partitioned to each decision tree leaf node,
and each set of generated data resembles part of the original data.
Therefore, the combined pseudo data will largely reflect the char-
acteristics the original training data. We will closely examine the
effectiveness of our method as well as the impact of the preserva-
tion factor in Section 4.

3.5. Hierarchical classification

As mentioned above, we let the sensor nodes in the network be
organized by a spanning tree, as illustrated in Section 3.2, and Fig. 3
shows an example. A leaf node builds the decision tree with the lo-
cal sensed training data and sends the decision tree to the parent.
The intermediate node periodically checks if there is any new clas-
sifier from children. If yes, it will generate a set of pseudo data for
each new classifier, and combines them with its local data. There
are two situations here. (1) If the node has never built any classi-
fier, which indicates that it has never received any classifier from
its children, it will combine the generated pseudo data with its lo-
cal sensed data and performs the learning algorithm. (2) If the node
has once built a classifier, the previous received classifiers may
have already been discarded (due to the memory constraint). The
node will then generate a set of pseudo data for its local classifier
with the preservation factor being 1, and combines it with the
other pseudo datasets to build the new decision tree. We prefer a
pull-based method, because if we utilize a push-based method,
an update of the leaf node will trigger a series of re-computations
and transmissions all the way to the root, consuming great energy.
In fact, the updated classifier is sent to the parent node immedi-
ately after the update, but the parent node might do nothing until
the next period, and note that, it costs nothing for the parent node
to check if there is any new classifier.

The base station will build the global classifier. Initially, it waits
until receiving all the classifiers from its children, and then gener-
ates pseudo data for each, and combines them to build the decision
tree. Since the base station in general is a more powerful node, it
could store all the classifiers from its immediate children. There-
fore, when one of them updates the classifier, the base station dis-
cards the old one and re-performs the operations as above.

In Algorithm 4, we summarize the detailed procedure of the
bottom-up classification.
lease cite this article in press as: X. Cheng et al., Hierarchical distributed d
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Algorithm 4. BottomUpClassification ()
ata
if node is leaf then
periodically collect data D
C  LearningAlgorithmðDÞ
send C to its parent

else if node is not base station then
periodically collect data D
for all new classifiers Ck from child k do

D0k  GeneratePseudoDataðCk; aÞ
end for
C  LearningAlgorithmðD [ ð

S
D0kÞÞ

send C to its parent
else {// base station}

if no classifier has been built then
for all classifiers Cj from child j do

D0k  GeneratePseudoDataðCk;1Þ
end for
C  LearningAlgorithmð

S
D0kÞ

else if receive new classifier Ck from child k then
replace old classifier of child k with Ck

for all classifiers Ck from child k then
D0k  GeneratePseudoDataðCk;1Þ

end for
T  LearningAlgorithmð

S
D0kÞ

end if
end if
3.6. Further discussion

Our approach utilizes the C4.5 as the basis for classification, so
it inherits the effectiveness and efficiency of C4.5 when building lo-
cal classifiers [12]. To make it fit our application scenario better, we
define that all the leaf nodes in the decision tree (classifier) have
the same depth as the number of the attributes, so that we can
keep all the attribute information when abstracting the rule from
each branch. Thanks to the modification, we can generate the pseu-
do data that are very similar to the original data. Apparently, this
modification will increase the size of the decision tree, however,
such increase is acceptable and it noticeably increases the classifi-
cation accuracy, as will be validated in our performance evaluation.

In order to keep the high accuracy and achieve our goals of sav-
ing energy and storage space, we have introduced two parameters
in our solution. One is the class count. It not only records the count
but also indicates the distribution of all the class labels in the ori-
ginal dataset when we build the decision tree. In other words, we
keep the ‘‘noise” information because the ‘‘noise” may be impor-
tant in some cases, in particular, the heterogeneous data distribu-
tion. For example, suppose one decision tree branch has the
negative label because the numbers of positive and negative train-
ing data satisfying the constraint are 1 and 9, while another deci-
sion tree branch has the positive label on the same attribute
constraint because the counts are 99 and 1. Without recording
the class label counts, we have no idea about which one is more
accurate, and we will likely treat them equally. In fact, combining
the two training dataset, we will obtain the positive label with the
class counts 100 versus 10. The problem is particularly severe
when the training dataset have the heterogeneous distribution,
which critically demands the recording of the class count.

The other parameter is the preservation factor, which deter-
mines the amount of the pseudo data to generate. We introduce
this parameter due to the limited memory of the sensor node.
The smaller the preservation factor, the more dominant the local
training data are. For example, suppose a node has four children,
each having 200 training data, and the node itself also has 200
training data. If the preservation factor is set to 1.0, the node will
classification in wireless sensor networks, Comput. Commun. (2010),
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learn from 1000 data, in which 20% are its local data. If the preser-
vation factor is set to 0.1, the node will learn from 280 data, in
which 71% are its local data. Intuitively, if the pseudo data can rep-
resent the original data very well, the greater the preservation
factor, the more accurate the classifier is, because every area
should be treated equally. Otherwise, the greater the preservation
factor, the more noise it will make, thus decreasing the accuracy.
Therefore, the representativeness of the pseudo data of the original
data is crucial in our solution. In the next section, we will closely
examine its impact to the classification accuracy.

To extend our previous work [14], we adopt C4.5 instead of ID3
as the basis for building the decision tree. Two important improve-
ments of C4.5 over ID3 are, C4.5 can deal with numerical attribute
and can prune the tree after creation. To explore the two advanta-
ges, during creating the decision tree, we can set the attribute
granularity small enough, which however increases the tree size;
then after creating the tree, the sibling nodes can be merged if they
have the same distribution. In the next section, we will demon-
strate that the new method can save more energy.

4. Performance evaluation

4.1. Configuration and dataset

We evaluate our framework with our customized simulator. We
consider a square field consisting of m�m randomly deployed
sensor nodes, with the base station being located in the center.
We set m as 7 (totaling 49 nodes), and we control the spanning tree
constructing approach to get the spanning trees that have heights
of 3, 4 and 5, respectively. Fig. 4 shows an example with height 4.
We have tested the topology with larger height, and the results
show the same trend as the smaller height, thus we only provide
Please cite this article in press as: X. Cheng et al., Hierarchical distributed d
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the results of height being 3, 4 and 5. We have also tested different
values of m (up to 20) and obtained the same results, which indi-
cates that the performance of the algorithm is mainly affected by
the height of the spanning tree, while not the node populations.
This is because the algorithm is distributed and localized. For the
ease of analysis, we take m ¼ 7 as the experiment example.

The data has three attributes and a class label. The three attri-
butes are temperature, humidity and sunlight. The first two are
numerical attributes, ranging from 0 to 49 and from 0 to 99, and
the last one is a categorical attribute, having values weak, normal
and strong. Since we utilize C4.5 algorithm which can deal with
numerical attribute, it improves our previous work [14]. The class
label is either positive or negative, i.e., indicating whether or not the
environment is suitable for the animal.

We randomly generate data having the temperature between 0
and 49, humidity between 0 and 99, and sunlight being 0, 1 or 2;
we manually define some rules to assign each data a class label.
We also consider noise and thus add a factor e, which indicates
the data has the probability of e to be the other class label deter-
mined by the rules. Note that this noise has nothing to do with
the transmission error, and we suppose the underlying protocol
can successfully handle the error. This noise indicates the inaccu-
racy of a generative model representing the dataset, and we study
two typical cases in the following.

We generate 10 training datasets, each having 200 � ðm2 � 1Þ
data. Among the 10 datasets, five of them have e ¼ 1% noise, and
five of them have e ¼ 10% noise. For each dataset, we make it into
two versions, one is called heterogeneous data and the other is
called homogeneous data. In the heterogeneous data set, the data
distribution depends on the location of the sensor nodes, while
the homogeneous data is independent on the location, and is ran-
domly and uniformly distributed across sensor nodes.
ata classification in wireless sensor networks, Comput. Commun. (2010),
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Fig. 4. An example of topology of 49 nodes and height being 4 (different colors
show represent different depths).
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Fig. 5. Comparison of accuracy for different preservation factor, noise and height
with heterogeneous data.
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For homogeneous data, we just randomly divide and assign all
the training data to the ðm2 � 1Þ sensor nodes as the local training
data, thus each sensor node has 200 training data. For heteroge-
neous data, we assume that the temperature increases from left
to right, and the humidity increases from bottom to top in the sen-
sor field; the attribute of sunlight is uniformly distributed. For
example, a node in the bottom right corner is supposed to have
the data with high temperature around 45, low humidity around
10, and a node in the top left has the data with low temperature
around 5, high humidity around 90. For each data in one dataset,
we first calculate its coordinates according to the above, and then
assign the data to the sensor node of that location if the training set
of the node is not full (200 data). If that node is full, we then assign
this data to another random node. For each training dataset, we
perform different simulations that have different data distribu-
tions. For example, one is described as above, and another one is
that temperature increases from bottom to top, humidity increases
from right to left, and so forth.

In our experiments, we generate 10 test datasets, each having
2000 data. Among the 10 datasets, five of them have e ¼ 1% noise,
and five of them have e ¼ 10% noise. If we use the training data
with e ¼ 1% noise to learn, we use the test data with e ¼ 1% noise
to test (same as the data with e ¼ 10% noise).

4.2. Baseline for comparison

We have also implemented an ensemble method [15] for the base-
line comparison. The ensemble method constructs a set of base clas-
sifiers and take a majority voting on predictions in classification. The
method can significantly improve the accuracy of prediction, be-
cause if the base classifiers are independent, then the ensemble
makes a wrong prediction only if more than half of the base classifi-
ers are wrong. For example, suppose there are two classes and each
base classifier has an error rate of 30%. With 15 base classifiers, the

error rate will be
P15

i¼8
15
i

� �
0:3i0:715�i ¼ 0:05 only.

The ensemble method has been widely adopted in distributed
classification [16]. In our evaluation, we customize the ensemble
method to our application scenario. Specifically, all the nodes learn
from their local training data to build the classifiers, and send the
classifiers to the base station through multi-hop routing. The base
Please cite this article in press as: X. Cheng et al., Hierarchical distributed d
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station then conducts the second step of the classification, in partic-
ular, the base station tests the unseen data with all the classifiers and
takes a majority voting to get the final decision. Obviously, sending
all the local classifiers to the base station consumes more energy
than only sending the local classifier to the parents. Moreover, the
ensemble method does not accommodate heterogeneous data, thus
the accuracy of classification can be low, as will be shown later.
4.3. Impact of preservation factor, noise and height for heterogeneous
data

We first examine our algorithm with different preservation fac-
tors, noises and heights for the heterogeneous data. We plot the re-
sults in Fig. 5. The x axis is the preservation factor ranging from 0.1
to 1.0, and we also evaluate the best-possible accuracy of learning
from the entire dataset (assuming one sensor node collects all the
data and builds the classifier), referred to as ‘‘A”, and accuracy of
the ensemble method, referred to as ‘‘E”.

From the figure, we find that the preservation factor does affect
the accuracy, especially when it is small, the height is big, and the
noise is large. When the noise is very small (1%), the preservation
factor does not affect the accuracy much when the factor is larger
than 0.4, regardless of the height. When the noise becomes greater
(10%), the preservation factor should be at least 0.7, so as not to de-
crease the accuracy much. When the preservation factor is very
small, the larger the height is, the less accuracy it achieves. We also
find that when the preservation factor is large enough, the accu-
racy is almost the same as that of learning from the entire training
data, i.e., the practically optimal accuracy.

The figure indicates that our mechanism to generate pseudo
data works quite well, in particular, when the factor is large en-
ough, the pseudo data can well represent the original data. When
the preservation factor is small, the accuracy becomes relatively
lower. The reason is that, from the whole system’s view, the areas
that are close to the base station generally dominates, but as men-
tioned before, we should consider different areas equally. More-
over, when the height is higher, the noise will be accumulated,
hence the accuracy will be reduced.

Comparing with the ensemble method, when the preservation
factor is large enough, our approach achieves much higher accu-
racy, and when the noise is greater, the difference is even larger.
This is because in the ensemble method, for heterogeneous data,
each sensor node only learns a part of the data (e.g., low tempera-
ata classification in wireless sensor networks, Comput. Commun. (2010),
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ture and low humidity). In other words, in the ensemble method,
only a few classifiers are responsible for a certain test data. If a gi-
ven unlabeled data has the attribute value that is much different
from its training data, it probably needs to randomly guess a class
label, which will greatly decrease the accuracy.

4.4. Comparison of enhanced and basic C4.5 algorithm

We next compare our enhanced C4.5 algorithm with the basic
C4.5 algorithm, as well as the enhanced ID3 algorithm proposed
in our previous work [14]. We clarify that we modify the basic
C4.5 because it is not suitable for generating pseudo data in our ap-
proach for the heterogeneous data distribution. We again use the
heterogeneous data with different noises, and plot the results in
Figs. 6 and 7, respectively.

We find that the enhanced C4.5 algorithm is not noticeably af-
fected by the preservation factor when the factor is large enough,
nor the height. On the other hand, the accuracy of basic C4.5 algo-
rithm is much lower than ours, and is particularly lower when the
preservation factor is smaller and the height is larger.

The difference is because when all the samples belong to the same
class label, the basic algorithm stops the recursion, while our en-
hanced version continues. As mentioned before, in heterogeneous
data distribution, it is possible that all the data from one node are be-
low 10 in temperature and below 20 in humidity, and all the labels
are negative; if we utilize the basic ID3, the decision tree is likely
to contain only one attribute, say temperature, with the information
of humidity being completely missing. As such, when generating the
pseudo data, the humidity has to be uniformly distributed from 0 to
99, adding remarkable noise. To validate this, we also examine their
performance with the homogeneous data, and the results show that
the two algorithms perform almost the same.

In comparison, C4.5 algorithm achieves better accuracy than the
ID3 algorithm, this is because C4.5 can deal with numerical attri-
bute, whereas in ID3, the numerical attribute is considered as cat-
egory attribute, thus reducing the accuracy in order to avoid the
decision tree becoming too big.

4.5. Impact of training data distribution

To further understand the impact of the distribution of the data
set, we perform comparative experiments with both the heteroge-
neous data and the homogeneous data. Figs. 8 and 9 plot their
respective accuracy results with different noises.
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Fig. 6. Comparison of enhanced and basic C4.5 algorithms for heterogeneous data
with e ¼ 1%.
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We find that for the heterogeneous data, when the preservation
factor is small, the accuracy is low. On the other hand, for the homo-
geneous data, the factor does not affect the accuracy. For data with
small noise, when the preservation factor is greater than 0.5, the
two achieve similar accuracy. If the noise is larger, the preservation
factor has to go beyond 0.8 to achieve the similar accuracy. This is be-
cause in homogeneous data distribution, all the nodes have similar
training data, thus the classifiers built by the nodes are almost the
same, which leads to the high similarity between the generated
pseudo data and the local training data. Therefore, the accuracy is
independent on the preservation factor for homogeneous data.

In the ensemble method, the accuracy for heterogeneous data is
much lower than that of homogeneous data and our hierarchical
approach. This has been explained in the first experiment. For
the homogeneous data, the ensemble method has the same accu-
racy as our approach.
4.6. Comparison of energy consumption

Finally, we investigate the energy consumption, which is one of
the most important concerns in wireless sensor networks. We
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Fig. 8. Comparison of heterogeneous and homogeneous data distribution with
e ¼ 1%.
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compare our hierarchical classification with the ensemble method
that transmits all the classifiers to the base station. The energy con-
sumption consists of the computation energy consumption and the
transmission energy consumption, which is significantly larger than
the prior one [8], thus we neglect the computation energy con-
sumption. The transmission energy consumption depends on the
size of the transmitted data and the distance between the two
nodes. Generally, it is proportional to the data size and square of
the distance [8]. We normalize the result and plot in Fig. 10.

From the figure, we find that the energy consumption of our ap-
proach is much lower than the ensemble method in all the situa-
tions when the height is greater than 1. On average, our method
saves nearly 70% of the energy spent in the ensemble method
when height is greater than 1. The greater the height is, the more
energy we save, simply because a classifier is only forwarded to
the parent in our solution, while it is forwarded all the way to
the base station in the ensemble method.

We find that the data distribution does not significantly affect the
energy consumption and there is no consistent observation. This is
different from our previous work that based on ID3 algorithm, in
which the data from a node are likely to exist in one branch for het-
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erogeneous data. Because the decision tree is pruned after creation
in C4.5, for homogeneous data, the leaf nodes are likely to be merged
if the sibling leaf nodes’ class labels are the same.

According to the figures, the noise does not affect the energy
consumption much. We believe that it is because the noise does
not change the transmission distance, and it also does not notice-
ably change the size of the decision trees.

As we modify the basic C4.5 algorithm, the constructed decision
tree is thus larger in our enhanced C4.5 algorithm. We also exam-
ine the size of the decision tree built in the two algorithms, and
find that the size in enhanced C4.5 is 18.7% larger than that in
the basic C4.5 algorithm. Compared with our previous work, in
which the enhanced ID3 algorithm is also nearly 45% larger than
the basic ID3 algorithm, we can see the improvement of enhanced
C4.5 over enhanced ID3. Moreover, considering that the basic C4.5
algorithm cannot even work due to its low accuracy in our applica-
tion, this small increased size is reasonably acceptable.
5. Related work

There are many classic methods for centralized classification,
such as bagging [17] and boosting [18]. Random forest [19] is an-
other advanced tool, which combines tree predictors, such that
each tree depends on the values of a random vector sampled inde-
pendently and with the same distribution for all trees in the forest.
Random inputs and random features produce good results in the
classification.

For distributed data classification using the ensemble method,
several techniques have been proposed [20,21]. Distributed classi-
fication in peer-to-peer networks is also studied [16]. The authors
proposed an ensemble approach, in which each peer builds its local
classifiers on the local data and then combines all the classifiers by
plurality voting. These distributed solutions however are not cus-
tomized for sensor networks. In particular, they do not consider
the limit of memory sizes, nor the energy consumption, which
are two critical concerns with battery-powered sensor nodes.
Directly applying these distributed classifications into our applica-
tion scenario will thus result in poor performance, as demonstrated
through our simulations.

There have been numerous works on data gathering in wireless
sensor networks. For example, LEACH [8] and PEGASIS [22] at-
tempt to make the data collection task energy efficient. There are
also a few related works about classification in this context [23–
5
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25], but they have focused on detecting or tracking objects, while
not giving detailed design of classifiers. To the best of our knowl-
edge, our work is the first addressing energy-efficient distributed
classification for wireless sensor networks, particularly with heter-
ogeneous data distribution across the sensor nodes.

This work extends our previous work [14] by presenting the de-
tailed spanning tree constructing approach, and adopting an ad-
vanced C4.5 algorithm for the classification basic. Therefore,
numerical attribute such as temperature and humidity can be bet-
ter accommodated by our enhanced C4.5 algorithm, achieving bet-
ter classification accuracy; the pruning procedure in C4.5 also
reduces the decision tree size, thus saving more energy.

6. Conclusion

In this paper, we have proposed a novel decision-tree-based hier-
archical distributed classification approach in wireless sensor net-
works. In particular, we consider a practical scenario in which the
data distribution is heterogeneous, which is seldom studied before.
In our solution, the sensor nodes are organized in a spanning tree,
and local classifiers are built by individual sensor nodes and merged
along the routing path. The classifiers are iteratively enhanced by
combining strategically generated pseudo data with new local data,
eventually converging to a global classifier for the whole network.
We demonstrate that our approach maintains high classification
accuracy with very low storage and communication overhead.

With the framework, an intelligent wildlife monitor can be
developed. It will not only sense and track the animal, but also per-
form classification that mines the environment suitability. How-
ever, there could be many possible enhancements. We are
particularly interested in designing a more effective pseudo data
generating algorithm that makes the generated data as close to
the original as possible with limited side information. We are also
interested in evaluating the performance with real sensor testbeds.
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