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Abstract. Individual privacy will be at risk if a published data set is not prop-
erly de-identified. k-anonymity is a major technique to de-identify a data set. A
more general view of k-anonymity is clustering with a constraint of the mini-
mum number of objects in every cluster. Most existing approaches to achieving
k-anonymity by clustering are for numerical (or ordinal) attributes. In this paper,
we study achieving k-anonymity by clustering in attribute hierarchical structures.
We define generalisation distances between tuples to characterise distortions by
generalisations and discuss the properties of the distances. We conclude that the
generalisation distance is a metric distance. We propose an efficient clustering-
based algorithm for k-anonymisation. We experimentally show that the proposed
method is more scalable and causes significantly less distortions than an optimal
global recoding k-anonymity method.

1 Introduction

A vast amount of operational data and information has been stored at different vendors
and organizations. Most of the stored data is useful only when the data is shared and
analysed with other related data. However, this kind of data normally contains some
personal details and sensitive information. The data can only be allowed to be released
when the private information is protected.

More and more powerful data mining tools require a large amount of data from
various sources to produce promising results. On the other hand, these powerful data
mining tools may be maliciously used to uncover personal-related sensitive information
in data. Therefore, privacy preservation becomes a fundamental issue in data mining.

Cryptographic technique is a choice since it can hide data from unauthorised users.
However, cryptographic methods may restrict data access and exchange too much.
Furthermore, cryptographic privacy-preserving methods [15,22,24] usually tailor some
specific data mining tasks, and therefore lose generality.

Random perturbation can provide certain privacy protection [5,4,18], but they are
suitable for data of numerical attributes. When data contains categorical values, the
methods are not quite effective.

Data generalisation is applicable to both categorical and numerical data, and
k-anonymity provides a practical model for privacy protection [21,20,19]. Since the
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k-anonymity model is simple and practical, it has been extensively studied in recent
years [14,6,23,10,13]. A more general view of k-anonymisation is clustering with a con-
straint of the minimum number of objects in every cluster [3]. A number of methods
approach identity protection by clustering [4,1]. However, these methods are applicable
to numerical attributes only. A recent work [9] extends a clustering-based method [8]
to ordinal attributes, but it does not deal with attributes in hierarchical structures. Other
works [2,17] dealing with categorical attributes do not consider attribute hierarchies. In
this paper, we focus our effort on achieving k-anonymity in hierarchical attribute struc-
tures. We define some general metrics in attribute hierarchies for measuring the quality of
k-anonymous tables, and map them to generalisation distances which can be minimised
in the process of k-anonymisation. This greatly facilitates achieving k-anonymity by lo-
cal recoding via clustering. To the best of our knowledge, this work is the first work to do
such mapping. We also present an efficient algorithm for this purpose, and demonstrate
that our method causes less distortions than an optimal k-anonymity algorithm.

2 Preliminary Definitions

The objective of k-anonymisation is to make every tuple of privacy-related attributes in
a published table identical to at least (k - 1) other tuples. As a result, no privacy-related
information can be easily inferred.

For example, young people with stress and obesity are potentially identifiable by
their unique combinations of gender, age and postcode attributes in Table 1a.

To preserve their privacy, we may generalise their gender and postcode attribute val-
ues such that each tuple in attribute set {Gender, Age, Postcode} has two occurrences.
The view after the generalisation is listed in Table 1b.

Table 1. (a) Left: a raw table. (b) Middle: a 2-anonymous view by local recoding. (c) Right: a
2-anonymity view by global recoding.

Gender Age Pcode Problem
male middle 4350 stress
male middle 4350 obesity
male young 4351 stress

female young 4352 obesity
female old 4353 stress
female old 4353 obesity

Gender Age Pcode Problem
male middle 4350 stress
male middle 4350 obesity

* young 435* stress
* young 435* obesity

female old 4353 stress
female old 4353 obesity

Gender Age Pcode Problem
* middle 435* stress
* middle 435* obesity
* young 435* stress
* young 435* obesity
* old 435* stress
* old 435* obesity

In this paper, we adopt a simplified postcode scheme, where its hierarchy {4201,
420*, 42**, 4***, *} corresponds to {suburb, city, region, state, unknown}, respectively.

Definition 1 (Quasi-identifier Attribute Set). A quasi-identifier attribute set is a set
of attributes in a table that potentially reveal private information, possibly by joining
with other tables.

For example, attribute set {Gender, Age, Postcode} in Table 1a is a quasi-identifier.
Table 1a potentially reveals private information of patients (e.g. young patients with
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stress and obesity). If the table is joined with other tables, it may reveal more informa-
tion of patients’ disease history. Normally, a quasi-identifier attribute set is understood
by domain experts.

Definition 2 (equivalence class). An equivalence class of a table with respect to an at-
tribute set is the set of all tuples in the table containing identical values for the attribute
set.

For example, tuples 1 and 2 in Table 1a form an equivalence class with respect to at-
tribute set {Gender, Age, Postcode}. Their corresponding values are identical.

Definition 3 (k-anonymity Property). A table is k-anonymous with respect to a
quasi-identifier if the size of every equivalence class with respect to the attribute set
is k or more.

k-anonymity requires that every occurrence within an attribute set has the frequency
at least k. For example, Table 1a does not satisfy 2-anonymity property since tuples
{male, young, 4351} and {female, young, 4352} occur once.

Definition 4 (k-anonymisation). A view of a table is said to be a k-anonymisation
of the table if the view modifies the table such that the view satisfies the k-anonymity
property with respect to the quasi-identifier.

For example, Table 1b is a 2-anonymous view of Table 1a since the size of all equiva-
lence classes with respect to the quasi-identifier is 2.

A table may have more than one k-anonymous views, but some are better than oth-
ers. For example, we may have another 2-anonymous view of Table 1a as in Table 1c.
Table 1c loses more details than Table 1b. Another objective for k-anonymisation is to
minimise distortions. We will give a definition of distortion later. Initially, we consider
it as the number of cells being modified.

There are two ways to achieve k-anonymity, namely global recoding and local re-
coding. Another name for global recoding is domain generalisation. The generalisation
happens at the domain level. When an attribute value is generalised, every occurrence
of the value is replaced by the new generalised value. Most working models are global
recoding models, such as [20,14,6,19,12,23,10] 1. A global recoding method may over-
generalise a table. An example of global recoding is given in Table 1c.

A local-recoding method generalises attribute values at cell level. A generalised
attribute value co-exists with the original value. A local recoding method does not
over-generalise a table and hence may minimise the distortion of an anonymous view.
Sweeney studied a local recoding model, but did not present a working local recoding
algorithm [21,20]. Sweeney’s MinGen algorithm is impractical and DataFly is a global
recoding algorithm. Gagan Aggarwal et al. [2] and Adam Meyerson et al. [17] analysed

1 [13] also considers global-recoding. However, the definition is different from our work and
most previous work. Suppose there are three dimensions (A,B, C). In their global-recoding
model, for each possible value (a, b, c) (where a ∈ A, b ∈ B and c ∈ C), all tuples with
this value in the data set should be generalised to the same value. However, this formulation is
actually a local-recoding in our work and most previous work.
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a simplified local recoding model that does not involve hierarchical attributes. Both pa-
pers conclude that optimal k-anonymisation is NP-hard. μ- and τ -Argus methods [11],
are two working local recoding methods, but μ-Argus does not guarantee k anonymity
as discovered in [20]. τ -Argus works efficiently only on limited number of attributes.
More recent work of local recoding k-anonymisation was reported in [13] by LeFevre
et al. The method deals with numerical values, and does not involve attribute domain
hierarchies. An example of local recoding is given in Table 1b.

A global-recoding method causes too much distortions to a table. It is preferable
to use a local-recoding method. However, optimal local-recoding is NP-hard [2,17] 2.
Therefore, good heuristic methods are required to achieve k-anonymisation by local
recoding.

The objectives of k-anonymisation by local recoding is listed as follows.

– to modify a table to satisfy the k-anonymity property, and
– to minimise the distortion of the view from its original table.

3 Measuring the Quality of k-anonymisation

In this section, we discuss metrics for measuring the quality of generalisation.
A general criterion should be the distortion of a table. A simple measurement of dis-

tortion is the modification rate. For a k-anonymous view V of table T , the modification
rate is the fraction of cells being modified within the quasi-identifier attribute set. For
example, the modification rate from Table 1a to Table 1b is 22.2% and the modification
rate from Table 1a to Table 1c is 66.7%.

This criterion does not consider hierarchical structures. For example, the distortion
caused by the generalisation of birth date from D/M/Y to M/Y is significantly different
from the distortion caused by the generalisation of gender from M/F to *. The former
still keeps most information of Birth Date but the latter loses all information for Gender.
The modification rate is too simple to reflect such differences.

We calculate distortions of two tables based on distortions of their corresponding
tuple pairs. We first define a metric measuring the distance between different levels in
an attribute hierarchy.

Definition 5 (Weighted Hierarchical Distance). Let h be the height of a domain hi-
erarchy, and let levels 1, 2, . . . , h − 1, h be the domain levels from the most general
to most specific, respectively. Let the weight between domain level j and j − 1 be pre-
defined, denoted by wj,j−1, where 2 ≤ j ≤ h. When a cell is generalised from level
p to level q, where p > q. The weighted hierarchical distance of this generalisation is
defined as

WHD(p, q) =

∑p
j=q+1 wj,j−1

∑h
j=2 wj,j−1

2 To the best of our knowledge, the global local-recoding K-anonymity problem defined in
this paper has not been shown to be NP-hard in the literature. As the definition of the global
recoding in [13] is different from ours, the result of the NP-hardness shown in [13] can be
regarded for the local-recoding problem in our work.
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The right part of Figure 1a shows the numbering methods of hierarchical levels and the
left part of Figure 1a shows weights between hierarchical levels. Level 1 is always the
most general level of a hierarchy and contains one value.

We can define weight wj,j−1 to enforce a priority in generalisation. In the following,
we discuss two simple but typical schemes.

1. Uniform Weight: wj,j−1 = 1 , where 2 ≤ j ≤ h
This is the simplest scheme where all weights are equal to 1. In this scheme, WHD
is the number of steps a cell being generalised over all possible generalisation steps,
e.g. h − 1. For example, let birth date hierarchy be {D/M/Y, M/Y, Y, 10Y, C/Y/M/O,
*}, where 10Y stands for 10-year interval and C/Y/M/O for child, young, middle age
and old age. WHD from D/M/Y to Y is WHD(6, 4) = (1 + 1)/5 = 0.4. In gender
hierarchy, {M/F, *}, WHD from M/F to * is WHD(2, 1) = 1/1 = 1. This means that
the distortion caused by the generalisation of five cells from D/M/Y to Y is equivalent
to the distortion caused by the generalisation of two cells from M/F to *.

As this scheme is quite simple, this does not capture that the generalisations at dif-
ferent levels yield different distortions. It is expected that the generalisation near to the
root should distort the data more compared with the generalisation far from the root.
We take the address for illustration. Suppose the address contains three components
- street no, street name and postcode. For example, the address is “20, Smith Street,
Pcode 4351”. Let us consider two generalisations - the generalisation G1 from “20,
Smith Street, Pcode 4351” to “Smith Street, Pcode 4351” and the generalisation G2

from “Pcode 4351” to “Pcode 435*”. It is obvious that G1 (i.e. the removal of the street
no) corresponds to a smaller distortion while G2 (i.e. the removal of the suburb) cor-
responds to a larger distortion, because the area coverage by the suburb, of course, is
larger than the area coverage by a housing (denoted by the street no). This example
motivates us to propose another scheme.

2. Height Weight: wj,j−1 = 1/(j − 1)β where 2 ≤ j ≤ h and β is a real number
≥ 1 provided by a user.

For a fixed β, the intuition of this scheme is that the generalisation near to the top
should give greater distortion compared with the generalisation far from the top. Thus,
we formulate the height weight scheme, where the weight near to the top is larger and
the weight far from the top is smaller. For example, consider a hierarchy: {D/M/Y,
M/Y, Y, 10Y, C/Y/M/O, *} for birth date. Let β = 1. WHD from D/M/Y to M/Y is
WHD(6, 5) = (1/5)/(1/5 + 1/4 + 1/3 + 1/2 + 1) = 0.087. In gender hierarchy
{M/F, *}, WHD from M/F to * is WHD(2, 1) = 1/1 = 1. The distortion caused by the
generalisation of one cell from M/F to * in gender attribute is more than the distortion
caused by the generalisation of 11 cells from D/M/Y to M/Y in birth date attribute.

In some cases, users prefer that the weight near to the leaf node should be equal to
a smaller value (compared with the case when β = 1). Then, in this model, we allow
this requirement. In order to satisfy this kind of requirement, we simply set the β value
with a larger value (e.g. 2) such that the weight near to the leaf node is smaller.

There are other possible other schemes for various applications.



410 J. Li et al.

*

435*

43**

4***

*

most specific

most general

value

interval

38

30 - 40

unkown

Numerical valuesPostcode

4350suburb

city

region

state

unkown

ddd

hierarchy 

and weights
hierarchical value tree

w

w

w

21

32

43

dd*

d**

* *

1**0**

00* 01* 10* 11*

level 4
cd

ba

root
level 1

level 2

level 3

111110101100000 001 010 011

Fig. 1. (a) Left: Two examples of domain hierarchies - one for categorical values and one for
numerical values. (b) Right: Depiction of weights between domain levels and a simplified hierar-
chical value tree.

In the following, we define distortions caused by the generalisation of tuples and
tables.

Definition 6 (Distortions of Generalisation of Tuples). Let t = {v1, v2, . . . , vm} be a
tuple and t′ = {v′1, v′2, . . . , v′m} be a generalised tuple of t. Let level(vj) be the domain
level of vj in an attribute hierarchy. The distortion of this generalisation is defined as

Distortion(t, t′) =
m∑

j=1

WHD(level(vj), level(v′j))

For example, let the weights of WHD be defined by the uniform weight, attribute Gen-
der be in hierarchy of {M/F, * } and attribute Postcode be in hierarchy of {dddd, ddd*,
dd**, d***, * }. Let t3 be tuple 3 in Table 1a and t′3 be tuple 3 in Table 1b. For at-
tribute Gender, WHD = 1. For attribute Age, WHD = 0. For attribute Postcode,
WHD = 1/4 = 0.25. Therefore, Distortion(t3, t′3) = 1.25.

Definition 7 (Distortions of Generalisation of Tables). Let view D′ be generalised
from table D, ti be the i-th tuple in D and t′i be the i-th tuple in D′. The distortion of
this generalisation is defined as

Distortion(D, D′) =
|D|∑

i=1

Distortion(ti, t′i)

where |D| is the number of tuples in D.

From Table 1a and 1b, WHD(t1, t′1) = WHD(t2, t′2) = WHD(t5, t′5) = WHD(t6, t′6)
= 0 and WHD(t3, t′3) = WHD(t4, t′4) = 1.25. The distortion between the two tables is
Distortion(D, D′) = 1.25 + 1.25 = 2.5.

4 Generalisation Distances

In this section, we map distortions to distances and discuss the properties of the mapped
distances.
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4.1 Distances Between Tuples and Equivalence Classes

An objective of k-anonymisation is to minimise the overall distortions between a gen-
eralised table and the original table. We first consider how to minimise distortions when
generalising two tuples into an equivalence class.

Definition 8 (Closest Common Generalisation). All allowable values of an attribute
form a hierarchical value tree. Each value is represented as a node in the tree, and a
node has a number of child nodes corresponding to its more specific values. Let t1 and
t2 be two tuples. t12 is the closest common generalisation of t1 and t2 for all i. The
value of the closest common generalisation t12 is

vi
12 =

{
vi
1 if vi

1 = vi
2

the value of the closest common ancestor otherwise

where, vi
1, vi

2, and vi
12 are the values of the i-th attribute in tuples t1, t2 and t12.

For example, Figure 1b shows a simplified hierarchical value tree with 4 domain levels
and 2(l−1) values for each domain level l. Node 0** is the closest common ancestor of
nodes 001 and 010 in the hierarchical value tree. Consider another example. Let t1 =
{male, young, 4351} and t2 = {female, young, 4352}. t12 = {∗, young, 435∗}.

Now, we define the distance between two tuples.

Definition 9 (Distance between Two Tuples). Let t1 and t2 be two tuples and t12 be
their closest common generalisation. The distance between the two tuples is defined as

Dist(t1, t2) = Distortion(t1, t12) + Distortion(t2, t12)

For example, let the weights of WHD be defined by the uniform weights, attribute
Gender be in hierarchy of {M/F, * } and attribute Postcode be in hierarchy of {dddd,
ddd*, dd**, d***, * }. t1 = {male, young, 4351} and t2 = {female, young, 4352}.
t12 = {∗, young, 435∗}. Dist(t1, t2) = Distortion(t1, t12) + Distortion(t2, t12) =
1.25 + 1.25 = 2.5. We discuss some properties of tuple distance in the following.

Lemma 1. Basic properties of tuple distances
(1) Dist(t1, t1) = 0 (i.e. a distance between two identical tuples is zero)
(2) Dist(t1, t2) = Dist(t2, t1) (i.e. the tuple distance is symmetric), and
(3) Dist(t1, t3) ≤ Dist(t1, t2) + Dist(t2, t3) (i.e. the tuple distance satisfies triangle
inequality)

Proof. The first two properties obviously follow Definition 9b. We prove property 3
here.

We first consider a single attribute. To make notions simple, we omit the superscript
for the attribute. Let v1 be the value of tuple t1 for the attribute, v13 be the value of the
generalised tuple t13 for the attribute from tuple t1 and tuple t3, and so forth.

Within a hierarchical value tree, Dist(t1, t3) is represented as the shortest path link-
ing nodes v1 and v3 and Dist(t1, t2) + Dist(t2, t3) is represented as the path linking v1
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and v3 via v2. Therefore, Dist(t1, t3) ≤ Dist(t1, t2) + Dist(t2, t3). The two distances
are equal only when v2 is located within the shortest path between v1 and v3.

The overall distance is the sum of distances of all individual attributes. The above
proof is true for all attributes. Therefore, the property 3 is proved.

An example of Property 3 can be found in the hierarchial value tree of Figure 1b. The
distance between 00* and 011 is (a + b + c), the distance between 00* and 010 is
(a+b+d), and the distance between 010 and 011 is (c+d). Therefore, Dist(00∗, 011) <
Dist(00∗, 010)+Dist(010, 011). In a special case, Dist(00∗, 011) = Dist(00∗, 01∗)+
Dist(01∗, 011).

Now, we discuss distance between two groups of tuples.

Definition 10 (Distance between Two equivalence classes). Let C1 be an equivalence
class containing n1 identical tuples t1 and C2 be an equivalence class containing n2

identical tuples t2. t12 is the closest common generalisation of t1 and t2. The distance
between two equivalence classes is defined as follows.
Dist(C1, C2) = n1 × Distortion(t1, t12) + n2 × Distortion(t2, t12)

Note that t12 is the tuple that t1 and t2 will be generalised if two equivalence classes
C1 and C2 are merged into one equivalence class. The distance is equivalent to the
distortions of the generalisation and therefore the choice of merger should be those
equivalence classes with the smallest distances.

5 Algorithm

In this section, we present an algorithm to implement k-anonymisation by local
recoding.

The basic idea for the algorithm is finding an arbitrary equivalence class of size
smaller than k and merging it with the closest equivalent classes to form a larger equiva-
lent class with the smallest distortion. This process repeats recursively until each equiv-
alent class contains at least k tuples.

We first discuss how to handle the situation that a small equivalent class (e.g. the
class containing one tuple) merges to a large equivalent class (e.g. the class containing
a hundred of tuples). Should we generalise the whole large equivalent class in order to
absorb the small equivalent class? We should not. A better solution is to allocate a small
number of tuples. For example, k-1 tuples from the large equivalent class are allocated
to merge with the small equivalent class. As a result, information in most tuples of the
larger equivalent class is preserved. the set of the tuples allocated in this way is called a
stub and the set of the remaining tuples is called a trunk.

Definition 11 (Stub and Trunk of Equivalent Class). Suppose a small equivalent
class E1 and a large equivalent class E2 are to be generalised for k-anonymity. If
|E1| < k and |E1|+ |E2| ≥ 2k, E2 is split into two parts, a stub and a trunk. The stub
contains (k − |E1|) tuples, and the trunk contains (|E1| + |E2| − k) tuples.

After this split, both the generalised equivalent class of E1 with the stub and the remain-
ing trunk of E2 satisfy k-anonymity property. The detailed information in the trunk is
preserved.
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After this definition, we calculate the distance between two equivalent classes E1

and E2, where |E1| < k, as follows.

– if (|E1| + |E2| < 2k), calculate normal as in Definition 10.
– if (|E1| + |E2| ≥ 2k), calculate the distance between E1 and the stub of E2.

The pseudo code of the proposed algorithm is presented in Algorithm 1.

Algorithm 1. K-Anonymisation by Clustering in Attribute hierarchies (KACA)
1: form equivalence classes from the data set
2: while there exists an equivalence class of size < k do
3: randomly choose an equivalence class C of size < k
4: evaluate the pairwise distance between C and all other equivalence classes
5: find the equivalence class C′ with the smallest distance to C
6: generalise the equivalence classes C and C′

7: end while

Line 1 forms equivalent classes. Sorting data in a certain order will speed up the
process. One tuple is also called an equivalent class. Normally, the number of equivalent
classes is significantly less than the number of tuples in the data set.

The generalisation process continues in lines 2-6 when there is one or more equiva-
lence classes whose size is smaller than k.

In each iteration, we randomly find an equivalence class C of size smaller than k in
line 3. Then, we calculate the pairwise distances between C and all other equivalence
classes in line 4. Line 5 finds the equivalence class C′ with the smallest distance. Line
6 generalises the equivalence classes C and C′.

The above process terminates when there is no equivalent class whose size is smaller
than k. The sizes of all equivalent classes are greater than or equal to k, and hence
k-anonymity is achieved.

All tuples are sorted and only O(n) passes is needed to find all equivalent classes.
The complexity of this step is O(nlog n). Let |E| be the number of equivalent classes in
line 2. Each iteration requires to choose an arbitrary equivalence class, which takes O(1)
time, evaluate the pairwise distance, which takes O(|E|) time, find the equivalence
class with the smallest distance, which takes O(|E|) time, and finally generalise the
equivalence class, which takes O(1) time. Thus, the runtime of an iteration is O(|E|).
As there are O(|E|) iterations, the overall runtime is O(nlog n + |E|2).

The above algorithm is easy to extend to handle outlier tuples, which are far away
from all other tuples, by setting a minimum distance threshold in line 6 to avoid large
distortions caused by generalising two distant equivalent classes. Outlier tuples are sup-
pressed instead of generalised. We did not do this in this algorithm since in the next
section we compare an optimal algorithm that does not suppress tuples.

6 Empirical Study

A Pentium IV 2.2GHz PC with 1GM RAM was used to conduct our experiments. The
algorithm was implemented in C/C++. In our experiments, we adopted the publicly avail-
able data set, Adult Database, from the UCIrvine Machine Learning Repository [7]. This
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Table 2. Description of Adult Data Set

Attribute Distinct Values Generalisations Height
1 Age 74 5-, 10-, 20-year ranges 4
2 Work Class 7 Taxonomy Tree 3
3 Education 16 Taxonomy Tree 4
4 Martial Status 7 Taxonomy Tree 3
5 Occupation 14 Taxonomy Tree 2
6 Race 5 Taxonomy Tree 2
7 Sex 2 Suppression 1
8 Native Country 41 Taxonomy Tree 3
9 Salary Class 2 Suppression 1

data set (5.5MB) was also adopted in [14,16,23,10]. We also used a configuration sim-
ilar to [14,16]. We eliminated the records with unknown values. The resulting data set
contains 45,222 tuples. Nine attributes were chosen as the quasi-identifier, as shown in
Table 2.

We evaluated the proposed algorithm in terms of two measurements: execution time
and distortion ratio. Let T be the original data set and T ′ be the data set generalised by
an algorithm. Let T ′′ be the fully generalised data set, where all attributes of all tuples
are generalised to the root of the hierarchy. Distortion ratio of a generalised data set T ′

is equal to the distortion of T ′ divided by the distortion of T ′′.
We conducted the experiments ten times and took the average execution time. We

compared our algorithm KACA proposed with the best-known global recoding based
algorithm Incognito [14].

We conducted the experiments with two types of distortion measures discussed in
Section 3 - uniform weight and height weight. Figure 2 shows the results with uniform
weight measurement.

(a) (b)

(c) (d)

Fig. 2. Execution Time and Distortion Ratio Versus Quasi-identifier Size (Uniform Weight) (k =
2 for (a) and (b) and k = 10 for (c) and (d))
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Figure 2 shows that the execution time of both algorithms increases with the quasi-
identifier size. On average, the execution time of the KACA algorithm is larger than
that of the Incognito algorithm.

The distortion ratio increases with the quasi-identifer size. This is because it is less
likely that two tuples in the original data set are equal to each other when the quasi-
identifier size is greater. Thus, a larger distortion is needed. The distortion ratio of the
KACA algorithm is 5.57 times lower than that of the Incognito algorithm on average.
This is because, as we discussed before, the global recoding algorithm (Incognito algo-
rithm) over-generalises the data set a lot while the KACA algorithm generalises the data
set less extent for k-anonymity. When k increases, the distortion ratio of all algorithms
increases. As we require more tuples to be identical for larger k, more distortions will
be generated for larger k.

We have also conducted the experiments with height weight measurement. For the
sake of space, we do not show the results as the results with height weight measurement
are similar to Figure 2.

7 Conclusions

In this paper, we study how to achieve k-anonymity by clustering in attribute hierar-
chies. We define two general metrics of the generalised data sets to measure the quality
of k-anonymisation. We define generalisation distances between tuples to characterise
distortions of generalisations and discuss the properties of the distances. We conclude
that the generalisation distance satisfies properties of metric distances. We propose an
efficient algorithm to achieve k-anonymity by clustering in attribute hierarchical struc-
tures. We experimentally show that the proposed method causes significantly less dis-
tortions than an optimal global recoding k-anonymity method. The distortion ratio of
our proposed algorithm is 5.57 times smaller on average.
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