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1 Problem Description and Model

A protein is the product of a gene. From the gene expres-
sion data, we can find co-expressed genes, which are groups
of genes that demonstrate coherent patterns on samples. On
the other hand, from the protein interaction data, we can find
groups of proteins that frequently interact with each other.
If we can conduct a joint mining of both gene expression
data and protein interaction data, then we may find the clus-
ters of genes that are co-expressed and also their proteins
interact.

Such clusters found from the joint mining are interesting
and meaningful for at least two reasons. First, both the gene
expression data and the protein data are very noisy. The
clusters confirmed by both data sets will strongly indicate
the correlation/connection among the genes in a cluster. In
other words, the clusters found from the joint mining are
more reliable. We may thus have the high confidence that
the genes in a cluster found as such are regulated by the
same mechanism or belong to the same biological process.

Second, although highly related, gene expression data
and protein interaction data still carry different biological
meaning. The coincidence of co-expressed genes and in-
teracting proteins is biologically significant. As indicated
in [5], many pathways exhibit two properties: their genes
exhibit a similar gene expression profile, and the protein
products of the genes often interact.

1.1 Model

Technically, a gene expression data set is a matrixW =
{wij} for a setG of n genes and a setS of m samples,
wherewi,j (1 ≤ i ≤ n, 1 ≤ j ≤ m) is the expression level
of genegi on samplesj .

Two genesg1 and g2 are calledcoherentif they show
similar expression patterns on the set of samples. There are
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different methods to measure the similarity (or distance) be-
tween gene expression patterns as required by the applica-
tion domain, such as Euclidean distance, Pearson’s correla-
tion coefficient, KL-distance [2], and pattern-based similar-
ity measures [1, 6]. Without loss of generality, in this paper,
we simply assume that a similarity measuresim(·) is spec-
ified, and the higher the similarity value, the more similar
the genes.

We can define a binary relation∼ on the set of genes.
For genesg1 andg2, g1 ∼ g2 if sim(g1, g2) ≥ δ, whereδ
is a user-specifiedminimum similarity threshold.

Naturally, the relation∼ can be represented asgene ex-
pression graphgeneG = (G,E): the genes are the vertices,
and(g1, g2) ∈ E if g1 ∼ g2.

Similarly, for a set of proteinsP , if we have the data
about the interactions between proteins, we can define a
protein interaction graphproteinG = (P, I): the proteins
are treated as vertices, and(p, p′) ∈ I if proteinsp andp′

interact with each other.
For gene expression data, a subset of genes forms a per-

fect cluster if each gene in the subset is similar to all the
others in the same subset. For protein interaction data, a
subset of proteins forms a perfect cluster if each protein in
the subset interacts with all the others in the same subset. To
generalize, in gene expression/protein interaction graphs, a
perfect clusteris a clique1.

However, due to the noise in the data sets, we may not
be able to expect perfect clusters. Instead, a user may be
interested in a subset of genes/proteins as a cluster such that
each gene in the subset is similar to most of the other genes
in the cluster, and each protein in the subset interacts with
most of the other proteins in the cluster.

To quantify, for a user-specified thresholdγ (0 < γ ≤
1), a subsetC of k genes forms aγ-quasi-cluster if each
geneg ∈ C is similar to at leastγ · (k − 1) other genes
in C. Similarly, we can defineγ-quasi-cluster for protein
interaction data. Clearly, a maximalγ-quasi-cluster is aγ-
quasi-clique in the corresponding gene expression/protein
interaction graph.

1In this paper, we follow the terminology usage that a clique is amaxi-
malsubset of mutually adjacent vertices in a graph.



Since a protein is a product of a gene, there is a mapping
f from the set of proteinsP to the set of genesG: f(p) = g
if proteinp is the product of geneg.

We are particularly interested in subsets of proteinsC
such thatC is a γ1-quasi-cluster in the protein interaction
data and{f(c)|c ∈ C} is a γ2-quasi-cluster in the gene
expression data, whereγ1 andγ2 are user-specified param-
eters. We callC a cross-data set cluster. Moreover,C is
particularly interesting if it is maximal.

1.2 Why Is the Problem Challenging?

One may ask, “Can we solve the joint mining problem
by a simple extension of the existing techniques?” Unfortu-
nately, the answer is no.

A natural thinking may be as follows. We can integrate
the multiple graphs into one based on a similarity function
between data objects. The integrated similar function com-
bines the similarity between data objects in different data
sets in some weighted manner. Then, we can find quasi-
cliques in the integrated graph.

However, the above naı̈ve method does not work at all.
The key is that vertices of cross-graph quasi-cliques can be
connected in different ways in individual graphs. Therefore,
the integrated graph cannot capture the cross-graph quasi-
cliques. It is easy to come up with a counter example to
show that a cross-graph quasi-clique is not a quasi-clique in
the integrated graph.

2 Experimental Results

We use the cell-cycle gene expression data CDC28 and
the corresponding protein-protein interaction data from DIP
as the data set. We found4, 668 matched gene-protein pairs
between CDC28 and DIP. For CDC28 data set, we set the
coherence thresholdρ = 0.5 (using Pearson’s correlation
coefficient as measure). As a result, the gene graphGE

contains865, 080 edges whose both endpoints (genes) ap-
pear in the matched gene-protein pairs. After removing the
self-interacting protein pairs, the protein graphGP contains
15, 115 edges whose both endpoints (proteins) appear in the
matched gene-protein pairs.

In our experiments, we find the complete set of quasi-
cliques across the gene graphGE and the protein graph
GP . We setγE = 1 for GE , γP = 0.5 for GP , and
mins = 5. That is, we are interested in a subset of at
least 5 genes whose expression patterns are coherent with
each other, and the corresponding proteins frequently inter-
act with each other.

Figure 1 shows an example patternQ (γE = 1 and
γP = 0.4). The induced graph ofGE (the gene expres-
sion graph) onQ is a perfect clique, so we only show the
induced graph ofGP (the protein interaction graph) onQ
here. The pattern contains 11 vertices. We use the ORF

(Open Reading Frame) names to identify the corresponding
genes and proteins.
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Figure 1. A cluster of 11 proteins.

Although the exact biological meaning of this pattern
is still under investigation, it is very interesting in biol-
ogy since these11 genes are highly coherent and the cor-
responding11 proteins are intensively interacting.

3 Related Work

For more examples on joint mining of multiple sources,
Page and Craven [3] surveyed the biological applications
of mining multiple tables, such as pharmacophore discov-
ery, gene regulation, information extraction from text and
sequence analysis.

Recently, joint mining of multiple biological data sets
has received intense interest. As a pioneer work, Segal et
al. [5] proposed a unified probabilistic model to learn the
pathways from gene expression data and protein interaction
data. However, their method requires the users to input the
number of pathways that is usually unknown in advance.

4 About the Full Version of This Paper

In the full version of this paper [4], we built a general
model, investigated the properties of the problem and the
computational complexity, and developed an effective and
efficient algorithm to tackle the problem. A systematic per-
formance study was also reported.
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