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Abstract

Sequential pattern mining is an important data mining
problem with broad applications. It is also a difficult
problem since one may need to examine a combinatori-
ally explosive number of possible subsequence patterns.
Most of the previously developed sequential pattern min-
ing methods follow the methodology of Apriori since the
Apriori-based method may substantially reduce the num-
ber of combinations to be examined. However, Apriori still
encounters problems when a sequence database is large
and/or when sequential patterns to be mined are numer-
ous and/or long.

In this paper, we re-examine the sequential pat-
tern mining problem and propose a novel, efficient se-
quential pattern mining method, called FreeSpan (i.e.,
Frequent pattern-projected Sequential pattern mining).
The general idea of the method is to integrate the min-
ing of frequent sequences with that of frequent pat-
terns and use projected sequence databases to confine
the search and the growth of subsequence fragments.
FreeSpan mines the complete set of patterns but greatly
reduces the efforts of candidate subsequence generation.
Our performance study shows that FreeSpan examines a
substantially smaller number of combinations of subse-
quences and runs considerably faster than the Apriori-

based GSP algorithm.

1 Introduction

Sequential pattern mining, which discovers frequent
subsequences as patterns in a sequence database,
is an important data mining research problem with
broad applications. Since its first introduction in [3],
many studies have contributed to the efficient mining
of sequential patterns or other frequent patterns in
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time-related data [3, 6, 5]. Almost all the methods
proposed so far for mining sequential patterns and
other time-related frequent patterns are Apriori-like,
i.e., based on the Apriori heuristic first proposed
in association mining [2]: any super-pattern of a
nonfrequent pattern cannot be frequent. Based on this
heuristic, a typical Apriori-like method such as GSP [6]
adopts a multiple-pass, candidate generation-and-test
approach in sequential pattern mining.

The Apriori-like sequential pattern mining methods,
though they reduce the search space, bear three
nontrivial, inherent costs which are independent of
detailed implementation techniques.

e A huge set of candidate sequences could
be generated in a large sequence database.
Since the set of candidate sequences includes all
the possible permutations of the elements and
repetition of items in a sequence, the Apriori-
based method may generate a really large set of
candidate sequences even for a moderate seed set.
For example, if there are 1000 frequent sequences
of length-1, an Apriori-like algorithm will generate
1000 x 1000 + 1098X%92 = 1 499,500 candidate

sequences.

e Many scans of databases in mining. Since
the length of each candidate sequence grows by
one at each database scan, to find a sequential
pattern {(abc) (abc)(abe)(abe)(abe)}, the Apriori-
based method must scan the database at least 15
times. This bears a nontrivial cost.

e The Apriori-based method encounters diffi-
culty when mining long sequential patterns.
This 1s because a long sequential pattern must
grow up from a huge number of short sequential
patterns, but the number of such candidate se-
quences is exponential to the length of the sequen-
tial patterns to be mined.

Based on our analysis, both the thrust and the
bottleneck of an Apriori-based sequential pattern
mining method come from its step-wise candidate
sequence generation and test. Can we develop
a new method which may absorb the spirit of
Apriori but avoid or substantially reduce the expensive
candidate generation and test? Recent researches [4,



1] explore the techniques for projection databases to
achieve high performance in frequent pattern mining.
Can projected databases facilitate sequential pattern
mining? This is the motivation of this study.

In this paper, we develop a new sequential min-
ing method, called FreeSpan (i.e., Frequent pattern-
projected Sequential pattern mining). TIts general
idea is to use frequent items to recursively project
sequence databases into a set of smaller projected
databases and grow subsequence fragments in each
projected database. This process partitions both the
data and the set of frequent patterns to be tested,
and confines each test being conducted to the corre-
sponding smaller projected database. Our experimen-
tal performance studies show that FreeSpan mines the
complete set of patterns and is efficient and runs con-
siderably faster than the Apriori-based GSP algorithm.

The remaining of the paper is organized as follows.
In Section 2, we present our new method FreeSpan.
The experimental and performance results are pre-
sented in Section 3. We summarize our study in Sec-
tion 4.

2 FreeSpan

Let I = {i1,is,...,1,} be aset of items. An itemset
is a subset of items. A sequence is an ordered list
of itemsets. A sequence s is denoted by (s1s2---s;),
where s; is an itemset, ie., s; C I for 1 < j <[
s; is also called an element of the sequence, and
denoted as (z12zg---&m), where i is an item, i.e.,
zg € I for 1 < k < m. For brevity, the brackets
are omitted if an element has only one item. That
is, element (z) is written as . An item can occur at
most once in an element of a sequence, but can occur
multiple times in different elements of a sequence. A
sequence a = (ajas---a,) is called a subsequence
of another sequence 3 = (h1by - by, ) and § a super
sequence of a, denoted as a T g, if there exist
integers 1 < j1 < ja < -+ < jn < m such that
aq gbjla az C bjza ceayan C b]n

A sequence database S is a set of tuples (sid, s),
where sid is a sequence_id and s Is a sequence.
A tuple (sid,s) in a sequence database S is said to
contain a sequence «, if « 1s a subsequence of s,
ie, a C s. The support of a sequence a in a
sequence database S is the number of tuples in the
database containing a. Given a positive integer &
as the support threshold, a sequence « is called a
sequential pattern in sequence database S if the
sequence 1s contained by at least & tuples in the
database.

Now, we introduce our novel mining method,
FreeSpan, using the following example.

Given the sequence database S in the first two
columns in Table 1 and min_support = 2. Let us
mine sequential patterns.

By scanning S once, we find the set of frequent
items, Ly, which is also the set of length-1 sequential
patterns. These frequent items are sorted in support

descending order,i.e. (b:5,c:4,a:3,d:3,e:3,f:

Table 1: A sequence database

[ Sequence_id | Sequence | item pattern |
10 ((bd)cb(ac)) {a,b,c,d}
20 (0N Ua)) | Toe.er gl
30 (Cah) 5 )abf) | Ta.b,7,h]
40 ((be)(ce)d) {b,c,d, e}
50 (a(bd)bcb(ade)) | {a,b,c,d, e}

3). Tt is called frequent item list or simply f_list.
It will be used throughout the mining process. The
complete set of sequential patterns can be divided
into six subsets without overlap: those having item
f, those having item e but no f, those having item
d but no e nor f, and so on. FreeSpan uses such a
divide-and-conquer method to find the complete set
of sequential patterns.

Then, we construct a frequent item matrix F
to count the occurrence frequency of each length-2
sequence formed by items in the f_list, as follows. For
folist (i1,42,...,4,), F is a triangular matrix F[j, ],
where 1 < j <mand 1 <k < j. F[j,7] (for 1 <
J < m) has only one counter, whereas every other slot
Flj,k] (1 < j<m,and 1 <k < j) has three counters:
(A, B,C), where A is the number of occurrences that
i occurs afteri; (i.e., the sequence contains (i;ix)), B
is that i occurs before i; (i.e., the sequence contains
(ik1;)), and C' is that iy occurs concurrently with i;
(i.e., the sequence contains ((i;ix))).

In this example, the flist contains six items. It
leads to the generation of a 6 x 6 triangular frequent
item matrix, with every counter initialized to 0. The
second scan fills up the matrix as follows. The first
sequence ((bd)chb(ac)) increases the first two counters
of matrix F[b,c] by 1, i.e.,, F[b,e] = (1,1,0), since
two cases, (be) and <cb> but not ((be)), occur here.
For F[b,d], since only ((bd)) and (db) occur in this
sequence, we have F[b,d] = (0,1,1). The process
continues. Table 2 shows the resulting matrix after
a complete scan.

Table 2: The frequent item matrix after the scan of S
b 4

c| (430 1

al (3200 (21,1) 2

d|(222) (220 (121 1

e | (31,1) (1,1,2) (1,01) (1,1,1) 1

F1222) (1,1,0) (1,1,0) (0,00) (1,1,0) 2
| b c a d i

This frequent item matrix is used to generate the
length-2 sequential patterns and a set of projected
databases, which are then used to generate length-
3 and longer sequential patterns. For an itemset
X, the X-projected database is the collection of
sequences having all items in X. Infrequent items as
well as items after those in X in f_list are discarded.
Similarly, for a sequential pattern «, the a-projected



Table 3: Pattern generation from the frequent item matrix

Ttem Output length-2 sequential patterns Ann. on repeating items | Ann. on Projected DBs
i OF) 2. () 2, (b)) : 2 G] 0
e (be)»: 3, {(ce)) : 2 (b¥e) {(ce)) : {b}
d (bd) : 2, {db) : 2, {(bd)) : 2, {cd) : 2, {dc) : 2, (da) : 2 {bTd}, (da™) {da) : {b, c}, {cd} : {b}
a {(ba) : 3, {ab) : 2, {ca): 2, {aa) : 2 (aa™), {a¥bT}, {ca™) {ca) : {b}
c {be) : 4, {cb) : 3, {b*c} 0
b (bb) : 4 (bb7) 0

database is the collection of sequences having « as a
subsequence. Infrequent items and items after those
in « are ignored.

In order to generate level-3 projected databases, a
set of annotations, indicating which set of items or
sequences should be examined in the projection and
later mining of level-3 databases, should be the task
of the next step.

Now, let us examine how to use the matrix to gen-
erate (1) length-2 sequential patterns, (2) annota-
tions of 1tem-repeating patterns, and (3) annotations
of projected databases. The annotation of an item-
repeating pattern is of the form $aja]$, where §...8

can be either (...) (indicating looking for a particu-
lar ordered sequence only) or {.. .} (indicating looking
for any ordered sequence), and a; can be either a+
(indicating looking for more than one occurrence of
a;), or a; (1.e., no repeating a;’s s)—notice that at least
one of a; and a; is a repeating one. Similaurly7 the
annotation of the projected database is of the form
$a;a;$ : {bp,..., by}, where $...9 has the same con-
vention as the item repeating pattern, and {b,,...,b,}
represents a set of frequent items which may occur to-
gether with $a;a;9$ to form longer sequential patterns
in subsequent mining.

More concretely, this step is performed as follows.

e generate length-2 sequential patterns: For each
counter, if the value in the counter is no less than
min_support, output the corresponding frequent
pattern.

item-repeating patterns
if Fj,5] >

e generate annotations on
for row j: For the diagonal slot,

min_support, generate (jj+)!.

For a column ¢ # j, we have the following
rules: if F[i,i] > min_support, the annotation
should contain it 2; if F[j, j] > min_support, the
annotation should contain j¥; and if only one of
the three counters of F[i,j] is frequent, sequence
is used as the annotation; otherwise set is used?®.

I This indicates that the count of encountered jjj, 7jjj, etc.
should be registered in the next round scan to find whether
they are frequent since jj has appeared more than min_support
times.

2This means that there are potentially more than one ¢
appearing in the sequential pattern.

3This distinction is used to enhance string filtering: annota-

e generate annotations on projected databases for row
J: For each i < j, if F[i,j], Flk,j] and F[i, k]
(k < i) may form a pattern generating triple
(i.e., all the corresponding pairs are frequent)?,
k should be added to i’s projected column set.
After examining all columns in front of ¢, the set
of projected columns is determined. Output the
annotation containing ¢, j and the set of projected
columns. If there is a choice between sequence
or set, sequence is preferred since it enforces a
stronger restriction in the projection.

Length-2 sequential patterns and annotations on
item-repeating patterns, and that on the projected
databases are generated, as shown in Table 3, based
on the frequent item matrix F (Table 2), We only
show the process for two rows, f and e, here.

The f-row has F[b, f] = (2,2,2), which generates
three length-2 sequences: (bf) : 2, (fb) : 2, and
((bf)) : 2. Since both F[b,b] and F[f, f| are frequent,
the annotation {b* f*} is generated which means one
need to examine multiple occurrences of b’s and f’s
and their combinations in the next scan. Since no
other item could be co-frequent with (bf), there is no
projected database annotation with f.

The e-row has two counters frequent, which leads
to two length-2 sequences: (be) : 3, and ((ce)) : 2.
Since F[b,b] is frequent, we have the annotation:
(b*e). Moreover, since Flc,e], F[b,e], and FI[b,c]
form a pattern generating triple, and Fle, e] = (1,1, 2)
(which means only ((ce)) is valid), the annotation for
the projected database should be {(ce)) : {b}® which
indicates generating ((ce))-projected database, with
{b} as the only additional items included.

After generating the annotations, the matrix can

tion (bf) indicates there is no chance for the subsequence {fb)
to survive but no so for {bf}.

4There is some subtlety to observe. For example, for
min_support = 2, the tripe Fe, f] = (1,9,0), F[a, f] = (3,0,1),
Fla,e] = (1,1,3), is not a pattern generating triple because
there is no way to satisfy simultaneously the three requirements
(fe), {af) and {(ae)). However, if Fla,e] = (3,1,1), it can
generate a valid pattern (a fe). For lack of space, the set of rules
to generate the precise sequences or sets for all the combinations
are omitted here.

5A more refined header should be {(ce)) : {b}[{be)], which
indicates that the next scan needs to include only the sequences
containing ordered subsequence {be) besides (ce). We ignore
this additional piece of information here since it costs an
additional string match test, and its performance gain is not
so obvious in many cases based on our experiments.



be discarded. That is, only the annotations are used
in the third (and the last) scan of the database.

Based on the annotation generated from the matrix,
we scan the database one more time and generate
the item-repeating patterns and projected databases.
The remaining mining will be confined to each
small projected database, by examining only the
corresponding patterns enclosed in the header set.
Based on the annotations for item-repeating patterns
and projected databases, we scan S one more time.
The set item-repeating patterns generated is {(bbf;
fi2, (bn:2 ()02 {(bpna (b
bba):2, (aba):2, (abb):2, (beb): 3 bbe):2}.

There are four prOJected databases: ((ce)): {b}
(da):{b,c}, {cd}:{b} and (ca):{b}, as shown in Table 4
For a projected database whose annotation contains
exactly three items, its associated sequential patterns
can be obtained by a simple scan of the projected
database. However, for a projected database whose
annotation contains more than three items, one can
construct frequent item matrix for this projected
database and recursively mine its sequential patterns
by the alternative-level projection technique.

We outline the FreeSpan algorithm as follows.

Algorithm 1 (FreeSpan) Given a sequence database
S and the support threshold &, FreeSpan mine the
complete set of sequential patterns as follows.

1. Scan S, find the set of frequent itemsin S, and (in
frequency descending order) sort them into f_list.

2. Perform alternative-level projection mining which
consists of the following steps: (1) construct a
frequent item matrix by scanning the database
once, (2) generate length-2 sequential patterns
and the annotations on item-repeating patterns
and projected databases, (3) scan database to
generate item-repeating patterns and projected
databases, and (4) do matrix projection mining
on projected databases recursively, if there are still
longer candidate patterns to be mined. a

3 Performance Study

In this section, we report our experimental results
on the performance analysis of FreeSpan and its level-
by-level projection version FreeSpan-1, in comparison
with GSP , on scalability and processing efficiency.
It shows that FreeSpan outperforms other previously
proposed methods and is efficient and scalable for
mining sequential patterns in large databases. All
the experiments are performed on a 233MHz Pentium
PC machine with 128 megabytes main memory. The
synthetic datasets which we used for our experiments
were generated using standard procedure described in
[7]. In all the data sets, the number of items are set
to 10, 000.

We compare performance of three methods. (1)
GSP described in [7]; (2) FreeSpan-1is FreeSpan but
with level-by-level projection; and (3) FreeSpan which
is a complete implementation of the method proposed
in this paper.

The experimental results are shown in Figures 1.
Graphs in Figure 1 (a) to (e) show the scalability of
the methods as the support threshold decreases from
1% to 0.1%. For all the experiments using different
sized sequence databases, with a different number
of items in each element, and a different number
of elements in each sequence, FreeSpan is always the
clear winner. Naive FreeSpan and GSP are close, but
lag increasingly behind when the data set grows large
and the minimum support threshold reduces. You
may also notice a sharp jump in the runtime of
FreeSpan-1 when the support threshold falls below
a certain point, because FreeSpan-1 requires more
memory and will cause page thrashing.

We also tested the scalability of GSP and FreeSpan
with the number of sequences in databases, with
the results shown in the graph of Figure 1 (f).
It shows both algorithms are linearly scalable, but
FreeSpan has much better scalability.

Finally, we analyze the total space needed for
FreeSpan. Since there are only three scans of the
original database in FreeSpan, independent of the
maximal length of the sequence, there is no need
to have the sequence database residing in the main
memory. One data page allocation should be good
enough for the sequence database. Similarly, the
bulky output of the computed frequent patterns can
be swapped back to database as well. Thus the major
memory space needed is to hold the frequent item
matrix F'. After this, the computation of projected
database can be done one by one, and each will require
much less memory than the original database.

For a database with m frequent distinct items, the
total number of counters for frequent item matrix is

|IFl = m+ 2 x(m—1) x (m-2). Ifm = 1000
(i.e., 1000 frequent distinct items), |F| ~ 1.5 x
106 = 3 megabytes (assuming each counter takes

two bytes of space). This can be easily handled
by today’s computer. This space requirement will
increase quadratically, e.g. computing the frequent
item matrix for 10,000 frequent distinct items requires
300 megabytes memory space to hold the array.
However, some memory management scheme (such
as hash tree, etc.) can be used to ensure that the
performance is not degraded seriously.

4 Conclusions

We have developed an interesting, scalable and
efficient sequential pattern mining method, called
FreeSpan, which integrates the mining of frequent
sequences with that of frequent patterns and uses
projected sequence databases to confine the search
and the growth of subsequence fragments.

Our performance study shows that FreeSpan exam-
ines substantially fewer combinations of subsequences
and runs considerably faster than the Apriori-based
GSP algorithm. According to our analysis, the rea-
sons that FreeSpan outperforms GSP are obvious: (1)
FreeSpan projects a large sequence database recur-
sively into a set of small projected sequence databases



Table 4: Four projected databases and their sequential patterns

[ annotation [ {(ce)):{b} [ {(da):{b,c} | {cd}:{t} [ {ca):{b} |
projected {b(ce)by, {(bd)cb(ac)), {(bd)bcba) {(bd)cbey, {bed), {(bd)bcbd) | {bcbay,
database (b(ce)) {bbcba)
sequential {b(ce)):2 {((bd)a):2, {dca):2, {dba):2, {((bd)ca):2, | {bed):2, ((bd)c):2, {dcb):2, | {bca):2,
patterns )ba):2, {(dcba):2, cha): )eb):2, c): cba):2,

bd)ba):2, {dcba):2, {(bd)cba):2 bd)cb):2, {(bd)bc):2 ba):2
{bcba):2
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Figure 1: Performance Evaluation of Four Algorithms: GSP, FreeSpan-1, FreeSpan

based on the currently mined frequent sets. The sub-
sequent mining is confined to each projected database,
relevant to a smaller set of candidates. (2) The
alternative-level projection in FreeSpan reduces the
cost of scanning multiple projected databases when
finding frequent length-3 candidates, which takes
advantages of Apriori-like 3-way candidate filtering
to produce smaller projected databases. Thus the
method dramatically reduces the efforts of repeat-
edly generating and checking large sets of candidate
sequences against the entire databases and achieves
better performances when there exist a large set of
sequential patterns.
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