
Towards Interactive Exploration of Gene Expression
Patterns∗

Daxin Jiang Jian Pei Aidong Zhang

State University of New York at Buffalo, Email:{djiang3, jianpei, azhang}@cse.buffalo.edu

ABSTRACT
Analyzing coherent gene expression patterns is an important
task in bioinformatics research and biomedical applications.
Recently, various clustering methods have been adapted or
proposed to identify clusters of co-expressed genes and rec-
ognize coherent expression patterns as the centroids of the
clusters. However, the interpretation of co-expressed genes
and coherent patterns mainly depends on the domain knowl-
edge, which presents several challenges for coherent pattern
mining and cannot be solved by most existing clustering ap-
proaches.

In this paper, we introduce an interactive exploration sys-
tem GeneX (Gene eXplorer) for mining coherent expression
patterns. We develop a novel coherent pattern index graph
to provide highly confident indications of the existence of
coherent patterns. Typical exploration operations are sup-
ported based on the index graph. We also provide a bunch
of graphical views as the user interface to visualize the data
set and facilitate the interactive operations. To help users
to interpret and validate the mining results, we design the
gene annotation panel that connects the genes with some
public annotation databases. The experimental results show
that our approach is more effective than the state-of-the-art
methods in mining real gene expression data sets.

1. INTRODUCTION
DNA microarray technology has made it now possible to
monitor simultaneously the expression levels of thousands
of genes during important biological processes (e.g., [21])
and across collections of related samples (e.g., [16]). It is
often an important task to identify the co-expressed genes
and the coherent gene expression patterns from the gene ex-
pression data. A group of co-expressed genes present similar
expression patterns, while a coherent gene expression pat-
tern (or coherent pattern in short) characterizes the com-
mon trend of expression levels for a group of co-expressed
genes. In other words, a coherent gene expression pattern
is a “template”, while the expression profiles of the corre-
sponding co-expressed genes yield to the pattern with small
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Figure 1: Examples of groups of co-expressed genes and
corresponding coherent expression patterns

divergence.

For example, the well known Iyer’s data set [21] records the
expression profiles of 517 human genes with respect to a 12-
point time-series. A list of 10 groups of co-expressed genes
and the corresponding coherent gene expression patterns are
also given and well accepted as the ground truth. Figure 1
demonstrates three groups of the co-expressed genes in the
ground truth (the left column) and the corresponding coher-
ent patterns (the right column). Clearly, the co-expressed
genes share the common trends in their expression profiles.
The error bar at each time point of the coherent patterns
delineates the standard deviation of the expression levels
within the corresponding group of co-expressed genes.

Why do we want to find co-expressed genes and coherent
gene expression patterns? In practice, co-expressed genes
may belong to the same or similar functional categories and
indicate co-regulated families [42]. Coherent gene expression
patterns may characterize important cellular processes and
suggest the regulating mechanism in the cells [33].

In a DNA microarray gene expression data set, there are
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usually multiple groups of co-expressed genes and the cor-
responding coherent patterns. Previous studies (e.g., [2; 11;
21]) suggest that there is usually a hierarchy of co-expressed
genes and coherent patterns in a typical gene expression data
set.
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Figure 2: The hierarchy of a co-expressed gene group

For example, Figure 2 shows a group S of co-expressed genes
in the Iyer’s data set, which can be split into two subgroups,
S1 and S2, and the subgroup S2 can be further split into two
sub-subgroups. Genes in each subgroup have more uniform
expression profiles, i.e., the pattern is more coherent than
the one at the higher level. In other words, at the high levels
of the hierarchy, large groups of genes approximately follow
some “rough” coherent expression patterns. At the low lev-
els of the hierarchy, the large groups of genes are divided into
small subgroups that follow some “fine” coherent expression
patterns. The “fine” coherent expression patterns inherit
some characteristics from the high level “rough” patterns,
and add some specific characteristics.

One subtlety here is that there is no general and objective
standard to identify co-expressed gene groups. The interpre-
tation of co-expressed genes and coherent patterns mainly
depends on the domain knowledge. Typically, two situations
may happen in the analysis of gene expression data.

• A microarray experiment often involves thousands of
genes. However, only a small subset (e.g., several hun-
dred) of those genes may play important roles in the
coherent patterns. As an initial examination, biolo-
gists may prefer browsing the “rough” patterns in the
data set. They may then choose several patterns of
particular interest, and want to decompose them into
“finer” patterns in the later analysis. Biologists may
have different requirements of “coherence” for different
parts of the data set.

• In some cases, whether a group of genes should be
further divided depends on the biological hypotheses
or domain knowledge. For example, in Figure 2, the
subset of genes S2 can be split into two sub-subsets S21

and S22. However, the expression patterns of genes in
S21 and S22 are similar. The critical difference is that
the genes in S21 are up-regulated at the 3rd time point,
while the expression levels of genes in S22 are peaking
at the 4th time point. Biologically, there could be two
hypotheses explaining this phenomenon. On the one
hand, the genes in S22 are likely up-regulated by the

genes in S21. If so, it is meaningful to split S2 into S21

and S22. On the other hand, the genes in S21 and S22

may both be up-regulated by some other factors, but
the genes in S21 respond faster than the the genes in
S22. In this case, the genes in S21 and S22 may have
similar functions, and it would be appropriate not to
split S2. To make this decision, the domain knowledge
from biologists is essential.

To find co-expressed genes and discover coherent expression
patterns, many clustering algorithms have been developed,
including the conventional methods, such as K-means [42],
SOM (Self Organizing Map) [41], and the traditional hierar-
chical approaches (e.g., [11; 2]), as well as some newly pro-
posed methods dedicated to gene expression data, such as
CAST [6], CLICK [40] and DHC [22]. Please see Section 2
for a brief survey. Generally, those clustering algorithms
partition the set of genes into clusters. Each cluster is con-
sidered as a group of co-expressed genes and the coherent
expression pattern can be simply the mean (the centroid) of
the expression profiles of the genes in that cluster. While
previous studies confirm that the clustering algorithms are
useful to identify co-expressed gene groups and discover co-
herent expression patterns, due to the specific characteristics
of gene expression data and the special requirements from
the biology domain, clustering gene expression data is still
facing the following challenges.

• Most clustering algorithms generate clusters at a sin-
gle level. It is hard to see the inherent hierarchical
relationship among the groups of co-expressed genes
as well as the coherent patterns.

• Users may have substantially different requirements on
the size and the granularity of clusters for different
parts/subsets of the data set. However, most cluster-
ing algorithms cannot adapt to local structures accord-
ing to various clustering demands.

• The structure of gene expression data is often com-
plicated. Different clustering algorithms, or even the
same clustering algorithm with different parameter val-
ues, can generate very different clustering results. Of-
ten, only the domain knowledge can tell the quality
of the results. In other words, there is no general
guideline to choose appropriate parameter values. For
each part of the data set, users may want to com-
pare multiple approaches and/or different parameter
settings, and choose the one fitting the domain knowl-
edge/hypotheses the best.

• It is typical that users have some domain knowledge
about the data set. For example, some genes are al-
ready known to have similar functions. Effective inte-
gration of domain knowledge may improve the mining
results substantially. However, most clustering algo-
rithms are “pure” unsupervised approaches, i.e., they
can hardly integrate the domain knowledge.

Can we provide a flexible tool for biologists so that they can
interactively unfold the hierarchy of groups of co-expressed
genes and derive the corresponding coherent patterns with
their domain knowledge? In this paper, we propose a frame-
work GeneX for interactive exploration of coherent patterns
for gene expression data, and make the following contribu-
tions.
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• One important observation about the existing cluster-
ing methods is that almost all of them try to find the
clusters (i.e., groups of co-expressed genes) first ac-
cording to some global criteria, and then derive the
coherent patterns based on the clusters. In this study,
we propose a novel strategy of interactive exploration
of gene coherent patterns: it enables the users to in-
teractively explore the hierarchy of coherent expres-
sion patterns and find the groups of co-expressed genes
according to the coherent patterns. The users’ back-
ground knowledge can be integrated by the interaction
between the users and the system .

• To implement our new strategy, we develop a novel in-
teractive exploration tool, coherent pattern index graph,
to give users highly confident indications of the exis-
tence of coherent patterns.

• To derive a coherent pattern index graph, we need to
extract the information about the relations between
genes and their groups. We devise an attraction tree
structure to record the genes in the data set that sum-
marizes the information needed for the interactive ex-
ploration.

• We present fast and scalable algorithms to construct
the attraction tree and the coherent pattern index graph
from the gene expression data set.

The remainder of the paper is organized as follows. In Sec-
tion 2, we give a short survey on related work. The at-
traction tree structure and the interactive exploration of
coherent patterns using coherent pattern index graph are
presented in Section 3. In Section 4, we introduce a system
under construction that sets up a general framework to sup-
port the interactive exploration. The paper is concluded in
Section 5.

2. RELATED WORK: A BRIEF SURVEY
Clustering is the process of grouping data objects into a set
of disjoint classes, i.e., clusters, so that the objects within
a class are similar to each other, while the objects in dif-
ferent classes are dissimilar. To find co-expressed genes and
discover coherent expression patterns, various conventional
clustering algorithms are adapted, and some new methods
dedicated to gene expression data are proposed.

In this section, we give a brief survey of some representative
clustering methods applied to gene expression data. Basi-
cally, the methods can be classified into three categories,
namely, partition-based approaches, hierarchical approaches
and pattern-based approaches. Moreover, based on different
clustering assumptions and optimization models, we can fur-
ther divide the partition-based methods into four subcate-
gories: the K-means algorithm and its derivatives, the Self
Organizing Map (SOM) algorithm and its extensions, the
graph-based algorithms and the model-based algorithms. On
the other hand, the hierarchical methods can be further di-
vided into the agglomerative algorithms and the divisive al-
gorithms based on how the hierarchical structure is formed.

2.1 K-means and Its Derivatives
The K-means algorithm [26] is a typical partition-based clus-
tering method. Given a pre-specified number K, the algo-
rithm partitions the data set into K disjoint clusters such

that the sum of the squared distances of objects from their
cluster centers is minimized.

In [42], Tavazoie et al. apply the K-means algorithm on the
gene expression data collected by Cho et al. [9]. They find
that each cluster contains a significant portion of genes with
similar functions. Furthermore, by searching the upstream
DNA sequences of genes within the same cluster, they ex-
tract 18 motifs, which are promising candidates for novel
cis-regulatory elements.

The K-means algorithm has some drawbacks. The K-means
algorithm requires the number of clusters as the parameter.
However, it is often hard for a user to pre-determine the
number groups of co-expressed genes in the data set. More-
over, gene expression data is typically noisy and contains a
large number of outliers. However, the K-means algorithm
forces each gene into a cluster, which may cause the cen-
troids of clusters, i.e., the coherent patterns to be reported,
dragged astray by the outliers.

To overcome the above two drawbacks, several new algo-
rithms [32; 19; 13] have been proposed. We call them deriva-
tives of the K-means algorithm, since essentially they also
minimize the overall divergence of objects from their clus-
ter centers. For example, the k-medoids algorithms use an
object closest to the center of a cluster as the representa-
tive (medoid) such that the total distance between the k

selected medoids and the other objects is minimized. The
k-medoids algorithms are more robust to the outliers than
the k-means algorithm. Another group of algorithms use
some thresholds to control the coherence of clusters. For
example, Ralf-Herwig et al. [32] introduce two parameters
γ and ρ, where γ is the maximal similarity between two
separate cluster centroids, and ρ corresponds to the mini-
mal similarity between a data point and its cluster centroid.
In [19], the clusters are constrained to have a diameter no
larger than d. Motivated by [19], Smet et al. [13] propose
a more efficient algorithm Adapt Cluster. Data object x

will be assigned to cluster c if the assignment has a higher
probability than threshold S.

The clustering process of the above algorithms turns out to
be extracting all the clusters with qualified coherence from
the data set. Therefore, users do not need to input the
number of clusters. On the other hand, with the coher-
ence control, outliers may only end up with trivial clusters,
i.e., clusters with very few members. Thus, they will not
compromise the significant groups of co-expressed genes and
corresponding coherent patterns.

Basically, K-means algorithm and its derivatives require some
global parameters, i.e., either the number of clusters or some
coherence threshold. The clustering process is like a “black
box”. There is no intensive interaction between the user and
the mining procedures. Therefore, they are not flexible to
the local structures of the data set, and can hardly support
interactive exploration for coherent expression patterns.

2.2 SOM and Its Extensions
The Self-Organizing Map (SOM) was developed by Koho-
nen [24], on the basis of a single layered neural network. The
data objects, usually of high dimensionality, are mapped
onto a set of neurons organized with low dimensional struc-
tures, e.g., a two dimensional p × q grid. Each neuron is
associated with a reference vector, and each data point is
mapped to the neuron with the “closest” reference vector.
During the clustering process, each data object acts as a

SIGKDD Explorations. Volume 5,Issue 2 - Page 81 



training sample that directs the movement of the reference
vectors towards the denser areas of the input vector space,
so that those reference vectors are trained to fit the distribu-
tions of the input data set. When the training is complete,
clusters are identified by mapping all data points to the out-
put neurons.

Tamayo et al. [41] apply the SOM algorithm in a study
of hematopoietic differentiation. The expression patterns
of 1, 036 human genes are mapped to a 6 × 4 SOM. After
the clustering process, the genes are organized into biologi-
cally relevant clusters that suggest novel hypotheses about
hematopoietic differentiation. For example, they report that
Cluster 15 captures 154 genes involved in the “differentia-
tion therapy”, which is part of the standard treatment for
patients with acute promyelocytic leukemia. Among the 154
genes, some show unexpected regulation patterns. This pro-
vides interesting insights into the mechanism of differentia-
tion, which is uncertain yet.

One of the remarkable features of SOM is that it allows users
to impose partial structure on the clusters, and arranges sim-
ilar patterns as neighbors in the output neuron map. This
feature facilitates easy visualization and interpretation of
the clusters, and thus partly supports the explorative anal-
ysis of gene expression patterns.

However, similar to the K-means algorithm, SOM also re-
quires a user to specify the number of clusters, which is typ-
ically unknown in advance for gene expression data. More-
over, as pointed out in [18], if the data set is abundant with
irrelevant data points, such as genes with invariant patterns,
SOM will produce an output where irrelevant data points
will populate the vast majority of clusters, while most inter-
esting patterns will be missed since they are collapsed into
only a few clusters.

Recently, several new algorithms [18; 43; 27] have been pro-
posed based on the SOM algorithm. Those algorithms can
automatically determine the number of clusters and dynam-
ically adapt the map structure to the data distribution. For
example, Herrero et al. [18] extend the SOM by a binary tree
structure. At first, the tree only contains a root node con-
necting two neurons. After a training process similar to that
of the SOM algorithm, the data set is segregated into two
subsets. Then the neuron with less coherence is split in two
new neurons. This process is repeated level by level, until
all the neurons in the tree satisfy some coherence threshold.
Other examples of SOM extensions are Fuzzy Adaptive Res-
onance Theory (Fuzzy ART) [43] and supervised Network
Self-Organized Map (sNet SOM) [27]. In general, they pro-
vide some approaches to measure the coherence of a neuron
(e.g., vigilance criterion in [43] and grow parameter in [27]).
The output map is adjusted by splitting the existing neurons
or adding new neurons into the map, until the coherence of
each neuron in the map satisfies a user-specified threshold.

SOM is an efficient and robust clustering technique. Hi-
erarchical structure can also be built based on SOM (e.g.,
SOTA). Moreover, by systematically controlling the split of
neurons, SOM can easily adapt to the local structures of the
data set. However, the current approaches control the split-
ting process by some coherence threshold, which is hard for
users to specify.

2.3 Graph-based Algorithms
The graph-based algorithms model a gene expression data
set as a weighted graph G(V,E), where each gene is repre-

sented by a vertex v ∈ V . For example, in Click [40], a pair
of genes x, y ∈ V are connected by an edge e(x, y) ∈ E with
a weight based on the similarity between the expression pat-
terns of x and y. In CAST [6], the similarity of x and y is
mapped to [0, 1], and the edge e(x, y) is created in the graph
if the mapped value is 1. The problem of clustering a set of
genes is then converted to some classical graph-theoretical
problems, such as searching for the minimum cut [17; 40],
the minimum spanning tree [46], or the maximum cliques [6]
in graph G.

Hartuv et al. [17] propose an algorithm HCS (for Highly
Connected Subgraph), which recursively splits the weighted
graph G into a set of highly connected components along the
minimum cut. Each highly connected component is consid-
ered as a cluster. Motivated by HCS, Shamir et al. present
the algorithm CLICK (for CLuster Identification via Con-
nectivity Kernels) in [40]. CLICK sets up a statistic frame-
work to measure the coherence within a subset of genes and
determine the criterion to stop the recursive splitting pro-
cess.

Ben-Dor et al. [6] introduce the idea of a corrupted clique
graph data model. The input data set is assumed to come
from the underlying cluster structure by “contamination”
with random errors. Clustering a dataset is equivalent to
identifying the original clique graph from the corrupted ver-
sion with as few errors as possible. A heuristic algorithm
CAST (for Cluster Affinity Search Techniques) is developed
to iteratively identify the “corrupted cliques” (clusters) once
at a time. The coherence of the clusters is controlled by a
user-specified parameter, called affinity threshold.

In [46], Xu et al. first generate a Minimum Spanning Tree
(MST) from the weighted graph G of data set X. By re-
moving (K−1) edges from the generated MST, the data set
is partitioned into K clusters. Three alternate algorithms
are presented to determine the edges to be removed.

The graph-based algorithms stem from some classical graph-
theoretical problems. Although with solid mathematical
ground, they may not be suitable for gene expression data
without adaption. For example, in gene expression data,
groups of co-expressed genes may be highly connected by a
large amount of “intermediate” genes [23]. In this case, the
approaches based on minimum spanning tree and minimum
cut may lead to clusters including genes with incoherent
profiles but highly connected by a series of “intermediate”
genes.

2.4 Model-based Algorithms
The model-based clustering approaches (e.g., [12; 48; 15;
28]) provide a statistical framework to model the cluster
structure of gene expression data. The data set is assumed
to come from a mixture of underlying probability distribu-
tions, with each component corresponding to a different clus-
ter. The goal is to estimate the parameters Θ = {θi | 1 ≤
i ≤ k} and Γ = {γir | 1 ≤ i ≤ k, 1 ≤ r ≤ n} that maximize

the likelihood Lmix(Θ,Γ) =
∑k

i=1 γirfi(xr|θi), where n is
the number of data objects, k is the number of components,
xr is a data object (i.e., a gene expression profile), fi(xr|θi)
is the density function of xr in component Ci with some
unknown set of parameters θi, and γir represents the prob-
ability that xr belongs to Ci. Usually, the parameters Θ
and Γ are estimated by the EM (Expectation-Maximization)
algorithm [10].

Several early studies, including [12; 48; 15], impose a model
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of multivariate Gaussian distributions on gene expression
data. Although the Gaussian model works well for gene-
sample data where the expression levels of genes are mea-
sured under a collection of samples, it may not be effective
for time-series data (the expression levels of genes are moni-
tored during a continuous series of time points). The reason
is that the Gaussian model treats the time points as un-
ordered, static attributes, and ignores the inherent depen-
dency of the gene expression levels over time.

To better describe the gene expression dynamics in time-
series data, several new models have been introduced, such
as [5; 25; 33; 36]. In [5], each gene expression profile is
modelled as a cubic spline and each time point influences
the overall smooth expression curve. Luan et al. [25] in-
dependently develop a similar model of B-splines. In [33],
Ramoni et al. assume that the time-series follow an autore-
gressive model, where the value of the series at time t is a
linear function of the values at several previous time points.
Schliep et al. [36] propose a restricted hidden Markov model
to account for the dependencies in time-series data.

An important advantage of the model-based approaches is
that they provide an estimated probability γir that data ob-
ject xr belongs to cluster i. Since it is typical for a gene
to participate multiple cellular processes, there may be in-
stances that a single gene has a high correlation with two
different clusters. Therefore, the probabilistic feature of
model-based clustering is particularly suitable for gene ex-
pression data. Moreover, model-based clustering does not
need to define a distance (or similarity) between two gene
profiles. Instead, the measure of coherence is inherently em-
bedded in the statistical framework. This feature makes the
model-based clustering more robust to the dimensionality of
attributes (samples or time points).

However, model-based clustering relies on the assumption
that the data set fits a specific distribution. This may not
be true in many cases [48]. The modelling of gene expres-
sion data sets, in particular, is an ongoing effort by many
researchers, and, to the best of our knowledge, there is cur-
rently no well-established general model for gene expression
data. Although some models are reasonably robust when
the distribution of real expression data is deviated from the
assumption, the best results can only be expected when the
real data fits the model well.

2.5 Agglomerative Hierarchical Algorithms
Agglomerative algorithms (i.e., bottom-up approaches) ini-
tially regard each data object as an individual cluster, and
at each step, merge the closest pair of clusters until all the
groups are merged into one cluster.

Eisen et al. [11] apply an agglomerative algorithm called
UPGMA (for Unweighed Pair Group Method with Arith-
metic Mean) and adopt a method to graphically represent
the clustered data set. In this method, each cell of the gene
expression matrix is colored according to the measured flu-
orescence ratio, and the rows of the matrix are re-ordered
based on the hierarchical dendrogram structure and a consis-
tent node-ordering rule. After clustering, the original gene
expression matrix is represented by a colored table (a clus-
ter image) where large contiguous patches of color represent
groups of genes that share similar expression patterns over
multiple conditions.

Hierarchical clustering not only groups together genes with
similar expression pattern but also provides a natural way to

graphically represent the data set. The graphic representa-
tion gives users a thorough inspection of the whole data set
so that the users can obtain an initial impression of the dis-
tribution of data. Eisen’s method is much favored by many
biologists and has become one of the most widely-used tools
in gene expression data analysis [11; 2; 1; 21; 31].

However, as pointed out in previous studies [41; 4], tradi-
tional agglomerative clustering algorithms may not be ro-
bust to noise. They often make the decisions of merging
based on local information and never trace back, i.e., any
“bad” decisions made in the initial steps may never get cor-
rected later. In addition, hierarchical clustering only pro-
vides a tree structure (called dendrogram). There is no stan-
dard to decide where to cut the dendrogram to derive clus-
ters. Given a typical gene expression data with thousands
of genes, it is hard for users to manually inspect the whole
tree.

To make the traditional agglomerative method more robust
to noise, Šášik et al. [35] propose a novel approach called per-
colation clustering. In essence, percolation clustering adopts
a statistical bootstrap method to merge two data objects (or
two subsets of data objects) when they are significantly co-
herent with each other. In [4], Bar-Joseph et al. replace the
traditional binary hierarchical tree with a k-ary tree, where
each non-leaf node is allowed to have at most k children. A
heuristic algorithm is also presented to construct the k-ary
tree, reduce the susceptibility to noise and generate an op-
timal order for the leaf nodes. The two approaches above
make the derived hierarchical tree more robust. However,
neither of them indicates how to cut the dendrogram to ob-
tain meaningful clusters.

Seo et al. [39] develop an interactive tool, Hierarchical Clus-
tering Explorer (HCE), to help users derive clusters from
the dendrogram. To be specific, HCE visualizes the den-
drogram by setting the distance from the root to an internal
node N according to the coherence between the two children
N1 and N2 of N . That is, the more coherent are N1 and
N2, the more distant is N from the root. A user can select
how to cut the dendrogram in horizontal by dragging the
“minimum similarity bar”. However, the system of HCE is
only a visualization tool that facilitates the inspection of the
dendrogram. In other words, it does not provide any hint
to where the dendrogram should be cut.

2.6 Divisive Hierarchical Algorithms
The divisive algorithms (i.e., top-down approaches) start
with one cluster containing all the data objects. They it-
eratively split clusters until each cluster contains only one
data object or certain stop criterion is met. For divisive
approaches, the essential problem is to decide how to split
clusters at each step.

Alon et al. [2] apply an algorithm called the deterministic-
annealing algorithm (DAA) [34] to split the clusters of genes.
First, two initial cluster centroids Cj (j = 1, 2) are randomly
defined. The expression pattern of gene k is represented by a
vector ~gk, and the probability of gene k belonging to cluster
j is assigned according to a two-component Gaussian model:

Pj(~gk) =
e(−β|~gk−Cj |

2)

∑
j e

(−β|~gk−Cj |
2)
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The cluster centroids are recalculated as

Cj =

∑
k ~gkPj(~gk)∑
k Pj(~gk)

The EM algorithm is then applied to solve Pj and Cj . For
β = 0, there is only one cluster, C1 = C2. When β is
increased in small steps until a threshold is reached, two
distinct, converged centroids emerge. The whole data set is
recursively split until each cluster contains only one gene.

In [22], Jiang et al. propose a density-based divisive ap-
proach, DHC, to clustering genes. The basic idea is that
a group of co-expressed genes, i.e., a cluster, forms a dense
area in the data object space. Data objects (genes) at the
“center” of the dense area have high density and carry the
coherent pattern shared by other genes within the whole
dense area. On the other hand, genes at the peripheral or
boundary area of the cluster have low density and will be
“attracted” toward the “core” area level by level.

To measure the density of a data object O, the neighbor-
hood of O is firstly discretized into a series of hyper-shells
{ShellOk |1 ≤ k ≤ K}, such that each hyper-shell occupies
exactly a unit volume. Then, a weight wk is assigned to
each hyper-shell ShellOk according to the distance between
ShellOk and object O. Last, the number of data objects
falling in each hyper-shell (denoted as nk) is collected and

the density is derived by density(O) =
∑K

k=1 wk · nk (Fig-
ure 3).
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Figure 3: Hypersphere and hyper-shells w.r.t. data object
Oi

Once the density of data objects is defined, an attraction tree
structure is constructed to record the coherence information
among genes (See Section 3.1 for details). Algorithm DHC
splits the data set recursively. At the root, DHC regards
the whole data set D as one dense area. It searches the
attraction tree and identifies the subareaD1 with the highest
density. It then generates two children, D1 and (D − D1).
DHC relies on two parameters to identify the dense subareas:
the similarity threshold τ and theminimum number of object
threshold MinPts. A group of data objects O form a dense
subarea if the data object of the highest density among O

has at least MinPts neighbors within a distance of τ . The
divisive process is repeated until no leaf node can be further
split into two dense subareas.

DHC shares the similar clustering theme with DAA [2],
SOTA [18] and the graph-based approaches HCS [17] and
CLICK [40], but is based on different assumptions of data
distribution and uses different models of clustering. The

experimental study shows that the density-based model is
particularly robust to noise and well suited to analyze com-
plex cluster structure, e.g., embedded clusters and highly
intersected clusters [22]. However, similar to some other ap-
proaches, DHC splits the data set according to some global
thresholds that are hard to set.

2.7 Pattern-based Clustering Algorithms
The clustering algorithms discussed so far are examples of
“global clustering”. That is, given a data set to be clustered,
the attribute space is globally determined and shared by all
resulting clusters. However, it is well known in molecular
biology that any cellular process may take place only in a
subset of the attributes (samples or time points). Recently a
series of pattern-based clustering algorithms have been pro-
posed to capture coherence exhibited by a subset of genes
on a subset of attributes.

In [8], Cheng and Church introduce the concept of biclus-
ter to measure the coherence between genes and attributes
(either time series or samples). Given a set of genes and
a set of conditions, a bicluster is a subset of genes coher-
ent with a subset of attributes. Yang et al. [47] propose
a move-based algorithm to find biclusters more efficiently.
Both algorithms in [8] and [47] adopt heuristic search ap-
proaches, and thus cannot guarantee to find the complete
set of biclusters in the data set.

In [45], Wang et al. propose a new model of pattern-based
cluster. Given a subset of objects O and a subset of at-
tributes A, pair (O,A) forms a pattern-based cluster if for
any pair of objects x, y ∈ O, and any pair of attributes a,
b ∈ A, the difference of change of values on attributes a and
b between objects x and y is smaller than a threshold δ. In
a recent study [30], Pei et al. propose an efficient algorithm,
MaPle, to mine the complete set of maximal pattern-based
clusters.

3. AN INTERACTIVE EXPLORATION AP-
PROACH

In this section, we present an interactive approach to explore
gene expression data sets. Our approach is in the following
three steps.

Step 1: Extracting distance information. We extract
and organize the information about the relationship
among genes and their groups into an attraction tree
data structure. The attraction tree captures the infor-
mation about the clustering in a data set. Once the
attraction tree is built, we do not need to visit the
original data set anymore.

Step 2: Indexing coherent patterns and genes. The
genes are ordered into an index list, such that the genes
sharing a coherent pattern stay close to each other in
the list. A 2-dimensional coherent pattern index graph
can be generated. The x-axis is the genes in the or-
der of index list, and the y-axis is the coherent pattern
index value. If there is a consecutive sublist of genes
sharing a coherent pattern, the first gene in the sub-
list has a significantly high index value (i.e., a “pulse”)
and the following genes has a low index value. The
coherent pattern index graph provides users an intu-
itive and informative tool to understand the clustering
structure.
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Step 3: User interaction. A user may choose the pulses
in the coherent pattern index graph, and then the co-
herent pattern as well as the corresponding co-expressed
genes can be derived. The user can recursively exam-
ine the selected groups of co-expressed genes as well as
its sub-patterns in depth.

We illustrate the technical details of the above steps in the
following subsections and elaborate the method using one
real case – the Iyer’s data set [21].

3.1 The Attraction Tree
An attraction tree records the related information for min-
ing coherent patterns from a gene expression data set. In-
tuitively, to form clusters, a gene with a high density in a
data set can be regarded as “attracting” other genes with
low density.

The density of a data object reflects the distribution of the
other objects in its neighborhood. We adopt the the density
definition from a recently proposed method Denclue [20],
since it is particularly suitable for drilling down to the sub-
sets of genes. Denclue uses an influence function to describe
the influence between two objects. For example, the Gaus-
sian influence function is defined as follows.

f(Oi, Oj) = e
−
d(Oi,Oj)

2

2σ2 (1)

where d(Oi, Oj) is the distance between objects Oi and Oj ,
and σ is a parameter. We will address how to determine an
appropriate value for parameter σ in Section 3.3.

We normalize the attribute values of the data objects as
follows. Given an object O, for each attribute d, let O′

d =
Od−ηO
σO

, where ηO and σO are the mean and the standard

deviation of all the attributes of O, respectively. O′ is the
normalized object of O.

The similarity and distance between data objects Oi and
Oj are defined as the Pearson’s correlation coefficient and
Euclidean distance between the transformed objects O′

i and
O′
j , respectively. That is,

similarity(Oi, Oj) = pearson(O′
i, O

′
j), (2)

and

distance(Oi, Oj) = euclidean(O′
i, O

′
j). (3)

Given a data set D, the density of an object O is the sum
of the influences from all the objects in the data set except
for itself. That is,

density(O) =
∑

Oj∈D,Oj 6=O

f(O,Oj). (4)

The attraction between two data objects Oi and Oj (Oi 6=
Oj) is defined by the influence function (Equation 1). The
attraction is said from Oi to Oj if density(Oi) < density(Oj),
denoted as Oi → Oj . In the case that two objects are tie
in density, we can artificially assign Oi → Oj for (i <

j). Thus, an object O is attracted by a set of objects
A(O) whose density are larger than that of O, i.e., A(O) =
{Oj |density(Oj) > density(O)}. The attractor of O is the
object Oj ∈ A(O) with the largest attraction to O, i.e.,

Attractor(O) = arg max
Oj∈A(O)

f(Oj , O)

According to the influence function, the attractor of an ob-
ject O is its closest neighbor with a higher density. The only

exception is object Ohd whose density is the highest in the
data set. We define the attractor of Ohd is Ohd itself.

The attraction from object Oi to object Oj (i.e., Oi → Oj)
forms a partial order. Based on this partial order, we can
derive an attraction tree T . The root of the tree is Ohd, the
object that is the attractor of itself. Each non-root node in
the tree corresponds to an object O, whose parent node is
its attractor. We define the weight of each edge e(Oi, Oj) in
the attraction tree T as the similarity between Oi and Oj .

The attraction tree has two nice properties. On the one
hand, an attraction tree is self-closed. That is, a group of
objects following the same coherent pattern forms an attrac-
tion subtree. Objects following different coherent patterns
are not mixed in the same attraction subtree. On the other
hand, the attraction tree is robust to noises. The root of
each attraction subtree has the locally maximal density and
represents the coherent pattern in this attraction subtree.
Objects closely matching the coherent pattern stay at the
high levels of the tree, while noises (or intermediate objects)
stay at the low levels of the tree. Even in a data set having
a large amount of noises or intermediate objects, since the
density of noises or intermediate objects are relatively lower
than that of the co-expressed objects, the structure of the
high levels of the attraction tree will not be affected and the
representatives of coherent patterns will not be deviated by
the noises or the intermediate objects.

3.2 Coherent Pattern Index
To plot the genes as well as its probability to be a “leader” in
a group of co-expressed genes in a 2-dimensional space, we
need to order the genes into a list. An ordering, index list,
can be devised based on the following three observations.

1. In the attraction tree, an edge connecting a pair of
objectsO1 andO2 has a heavy weight if the two objects
follow the same coherent pattern P . Genes connected
by those edges should stay close to each other in the
list.

2. An edge has a moderate weight if it connects a pair of
intermediate objects O1 and O2 or a pattern correlated
object and an intermediate object. Genes connected
by those edges should stay close to each other in the
list, too, but not as close as the ones in case 1.

3. The edges connecting a pair of objects O1 and O2 fol-
lowing different coherent patterns P1 and P2 have light
weights. Genes connected by those edges should stay
far away in the list.

Based on the above idea, we develop an algorithm to or-
der the genes, as shown in Figure 4. In the algorithm, we
maintain an FIFO list, called processedVertex, to record the
visiting order of the nodes in the attraction tree T . We
start from the root of T . All the edges connecting the root
with its children are put into a heap, where the edges are
sorted in the weight descending order. Then, we iteratively
extract the edge with the highest weight from the heap.
At this point, the start vertex of the edge must have been
processed (Otherwise, the edge could not be put into the
heap.) We put the end vertex of the edge currentVertex
into the listprocessedVertex and put all the edges connect-
ingcurrentVertex and its children into the edgeHeap. The
loop continues until all of the edges in the tree have been vis-
ited. TheprocessedVertex is the index list of the data genes.
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Procedure ordering(AttractionTree root){
// Initialize the processedV ertex and the edgeHeap
processedVertex.add(root)
for each child ch of root do edgeHeap.insert(edge(root, ch))
// Iteration
while ( !edgeHeap.isEmpty() ) do {

currentEdge = edgeHeap.extract()
currentV ertex = currentEdge.endVertex
processedV ertex.add(currentVertex)
for each child ch of currentV ertex

edgeheap.insert(edge(currentV ertex, ch)) }}

Figure 4: The algorithm ordering the genes.

Suppose that we check the genes one by one in the order of
index list, if we find a consecutive subsequence S of genes
such that the genes in S are much more coherent to their
parents in the attraction tree than the genes in the precedent
subsequence of S do, then it may strongly suggest that S

is the starting segment of a group of co-expressed genes.
Remember that in the constructions of attraction tree and
index list, co-expressed genes are located in subtrees and
thus are arranged as neighbors in the index list. This is
the intuition of the design of coherent pattern index. The
philosophy here is similar to that in [3].

Then, the problem becomes how to find those probes – the
short subsequences of genes at the beginning of the groups of
co-expressed genes.

For a gene gi in an index list g1 · · · gn, let Sim(gi) be the
similarity between gi and its parent in the attraction tree.
Sim(gi) = 0 if (i < 1) or (i > n). Let p be the minimum
size of probe as a parameter. We define the coherent pattern
index CPI(gi) as follows.

CPI(gi) =

p∑

j=1

Sim(gi+j)−

p−1∑

j=0

Sim(gi−j) (5)

Intuitively, a high coherent pattern index value indicates a
strong potential that the gene is the starting one of a group
of co-expressed genes. The graph plotting the coherent pat-
tern index values with respect to the index list is called the
coherent pattern index graph. In particular, from the above
definition, the first (p − 1) genes in the index list always
bring the first sharp pulse.

Figure 5 is the coherent pattern index graph for Iyer’s data
set with p = 5. The coherent pattern index graph indicates
the existence of coherent patterns clearly.

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  100  200  300  400  500

In
de

x 
V

al
ue

Genes

pattern 1

Figure 5: The coherent pattern index graph for the Iyer’s
data
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Figure 6: The coherent pattern index graph for a subset of
genes in the Iyer’s data set

3.3 Drilling down to Clusters
From Figure 5, we can immediately tell that there are 5
major coherent patterns in the data set. However, can we
further investigate the groups of co-expressed genes following
the coherent patterns and identify subgroups of co-expressed
genes that follow any derivation patterns?

Suppose that a user accepts the 5 major coherent patterns
reported by the system and clicks on the corresponding
peaks in the coherent pattern index graph. The system will
split the attraction tree T for the whole data set into 5 ex-
clusive attraction subtrees. Each subtree corresponds to one
coherent pattern and the genes following that coherent pat-
tern are gathered in the subtree.

If a user now selects the first subset of genes D1 (as shown
in Figure 5) and wants to zoom in D1. Figure 6 shows the
local coherent pattern index graph for the selected subset
of genes. Please note that Figure 6 is not simply extracted
from Figure 5 with a higher resolution. Instead, we collect
D1 from the attraction tree such that only the genes follow-
ing the coherent pattern are selected. Then, the attraction
tree, the index list and the coherent pattern index graph
are generated, respectively. Only the genes in the selected
subset are considered. The user can specify local parame-
ters (e.g., σ) for computing the influence and density in the
subset of genes.

Now, let us discuss how to set the value of σ. According to
the influence function (Equation 1), a smaller σ will boost
the relative influence of a gene to its neighborhood. A de-
tailed discussion on the effect of σ on the influence calcula-
tion can be found in [20]. We use the standard deviation of
the pairwise distance between genes as σ. When the data
set is split into smaller subsets, the standard deviation will
decrease. To lower the computational cost, we use a small
sample of the data set to approximate the standard devia-
tion.

3.4 A Case Study on the Iyer’s Data Set
Figure 7 illustrates the exploration process. At the begin-
ning, the coherent pattern index graph for the whole data set
indicates five “major” coherent expression patterns. Sup-
pose that the user accepts the indication and asks the sys-
tem to split the data set accordingly. Some subsets show
clear coherent patterns, such as the 2nd and the 4th sub-
sets in the second row of the figure. The others need to be
further investigated.

The system generates the coherent pattern index graphs for
the remaining subsets, respectively (i.e., the 1st, the 3rd and

SIGKDD Explorations. Volume 5,Issue 2 - Page 86 



0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

-0.2
-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0  5  10  15  20  25  30

In
de

x 
V

al
ue

Genes

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

s

s

s
s

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0  20  40  60  80  100  120  140
In

de
x 

V
al

ue

Genes

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

-0.2
-0.15

-0.1
-0.05

 0
 0.05
 0.1

 0.15
 0.2

 0  20  40  60  80  100  120

In
de

x 
V

al
ue

Genes

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

-0.14
-0.12

-0.1
-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04

 0  10  20  30  40  50  60  70

In
de

x 
V

al
ue

Genes

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

s

s

s
s

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

s

s

s
s

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

s

s

s
s

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Time Points

Ex
pre

ssi
on

 Le
ve

l

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  100  200  300  400  500

In
de

x V
alu

e

Genes

s s s s

³³³³³³³³³³³³³³)

½
½

½
½

½
½= ?

Z
Z
Z
Z
Z
Z~

PPPPPPPPPPPPPPq

¡
¡

¡
¡¡ª

@
@
@
@@R

¡
¡

¡
¡¡ª

@
@
@
@@R

¡
¡

¡
¡¡ª

@
@
@
@@R

¡
¡

¡
¡¡ª

@
@
@
@@R

Figure 7: The hierarchy of co-expressed gene groups in the Iyer’s data set

the 5th subsets in the second row of the figure). In each of
the coherent pattern index graphs for the subsets, there are
multiple significant pulses.

How should we further split the data set and explore the finer
patterns? Generally, the highest peak acts as a good signal.
The user can ask the system to split the subset according
to the highest peak in the graph. If the splitting result is
not satisfying, the user can easily “roll back” to the previous
level and choose the second highest peak to split the data
set. (In our experiment, we just assume the user chooses
the highest peak in each subset and split the data set ac-
cordingly.) The hierarchy extends to the third level. Such
an interactive exploration can be conducted recursively, un-
til the user is satisfied with the patterns and the groups of
co-expressed genes.

Comparison with Ground Truth and Other Methods
We also compare the coherent expression patterns discov-
ered by GeneX with the ground truth and the results from
some other methods. In our experiment, at each step, GeneX
takes the strong pulses to split.

Let {P1, . . . , Pn} be the set of coherent expression patterns

in the ground truth and {P̃1, . . . , P̃m} be the set of coherent
expression patterns discovered by one mining method. For
each pattern Pi in the ground truth, we find the most similar
pattern P̃j from the mining results, and call P̃j match the
ground truth pattern Pi. In Figure 8, we list the similarity
between the patterns in the ground truth and the matching
patterns from various methods. The ground truth coherent
expression patterns that are matched with a similarity value
larger than 0.9 are highlighted in bold. The numbers in
the parenthesis in the first row are the numbers of coherent
patterns returned by the methods. Please note that not
every pattern returned by a method is necessarily a pattern
in the ground truth.

The results show that GeneX discovers most of the patterns

Pattern GeneX (9) Adapt (11) CLICK (7) CAST (9)

1 0.993 0.956 0.884 0.955

2 0.957 0.911 0.991 0.887
3 0.984 0.993 0.994 0.997

4 0.980 0.984 0.883 0.968

5 0.958 0.855 0.868 0.855
6 0.952 0.989 0.970 0.984

7 0.967 0.976 0.990 0.719
8 0.991 0.997 0.914 0.999

9 0.702 0.824 0.844 0.800
10 0.974 0.981 0.976 0.996

Figure 8: Coherent patterns discovered in Iyer’s data set by
different approaches.

in the ground truth in the Iyer’s data set, and outperforms
all other methods. In particular, we can observe the follow-
ing.

• GeneX is more accurate than the other methods. On
the one hand, GeneX identifies 9 out of the 10 patterns
in the ground truth, which is the best record among all
the methods. On the other hand, every pattern identi-
fied by GeneX turns out to be a pattern in the ground
truth. Each of the other methods returns some false
patterns. For example, all the other methods further
split the co-expressed gene group following pattern 2
in the ground truth into several subsets. Some subsets
are merged into other groups of co-expressed genes,
while each of the remaining subsets becomes a sepa-
rate group of co-expressed genes.

• Pattern 5 in the ground truth is only identified by
GeneX.

• The only pattern in the ground truth that GeneX
misses, pattern 9, cannot be identified by any other
method, either. The reason is that it is too similar to
pattern 6 and thus hard to be separated.
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We also test the performance of GeneX on other related
aspects, including the effect of the probe size, the scal-
ability and the coherent pattern index graph versus the
reachability-plots of Opitcs [3] on both other real world gene
expression data sets and synthetic data sets. The results re-
ported in [22; 23] show that our method is insensible to
the setting of probe size, and is scalable w.r.t. the num-
ber of genes. The index list is also more effective than the
reachability-plot by Optics. Limited by space, we omit the
details here.

4. GENEX: THE INTERACTIVE EXPLO-
RATION SYSTEM

Gene expression data sets are often complex in clustering
structure. Moreover, biology domain knowledge should be
integrated into the mining process. Interactive exploration
of gene expression data may lead to more biologically mean-
ingful mining results and substantially improve the inter-
pretability of the results. Therefore, we are building GeneX,
a gene expression data mining system supporting interactive
exploration of coherent gene expression patterns. GeneX has
the following distinct features:

• It presents a hierarchy of the coherent patterns and
the corresponding co-expressed genes.

• It uses the coherent pattern index graph as an explo-
ration “compass” to illustrate the local clustering struc-
ture and guide the users in the exploration.

• It provides the flexibility to plug-in various compo-
nents such as various distance measures and different
density definitions. By using various plug-in compo-
nents, users can compare various approaches and select
the one fitting the data set the best.

• It contains a gene annotation panel. Using the panel,
users can connect the derived groups of co-expressed
genes with some public annotation databases, such as
the GO [7]1.

• It supports an integrated environment of multiple graph-
ical views, such as parallel coordinates, to visualize the
data set from different aspects and in different resolu-
tions.

As shown in Section 3.4, our system starts with the root
node corresponding to the whole data set. With the explo-
ration and visualization tools provided by the system, the
users can unfold the hierarchical structure of coherent pat-
terns inherent in the gene expression data. Each node on
the hierarchical tree represents a coherent pattern and the
corresponding group of co-expressed genes. To better appre-
ciate the local structure of a specific node, users can choose
alternate plug-ins and adjust parameters repeatedly until a
satisfying result is achieved.

4.1 The Exploration Operations
Given a specific subset of genes, i.e. a node on the hieratical
tree, our system will generate the coherent pattern index
graph as described in Section 3.2. Each pulse in the graph

1Please also see Gene Ontology,
http://www.geneontology.org

indicates a potential coherent pattern existing in the subset.
Based on the index graph that demonstrates the clustering
structure of the gene subset and users’ domain knowledge,
the online analytic processing (OLAP) operations can be de-
fined (the theoretical foundation is justified in [29]). GeneX
supports the exploration operations as follows.

• Drill-down. A user can selectively clicks on the pulse(s)
in the index graph, and the system will split the subset
of genes accordingly. Or, if the user asks the system
to split the subset, but does not select any pulses, the
system will automatically identify all the significant
pulses and split the subset accordingly.

• Roll-up. A user can revoke any drill-down operation.
The user can either select a node and undo the drill
down operation from this node. In this situation, all
the children of this node will be deleted. Or, the user
can roll up one node A to its parent P . That is, skip
the selection of the pulse in P ’s index graph that cor-
responds to A, and undo the drill down operation for
P .

• Slice. A user can choose alternate plug-ins, adjust
parameters, and compare the mining results. For ex-
ample, there are various coherence measures [33], e.g.,
Pearson’s correlation coefficient, delayed correlation,
Euclidean distance, Kullback-Leiber distance, and dif-
ferent density definition [22], e.g., radius-based density,
k-nearest neighbor density and the density definitions
in Denclue and DHC. It is hard to tell which coher-
ence measure or which density definition best fits the
underlying local clustering structure. The system al-
lows users to try different approaches and compare the
results.

The clustering structure of gene expression data is usually
complicated. There may be several different ways to split a
specific subset of genes. Different splitting results may cor-
respond to different hypothesis about the gene function and
gene regulation. To avoid missing any valuable hypothesis,
users may want to try each meaningful split and use their
domain knowledge to interpret the splitting results.

4.2 The Gene Annotation Panel
There exists very rich literature about the functions and
regulation mechanisms of genes collected during the past
studies. Some genes have been well annotated about the
molecular function they perform, the biological process they
participate in and the cellular component where they locate.
It would be very helpful to integrate such domain knowledge
into the system.

For example, given a group of co-expressed genes, biolo-
gists may postulate the functions of the novel genes in the
group based on those well annotated ones in the same group.
Moreover, the gene panel can also help validate the mining
results. If a group of co-expressed genes scatter into diverse
functional categories, biologists may further split this group
or try other split path.

To meet this need, we design a gene annotation panel. Given
a specific node on the hierarchical tree, the panel will dis-
play the name and the annotation (if any) for each gene
belonging to the node. The gene annotations can be down-
loaded from some public databases, such as the Gene Ontol-
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ogy Consortium (http://www.geneontology.org) and MIPS
(http://mips.gsf.de).

The genes in the panel follow the same order as in the in-
dex list that we described in Section 3.2. Therefore, the
expression profile of the first gene in the panel represents
the coherent pattern shared by all the genes in the panel.
The similarity measures between the coherent pattern and
the expression profile of the individual genes decrease grad-
ually along the list. The genes in the front part of the panel
have high coherence with the coherent pattern. Those genes
are considered as the co-expressed genes. The genes in the
rear part of the panel may have low coherence with the co-
herent pattern. As explained in Section 3.2, those genes are
mostly “intermediate genes”, which do not belong to any
co-expressed gene groups. Users can manually select and
remove those genes from the panel.

4.3 Graphical Views
In GeneX, we provide the following graphical views to vi-
sualize the data set from various aspects and in different
resolutions.

• A tree structure (e.g., Figure 7) is an overview of the
hierarchical clustering structure of the gene expression
data set.

• For a given node in the tree structure, the expression
profiles of the genes within the node as well as the
corresponding coherent pattern can be shown. The
coherent pattern is accompanied by an error bars at
each experiment condition, which delineates the stan-
dard deviation of the expression levels among genes
within the node (Figure 1).

• Given a tree structure as the current exploration re-
sult, all the leaf nodes in the tree are put into a graph
where each vertex in the graph corresponds to a leaf
node. Nodes with similar coherent patterns are pre-
sented in the graph as neighbors close to each other,
while nodes with different coherent patterns are allo-
cated remotely. Such a graph may give good indica-
tions for underlying genetic network. For example, a
set of nodes that are allocated close to each other may
correspond to a pathway.

• In the gene panel, we borrow the visualization method
from [11] and represent the expression profile for each
gene gi by a series of colored tile, where each tile cj
corresponds to an experiment condition, and the color
suggests the expression level of gi at cj .

The four views above serve as the graphical user interface for
the interactive exploration. The users not only can have a
thorough overview of the clustering structure in the data set,
but also can zoom in a view to a specific coherent pattern
of particular interest, or even focus on individual genes.

5. DISCUSSION AND CONCLUSIONS
The development of microarray technology provides a great
opportunity for functional genomics. Identifying co-expressed
genes and coherent expression patterns in gene expression
data can help biologists understand the molecular functions
of the genes and the regulatory network between the genes.

However, due to the distinct characteristics of gene expres-
sion data and the special requirements from the biology do-
main, mining coherent patterns from gene expression data
presents several challenges, which cannot be solved by tra-
ditional clustering algorithms.

In this paper, we introduce an interactive exploration sys-
tem GeneX for mining coherent expression patterns from
gene expression data. The system consists of three major
components, the coherent pattern index graph, the gene an-
notation panel and a bunch of graphical views. Instead of
a direct partition of the data set, our system provides users
a graphical representation of the clustering structure. Users
can try splitting the data set in different ways based on the
clustering structure as well as their domain knowledge.

In the future, we plan to extend our system in the following
two aspects. On the one hand, besides the gene expression
data, recent technological advances have enabled collecting
many different types of data at a genome-wide scale, e.g.,
protein-protein interactions from the yeast two-hybrid as-
say [44] and mass spectrometry [14]. A joint mining from
combined data with more than one type of the above data
may improve the mining results [37; 38]. For example, the
complex process of microarray experiment typically brings
in a large amount of errors in the resulted gene expression
data. Combining gene expression data with protein interac-
tion data may increase the signal-to-noise ration and achieve
more robust results. In our interactive system, we provide
a coherent pattern index graph to demonstrate the (local)
data structure purely based on the expression profiles of
genes. In the future, we will study whether we can integrate
other types of data and make the index graph more robust
and biologically meaningful.

On the other hand, as more and more gene expression data
are accumulated (e.g., 134 data sets in the Stanford Microar-
ray Database), in addition to analyzing genes and conditions
within a single microarray experiment, it is important to an-
swer analytical queries about various “summarizations” over
gene expression data sets. For example, biologists may ask
“Which genes of yeast are co-expressed both in the Diauxic
Shift Sporulation processes and what are the trends in their
expression patterns?” Our hierarchical approach provides a
flexible model to organize the expression patterns in individ-
ual data sets. In the future, we will focus on how to store,
index and retrieve expression patterns across multiple data
sets and support complex analytical queries efficiently.

6. REFERENCES
[1] Alizadeh, A.A., et al. Distinct types of diffuse large b-cell

lymphoma identified by gene expression profiling. Nature,
Vol.403:503–511, February 2000.

[2] Alon U., et al. Broad patterns of gene expression revealed by
clustering analysis of tumor and normal colon tissues probed
by oligonucleotide array. Proc. Natl. Acad. Sci. USA, Vol.
96(12):6745–6750, June 1999.

[3] Mihael Ankerst, et al.. OPTICS: Ordering Points To Identify
the Clustering Structure. Sigmod, pages 49–60, 1999.

[4] Bar-Joseph Z., et al. K-ary clustering with optimal leaf or-
dering for gene expression data. Bioinformatics, 19(9):1070–
1078, 2003.

[5] Bar-Joseph Z., et al. A new apporach to analyzing gene ex-
pression time series data. In Proc. 6th Annual International
Conference on Computational Molecular Biology, pages 39–
48, 2002.

SIGKDD Explorations. Volume 5,Issue 2 - Page 89 



[6] Ben-Dor A., Shamir R. and Yakhini Z. Clustering gene
expression patterns. Journal of Computational Biology,
6(3/4):281–297, 1999.

[7] Blake J.A. and Harris M. Current Protocols in Bioinformat-
ics, chapter The Gene Ontology Project: Structured vocab-
ularies for molecular biology and their application to genome
and expression analysis. Wiley and Sons, Inc., 2003.

[8] Cheng Y. and Church GM. Biclustering of expression data.
Proceedings of the Eighth International Conference on In-
telligent Systems for Molecular Biology (ISMB), 8:93–103,
2000.

[9] Cho, R. J., et al. A Genome-Wide Transcriptional Analysis
of the Mitotic Cell Cycle. Molecular Cell, Vol. 2(1):65–73,
July 1998.

[10] Dempster A.P., Laird N.M. and Rubin D.B. Maximal Likeli-
hood from Incomplete Data Via the EM Algorithm. Journal
of the Royal Statistical Society, Ser B(39):1–38, 1977.

[11] Eisen, et al.. Cluster Analysis and Display of Genome-
wide Expression Patterns. Proc. Natl. Acad. Sci. USA,
95(25):14863–14868, December 1998.

[12] Fraley C. and Raftery A.E. How Many Clusters? Which
Clustering Method? Answers Via Model-Based Cluster
Analysis. The Computer Journal, 41(8):578–588, 1998.

[13] Frank De Smet, et al.. Adaptive quality-based clustering of
gene expression profiles. Bioinformatics, 18:735–746, 2002.

[14] Gavin A.C., et al. Functional organization of the yeast pro-
teome by systematic analysis of protein complexes. Nature,
415(6868):123–4, Jan 2002.

[15] Ghosh, D. and Chinnaiyan, A.M. Mixture modelling of gene
expression data from microarray experiments. Bioinformat-
ics, 18:275–286, 2002.

[16] Golub T. R., et al. Molecular Classification of Cancer: Class
Discovery and Class Prediction by Gene Expression Moni-
toring. Science, Vol. 286(15):531–537, October 1999.

[17] Hartuv, Erez and Shamir, Ron. A clustering algorithm based
on graph connectivity. Information Processing Letters, 76(4–
6):175–181, 2000.

[18] Herrero J., Valencia A. and Dopazo J. A hierarchical unsu-
pervised growing neural network for clustering gene expres-
sion patterns. Bioinformatics, 17:126–136, 2001.

[19] Heyer LJ., Kruglyak S., Yooseph S. Exploring expres-
sion data: identification and analysis of coexpressed genes.
Genome Res, 9(11):1106–1115, 1999.

[20] Hinneburg, A. and Keim, D.A. An efficient approach to clus-
tering in large multimedia database with noise. Proc. 4th Int.
Con. on Knowledge discovery and data mining, 1998.

[21] Iyer, V.R., et al. The transcriptional program in the response
of human fibroblasts to serum. Science, 283:83–87, 1999.

[22] Jiang, D., Pei, J. and Zhang, A. DHC: A Density-based Hi-
erarchical Clustering Method for Time Series Gene Expres-
sion Data. In In Proceedings of the 3rd IEEE Symposium on
Bio-informatics and Bio-engineering (BIBE’03), Washing-
ton, DC, USA, March 10-12 2003.

[23] Jiang, D., Pei, J. and Zhang, A. Interactive Exploration of
Coherent Patterns in Time-Series Gene Expression Data.
In In Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining
(KDD’03), Washington, DC, USA, August 24-27 2003.

[24] Kohonen T. Self-Organization and Associative Memory.
Spring-Verlag, Berlin, 1984.

[25] Luan Y. and Li H. Clustering of time-course gene expression
data using a mixed-effects model with B-splines. Bioinfor-
matics, 19(4):474–482, 2003.

[26] MacQueen J.B. Some methods for classification and analy-
sis of multivariate observations. In Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Proba-
bility, volume 1, pages 281–297, Univ.of California, Berkeley,
1967. Univ.of California Press, Berkeley.

[27] Mavroudi S., Papadimitriou S. and Bezerianos A. Gene ex-
pression data analysis with a dynamically extended self-
organized map that exploits class information. Bioinformat-
ics, 18:1446–1453, 2002.

[28] McLachlan, G.J., Bean R.W. and Peel D. A mixture model-
based approach to the clustering of microarray expression
data. Bioinformatics, 18:413–422, 2002.

[29] Pei, J. A general model for online analytical processing of
complex data. In Proceedings of the 22nd International Con-
ference on Conceptual Modeling (ER’03), Chicago, IL, Oc-
tober 13-26 2003.

[30] Pei J., et al. MaPle: A Fast Algorithm for Maximal Pattern-
based Clusterin. Proceedings of the Third IEEE Interna-
tional Conference on Data Mining (ICDM’03), November
19-22 2003.

[31] Perou C.M., et al. Distinctive gene expression patterns in
human mammary epithelial cells and breast cancers. Proc.
Natl. Acad. Sci. USA, Vol. 96(16):9212–9217, August 1999.

[32] Ralf-Herwig, et al. Large-Scale Clustering of cDNA-
Fingerprinting Data. Genome Research, 9:1093–1105, 1999.

[33] Ramoni M.F., Sebastiani P. and Kohane I.S. Cluster analysis
of gene expression dynamics. PNAS, 99(14):9121–9126, July
2002.

[34] Rose, K. Deterministic annealing for clustering, compression,
classification, regression, and related optimization problems.
Proc. IEEE, 96:2210–2239, 1998.
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