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Abstract—Many data analysis tasks can be viewed as search or mining in a multidimensional space (MDS). In such MDSs,

dimensions capture potentially important factors for given applications, and cells represent combinations of values for the factors. To

systematically analyze data in MDS, an interesting notion, called “cubegrade” was recently introduced by Imielinski et al. [14], which

focuses on the notable changes in measures in MDS by comparing a cell (which we refer to as probe cell) with its gradient cells,

namely, its ancestors, descendants, and siblings. We call such queries gradient analysis queries (GQs). Since an MDS can contain

billions of cells, it is important to answer GQs efficiently. In this study, we focus on developing efficient methods for mining GQs

constrained by certain (weakly) antimonotone constraints. Instead of conducting an independent gradient-cell search once per probe

cell, which is inefficient due to much repeated work, we propose an efficient algorithm, LiveSet-Driven. This algorithm finds all good

gradient-probe cell pairs in one search pass. It utilizes measure-value analysis and dimension-match analysis in a set-oriented

manner, to achieve bidirectional pruning between the sets of hopeful probe cells and of hopeful gradient cells. Moreover, it adopts a

hypertree structure and an H-cubing method to compress data and to maximize sharing of computation. Our performance study shows

that this algorithm is efficient and scalable. In addition to data cubes, we extend our study to another important scenario: mining

constrained gradients in transactional databases where each item is associated with some measures such as price. Such transactional

databases can be viewed as sparse MDSs where items represent dimensions, although they have significantly different characteristics

than data cubes. We outline efficient mining methods for this problem in this paper.

Index Terms—Data cube, data mining, gradient analysis, iceberg query, antimonotonicity, dimension-based pruning, constraint-based

pruning, complex measures.
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1 INTRODUCTION

RECENTLY, there have been growing interests in multi-
dimensional analysis of relational databases, transac-

tional databases, and data warehouses. Most of such
analysis involve data cube-based summary or transaction-
based association analysis. However, in many interesting
applications, one may want to analyze the changes of
measures in multidimensional space. For example, one
may want to ask what are associated with significant
changes of the average house price in the Vancouver area in
2000 compared against 1999, and the answer could include
statements of the form “the average price for those sold to
professionals in the West End went down by 20 percent,
while those sold to business people in Metrotown went up
by 10 percent etc.” Expressions such as “professionals in the

West End” correspond to cells in data cubes and describe
sectors of the business modeled by the data cube.

The problem of mining changes of sophisticated measures in
a multidimensional space was first proposed by Imielinski
et al. [14] as a cubegrade problem, which can be viewed as a
generalization of association rules and data cubes. It studies
how changes in a set of measures (aggregates) of interest are
associated with changes in the underlying characteristics of
sectors, where changes in sector characteristics are ex-
pressed in terms of dimensions of the cube and are limited
to specialization (drill-down), generalization (roll-up), and
mutation (a change in one of the cube’s dimensions). For
example, one may want to ask “what kind of sector
characteristics are associated with major changes in average
house prices in the Vancouver area in 2000,” and the answer
will be pairs of sectors, associated with major changes in
average house prices, including, for example, “the sector of
professional buyers in the West End area of Vancouver”
versus “the sector of all buyers in the entire area of
Vancouver” as a specialization.

The cubegrade query is significantly more expressive
than association rules since it captures trends in data and
handles arbitrary measures, not just COUNT as association
rules do. The problem is interesting and has broad
applications, such as trend analysis, answering “what-if”
questions, discovering exceptions, or outliers. However, it
also poses serious challenges on both understandability of
results and computational efficiency and scalability, as
illustrated below:
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1. A data cube may have many dimensions. Even
though each dimension may involve only a small
number of values, the total number of cells of the
data cube may still be quite huge. For example, a
data cube with 20 dimensions, each containing
99 distinct values, has ð99þ 1Þ20 ¼ 1040 base and
high level cells. Even if there is only one nonempty
cell in every 1010 cells, the cube will still contain 1030

cells—too huge to be precomputed and stored with
reasonable resources. In a transactional database, if
we consider each item (such as milk or bread) as one
independent dimension, as in [14], we may need to
handle thousands of dimensions, and the curse of
dimensionality will be even worse than that of
classical data cubes which usually contain only
dozens of dimensions. An effective compromise to
this problem is to compute iceberg cubes instead of
the complete cubes [5]. To this end, we need to
introduce a significance constraint for pruning the
huge number of trivial cells in the answer set.

2. The cubegrade problem needs to compare each cell
in the cube with its associated cells generated by
specialization, generalization, and mutation. Even
when considering only iceberg cubes, it may still
generate a very large number of pairs. Since for each
analysis task a user is often interested in examining
only a small subset of cells in the cube, it is desirable
to enforce certain probe constraints to select a subset
of cells (called probe cells) from all the possible cells
as focus points for examination. Using such con-
straint, one is focused only on these cells and their
relationships with corresponding siblings, ancestors,
and descendants.

3. A user is usually interested in only certain types of
changes between the cells (sectors) under compar-
ison. For example, one may be interested in only
those cells whose average profit increases by more
than 40 percent compared to that of the probe cells.
Such changes can be specified as a threshold in the
form of ratio/difference between certain measure
values of the cells under comparison. We call the cell
that captures the change from the probe cell the
gradient cell, and call such constraints the gradient
(interestingness) constraints.

From this discussion, one can see that to mine interesting

gradients in a multidimensional space, it is often necessary

to have these three kinds of constraints:

1. significance constraint, which ensures that we pro-
duce only cells having certain statistical significance
in the data, such as those containing at least a certain
number of base cells or at least certain total sales;

2. probe constraint, which confines the probe cells that
our gradient analysis will focus on; and

3. gradient constraint, which specifies the user’s range of
interest on the gradient (i.e., measure change).

In this paper, we consider significance constraints that can

be specified using thresholds on measures and that are

antimonotone or weakly antimonotone (see Section 2), and

we restrict probe constraints to nonnested SQL queries.

Enforcing these constraints may lead to interesting, clearly
understandable answers as well as the possibility to derive
efficient methods for gradient analysis in a multidimen-
sional space. In this context, the problem of multidimen-
sional gradient analysis with such constraints represents a
confined but interesting version of the cubegrade problem,
which we call the constrained (multidimensional) gradient
analysis.

In this paper, we study efficient and scalable methods for
constrained gradient analysis in multidimensional space.
Our study is focused on mining constrained gradients in
data cubes. However, we will also examine how to extend
the method to mining constrained gradients in transactional
databases.

For mining constrained gradients in data cubes, we first
consider a naive approach which computes such gradients
by conducting a search, for the gradient cells, once per
probe cell.1 This approach is inefficient because there is a
large amount of repeated work for different probe cells. To
avoid this problem, we propose an efficient algorithm,
called the LiveSet-Driven algorithm, which utilizes con-
straints early on and during computation, for computing
pairs of cells. The algorithm first computes the set of
significant probe cells and then processes the potential
gradient cells from low-dimensional cells to high-dimen-
sional ones. The computation for a set of probe cells is
bundled together and the set of live probe cells is used for
pruning. We introduce a method to determine the optimal
set of probe cells that needs to be used for pruning a
potential gradient cell and its descendants, which takes into
consideration the dimensional relationship between cells
and the gradient constraint with respect to a set of probe
cells. Moreover, a compressed hypertree structure is used to
represent the base table of a data cube and an H-cubing
method is used to achieve “maximal” sharing of computa-
tion among different cells. Even though the naive algorithm
also prunes as much as possible, the LiveSet-Driven
algorithm is much better because it uses

1. set-oriented processing,
2. set-oriented pruning, and
3. a one-pass search for all probe-gradient pairs.

Our performance study shows that the LiveSet-Driven
algorithm makes good use of constraints and is efficient and
scalable for large data sets.

Finally, we extend our scope of study to efficient mining
of constrained gradients in transactional databases and
outlined a probe-based FP -growth method for constrained
gradient mining.

The rest of the paper is organized as follows: Section 2
defines the constrained gradient analysis problem and
presents an example. Section 3 presents the methods for
mining constrained gradients in data cubes, including the
LiveSet-Driven algorithm, which covers the techniques for
pruning probe cells and gradient cells. Section 4 reports the
results of our experiments and performance study. Section 5
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1. Since the gradient constraint is on pairs of cells whereas the significance
and probe constraints are on individual cells, we believe that the significance
and probe constraints combined are usually more restrictive than the
gradient constraint. So, we only consider approaches that first use the
significance and probe constraints to restrict the search space.



discusses variations of the method, extends our scope of
study to mining constrained gradients in transaction
databases, and compares with the related work. Finally,
we conclude our study in Section 6.

2 PROBLEM DEFINITION AND ASSUMPTIONS

Let D be a relational table, called the base table, of a given
cube. The set of all attributes A in D are partitioned into two
subsets, the dimensional attributes DIM and the measure
attributes M (so DIM [M ¼ A and DIM \M ¼ ;). The
measure attributes functionally depend on the dimensional
attributes in D and are defined in the context of data cube
using any of these five SQL aggregate functions: COUNT,
SUM, AVG, MAX, and MIN.

A tuple with schema A in a multidimensional space (i.e.,
in the context of data cube) is called a cell. Given three
distinct cells c1, c2, and c3, c1 is an ancestor of c2, and c2 a
descendant of c1 iff on every dimensional attribute, either c1
and c2 share the same value, or c1 has value “�” (where “�”
indicates “all,” i.e., aggregated to the highest level on this
dimension); c2 is a sibling of c3, and vice versa, iff c2 and c3
have identical values in all dimensions except one dimen-
sion in which neither has value “�.” A cell having k non �
values is called a k-d cell.

A tuple c 2 D is called a base cell. A base cell does not
have any descendant. A cell c is an aggregated cell iff it is
an ancestor of some base cell. For each aggregated cell c, its
values on the measure attributes are derived from the
complete set of descendant base cells of c.

As mentioned in Section 1, the specification of a
constrained gradient analysis problem requires three con-
straints: a significance constraint Csig, a probe constraint Cprb,
and a gradient constraint Cgrad. Both Csig and Cprb are unary
(defined over cells). A cell c is a significant cell iff
CsigðcÞ ¼ true, and a cell c is a probe cell iff c is significant
and CprbðcÞ ¼ true. The complete set of probe cells is
denoted as P.

Significance constraints are usually defined as threshold
conditions on measure attributes. These constraints do not
have to be antimonotonic2 and can be, for example, on a
measure defined by the AVG aggregate function. In [11],
methods for deriving weaker antimonotonic constraints3 from
nonantimonotonic constraints and for efficiently computing
iceberg cubes were discussed. We will use such weaker
antimonotonic constraints for pruning candidate cells.

We assume that a probe constraint is a one-level SQL
query (without nested query), which will “select” a set of
user-desired cells. The query can involve the dimensional
attributes as well as the measure attributes.

A gradient constraint is binary (defined over pairs of
cells). It has the form Cgradðcg; cpÞ � ðgðcg; cpÞ� vÞ, where � is
in f<;>;�;�g, v is a constant value and g is a gradient
function. gðcg; cpÞ is defined iff cg is either an ancestor, a

descendant, or a sibling of cp. A gradient cell cg is

interesting with respect to a probe cell cp 2 P iff cg is

significant and Cgradðcg; cpÞ ¼ true.
In this paper, we mainly consider gradient constraints

defined using the ratio of two measure values such as

“mðcgÞ=mðcpÞ� v,” wheremðcÞ is a measure value for a cell c.

Most of the results derived for ratio can be easily extended

to difference, “mðcgÞ �mðcpÞ� v” (see Section 5).
Problem definition. Given base table D, significance

constraint Csig, probe constraint Cprb, and gradient con-

straint Cgradðcg; cpÞ, the constrained gradient analysis

problem is: Find the complete set of all interesting

gradient-probe pairs ðcg; cpÞ such that Cgradðcg; cpÞ ¼ true.

Example 1 (Constrained average gradient). Let base table D
be a sales table with the schema

salesðyear; city; cust grp; prod grp; cnt; avg priceÞ:

Attributes year, city, cust grp, and prod grp are the

dimensional attributes; and cnt and avg price are the

measure attributes.
Table 1 shows a set of base and aggregated cells.

Tuple c1 2 D is a base cell, while tuple c2 is an aggregated
cell. Here, the value of cnt in an aggregated cell c is the
sum of the corresponding values in the complete set of
descendant base cells of c, and the value of avg price of c
is the average price of the complete set of descendant
base cells of c.

Tuple c3 is a sibling of c2, c4 is an ancestor of c2, and c1
is a descendent of c2.

Suppose the significance constraint is

Csig � ðcnt � 100Þ:

All cells (including base and aggregated ones) with cnt

no less than 100 are regarded as significant. Suppose the

probe constraint is

Cprb � ðcity ¼ V ancouver; cust grp ¼ Business;

prod grp ¼ �Þ:

The set of probe cells P contains the set of aggregated

tuples about the sales of the Business customer group in

Vancouver, for every product group, provided the cnt in

the tuple is greater than or equal to 100. It is easy to see

c2 2 P.
Let the gradient constraint be

Cgradðcg; cpÞ � ðavg priceðcgÞ=avg priceðcpÞ � 1:4Þ:

The constrained gradient analysis problem specified by

the three constraints is: Find all pairs ðcg; cpÞ, where cp is
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2. Antimonotonicity is very useful for pruning. It states that if a cell c does
not satisfy an antimonotonic constraint Csig, none of c’s descendants can do so. For
example, the constraint “count > 10” is antimonotone. Antimonotonicity-
based pruning forms the foundation for most algorithms for computing
iceberg cubes.

3. We will call those constraints from which one can derive weaker
antimonotone constraints the weakly antimonotone constraints.

TABLE 1
A Set of Base and Aggregated Cells



a probe cell in P, cg is a sibling, ancestor, or descendant
of cp, cg is a significant cell, and cg’s average price is at
least 40 percent more than cps.

If a data cube is completely materialized, that is, all the
aggregated cells are computed and stored without con-
sidering constraints, the query posed in Example 1 becomes
a relatively simple retrieval of the pairs of computed cells
that satisfy the constraints. Unfortunately, the number of
aggregated cells is often too huge to be precomputed and
stored. So, we assume only the base table is available. It is
our task to compute from it the gradient-probe pairs
efficiently.

To confine our discussion, we first develop efficient
methods for computing constrained average gradients, as
posed in Example 1 and then extend our scope to more
general cases in Section 5.

3 MINING CONSTRAINED GRADIENTS

IN DATA CUBES

In this section, we examine efficient methods for mining
constrained gradients in data cubes. First, we outline a
relatively rudimentary algorithm, All-Significant-Pairs, and
analyze its deficiencies. Then, we propose a better algo-
rithm, called LiveSet-Driven, which uses a set of relevant
probe cells, called LiveSet, to prune potential gradient cells
during iterative exploration. Moreover, an H-tree structure
is developed for efficient computation with minimal
replication of data. A rough analysis is given in the last
section to compare the runtime of the two algorithms.

As discussed in Section 1, we believe that it is often the
case that the significance and probe constraints combined
are more restrictive than the gradient constraint. So, we
only consider approaches that first use the significance and
probe constraints to restrict the search space.

3.1 A Rudimentary Approach: All-Significant-Pairs

Constrained gradients can be mined by a rudimentary
algorithm, called All-Significant-Pairs. It first computes
iceberg cube P consisting of all significant probe cells from
D using the significance constraint Csig and the probe
constraint Cprb, and then for each probe cell, cp 2 P,
computes the set of gradient cells from D by using the
gradient constraint Cgradðcg; cpÞ.

Both steps are carried out by using an efficient iceberg
method and they use the constraints to prune the search.
One can use efficient iceberg cube computation algorithm,
such as BUC [5] or H-cubing [11] (see brief descriptions in
Section 3.4). In our implementation, we used the latter
method. The computation in the first step should use the
significance constraint Csig and the probe constraint Cprb.

The computation in the second step uses the gradient
constraint Cgradðcg; cpÞ. Optimization can be explored to
prune the search for ancestors and/or descendants of a
probe cell cp based on the antimonotonic relationships
between them. If the gradient measure is an antimonotonic
function, such as count and sum of positive items, one can
explore the following property: If the measure m of a cell c is
no greater than � , none of c’s descendants can have the measurem
greater than � ; and if the measure m of a cell c is no less than � ,
none of c’s ancestor can have the measure m less than � . If the

gradient measure is not an antimonotonic function, such as
average and sum of positive or negative elements, one can
explore a weaker but antimonotonic constraint to prune its
ancestors and/or descendants. For example, for average,
one can explore the property of top-k average4 [11]: If the
top-k average of the base cells in a cell c is no greater than � , where
k is the significance constraint threshold value, then none of c’s
significant descendants can have the average value greater than
� . Similarly, one can derive many other interesting proper-
ties to facilitate pruning for constraints involving some
other complex measures.

Example 2 (All-Significant-Pairs). Let’s examine how to
perform constrained gradient analysis for the problem
specified in Example 1, using the All-Significant-Pairs
method.

First, we compute all the significant probe cells in
the data cube by applying an efficient iceberg cube
computation algorithm, such as H-cubing [11], for the
significance constraint Csig � ðcnt � 100Þ and the probe
constraint

Cprb � ðcity ¼ V ancouver; cust grp ¼Business;

prod grp ¼ �Þ:

This will yield a set of probe cells, e.g.,

c1 ¼ ð00; V ancouver; Business; PC; 300; $200Þ;

c2 ¼ ð�; V ancouver; Business; PC; 800; $1; 900Þ, and so
on. Let the set of significant probe cells be P.

For each probe cell, cp 2 P, we compute the set of
gradient cells by using the gradient constraintCgradðcg; cpÞ,
and performing possible pruning of ancestors and/or
descendants of the gradient cell currently under examina-
tion. The computation proceeds from top-level down (i.e.,
first computing high-level cells and then their descen-
dants). If a cell cg’s top-kaveragevalue

5 (wherek ¼ 100, the
minimum support threshold, i.e., significance constraint)
is no more than cp � 1:4, then cg and all of its descendants
can be pruned since none of them can satisfy the gradient
constraint.

The algorithm is summarized as follows.

Algorithm 1 (All-Significant-Pairs)

Input: A base relational table D, a significance constraint

Csig, a probe constraint Cprb, and a gradient

constraint Cgrad.

Output: The complete set of gradient-probe pairs in the

data cube derived from D that satisfy the three

constraints.
Method

1. Apply the iceberg cube computation algorithm

H-cubing, to compute the set P from D using

significance constraint Csig and the probe constraint

Cprb.
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4. For a multiset of values, we define its top-k average as the average of
the top-k values of the multiset. For example, the top-3 average of the
multiset f2; 4; 5; 5; 8g is 6. The top-k average for a cell is the top-k average of
the measure values in the cell.

5. The efficient computation of top-k average has been discussed in [11]
and will be detailed also in Section 4.



2. For each probe cell, cp 2 P, compute its ancestor,
descendant, and sibling cells based on the gradient

constraint, Cgradðcg; cpÞ. The computation is carried out

in a way similar to H-cubing, and the search for cp’s

descendants and ancestors can be pruned if cp does not

satisfy certain (transformed) constraints obtained from

Cgradðcg; cpÞ and cp’s measures.

This algorithm suffers from the following major defi-

ciency:

. The search for gradient cells is done in a one-search-
loop-per-probe-cell fashion. A huge amount of
repeated work is performed for probe cells which
are similar. It may involve computing the set of
gradient cells jPj times, where jPj is the number of
probe cells in P, which is costly.

Next, we will propose a better algorithm to overcome

these deficiencies.

3.2 The LiveSet-Driven Algorithm

To avoid the waste of resource for computing cells

unrelated to the probe cells, it could be more preferable to

first compute the set of iceberg probe cells P from D, using

both the probe and significance constraints. The second step

is to use the set of derived iceberg probe cells P to efficiently

constrain the search for interesting gradient-probe cell

pairs, using the gradient constraint. This is similar to the

golden rule of pushing selection deeply in relational query

processing. We aim to design such an algorithm, with the

additional bonus that, in the second step, the algorithm will

not check more significant cells than All-Significant-Pairs, it

will examine each significant cell only once (i.e., one pass),

and it will use the probe cells to constrain the search in an

“optimized” way.
To make the computation of the second step efficient,

several techniques are developed as outlined below:

1. Using sets of probe cells to constrain the processing.
To avoid the costly repetition of computation in the
All-Significant-Pairs algorithm, we propose to use
set-oriented processing and optimization. Roughly
speaking, we associate with each gradient cell the set
of all possible probe cells that might co-occur in
interesting gradient-probe pairs with some descen-
dants of the gradient cell and use that set to prune
future gradient cell search space.

2. Low-to-high dimension growth. The multidimen-
sional space should be explored in a progressive
and confined manner, using an “iceberg growth
approach”: Start at lower-dimensional cells and
proceed to higher-dimensional ones. This is advan-
tageous because there are usually a smaller number
of lower-dimensional cells than that of the higher-
dimensional ones. The antimonotonicity property of
significance constraints (or their weaker versions)
and the (transformed) gradient cell constraints can
be used to prune the remaining search space: If a k-d
cell fails to satisfy a constraint, so will all of its
descendants (higher-dimensional cells). All three
types of constraints, i.e., the probe, significance,

and gradient constraints, are used in this iceberg
growth process.

3. Dynamic pruning of probe cells during the growth.
During the dimension growth process, increasingly
more probe cells fail to be associated with the
higher-dimensional gradient cells due to dimension
value mismatch or the relevant measure value being
out of the gradient range. Thus, one can prune the
set of probe cells associated with the gradient cells in
the growth. The search terminates when either no
significant gradient cells can be generated or none of
the probe cells can proceed further. The pruning of
probe cells increases the power to prune gradient
cells.

4. Incorporation of compressed data structure, H-tree,
and efficient iceberg growth algorithm, H-cubing. For
efficient computation of iceberg cubes, we also
incorporate a compressed data structure, H-tree,
and extend an efficient iceberg growth algorithm, H-
cubing. This data structure and algorithm were
shown to be highly efficient for computing iceberg
cubes with complex measures [11]; they allow us to
do maximal sharing between cells in the computa-
tion. This further enhances the efficiency of con-
strained gradient analysis.

3.2.1 Pruning Gradient Cells and Probe Cells Using

Gradient Constraints

Suppose P, the set of probe cells, has been computed. The

next step in the computation is to determine which cell (as

gradient cell) should be associated with which probe cell to

produce valid gradient-probe pairs. The computation will

start from low dimensions and then proceed to higher

dimensions, in a depth-first manner. Information on low

dimension gradient cells will be used to prune higher

dimension cells.
To study how the pruning should be performed, we

need to introduce the concepts of LiveSet for probe cells

and potential cell for gradient cells.

Definition 1. The live set of a gradient cell cg, denoted as

LiveSetðcgÞ, is the set of probe cells cp such that it is possible

that ðcg0 ; cpÞ is an interesting gradient-probe pair, for some

descendant cell cg0 of cg.

It is clear that the smaller LiveSet is, the more gradient

cells can be pruned.
The determination of LiveSet involves the gradient

constraint and the matches between dimensions of gradient

and probe cells. This section only deals with the former and

the next section extends to deal with the latter.
Interestingly, pruning can be done in both directions

between LiveSetðcgÞ and cg:

1. Obviously, LiveSetðcgÞ can be used to determine if cg
and its descendants have the potential to be
interesting gradient cells with regard to (any probe
cell in) LiveSetðcgÞ; if not, cg can be pruned.

2. Information about cg can also be used to prune probe
cells cp in LiveSetðcgÞ. This involves checking
whether cg and its descendants have the potential
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to be interesting gradient cells with regard to cp. If
the answer is no, cp can be pruned from the
LiveSetðcgÞ.

We now make precise the meaning of “having potential

to be interesting gradient cells with regard to a set of probe

cells.”

Definition 2. Let cg be a gradient cell, Cp a set of probe cells, and

Cgrad the gradient constraint. We say cg and its descendants

have potential to be interesting gradient cells with regard to

Cp if the following is true:

1. If the gradient constraint is antimonotone (such as the
sum constraint), then Cgradðcg; cpÞ is satisfied for some
cp 2 Cp.

2. If the gradient constraint is not antimonotone, such as

ðavg priceðcgÞ=avg priceðcfÞ � vÞ;

then a transformed, weaker constraint can be poten-

tially satisfied for some cp 2 Cp, such as

ðavgk priceðcgÞ=avg priceðcpÞ � vÞ;

where avgk represents top-k average and k is the

minimum support threshold (i.e., significance con-

straint). Observe that the avgk constraint is a weaker

antimonotonic constraint constructed for the nonanti-

monotonic avg constraint.

We say a gradient cell cg is a potential cell, or has potential

to grow, if 1) cg is significant and 2) cg or its descendants

have potential to be interesting gradient cells with regard to

LiveSetðcgÞ.

Observations. Some nonantimonotonic constraint,

though itself cannot be used for pruning, can be trans-

formed into a weaker, antimonotonic constraint for prun-

ing. For item 2 above, we use avgk priceðcgÞ as an upper

estimate of avg priceðcg0 Þ for all significant descendant cells
cg0 of cg.

We illustrate these with an example.

Example 3. Using the schema of Example 1, suppose

Cgradðcg; cpÞ � ðavg priceðcgÞ=avg priceðcpÞ � 1:4Þ:

Assume the set of probe cells P has been derived using

some two constraints Csig and Cprb. Let cg be the 1-d cell

ð00; �; �; �Þ, which is assumed to be significant.
Suppose that, initially,6 LiveSetðcgÞ is the following

subset fcp1; cp2; cp3g of P, where

cp1 ¼ ð00; V ancouver; Business; �; 2; 800; $1; 500Þ;

cp2 ¼ ð99; Toronto; �; PC; 7; 900; $3; 000Þ;

cp3 ¼ ð00; Toronto; Education; PC; 450; $2; 000Þ:

We will illustrate with two scenarios.

1. Suppose avgk priceðcgÞ ¼ $2; 500. Since

avgk priceðcgÞ=avg priceðcp1Þ ¼ 2; 500=1; 500 > 1:4;

cg has potential to grow. However, because
2; 500=3; 000 < 2; 500=2; 000 < 1:4, cp2 and cp3 can
both be pruned from LiveSetðcgÞ.

2. Suppose avgk priceðcgÞ ¼ $2; 000. Since

avgk priceðcgÞ=avg priceðcpÞ < 1:4

for each cp 2 LiveSetðcgÞ, cg does not have
potential to grow, and can thus be pruned.

Let us consider how to use a set Cp of probe cells to
prune gradient cells, where avg priceðcpÞ is known for every
cp in Cp. Given a gradient cell cg, clearly it is not efficient to
check against all individual probe cells cp in LiveSet
whether the condition avgk priceðcgÞ=avg priceðcpÞ � 1:4
holds. Fortunately, one can derive an overall gradient cell
constraint for set Cp, CgcellðCpÞ, which specifies a range of
measure values (such as average prices) for cg and which
must be satisfied by a gradient cell cg if cg might co-occur in
interesting gradient-probe pairs with any probe cell in Cp. For
example, if the minimal avg_price for all cp 2 Cp is $1; 200,
then the (optimal) gradient cell constraint should be

CgcellðCpÞ � ðavg priceðcgÞ � $1; 680Þ:

Because avgkðcgÞ is an upper estimate of avgðc0Þ for all
significant descendant cell of cg, if avg

kðcgÞ cannot satisfy the
constraint avgkðcgÞ � $1; 680, then none of its descendants
can satisfy it either. So, cg can be pruned by such a gradient
constraint analysis.

In general, we have the following:

Property 1 (Gradient cell constraint for a set of probe
cells) . I f Cgrad � ðmðcgÞ=mðcpÞ� vÞ, where � i s in
f<;>;�;�g, v is a constant value, and mðcpÞ > 0, then the
gradient cell constraint corresponding to a set of probe cells Cp

is CgcellðCpÞ, where

CgcellðCpÞ �
mðcgÞ � v�minfmðcpÞjcp 2 Cpg if � 2 f>;�g
mðcgÞ � v�maxfmðcpÞjcp 2 CpÞ if � 2 f<;�g:

� ð1Þ

This property can be used to derive a gradient cell
constraint from a set of probe cells.

3.2.2 Pruning Probe Cells by Dimension Matching

Analysis

In the previous section, we described how to use the
gradient constraint to prune probe cells and gradient cells.
In this section, we describe what probe cells should be
associated with a gradient cell and how to prune the
associated probe cells when the processing goes from a
gradient cell to a descendant one; both will be from a
dimension-matching perspective.

The dimension matching analysis is made possible under
the assumption that we are only interested in gradient-
probe pairs involving ancestor-descendant, descendant-
ancestor, and sibling-sibling pairs.

Let cg be a gradient cell. Recall that LiveSetðcgÞ denotes
the set of probe cells cp such that it is possible that ðcg0 ; cpÞ is
an interesting gradient-probe pair for some descendant cell
cg0 of cg. Hence, from a dimensional perspective, a probe cell
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cp can be in LiveSetðcgÞ if 1) cp is an ancestor or descendant

of cg, or cg itself; or 2) cp is a sibling of some descendant of cg
or a sibling of cg. It turns out that these conditions can be

captured by a notion of “matchable,” defined next.
Let cp ¼ ðdt1; dt2; . . . ; dtmÞ be a probe cell and cg ¼

ðdg1; dg2; . . . ; dgmÞ be a gradient cell. The number of solid-

mismatches between the two cells cp and cg is the number of

dimensions in which both values are not � but are not

matched (i.e., of different values). The number of

�-mismatches between cp and cg is the number of

dimensions in which cp is �, but cg is not. (Observe that

the notion of �-mismatches is not symmetric and the cells are

playing certain roles.) A probe cell cp is matchable with a

gradient cell cg if either cg and cp have no solid-mismatch, or

they have exact one solid-mismatch but no �-mismatch.
We now give an example to illustrate the notion of

“matchability.”

Example 4. Consider the 4D probe cell cp ¼ ða; b; �; dÞ. cp is

matchable with its ancestor gradient cell cg1 ¼ ð�; �; �; dÞ
since cg1 contains neither �-mismatch nor solid-mismatch;

cp is matchable with its sibling cg2 ¼ ðf; b; �; dÞ since cg2
contains only one solid-mismatch but no �-mismatch; cp is

matchable with cg3 ¼ ð�; g; �; dÞ since cg3 contains one

solid-mismatch but no �-mismatch (observe that cg3 is a

sibling of a parent of cp); cp is matchable with

cg4 ¼ ða; �; c; dÞ, since cg4 contains no solid-mismatch

(observe that cp and cg4 have a common descendant,

ða; b; c; dÞ); and also cp is matchable with its descendant

cg5 ¼ ða; b; c; dÞ since cg5 contains only one �-mismatch.

However, it is not matchable with cg6 ¼ ð�; c; e; dÞ since cg6
contains one solid-mismatch and one �-mismatch.

Property 2 (Correctness of Dimension Analysis). cp is

matchable with cg iff cp is cg, an ancestor of cg, a descendant of

cg, or it is a sibling of cg or of some descendant of cg.

Rationale. For the “only if”: Suppose cp is matchable with
cg. Two cases arise:

1. cg and cp have no solid-mismatch. Let c0 be obtained by
taking the more specific value, for each dimension, from
cg and cp. (Non- � values are not comparable, and each
non- � value is more specific than the �value.) Then, c0
is a descendant of cg and c

0 is a descendant of cp. Hence,
cp is an ancestor of some descendant of cg. There are
special cases here: If c0 ¼ cg, then cp is an ancestor of cg;
if c0 ¼ cp ¼ cg, then cp is cg.

2. cg and cp have exactly one solid-mismatch but no
�-mismatch. Let c0 be obtained by taking the more
specific value, for each dimension, from cg and cp, except
that c0 takes the value of cg for the dimension of the solid-
mismatch. So, c0 is a descendant of cg. Since there is no
�-mismatch between cp and cg, each of the specific value
also occurs in cp. Clearly, cp and c

0 have exactly one solid-
mismatch, and so cp is a sibling of c

0. Observe that c0 can
be cg; in that case cp is a sibling of cg.

We omit the details of the “if.” The nontrivial cases are
illustrated in Example 4.

We now discuss how dimension analysis is used for

pruning LiveSet when the processing goes from a gradient

cell to a descendant one.

Property 3 (Relationship between Livesets of Ancestor-

Descendant Cells). Let cg1 and cg2 be two gradient cells such

that cg2 is a descendant of cg1. Then,

LiveSetðcg2Þ � LiveSetðcg1Þ:

Rationale. Let cp be a probe cell such that ðcg3; cpÞ might

exist as an interesting gradient-probe cell pair for some

descendant cell cg3 of cg2. Since cg3 is a descendant of cg1 as

well, the fact in the last statement implies that cp is also in

LiveSetðcg1Þ.
This property allows us to produce the LiveSet of a

descendant cell from that of the ancestor cell. To do that, we
simply do a dimension matching analysis, plus a gradient-
based pruning. We illustrate the dimension-matching based
pruning using the following example:

Example 5. Let cg1 ¼ ð�; �; c; �Þ be a gradient cell and let
cg2 ¼ ð�; b; c; �Þ, which is a descendant of cg1. Suppose

LiveSetðcg1Þ ¼fð�; �; �; �Þ; ða; b; c; �Þ; ð�; b1; c; �Þ; ða; b1; c; �Þ;
ð�; b1; c1; �Þg:

Then, LiveSetðcg2Þ ¼ fð�; �; �; �Þ, ða; b; c; �Þ, ð�; b1; c; �Þ,
ða; b1; c; �Þg, i.e., it is the result of pruning ð�; b1; c1; �Þ
from LiveSetðcg1Þ.
Notice that, if the expansions of gradient cells follow a

particular order (which is usually the case), then more
pruning of the probe cells can be done. For example, if the
dimensions are expanded from left to right, some descen-
dants of cg will be processed before cg is processed (observe
that the ancestor-descendant relationship is many-to-many).
For instance, for cg ¼ ða; �; c1; �Þ and cp ¼ ða; b; c2; �Þ, the only
descendant of cg which is a sibling of cp is ða; b; c1; �Þ, which
would have been processed earlier than cg in the depth-first
order and, thus, cp will not be counted in the LiveSet of cg. To
dealwith this issue algorithmically,we can call cg0 a depth-first
descendant7 of cg if cg0 is a descendant of cg and cg0 is processed
later than cg in the depth-first order. In the dimension-based
analysis, we just need to further restrict the LiveSet of a cell c
to those depth-first descendants of c.

In this study, we assume that the set of probe cells and,
hence, the LiveSet, is usually a small set, which can be
sorted in value ascending order according to certain
measure values (see the next section) to facilitate pruning
using gradient constraint. In case there is a large set, tree
structure or hash table can be adopted for fast accessing.

3.3 The LiveSet-Driven Algorithm

Based on the above discussion, the LiveSet-driven algorithm
is worked out for computing all the gradient-probe pairs
which satisfy all the constraints. We first give an informal
description using an example and then a formal algorithm.
Efficiency issues regarding the data structure (H-tree) and
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7. We can provide a syntactic definition of “depth-first descendant.” Let
cp ¼ ðp1; p2; . . . ; pmÞ and cd ¼ ðd1; d2; . . . ; dmÞ be two m-dimensional gradient
cells. Roughly speaking, cd is a depth-first descendant of cp if cd is an
expansion of cp on the left, i.e., if they have a common suffix and cd is the
result of instantiating some �s in the remainder of cp. Formally, cd is a depth-
first descendant of cp iff there exists an i such that 1 < i � m,
ðp1; p2; . . . ; piÞ ¼ ð�; �; . . . ; �Þ, piþ1 6¼ �, ðpiþ1; . . . ; pmÞ ¼ ðdiþ1; . . . ; dmÞ, and
ðdi; d2; . . . ; diÞ 6¼ ð�; �; . . . ; �Þ.



its manipulation (H-cubing) will be discussed in the next

section.
Our method starts with the 0D cell of the cube, carrying

the initial set of probe cells, P, as its LiveSet, and proceeds

to higher-dimensional gradient cells. Along the way, it uses

the given constraints to prune the gradient cells which

cannot satisfy the LiveSet, and to prune the cells in the

LiveSet which cannot pass either gradient constraints or

dimensional matching analysis. The processing along any

branch terminates when the LiveSet becomes empty, or

when the gradient cell has no potential to generate any

interesting pairs.
Let’s examine an example in more detail.

Example 6 (LiveSet-Driven). For the same base table

schema D in Example 1, we examine how to perform

constrained gradient analysis by the LiveSet-Driven

algorithm. Let the gradient constraint be

Cgradðcg; cpÞ � ðave priceðcgÞ=avg priceðcpÞ � 1:2Þ;

and the significance constraint be Csig � ðcnt � 100Þ.
Let the setP of probe cells be given in Table 2, sorted in

avg price ascending order. Notice this order is important
since once a probe cell in the table cannot satisfy the
gradient constraints, all the cells following it cannot satisfy
it either (since they carry an even larger measure value)
and, thus, can all be pruned immediately.

The set of all probe cells P is the initial LiveSet for
the 0D gradient cell c0 ¼ ð�; �; �; �Þ. Since 1; 500 is the
lowest avg price value among all current probe cells, it
is taken as the global gradient lower bound. Suppose
the top-100 average of the 0D cell c0 is 4; 000 and its
count is 50; 000. Then, c0 has potential to grow because
4; 000 � 1:2� 1; 500 ¼ 1800 and 50; 000 � 100. Now, the
top-100 average of c0 is used to prune the probe cells
to generate a tighter LiveSet for c0: Since the fourth
cell ð�; Edmonton; �; Ski; 2; 000; 10; 000Þ cannot satisfy
the gradient constraint due to 4; 000 < 1:2� 10; 000,
this cell and all probe cells with avg_price higher than
10; 000 in the LiveSet will be pruned. The actual
average value of c0 will decide which probe cell will
be paired with this cell to become an interesting
gradient-probe pair.

The computation then proceeds to process 1D cells,
2D cells, and so on, in a depth-first manner. To avoid
repetition, we now show how the processing is done for
a typical 3D cell.

Suppose the first three probe cells are all alive after
processing the 2D gradient cell c2 ¼ ð00; Toronto; �; �Þ,
and the processing goes from c2 to the 3D cell

c3 ¼ ð00; Toronto; �; PCÞ:

. We first prune the LiveSet of c2 using dimension-
ality matching with c3. The number of mis-
matches of each probe cell with regard to c3 is
presented in Table 3, where 1 indicates that there
is one solid mismatch, and 1� indicates that there
is one �-mismatch. Table 3 indicates that the first
two probe cells remain alive with respect to the
3D gradient cell c3.

. The actual average value of c3 decides which
probe cell should be paired with this cell to
become an interesting gradient-probe pair. If
avg priceðc3Þ ¼ 1; 850, then c3 and the first probe
cell form an interesting gradient-probe cell pair,
but not c3 and the second.

. This minimum average of the cells in LiveSet,
1,500, and the top-100 average of c3, will decide if
we will continue processing with the descendants
of c3. If the top-100 average of c3 is less than
1; 800 ¼ 1:2 � 1; 500, computation stops for this
branch. If the top-100 average of c3 is higher than
or equal to 1800 ¼ 1:2 � 1; 500, computation con-
tinues. Suppose the top-100 average of c3 is 1; 900.
Then, we go back to prune the current LiveSet of
c3. Because 1; 900 < 1; 800 � 1:2, we can indeed
prune the second probe cell, namely,

ð99; Toronto; �; PC; 4; 000; 1; 800Þ;

from the LiveSet.

In summary, we can see that the processing of a
gradient cell c involves these steps: Derive an initial
LiveSet from the LiveSet of the ancestor of the cell c,
using dimension matching. The necessary measures and
top-k average measures of c are computed, and checked
against the LiveSet for answers and to decide if
descendants of c may require processing. If processing
of descendants is needed, then we prune LiveSet using
the gradient constraint and the top-k average values.

We now present the LiveSet-Driven algorithm.

Algorithm 2 (LiveSet-Driven)

Input and Output: The same as that of Algorithm 1.

Method:

1. Apply an iceberg cube computation algorithm to
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compute the set of iceberg probe cells P from D using
significance constraint Csig and probe constraint Cprb.

2. Derive gradient cell constraint Cgcell for P.
3. Initialize the potential gradient cell to c ¼ ð�; . . . ; �Þ.

Initialize LiveSetðcÞ ¼ P.
4. Use a bottom-up, depth-first iceberg cubing method to

find all interesting gradient-probe pairs. In depth-first

processing, values in each dimension are ordered, and

the dimensions are also ordered. For every value in
each dimension do{

1. If c is significant, for each live probe cell cp in

LiveSetðcÞ, output the gradient-probe pair ðc; cpÞ
if the pair passes the gradient cell constraint.

2. Use the measure (or transformed measure such

as top-k) value of c to prune LiveSetðcÞ.
3. If LiveSetðcÞ is empty or c has no potential to

grow, terminate this branch and backtrack to
process the next cell according to the depth-first

order.

4. If c has potential to grow, expand it to the next

level, according to the depth-first order.

If a descendant cell c0 of c is processed from this

expansion, derive LiveSetðc0Þ from LiveSetðcÞ
using the matchability test.

}

3.4 H-Cubing: Efficient Data Storage and
Manipulation Via H-tree

As shown in [5], [11], bottom-up computation in cubes is

efficient because it allows us to use low-dimension cells to

prune high dimension cells. One important issue for

realizing this efficiency is how much data is to be copied

around and how much computation is to be shared. In this

section, we review the spirit of a hyper-tree (called H-tree)

structure and of an H-cubing algorithm, which allows us to

use “minimal” copying of data and “maximal” sharing of

computation. These tools have been useful for computing

iceberg queries [11] and constrained gradient analysis; we

believe that they will be useful for many other types of data

cube computations.
The back-bone structure of H-tree is a basic tree, which

gives a compressed representation of a base table. It uses

some auxiliary structures to store necessary information
that facilitates sharing of computation.

Roughly speaking, nodes in the hyper tree are labeled
by attribute values and prefix subpaths in the tree are
shared whenever possible. Auxiliary structures include
header tables, side-links, and quantitative information
(quant-info). Quant-info can be used to help incrementally
maintain the information needed for checking expensive
constraints, using their weaker versions (such as top-k
average). One design of quant-info for the top-k average
constraint is to use a small number of “bins” to estimate
safe lower bound of the top-k average value (more details
can be found in [11]).

We illustrate the tree using an example with a small base
table schema, ðcustomer-group;month; city; priceÞ. The hy-
per-tree for the four tuples of

t1 ¼ ðEducation; Jan; Toronto; 485Þ;
t2 ¼ ðHousehold; Jan; Toronto; 1; 200Þ;
t3 ¼ ðEducation; Jan; Toronto; 1; 280Þ;
t4 ¼ ðEducation;March; V ancouver; 520Þ;

inserted in this order, is shown in Fig. 1. The quant-info
shown is designed to deal with top-k average measures.

Definition 3 (H-tree). Given a base table T with attributes
A1; . . . ; Am;M, the H-tree is defined as follows:

1. Attributes A1; . . . ; Am are sorted in cardinality-
ascending order R : Aj1 ; . . . ; Ajm (to promote sharing,
since the number of values for an attribute is roughly
proportional to the number of nodes in the level for the
attribute).

2. H-tree has a root node labeled “null.” Every other
node in the tree is labeled by an attribute value. A
quant-info and a side-link can be attached to a node, if
necessary, as explained above.

3. H-tree has a header table H with three fields:
attribute-value, quant-info, and side-link. Each attri-
bute-value pair has one row in H; we omitted the
attributes in Fig. 1 for conciseness.

4. For each tuple t in table T , t is inserted into the tree as
follows:

a. A tuple t0 ¼ ðaj1 ; . . . ; ajm ; pÞ is derived by pro-
jecting t on attributes Aj1 ; . . . ; Ajm ;M.
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b. A path ROOT -aj1 - � � � -ajm is used to register
tuple t0. Its maximal prefix already existent in the
tree is used, and only the path or lower subpath
not existing in the tree is created.

c. Use p to update quant-info in item 1 the leaf node
of the path and item 2 the entries of aj1 ; . . . ; ajm in
the header table H.

5. All leaf nodes with a common label are linked together
as a queue by side-links. The side-link field of row for
ajm 2 Ajm in header tableH is the head of the queue for
ajm 2 Ajm .

The H-tree has several interesting properties which can

facilitate computation with a data cube. In particular, it can

be constructed by scanning the database only once, and,

because of sharing of paths, its size is usually very small. (In

fact, the actual size of the tree is notably smaller, as shown

by experimental results in Section 6 of [11].) Moreover, one

can easily reconstruct all the information of the original

table from the H-tree.
To obtain efficient sharing in carrying out data cube

computations, we associate multiple header tables with one

basic tree. Each header table will register the information

corresponding to the computation for a group of cells

(sharing some common structure). For example, in Fig. 2,

the header table on the left is associated with cells such as

ð�; �; TorontoÞ; . . . , and ð�; �;MontrealÞ, whereas the the

header table on the right is associated with the cells

ð�; Jan; TorontoÞ, ð�; Feb; TorontoÞ; . . . .
We first illustrate how computing is done using H-tree.

Suppose we wish to process the cell ð�; �; TorontoÞ. This can
be done using the H-tree of Fig. 1. The quant-info of the

H-tree tells us the top-k average and average of cells of the

form ð�; �; cÞ, for each city c. From the row Toronto in the

header table H in H-tree, we get the avgkðpriceÞ and

avgðpriceÞ for ð�; �; TorontoÞ.
We now discuss how “reuse” of computation is

achieved in H-cubing with H-tree. We first do this by

considering the processing of ð�; Jan; TorontoÞ, a descen-

dant of ð�; �; TorontoÞ. For this, we will create a new

header table, which we call HTToronto (Fig. 2) and the

associated side-links. These will contain information

about all paths of the tree related to city Toronto.

The side-link for Toronto in header table H links all paths
related to the city Toronto. By traversing the side-links only
once, we can

1. make a copy of quant-info in every leaf-node labeled
Toronto to its parent node in the tree,

2. build a new header table HToronto, which collects
quant-info for every attribute-value with regard to
city Toronto, and

3. link all parent nodes, of leaf-nodes labeled Toronto,
having identical labels.

The updated tree is shown in Fig. 2.
Observation: Every parent node of a leaf node labeled

Toronto in Fig. 2 has a copy of quant-info from its Toronto
leaf node. In the new header table HToronto, only attribute
values for dimension Customer group and Month are
needed. The quant-info in row Jan collects complete
quant-info for sales in January and Toronto.

We now illustrate how computation is reused by
considering the processing of ð�; Jan; �Þ, a descendant of
ð�; �; �Þ. This involves a “roll-up of the quant-info” to
dimension Month. Every leaf node in H-tree merges its
quant-info into that of its parent node. (Before accepting
quant-info from its children, a parent node resets its quant-
info.) All nodes labeled by a common month, no matter
what children they have, should be linked by side-links and
also linked to corresponding row in header table H.

As an optimization, if the quant-info in a child node
indicates that avgkðchildÞ passes the average measure
threshold, the parent node can be marked “top-k_OK”; only
sum and count information are collected for such nodes,
and no binning is needed, since they pass top-k average
checking already. In further quant-info rolling up, parent
nodes of nodes marked top-k_OK should also be similarly
marked.

Even though H-tree compresses a database, we do not
assume that an H-tree for an arbitrary database can always
be held in main memory. A discussion on how to address
the problem of handling large databases is given in [11].

3.5 A Rough Comparison of the Two Algorithms

Since the execution of the two algorithms depend on the
data and the parameter settings, it is hard, if not impossible,
to give closed formulas for their runtime. However, we are
able to offer a rough comparison of their runtime as follows.
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Observe that both algorithms use the H-cubing algo-
rithm, and the difference in performance is due to the one-
pass set-oriented processing and pruning of LiveSet-Driven
and the repeated computation of All-Significant-Pairs. Let P
denote the set of all probe cells to be considered. For each
probe cp in P, let CðcpÞ denote the set of all gradient cells that
are examined by the All-Significant-Pairs algorithm. Let C
denote the set of all gradient cells that are examined by the
LiveSet-Driven algorithm. Then, C should be equal to
[cp2PCðcpÞ. However, note that the All-Significant-Pairs
algorithm may examine each gradient cell a number of
times; let rp denote the average of these numbers. More-
over, note that the LiveSet-Driven algorithm incurs some
overhead in order to do the set-oriented processing and
pruning; let ovhd denote the average overhead for a
gradient cell. Then, we see that the runtime of LiveSet-
Driven is roughly ð1þ ovhdÞjCj, whereas the runtime of All-
Significant-Pairs is roughly rpjCj. Hence, the speedup by the
LiveSet-Driven algorithm is roughly rp

1þovhd . Our experiments
show that the speedup is usually approximately 10 fold.

4 PERFORMANCE ANALYSIS

In this section, we report our experimental results on
computing gradients in data cubes. The results show that
the LiveSet-Driven algorithm is scalable and much faster
than the All-Significant-Pairs algorithm.

As we will see soon, the speed up is roughly propor-
tional to the number of probe cells. As noted earlier, both
algorithms use the probe and significance constraints to
restrict the set of probe cells. The difference in their
execution times is due to the following reasons: The All-
Significant-Pairs algorithm does an independent search for
each probe cell. As a result, it leads to much “repeated
search” for different probe cells. On the other hand, the
LiveSet-Driven algorithm bundles the gradient-cell search
for all probe cells in one pass, and uses techniques for two-
way pruning (i.e., the pruning of probe cells using
information about a gradient cell under consideration and
the pruning of gradient cells using the set of probe cells).

All experiments were conducted on a PC with an Intel
Pentium III 700MHz CPU and 256Mmain memory, running
Microsoft Windows/NT. All programs were coded in
Microsoft Visual C++ 6.0.

The experiments were conducted on synthetic data sets
generated using the data generator described in [11].
Parameters for the generator include: the number n of
tuples in the base table, the number m of dimensions, the
cardinality of each dimension, m min and m max for the
range of the measure, a repeat factor � which dictates the
number of tuples to be generated based on some model
tuples with uniform distribution, and a noise factor in
percentages to represent the fraction of the n tuples to be
generated using a random distribution (to distort the repeat
factor). The generator uses randðÞ, a function which
generates numbers in the range of ½0; 1	 following uniform
distribution. It works by repeatedly adding r ¼ randðÞ � �
number of new tuples t01; � � � ; t0r, until we get enough tuples,
using steps (1-4) as follows:

1. Let Di1 ; . . . ; Did be d dimensions randomly picked
from D1; . . . ; Dm, where d ¼ randðÞ �m.

2. Let ai1 ; . . . ; aid be d values randomly picked from
dimensions Di1 ; . . . ; Did , to be used as the “repeat-
ing” values.

3. Let t0i½D‘	 ¼ a‘ for D‘ 2 fDi1 ; . . . ; Didg, and randomly
generate t0i½D‘	 for D‘ 62 fDi1 ; . . . ; Didg.

4. Randomly generate measure values of t01; � � � ; t0r, with
normal distribution with mean

c ¼ m minþ randðÞ � ðm max�m minÞ:

We conducted experiments on various synthetic data
sets generated by this generator. The results are similar.
Limited by space, except for performance with respect to
the number of tuples, we report here only results on some
typical data sets, with 10 dimensions and between 10,000-
20,000 tuples. The cardinality for every dimension is set to
10.8 The measures are in range of ½100; 1000	. The noise
factor is set to 20 percent and repeat factor is 200.

The first data set we used has 10,000 tuples. We tested
the scalability of the algorithms with respect to number of
probes in Fig. 3, significance threshold in Fig. 4, and
gradient threshold in Fig. 5.

Fig. 3 shows the scalability of the two algorithms, All-
Significant-Pairs and LiveSet-Driven, with respect to the
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8. The smaller the cardinality, the denser the data cube and, thus, the
larger number of cells satisfy the constraints.

Fig. 3. Scalability over number of probe cells. Fig. 4. Scalability with regard to significance threshold.



number of probe cells. We set the significance threshold to
10, the number of bins to 3 for top-k average, and the
gradient threshold is 2. The number of probes varies from 1
to 1; 000. When the number of probes is small, both
algorithms have similar performance. However, as the
number of probes grows, the pruning power of LiveSet-
Driven algorithm takes effect. In one pass, it combines the
searches for all probe cells and prunes unfruitful searches,
and so it keeps the runtime low. In contrast, the All-
Significant-Pairs algorithm does not scale well under large
number of probes because it does one independent search
for each probe cell.

Fig. 4 shows the scalability of both algorithms with
respect to the significance threshold. The gradient threshold
is set to 1:2, the number of bins to 3 and the number of
probes to 50. LiveSet-Driven achieves good scalability by
pruning many cells in the search whereas All-Significant-
Pairs checks a huge number of pairs of cells.

Fig. 5 shows the scalability of All-Significant-Pairs and
LiveSet-Driven with respect to various gradient thresholds.
We fixed the significance threshold to 10, number of bins to
3 and number of probes to 50. As the gradient threshold
decreases, the number of cells that All-Significant-Pairs
must check increases dramatically, and so does the runtime.

Fig. 6 shows a scaling-up experiment with respect to
various number of tuples, varying up to 20,000. We set the
significance threshold to 1 percent of the number of tuples,

the gradient threshold to 1:2, the number of bins to 3, and

the number of probes to 100. While both algorithms are

scalable, LiveSet-Driven naturally is more efficient.
We also analyzed the number of cells explored by each

algorithm during the mining process on a 10,000-tuple data

set with 50 probe cells. Fig. 7 presents the number of cells

that the two algorithms explored with respect to various

gradient thresholds. It confirms that LiveSet-Driven

achieves better pruning than All-Pairs. As shown in the

figure, LiveSet-Driven, on average, explores only about one-

tenth of the cells All-Significant-Pairs does. That explains

the difference of efficiency and scalability between the two

algorithms.
Similar statements can be made about Fig. 8, where the

significance threshold varies from 10 to 1; 000. LiveSet-

Driven explores substantially fewer cells than All-Signifi-

cant-Pairs does.

5 DISCUSSION

In this section, we examine various alternatives of con-

straints and gradients for gradient mining in data cubes,

extend our scope to mining constrained gradients in

transactional databases, and discuss the related work.
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Fig. 5. Scalability with regard to gradient threshold.

Fig. 6. Scalability with regard to number of tuples.

Fig. 7. Using gradient in pruning.

Fig. 8. Significance threshold and pruning.



5.1 Variations for Mining Constrained Gradients in
Data Cubes

The last two sections presented an efficient method for
mining constrained gradients in multidimensional space.
Here, we discuss possible extensions and refinements of the
method in various kinds of alternative situations, as
follows:

1. Finding constrained gradients among only ances-
tors, descendants, or siblings. Algorithm 2 (LiveSet-
Driven) searches for three kinds of relationships:
ancestors, descendants, and siblings, at the same time.
In some applications, people may be interested in
only one or two kinds but not all kinds. How should
we modify the algorithm to ensure efficient compu-
tation when we want to find only siblings, only
ancestors, or only descendants?

This can be easily addressed by modifying the
definition of LiveSet for potential gradient cells. For
each special case, we will remove more probe cells
than the general case in accordance with user-
restrictions on what cells are “comparable,” and
there is no need to change other parts of the
algorithm. As a result, the algorithm will be more
efficient.

Similar extensions can be worked out if a user
would like to find the constrained gradients only in
relevance to a small subset of dimension combinations,
such as fDi; . . . ; Djg in a data cube. In this case,
starting with the 0D cell, ð�; . . . ; �Þ, the set of (non � )
gradient cells to be considered and tested will be
confined to only those in a subset of dimensions
fDi; . . . ; Djg.

2. Findingmultidimensional gradients constrained by
an “interval.” Our algorithm searches for multi-
dimensional gradients by checking a single gradient
constraint, such as Cgradðcg; cpÞ � ðgðcg; cpÞ� vÞ, where
� is in f<;>;�;�g, v is a constant value, and g is a
gradient function. Inmany cases, the desired constraint
could be an interval, such as 1:4 � gðcg; cpÞ � 2:5. In
such cases, one canmodify the gradient testing part of
the algorithm by testing not only the lower bound on
the top-k average of the measure (i.e., no less than
1:4� avgðcpÞ), but also the upper bound on the
bottom-k average of the measure (i.e., no more than
2:5� avgðcpÞ). Clearly, the computation for the bot-
tom-k average will be similar to that for the top-k
average. Whether it is more efficient to prune the
search space using both upper and lower bounds or
using only one of themandpostponing the evaluation
of theother after the constraint evaluationwill depend
on the gradient constraint values and the data set.

3. Replacing ratio-based gradients by differences as
“gradient” constraint. Although our algorithm
handles ratio-based gradients, with some slight
modification, one can handle gradients defined with
differences. Suppose the new gradient constraint is

Cdif
gradðcg; cpÞ � ðavg priceðcgÞ � avg priceðcpÞ � 400Þ:

Let

Cdiv
gradðcg; cpÞ � ðavg priceðcgÞ=avg priceðcpÞ � 1:4Þ:

Basically, we will only need to change the
algorithm for Cdiv

grad by replacing 1:4 with 400, and
� with þ, respectively. For example,

avg priceðcgÞ � 1:4� avg priceðcpÞ

will be replaced by

avg priceðcgÞ � 400þ avg priceðcpÞ:

The algorithm and our previous discussion still
hold.

4. Finding similar (or stable) patterns, i.e., the
measures which are similar when some dimension
values change. “Similar” (or stable) can be defined
in one of the following two ways:

Csim1
grad ðcg; cpÞ � ðjavg priceðcgÞ � avg priceðcpÞj � 50Þ;

Csim2
grad ðcg; cpÞ � ðj1� avg priceðcgÞ=avg priceðcpÞj � 0:1Þ:

Observe that similar cells are expected to have
similar measure values. Hence, the number of
similar cells is normally large, and so most of the
pairs of similar cells will not be interesting. To find
interesting pairs, one should impose some other
constraints so that the uninteresting pairs are
eliminated. Our algorithm can be adapted to deal
with such constrained similar cell queries. (It may be
better to compute the nonconstrained similar cell
query as displayed above as a number of range
queries.)

5. What will happen if we replace avg by sum and
count? We have been using the measure “average”
in our gradient analysis because it is natural to
define interesting gradients as substantial changes
on the measure “average.” However, if we replace
avg by sum and count, an ancestor cell should
naturally have much bigger sum or count values
than its descendants. In this case, the simple gradient
definition, such as gðcg; cpÞ � v may not be so
interesting.

In this case, some “normalized” definition of
gradients will make more sense. For example, one
may compare the cells (siblings, ancestors, or
descendants) with only relatively comparable size
(i.e., containing almost the same number of cells), or
the expected values of sum/count based on the
proportional size (which is similar to average). Only
those which are substantially larger or smaller than
the expected values will be caught as “interesting”
cells. In this context, our algorithm can also be made
to work with minor modifications.

6. Other ways to define “comparable cells.” Our
discussion has been confined to finding large ratios
or differences among ancestors, descendants, and 1D
siblings. There could be many other ways to define
“comparable cells.” For example, one may want to
find comparable cells in 2-dimensional mutations, or
find groups of comparable cells with user-specified
explicit constraints. Some corresponding modifica-
tions of the definition and rules for derivation of
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LiveSet will make our algorithm adaptable to these
cases.

5.2 Mining Constrained Gradients in Transactional
Databases

We now examine how to extend our model to mining
constrained gradients in transactional databases. In com-
parison with mining transaction-based association rules [2],
[4], a distinct feature for mining constrained gradients is
that its measure is not confined to frequency counting (i.e.,
support) but extended to complex measures, such as sum of
the sales, average sales price, profit, and so on. Let’s
examine such an example.

Example 7 (Gradient mining in transactional databases).

Suppose a database in E-City stores a large set of
customer shopping history. Each tuple (representing
one customer) contains a set of items bought, together
with a sales price of each item. (See Table 4.)

An example constrained gradients query can be: find
situations where the average sales price of one kind of
product (such as digital camera) may be substantially
higher than that at some other situations. One may find
that the following relationships could be interesting: 1)
the average price of digital cameras sold is 20 percent
higher than usual when customer also bought (or will
buy) laptop pcs, and 2) the average price of color tvs sold
is 60 percent higher when customers also bought or will
buy dvd players in comparison with situations where
customers also bought or will buy repair kit.

In such a transactional database, the significance
constraint may correspond to the minimum number of
transactions containing the itemset under consideration,
the probe constraint can be user’s interest, which can be
single items, such as digital camera, or itemsets, such as
fcolor tv; dvd playerg, and the gradient constraint can be a
ratio such as � 1:2 (which means at least 20 percent
higher of one average sales price than the other). From
this point of view, one can see that the (constrained)
transaction gradient problem shares a lot of similarities
with the (constrained) cube gradient problem discussed
above.

Can we mine constrained gradients in a transaction
database using the same method as we developed for
mining constrained gradients in data cubes? In principle,
our model and algorithm developed for constrained
gradients in data cubes should be still applicable to mining
transaction-based gradients with complex measures. How-

ever, since a transaction database may contain a large

number of distinct items which may correspond to a huge

number of dimensions, and since a transaction usually

contains only a very small portion of possible items in a

transaction database (i.e., very sparse), a data cube-based

method may not lead to an efficient solution. Moreover, the

previously proposed H-tree structure is not appropriate for

storing and mining of such gradients due to the sparsity of

the data and the large number of dimensions.
To overcome this difficulty, we propose a probe-based

FP-growth method described below:

1. Scan the transaction database once to find frequent
single items and sort these single items in item-
frequency descending order to obtain an f_list.

2. For each probe itemset p, construct p’s FP-tree as
follows: For each transaction containing p, following
the f_list ordering, insert every frequent item i other
than p into the tree, and update the corresponding
node i by 1) incrementing the count and 2) adding
the current price to the sum of p’s sales. (Notice that
the sum of p’s sales of a new node is first initialized
to zero).

3. Call the FP-growth algorithm [12], or other similar
frequent pattern mining algorithms to calculate
count and sum of sales for itemsets in p’s FP-tree,
and print those whose both support and gradient are
no less than their corresponding thresholds.

Note: To ensure that we cover all ancestor-

descendant pairs of the desired probe itemsets, we

also build an FP-tree for each subset of each probe

itemset.
4. As an optimization, each node may store p’s count

and sum of sales partitioned according to their
price range in a few bins, in the same way as we
discussed before. Then top-k optimization can be
explored to prune the search, based on the
heuristic: If the top-k average of an itemset s is less
than avgðpÞ � gradient threshold, its projected data-
base will not need to be mined.

The correctness and efficiency of this method can be

easily verified in a similar way as we discussed in Section 3,

and will be left to interested readers as an exercise.

5.3 Related Work

The closest work related to our study on multidimensional

gradient analysis is that on the cubegrade problem by

Imielinski et al. [14]. A cubegrade query asks for associa-
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tion-type rules that describe changes in measure values
associated with changes in dimension descriptions of
cuboids. It deals with questions such as “what cube changes
are associated with significant measure changes.” Cube-
grade queries can also have constraints that restrict the
attributes in the gradient cells, other than those allowed by
roll-up, drill-down, and mutation. Our constrained gradient
analysis does not have user-defined constraints on gradient
cells. However, as shown in our discussion, they can be
easily dealt with by adding more power to prune LiveSet.
Thus, adding user-defined constraints will actually lead to
more efficient processing.

The main contributions of [14] are the cubegrade frame-
work and the proposed language. It considered a relati-
vized notion of monotonicity (with regard to a cube or a
constrained cube), the so-called structural monotonicity,
which can be tested quite efficiently. The evaluation
strategy proposed in that paper uses multiple loops: for
each probe cell, search through the entire space for potential
gradient cells. It will have a serious efficiency problem if we
generalize the notion of “comparable” cells as we discussed
above because the search space per probe cell will be large,
and this search will be repeated once per probe cell. While
constraints may have been used for pruning, the effect of
this pruning on efficiency is not clear in the paper.

In general, the proposed method in [14] is similar to our
all-significant-pairs approach (Algorithm 1). Based on our
performance analysis, our LiveSet-Drive method leads to a
more efficient solution. This is due to grouped processing of
live probe cells and pruning of search space by pushing
various kinds of constraints deeply.

There are also a few other studies on efficient exploration
of interesting cells in data cubes or interesting rules in
multidimensional space.

Reference [18] considers discovery-driven exploration of
OLAP data cubes. It computes anticipated values for a cell
using the neighborhood values of the cell and a cell is
considered an exception if its value is significantly different
from its anticipated value. This is rather different from what
has been studied in this paper where “interestingness” is
defined based on a user-specified gradient ratio in
relevance to the cell’s ancestors, descendants, and siblings.
Therefore, the computational methods adopted in two
studies are rather different. The former ([18]) is based on
the statistical analysis of neighborhood values of a cell to
determine whether it is an exception; whereas the latter (our
study) is cube-based computation of constrained gradients.
Also, the former is on interactive exploration of computed

cube cells; whereas the latter is on computing (nonmater-
ialized) cells (more exactly, pairs of cells) satisfying certain
constraints. Both definitions may find their corresponding
applications. It is an interesting issue to see whether our
computation can be used as a filtering process and feed the
results into the statistical analysis of neighborhood cells to
reduce the overall processing cost of discovery-driven
exploration of OLAP data cubes.

More recently, [19] considered the so-called “intelligent
rollup” operation on datacubes, which allows an analyst to
discover the most specific generalizations of a pair of cells

with some interesting properties. The approaches proposed
by the authors are different from ours.

Dong and Li [7] consider the mining of the so-called
emerging patterns, patterns whose frequency change ratio
between two datasets is larger than a certain threshold. In a
data cube environment, two base tables are first extracted
from the base data cube, one with base cells satisfying one
property and the other with base cells satisfying another
property. Emerging patterns are then the aggregated cells
where the measure changes significantly between the two
corresponding data cubes. Notice, unlike the model con-
structed in our study, the method developed in [7] cannot
handle arbitrary measures, such as avg. It is still a research
issue on how to efficiently compute such complex gradients
in an association mining environment.

Aumann and Lindell [3] consider how statistics (a
measure) of one group of tuples differs from the same
measure of a supergroup. It shows that, by adopting such
difference or ratio measure, the number of association rules
can be reduced substantially and only the interesting rules
are preserved. While this shares a similar motivation as our
study, our study provides a general mechanism to specify
constraints and any kind of measures and/or gradients in
relevance to ancestors, descendants, and sibling, and, thus,
provides a more general model and an efficient constraint-
pushing and computation method. We believe our method
can serve as an efficient preprocessing step for subsequent
statistical studies on mined interesting gradients or rules.

Our study is also closely related to 1) data cube and
iceberg cube computation methods proposed in previous
studies, such as [13], [1], [21], [6], [8], [9], [17], [5], [11], as
well as 2) constraint-based data mining methods, such as
[20], [15], [10], [16]. This study can be considered as 1) an
extension of data cube computation to mining interesting
gradients and 2) an extension of constraint-based mining
toward mining constrained gradients in data cubes. Thus, it
is an extension and integration of both mechanisms toward
efficient, multidimensional, constrained gradient analysis.

6 CONCLUSIONS

In this paper, we have studied issues and methods on
efficient mining of multidimensional, constrained gradients
in data cubes. Constrained gradients are substantial
changes in a set of measures (aggregates) of interest
associated with the changes in the underlying character-
istics of cube cells, where changes in characteristics are
expressed in terms of the dimensions and are limited to
specialization, generalization, and 1D mutation. To ensure
only interesting changes of relevant cells are studied, we
show that it is necessary to introduce three kinds of
constraints: significance constraints, probe constraints, and
gradient constraints.

An efficient algorithm, LiveSet-driven, has been devel-
oped which explores set-oriented processing and the max-
imal pushing of the constraints as deeply as possible in the
early stage of the mining process to prune the search space.
Moreover, we also adopt a compressed hyper-tree structure
to represent the base table of a data cube, and to achieve
“maximal” sharing of computation among different cells.
Our performance study shows that this method is efficient
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and scalable. It outperforms another method which relies on
the iceberg cube computation of all-significant-pairs.

Furthermore, we have briefly introduced the mining of
constrained gradients in transaction databases, as well as a
few alternatives in gradient mining. The integration of
constrained gradient mining with discovery-driven ex-
ploration of data cubes [18] is an interesting issue for future
research.
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