
A General Model for Online Analytical
Processing of Complex Data

Jian Pei

Department of Computer Science and Engineering
State University of New York at Buffalo

Buffalo, NY 14260-2000, USA
jianpei@cse.buffalo.edu

http://www.cse.buffalo.edu/faculty/jianpei

Abstract. It has been well recognized that online analytical process-
ing (OLAP) can provide important insights into huge archives of data.
While the conventional OLAP model is capable of analyzing relational
business data, it often cannot fit many kinds of complex data in emerging
applications, such as bio-medical data, time series and semi-structured
data.
In this paper, we propose GOLAP, a general OLAP model. We show
that GOLAP is consistent with the conventional OLAP model on multi-
dimensional databases. Moreover, we show that the model can be applied
to complex data as well. As an example, we illustrate a research prototype
system, GeneXplorer, which enables OLAP over gene expression data.

1 Introduction

It has been well recognized that online analytical processing (OLAP) is an essen-
tial data analysis service and can provide critical insights into huge archives of
application data. In contrast to online transactional processing (OLTP), OLAP
supports queries about multi-dimensional, multi-level aggregates and summa-
rizations of the data. Moreover, the users are enabled to browse the summa-
rizations of the data at various granularities to identify trends, exceptions and
interesting regions.

While many previous studies on efficient and effective OLAP over relational
business data (e.g., [8,18,27,26,19,2,4,7,12,9,28,25,23,20]), few of them systemat-
ically studies how to extend the OLAP model to handle complex data, such as
bio-medical data, time series and semi-structured data. To motivate the study
and appreciate the challenges, let us look at the problems in OLAP of gene
expression data.

Recently, the DNA microarray technology enables simultaneously monitoring
the expression levels of thousands of genes during important biological processes
and cross collections of related samples. Figure 1 shows the typical structure
of microarray gene expression data. Usually, a row in the matrices represents
a gene and a column represents a sample or condition. The numeric value in

I.-Y. Song et al. (Eds.): ER 2003, LNCS 2813, pp. 321–334, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

http://www.cse.buffalo.edu/faculty/jianpei

322 J. Pei

nmw

gene

sample/condition

w
11w

21w

31w

n1w

12w

32w
22w

n2w

1mw

3mw
2m

Fig. 1. A gene expression matrix.

each cell characterizes the expression level of a specific gene in a particular
sample/condition.

Many previous studies have highlighted the importance of online analysis of
gene expression data in bio-medical applications. As more and more gene expres-
sion data are accumulated, in addition to analyzing individual genes and sam-
ples/conditions, it is important to answer analytical queries about various “sum-
marizations” over the gene expression data, e.g., the patterns and the trends.
For example, in a gene expression database, with a new gene expression data
sample, an analyst may want an online answer to the query “with respect to the
samples in the database whose gene expressions are similar to the new sample,
what are the major patterns?” This is a typical online analytical query.

Most of the previous studies on analysis of gene expression data focus on
techniques of answering some specific queries, such as similarity search, align-
ments and clustering. However, there does not exist a general model in which the
summarization-oriented OLAP queries can be specified and answered effectively.

Can we extend OLAP to handle complex data? While many algorithms for
various analyses are available, the core problem is to develop a general conceptual
model such that OLAP of complex data can be specified and evaluated effectively.

In this paper, we study the general model for OLAP of complex data. We
make the following contributions.

– We illustrate that the conventional OLAP model does not work well for
complex data. A typical example, the processing of gene expression data, is
shown. It motivates our proposal of a new model.

– A general OLAP model, GOLAP, is proposed. We show that the model is a
generalization of the conventional OLAP model.

– We elaborate how the GOLAP model can handle complex data.
– As an application, we demonstrate an OLAP system for gene expression data

based on the GOLAP model. It shows that our model is effective.

The remainder of the paper is organized as follows. Section 2 introduces
the preliminaries and motivates our study by showing the problems of the con-
ventional OLAP model on complex data. Our GOLAP model is developed in

A General Model for Online Analytical Processing of Complex Data 323

Store Product Season Sale

S1 P1 Spring 6
S1 P2 Spring 12
S2 P1 Fall 9

Fig. 2. Base table sales for a data warehouse.

Section 3. It is shown that GOLAP is compatible to the conventional OLAP
model on multidimensional databases. In Section 4, we present how to apply
GOLAP to complex data and use time series gene expression data as an exam-
ple. GeneXplorer, a research prototype OLAP system for gene expression data
based on the GOLAP model, is also demonstrated. Section 5 discusses related
work. The paper is concluded in Section 6.

2 Preliminaries and Motivations

In this section, we first revisit the conventional OLAP model briefly. Then, using
gene expression data as an example, we illustrate why the conventional model
cannot support effective OLAP over complex data.

2.1 OLAP Operations in the Multidimensional Data Model

For the sake of simplicity, we illustrate the ideas of OLAP using the following
example.

Suppose that, in a marketing management department, data are collected
under the schema sales(Store, Product, Season, Sale). The base table,
which holds the sales records, is shown in Figure 2. Attributes Store, Product
and Season are called dimension attributes (or dimensions in short), while
attribute Sale is called a measure attribute (or a measure in short).

A data cube [10,11] grouped by dimensions Store, Product and Season
using an aggregate function (AVG(Sale) in this example) is the set of results
returned from the 8 group-by queries with each dimension subset of {Store,
Product, Season} forming the group-by. Each group-by corresponds to a set of
cells, described as tuples over the group-by dimensions, identifying those tuples
in the base table sales that match the conditions. The tuples in the data cube
CubeSales is shown in Figure 3(a). Here, symbol “∗” in a dimension means that
the dimension is generalized such that it matches any value in the domain of
this dimension.

As shown, a data cube is the n-dimensional generalization of the group-by
operator. It computes group-bys corresponding to all possible combinations of a
set of dimensions. A record in a data cube is also called an aggregate cell.

Two basic OLAP operations are roll up and its dual, drill down. A cell c1 is
rolled up from cell c2, and c2 is drilled down from cell c1, if c1 generalizes c2 in
some dimensions, that is, in all dimensions where c1 and c2 have different values,
c1 has values “∗”. In other words, cell c2 is a contributor to the aggregate of cell

324 J. Pei

Store Product Season AVG(Sales)

S1 P1 Spring 6
S1 P2 Spring 12
S2 P1 Fall 9
S1 ∗ Spring 9
S1 P1 ∗ 6
∗ P1 Spring 6

.
∗ ∗ Fall 9
S2 ∗ ∗ 9
∗ ∗ ∗ 9

(S1,*,s):9 (S1,P1,*):6 (*,P1,s):6 (S1,P2,*):12 (*,P2,s):12 (S2,*,f):9 (S2,P1,*):9 (*,P1,f):9

(S1,P1,s):6 (S1,P2,s):12 (S2,P1,f):9

(S1,*,*):9 (*,*,s):9 (*,P2,*):12(*,P1,*):7.5 (*,*,f):9 (S2,*,*):9

(*,*,*):9

(a) Cells in data cube CubeSales. (b) The lattice of cells.

Fig. 3. Data cube CubeSales

c1. For example, in the data cube in Figure 3(a), cell (S1, ∗, Spring) is a roll-up
from cell (S1, P1, Spring), and the latter cell is a drill-down to the former one.
Cell (S1, ∗, Spring) represents a higher level aggregate (i.e., the sales of ALL
products in store S1 and in the spring) than cell (S1, P1, Spring) does (i.e, the
sales of product P1 in store S1 and in the spring).

All cells in a data cube form a lattice according to the roll-up/drill-down
relation. Figure 3(b) shows the lattice for the data cube cells in Figure 3(a),
while the top element, false, is not shown. Conceptually, OLAP provides a set
of operations in the data cube space.

In addition to roll up and drill down, some other OLAP operations can be
defined. For example, the slice operation performs a selection on one dimension
of the data cube, and thus returns a sub-cube. The dice operation defines a
sub-cube by selections on multiple dimensions, i.e., a composition of a set of
slice operations. Pivot (also known as rotate) is a visualization operation that
rotates the data axes in the presentation.

2.2 Challenges in OLAP of Complex Data

To examine the challenges in OLAP on complex data, let us consider an example:
OLAP on gene expression data. As shown in Figure 1, gene expression data are
in the form of matrices. Can we treat a gene expression matrix with n genes and
m conditions as a base table with n records and m dimensions or vice versa so
that the conventional OLAP operations can be applied? Unfortunately, such a
näıve extension is unacceptable in both syntax and semantics.

In syntax, it is hard to define the measure and the aggregate function for
gene expression matrices if the columns and the rows are treated as dimensions
and tuples, respectively. Unlike the analysis of business data, where the common
numeric aggregate functions (e.g., SUM, MAX, MIN and AVG) work well, the analysis
of gene expression data often looks at the patterns, i.e., the common features
approximately shared by similar genes or samples/conditions. There is no appro-

A General Model for Online Analytical Processing of Complex Data 325

priate measure existing in the matrix. The numerical aggregate functions may
not make sense in practice.

In semantics, the brute-force extension of roll up and drill down operation
is meaningless in analyzing gene expression data. For example, suppose we take
the samples/conditions as dimensions. Then, a roll up operation removes one or
more samples/conditions from our analysis. The samples/conditions cannot be
generalized. Similar problems exist if genes are treated as dimensions. That is,
semantically, treating genes or samples/conditions as dimensions cannot achieve
meaningful summarization of the data.

Similar problems exist in OLAP over other kinds of complex data, such as
sequences, time series and semi-structured data. To make the situation even
more challenging, in some kinds of data, such as semi-structured data, there can
be even no explicitly existing dimension at all.

To conduct effective OLAP over complex data, we need to design a meaning-
ful model. Based on the above analysis, we can obtain the following observations.

– There are two major issues in defining an OLAP model. On the one hand, it
is essential to define how to partition the data into summarization units at
various levels. On the other hand, it is critical to define how to summarize
the data.

– The summarization units for OLAP should yield to some nice hierarchical
structure, such as a lattice. That may facilitate the generation of concept
hierarchies from OLAP analysis, and also support the users to browse the
semantic summarizations of the data at various levels.

3 GOLAP: A General OLAP Model

In this section, we develop GOLAP, a general model for OLAP. We show that
the model is a generalization of the conventional OLAP model.

3.1 The GOLAP Model

Let D be the space of data objects. A base database B ⊆ D is a set of data
objects on which the OLAP is conducted. The concept of base database is the
generalization of base table in the conventional model. In OLAP, we partition
the objects in a base database into groups such that each group is a unit for
summarization and all the groups form a hierarchy. The idea is formulated as
follows.

Definition 1 (Grouping function). A grouping function is a function g :
2D ×2D → 2D. Given a base database B and a set of query objects Q (i.e., the
set of objects need to be summarized) such that Q ⊆ B, g(Q, B) is the subset
of objects in B such that g(Q, B) is the smallest summarization unit containing
Q. g(Q, B) is undefined for Q �⊆ B. A grouping function g should satisfy the
following requirements.

326 J. Pei

1. Containment. For any sets of objects B and Q, Q ⊆ g(B, Q) ⊆ B. In
words, the summarization unit should contain all query objects, and be in
the base database B.

2. Monotonicity. For any sets of objects B, Q1 and Q2 such that Q1 ⊆
Q2 ⊆ B, g(B, Q1) ⊆ g(B, Q2). In words, a larger query set needs a larger
summarization unit.

3. Closure. For any sets of objects B and Q such that Q ⊆ B, g(B, Q) =
g(B, g(B, Q)). In words, a summarization unit is self-closed.

A grouping function defines how data objects should be partitioned. Based
on a grouping function, we can partition a base database into classes.

Definition 2 (Class). Given a grouping function g and a base database B. A
subset of objects S ⊆ B is said a class if g(B, S) = S.

In words, we use the closure of g (with respect to a given base database B)
to define classes, the summarization units. We have the following result.

Theorem 1. Given a base database B and a grouping function g. Let C be the
set of classes with respect to B and g. Then, (C,⊆) is a lattice.
Proof sketch. The theorem follows the facts (1) g(B, B) = B and g(B, ∅) are
the top and the bottom elements of the lattice, respectively1; and (2) lattice
(C,⊆) is a quotient lattice of (2B ,⊆).

Moreover, we define a member function member : C → 2D with respect to
a lattice of classes as follows. Given a class c ∈ C, where C is the set of classes
with respect to a base database B and a grouping function g, member(c) returns
the complete set of objects of class c in the base database.

So far, we define how to partition the data objects into summarization units
(i.e., classes) and the summarization units yield to a nice hierarchical structure,
a lattice. Now, we formalize the summarization of a set of data objects.

Definition 3 (Summarization function). Let M be the domain of summary
over sets of objects. A summarization function is f : D → M . In words, a
summarization function returns a summary for a set of data objects.

Now, we are ready to define the OLAP operations in our model.

Definition 4 (OLAP operations). Given a base database B, a grouping func-
tion g and a summarization function f . Let C be the set of classes. There are
three basic OLAP operations in the GOLAP model.

– Summarize. A summarize operation takes a set of objects Q as input and
returns a duple

(g(B, Q), f(g(B, Q)).

That is, it returns the smallest class containing Q and the summary of the
class.

1 Please note that, in general, it is unnecessary g(B, ∅) = ∅.

A General Model for Online Analytical Processing of Complex Data 327

– Roll up. A roll up operation takes a class c and a set of objects Q as
parameters, and returns a duple

(g(B, member(c) ∪ Q), f(g(B, member(c) ∪ Q))).

That is, a roll up operation starts from a class c and returns the smallest
class summarizing both the objects in class c and the objects in Q.

– Drill down. A drill down operation takes a class c and a set of objects Q
as parameters, and returns

(g(B, member(c) − Q), f(g(B, member(c) − Q))).

That is, a drill down operation starts from a class c and returns the smallest
class summarizing only the object in c but not in Q.

Based on the above, we have the GOLAP model and the corresponding data
warehouse.

Definition 5 (GOLAP and G-warehouse model). Given a data object
space D, (g, f) is a GOLAP model in D if g and f are a grouping function
and a summarization function, respectively.

In a data object space D, given a GOLAP model (g, f), W = {(c, f(c))|c ∈ C}
is said the general data warehouse, or G-warehouse in short, with respect
to a base database B, where C is the complete set of classes with respect to g
and B.

As can be seen, the essentials for a GOLAP model is the grouping function
and the summarization function. Moreover, the classes with respect to a grouping
function and a base database form a lattice. These properties are intuitive and
consistent to our observations in Section 2.2.

Moreover, the GOLAP model has the following nice property: the product
of two GOLAP models is still a GOLAP model, as stated below.

Theorem 2 (Product of GOLAP models). Let (g1, f1) and (g2, f2) be two
GOLAP models on data space D1 and D2, respectively. Then, ((g1, g2), (f1, f2))
is a GOLAP model on data space D1 × D2.
Proof sketch. The proof follows the corresponding definitions. To illustrate the
correctness, let us consider joining two base tables and the corresponding data
cube lattices. Clearly, the product of the lattices is still a cube lattice on the
joined table.

Theorem 2 is essential in GOLAP model. It indicates that we can construct
advanced OLAP model from simple ones. Moreover, it provides an approach to
achieve integration of multiple OLAP models and data warehouses.

3.2 Applying the GOLAP Model to Multi-dimensional Databases

In this section, we apply the GOLAP model to multi-dimensional databases to
check whether it is consistent with the conventional OLAP model.

328 J. Pei

Let D = (D1, . . . , Dn, M) be the schema of a base table as defined in Sec-
tion 2.1. D is also the space of the tuples.

First, we define the summarization function fr as follows. Given an aggregate
function aggr over domain M . For any set of tuples T , let VT = {t.M |t ∈ T} be
the multiple set (i.e., a bag) containing all the measure values in T . We define
fr(T) = aggr(VT).

Then, the grouping function can be defined as follows. Given any tuples tx =
(x1, . . . , xn, mx) and ty = (y1, . . . , yn, my). We define tx ∧ ty = (z1, . . . , zn, mz)
such that mz = aggr(mx, my) and, for (1 ≤ i ≤ n), zi = xi if xi = yi, otherwise,
zi = ∗.

Given a base database (i.e., the base table) B and a set of query tuples Q.
Let t = (x1, . . . , xn, m) =

∧
tj∈Q tj , and xi1 , . . . , xik

are those dimension values
not equaling to ∗. Then, gr(B, Q) is defined as the result of the following query
in SQL.

SELECT D1, . . . , Dn, M
FROM B
WHERE Di1 = xi1 AND . . . AND Dik

= xik

It is easy to show that gr is a grouping function. That is, gr satisfies the
requirements of containment, monotonicity and closure in Definition 1.

Clearly, the GOLAP model (gr, fr) is consistent with the conventional OLAP
model for multi-dimensional databases, as illustrated in Section 2.1. A data
warehouse is the materialization of the classes descriptions and their summary
(i.e., aggregate measures).

4 Applying GOLAP on Complex Data

In Section 3, we developed GOLAP, a general OLAP model. It is a generalization
of the conventional OLAP model. Now, the problem becomes how the GOLAP
model can be applied to complex data.

4.1 GOLAP Based on Hierarchical Clustering

The key of applying GOLAP to complex data is to find appropriate grouping
functions and summarization functions. The general idea is that we can define
such functions based on hierarchical clustering of the data objects. Here, the term
clustering refers to the methods partitioning the data objects into clusters as
well as to the set of all clusters, while the term cluster refers to a specific group
of data objects.

Given D, the space of the data objects. Let CL be a hierarchical clustering
of data objects. For any base database B containing a set of objects, CL(B) is
a hierarchy of clusters such that

A General Model for Online Analytical Processing of Complex Data 329

1. each cluster is a subset of objects in B;
2. the hierarchy covers every object in B, i.e., each object appears in at least

one cluster;
3. the base database B itself is a cluster in the hierarchy;
4. the ancestor/descendant relation in the hierarchy is based on the contain-

ment of the sets of objects in the clusters; and
5. for any two clusters c1 and c2, if c1 �= c2 and c1 ∩ c2 �= ∅, then c1 ∩ c2 is a

cluster.

Then, a grouping function gc can be defined as follows. Given a base database
B and a set of query objects Q, gc(B, Q) returns the smallest cluster c in CL(B)
such that Q ∈ c. It can be shown that gc is a grouping function as defined in
Definition 1.

Please note that not every clustering satisfies the above condition. For ex-
ample, some clustering may allow overlaps among clusters. If the non-empty
intersection of two clusters is not a cluster, then such a clustering fails the above
requirements. However, given a clustering, it can always be fixed to meet the
above requirements by inserting some “intermediate clusters” into the hierarchy.
The general idea is that we can always make the non-empty intersections of
clusters as “intermediate clusters”. Limited by space, we omit the details here.

The definition of summarization function fc is application-oriented. In gen-
eral, given a class c of objects, fc(c) returns the summary of the class. The
summary can be the pattern(s) in the class, the regression, etc.

According to the above analysis, (gc, fc) is a GOLAP model over data objects
in D. Moreover, based on Theorem 2, we can conduct OLAP on a database
containing multi-dimensional data and multiple kinds of complex data.

4.2 An Example

While GOLAP is general for complex data looks elegant, what is the effect of
applying the GOLAP model to complex data?

To examine the effect of the GOLAP model, we apply it to time-series gene
expression data. In [15], we developed a hierarchical clustering method for time-
series gene expression data. The clustering satisfies the requirements in Sec-
tion 4.1. For example, Figure 4 shows the hierarchical clustering in the Iyer’s
data set [14].

We define the grouping function ggene according to the hierarchical clustering.
Given a set Q of objects, ggene(B, Q) returns the smallest cluster in the hierarchy
that is a superset of Q.

To summarize the objects, we use the coherent patterns in the clusters. A
coherent pattern characterizes the common trend of expression levels for a
group of co-expressed genes in a cluster. In other words, a coherent pattern is
a “template”, while the genes in the cluster yield to the pattern with small di-
vergence. Figure 5 shows some examples. We define the summarization function
fgene as mapping a cluster of objects into the coherent pattern in the cluster.

330 J. Pei

Fig. 4. The hierarchy of co-expressed gene groups in the Iyer’s data set

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

-2

-1

0

1

2

3

2 4 6 8 10 12

E
xp

re
ss

io
n

 V
a

lu
e

Time Point

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

-2

-1

0

1

2

3

2 4 6 8 10 12

E
xp

re
ss

io
n

 V
a

lu
e

Time Point

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

-2

-1

0

1

2

3

2 4 6 8 10 12

E
xp

re
ss

io
n

 V
a

lu
e

Time Point

Clusters Coherent patterns

Fig. 5. Examples of clusters and corresponding coherent patterns

(ggene, fgene) forms a GOLAP model for time series gene expression data.
Based on this model, we develop GeneXplorer, an interactive OLAP system

A General Model for Online Analytical Processing of Complex Data 331

for time series gene expression data. The major OLAP operations in GeneXplorer
are described as follows, where B is the base database (e.g., the Iyer’s data set).

– Summarization. A user can submit a subset of genes Q. GeneXplorer re-
turns ggene(B, Q) as well as fgene(ggene(B, Q)).

– Roll up. Starting from a current cluster c, a user can move to c’s parent,
and browse the genes and the coherent pattern in c’s parent.

– Drill down. Starting from a current cluster c, a user can select one child of
c, and browse the genes and the coherent pattern in that child.

– Slice. A user can compare the coherent patterns of the current cluster and
its siblings.

– Dice. A user can select a subset of genes and apply the clustering. A hierar-
chy of clusters within the subset will be presented and the user can conduct
the OLAP on the subset.

– Pattern search. A user can specify a coherent pattern, or some features of
a pattern, the system returns the clusters and patterns that are similar to
the specification within a user-specified similarity threshold.

As can be seen, the above OLAP operations are based on the GOLAP model
(ggene, fgene). Some extensions are provided to facilitate the user’s interactions.

To facilitate the above OLAP operations, GeneXplorer maintains a data
structure (attraction tree) as the materialization of the clusters and the patterns.
That can be regarded as a data warehouse.2

In summary, we illustrate how to use the GOLAP model to conduct OLAP
on time series gene expression data. By carrying the similar idea, GOLAP can
be extended to handle many other kinds of complex data, including sequences
and semi-structured data (e.g., XML documents). Therefore, the GOLAP model
based on hierarchical clustering as presented in Section 4.1 is general enough for
those complex data.

Moreover, we also integrate the multi-dimensional data and the time series
gene expression data in GeneXplorer. That is, each gene may have some at-
tributes. As supported by Theorem 2, the attributes and the time series data
are treated consistently in a uniform framework.

The idea of applying GOLAP model to complex data based on hierarchi-
cal clustering is general for many other applications. For example, hierarchical
clustering is often available in document archives. Thus, with appropriate orga-
nization, GOLAP model can be applied. Moreover, when more than one hier-
archical clustering theme presents, Theorem 2 indicates that we can construct
a OLAP system containing more than one “dimensions”. Here, one dimension
corresponds to one hierarchical clustering theme.

2 Precisely, an attraction tree is not exactly the materialization of the clusters and the
patterns. Instead, it stores the objects and their relations (similarity) so that the
clusters and patterns based on users’ queries can be derived quickly on the fly. To
this extent, an attraction tree is an index structure supporting the data warehouse.

332 J. Pei

5 Related Work

OLAP and data warehousing started from managerial practices. Some classical
readings include [5,13,16,17,22]. It has been well recognized that OLAP is more
efficient if a data warehouse is used. In [6], Colliat discusses how to support
OLAP by relational and multidimensional databases. [4] is an excellent overview
of the major technical progresses and research problems in 90’s. In [29], Widom
discusses some interesting research problems in data warehousing.

The data cube operator was firstly proposed by Gray et al. in [10,11]. Since
it has been proposed, it became one of the most influential operator in OLAP.
Several researches have been dedicated to the foundation and modelling of multi-
dimensional databases and OLAP operations. [1,3,19,21] are some typical exam-
ples. However, most of them focus on multidimensional data. There is no sys-
tematic study on general OLAP model on complex data, like sequences, time
series and semi-structured data.

Some recent studies aim at supporting advanced analysis in data warehouses
and data cubes, such as discovery-driven exploration for online analysis of the
exceptions in a data cube [25], online explanation of the differences in multidi-
mensional aggregates [24], user-adaptive exploration in a data cube [26], finding
the most general contexts under which the observed patterns occur [27], and
answering hypothetical queries [2]. However, all these studies focus on specific
analytical queries. There is no a general model. Again, they are based on multi-
dimensional data.

6 Conclusions

In this paper, we study the problem of modelling for OLAP on complex data. We
propose GOLAP, a general OLAP model. We show that GOLAP is consistent
with the conventional OLAP model and, at the same time, general enough to
support effective OLAP over complex data.

This study sheds light on the OLAP over complex data. Instead of conducting
ad hoc, specific query oriented OLAP operations, we can have a uniform model
for OLAP and develop the meaningful operations systematically.

Furthermore, the study opens the doors to some interesting future studies.
For example, it is interesting to study how to model advanced OLAP operations
specific to complex data. How to handle the changes in the base table, such as
in the OLAP of XML document streams, is a challenging problem. Moreover,
how to develop general techniques to implement a GOLAP model is important
for warehousing complex data.

Acknowledgements. The author is grateful to Mr. Daxin Jiang and Ms. Chun
Tang for their helps in the implementation of GeneXplorer. The author also
thanks the anonymous reviewers for their invaluable comments.

A General Model for Online Analytical Processing of Complex Data 333

References

1. R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. In
Proc. 1997 Int. Conf. Data Engineering (ICDE’97), pages 232–243, Birmingham,
England, April 1997.

2. Andrey Balmin, Thanos Papadimitriou, and Yannis Papakonstantinou. Hypothet-
ical queries in an olap environment. In Amr El Abbadi, Michael L. Brodie, Sharma
Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter Schlageter, and Kyu-Young
Whang, editors, VLDB 2000, Proceedings of 26th International Conference on Very
Large Data Bases, September 10–14, 2000, Cairo, Egypt, pages 220–231. Morgan
Kaufmann, 2000.

3. Luca Cabibbo and Riccardo Torlone. A logical approach to multidimensional
databases. In Hans-Jörg Schek, Fèlix Saltor, Isidro Ramos, and Gustavo Alonso,
editors, Advances in Database Technology – EDBT’98, 6th International Con-
ference on Extending Database Technology, Valencia, Spain, March 23–27, 1998,
Proceedings, volume 1377 of Lecture Notes in Computer Science, pages 183–197.
Springer, 1998.

4. S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technol-
ogy. SIGMOD Record, 26:65–74, 1997.

5. E.F. Codd. Providing olap (on-line analytical processing) to user-analysis: An it
mandate. In Technical Report, E.F. Codd and Associates, 1993.

6. George Colliat. Olap, relational, and multidimensional database systems. SIGMOD
Record, 25(3):64–69, 1996.

7. P. Deshpande, J. Naughton, K. Ramasamy, A. Shukla, K. Tufte, and Y. Zhao.
Cubing algorithms, storage estimation, and storage and processing alternatives for
OLAP. Data Engineering Bulletin, 20:3–11, 1997.

8. S. Geffner, D. Agrawal, A. El Abbadi, and T. R. Smith. Relative prefix sums:
An efficient approach for querying dynamic OLAP data cubes. In Proc. 1999 Int.
Conf. Data Engineering (ICDE’99), pages 328–335, Sydney, Australia, Mar. 1999.

9. F. Gingras and L.V.S. Lakshmanan. nD-SQL: A multi-dimensional language for
interoperability and OLAP. In Proc. 1998 Int. Conf. Very Large Data Bases
(VLDB’98), pages 134–145, New York, NY, Aug. 1998.

10. J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational
operator generalizing group-by, cross-tab and sub-totals. In Proc. 1996 Int. Conf.
Data Engineering (ICDE’96), pages 152–159, New Orleans, Louisiana, Feb. 1996.

11. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-
low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing
group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29–
54, 1997.

12. H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection for
OLAP. In Technical Note 1996 available at http://db.stanford.edu/ ullman/ullman-
papers.html#dc, Stanford University, Computer Science, 1996.

13. W. H. Inmon. Building the Data Warehouse. John Wiley & Sons, 1996.
14. Iyer V.R., Eisen M.B., Ross D.T., Schuler G., Moore T., Lee J.C.F., Trent J.M.,

Staudt L.M., Hudson Jr. J., Boguski M.S., Lashkari D., Shalon D., Botstein D.
and Brown P.O. The transcriptional program in the response of human fibroblasts
to serum. Science, 283:83–87, 1999.

15. D. Jiang, J. Pei, and A. Zhang. Interactive exploration of coherent patterns in
time-series gene expression data. In Submitted to the Nineth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD’03), 2003.

334 J. Pei

16. Ralph Kimball. The Data Warehouse Toolkit: Practical Techniques for Building
Dimensional Data Warehouses. John Wiley & Sons, 1996.

17. Ralph Kimball and Kevin Strehlo. Why decision support fails and how to fix it.
SIGMOD Record, 24(3):92–97, 1995.

18. L.V.S. Lashmanan, J. Pei, and Y. Zhao. Qc-trees: An efficient summary structure
for semantic OLAP. In Proc. 2003 ACM SIGMOD Int. Conf. on Management of
Data (SIGMOD’03), June 2003.

19. Wolfgang Lehner. Modelling large scale olap scenarios. In Hans-Jörg Schek, Fèlix
Saltor, Isidro Ramos, and Gustavo Alonso, editors, Advances in Database Technol-
ogy – EDBT’98, 6th International Conference on Extending Database Technology,
Valencia, Spain, March 23–27, 1998, Proceedings, volume 1377 of Lecture Notes in
Computer Science, pages 153–167. Springer, 1998.

20. Alberto O. Mendelzon and Alejandro A. Vaisman. Temporal queries in olap. In
Amr El Abbadi, Michael L. Brodie, Sharma Chakravarthy, Umeshwar Dayal, Nabil
Kamel, Gunter Schlageter, and Kyu-Young Whang, editors, VLDB 2000, Proceed-
ings of 26th International Conference on Very Large Data Bases, September 10–14,
2000, Cairo, Egypt, pages 242–253. Morgan Kaufmann, 2000.

21. Torben Bach Pedersen and Christian S. Jensen. Multidimensional data modeling
for complex data. In Proceedings of the 15th International Conference on Data En-
gineering, 23–26 March 1999, Sydney, Austrialia, pages 336–345. IEEE Computer
Society, 1999.

22. N. Pendse and R. Creeth. The olap report. In Technical Report, Business Intelli-
gence, 1995.

23. S. Sarawagi. Indexing OLAP data. Bulletin of the Technical Committee on Data
Engineering, 20:36–43, 1997.

24. S. Sarawagi. Explaining differences in multidimensional aggregates. In Proc. 1999
Int. Conf. Very Large Data Bases (VLDB’99), pages 42–53, Edinburgh, UK, Sept.
1999.

25. S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of OLAP
data cubes. In Proc. Int. Conf. of Extending Database Technology (EDBT’98),
pages 168–182, Valencia, Spain, Mar. 1998.

26. S. Sarawagi and G. Sathe. Intelligent, interactive investigaton of OLAP data cubes.
In Proc. 2000 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’00), page
589, Dallas, TX, May 2000.

27. G. Sathe and S. Sarawagi. Intelligent rollups in multidimensional OLAP data.
In Proc. 2001 Int. Conf. on Very Large Data Bases (VLDB’01), pages 531–540,
Rome, Italy, Sept. 2001.

28. Jayavel Shanmugasundaram, Usama Fayyad, and P. S. Bradley. Compressed data
cubes for olap aggregate query approximation on continuous dimensions. In Pro-
ceedings of the fifth ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 223–232. ACM Press, 1999.

29. J. Widom. Research problems in data warehousing. In Proc. 4th Int. Conf. In-
formation and Knowledge Management, pages 25–30, Baltimore, Maryland, Nov.
1995.

	Introduction
	Preliminaries and Motivations
	OLAP Operations in the Multidimensional Data Model
	Challenges in OLAP of Complex Data

	GOLAP: A General OLAP Model
	The GOLAP Model
	Applying the GOLAP Model to Multi-dimensional Databases

	Applying GOLAP on Complex Data
	GOLAP Based on Hierarchical Clustering
	An Example

	Related Work
	Conclusions

