
Chapter 3

Mining Frequent Patterns in
Data Streams at Multiple Time
Granularities

Chris Giannella�, Jiawei Hany, Jian Peiz, Xifeng Yany,
Philip S. Yu]

�
Indiana University, cgiannel@cs.indiana.edu

yUniversity of Illinois at Urbana-Champaign, fhanj,xyang@cs.uiuc.edu
zState University of New York at Buffalo, jianpei@cse.buffalo.edu

]IBM T. J. Watson Research Center, psyu@us.ibm.com

Abstract:
Although frequent-pattern mining has been widely studied and used, it is challenging
to extend it to data streams. Compared with mining a static transaction data set, the
streaming case has far more information to track and far greater complexity to man-
age. Infrequent items can become frequent later on and hence cannot be ignored. The
storage structure need be dynamically adjusted to reflect the evolution of itemset fre-
quencies over time.

In this paper, we propose an approach based on computing and maintaining all the
frequent patterns (which is usually more stable and smaller than the streaming data) and
dynamically updating them with the incoming data stream. We extended the framework
to mine time-sensitive patterns with approximate support guarantee. We incrementally
maintain tilted-time windows for each pattern at multiple time granularities. Interesting

191

192 CHAPTER THREE

queries can be constructed and answered under this framework.
Moreover, inspired by the fact that the FP-tree provides an effective data structure

for frequent pattern mining, we develop FP-stream, an FP-tree-based data structure
for maintaining time sensitive frequency information about patterns in data streams.
The FP-stream can scanned to mine frequent patterns over multiple time granulari-
ties. An FP-stream structure consists of (a) an in-memory frequent pattern-tree to
capture the frequent and sub-frequent itemset information, and (b) a tilted-time win-
dow table for each frequent pattern. Efficient algorithms for constructing, maintaining
and updating an FP-stream structure over data streams are explored. Our analysis and
experiments show that it is realistic to maintain an FP-stream in data stream environ-
ments even with limited main memory.

Keywords: frequent pattern, data stream, stream data mining.

3.1 Introduction

Frequent-pattern mining has been studied extensively in data mining, with many algo-
rithms proposed and implemented (for example, Apriori [1], FP-growth [10], CLOSET
[17], and CHARM [19]). Frequent pattern mining and its associated methods have been
popularly used in association rule mining [1], sequential pattern mining [2], structured
pattern mining [13], iceberg cube computation [4], cube gradient analysis [12], asso-
ciative classification [14], frequent pattern-based clustering [18], and so on.

Recent emerging applications, such as network traffic analysis, web click stream
mining, power consumption measurement, sensor network data analysis, and dynamic
tracing of stock fluctuation, call for study of a new kind of data, stream data. Stream
data takes the form of continuous, potentially infinite data streams, as opposed to finite,
statically stored data sets. Stream data management systems and continuous stream
query processors are under intense investigation and development. Besides querying
data streams, another important task is to mine data streams for interesting patterns.

There are some recent studies on mining data streams, including classification of
stream data [7, 11] and clustering data streams [9, 16]. However, it is challenging to
mine frequent patterns in data streams because mining frequent itemsets is essentially
a set of join operations as illustrated in Apriori whereas join is a typical blocking op-
erator, i.e., computation for any itemset cannot complete before seeing the past and
future data sets. Since one can only maintain a limited size window due to the huge
amount of stream data, it is difficult to mine and update frequent patterns in a dynamic,
data stream environment.

In this paper, we study this problem and propose a new methodology: mining time-
sensitive data streams. Previous work [15] studied the landmark model, which mines
frequent patterns in data streams by assuming that patterns are measured from the start
of the stream up to the current moment. The landmark model may not be desirable
since the set of frequent patterns usually are time-sensitive and in many cases, changes
of patterns and their trends are more interesting than patterns themselves. For example,
a shopping transaction stream could start long time ago (e.g., a few years ago), and

AUTHOR 193

the model constructed by treating all the transactions, old or new, equally cannot be
very useful at guiding the current business since some old items may have lost their
attraction; fashion and seasonal products may change from time to time. Moreover,
one may not only want to fade (e.g., reduce the weight of) old transactions but also to
find changes or evolution of frequent patterns with time. In network monitoring, the
changes of the frequent patterns in the past several minutes are valuable and can be
used for detection of network intrusions [6].

In our design, we actively maintain pattern frequency histories under a tilted-time
window framework in order to answer time-sensitive queries. A collection of patterns
along with their frequency histories are compressed and stored using a tree structure
similar to FP-tree [10] and updated incrementally with incoming transactions. In [10],
the FP-tree provides a base structure to facilitate mining in a static batch environment.
In this paper, an FP-tree is used for storing transactions for the current time window;
in addition, a similar tree structure, called pattern-tree, is used to store collections of
itemsets and their frequency histories. Our time-sensitive stream mining data structure,
FP-stream, includes two major components: (1) an pattern-tree, and (2) tilted-time
windows.

We summarize the contributions of the paper. First, we develop a data structure,
FP-stream, supporting time-sensitive mining of frequent patterns in a data stream.
Next, we develop an efficient algorithm to incrementally maintain an FP-stream.
Third, we describe how time-sensitive queries can be answered over data streams with
an error bound guarantee.

The remainder of the paper is organized as follows. Section 3.2 presents the prob-
lem definition and provides a basic analysis of the problem. Section 3.3 presents the
FP-stream data structure. Section 3.4 introduces the maintenance of tilted-time win-
dows, while Section 3.5 discusses the issues of minimum support. The algorithm is
outlined in Section 3.6. Section 3.7 reports the results of our experiments and perfor-
mance study. Section 3.8 discusses how the FP-stream can be extended to included
fading time windows. Section 3.9 discusses some of the broader issues in stream data
mining and how our approach applies.

3.2 Problem Definition and Analysis

Our task is to mine frequent patterns over arbitrary time intervals in a data stream
assuming that one can only see the set of transactions in a limited size window at any
moment.

To study frequent pattern mining in data streams, we first examine the same prob-
lem in a transaction database. To justify whether a single item ia is frequent in a
transaction database DB, simply scan DB and count the number of transactions in
which ia appears (the frequency). The frequency of every single item can be computed
in one scan of DB. However, it is too costly to compute, in one scan, the frequency of
every possible combination of single items because of the huge number of such combi-
nations. An efficient alternative proposed in the Apriori algorithm [1] is to count only
those itemsets whose every proper subset is frequent. That is, at the k-th scan of DB,
derive the frequent itemsets of length k (where k > 1), and then derive the set of length

194 CHAPTER THREE

(k + 1) candidate itemsets (i.e. those whose every length k subset is frequent) for the
next scan.

There are two difficulties in using an Apriori-like algorithm in a data stream envi-
ronment. Frequent itemset mining by Apriori is essentially a set of join operations as
shown in [1]. However, join is a typical blocking operator [3] which cannot be per-
formed over stream data since one can only observe at any moment a very limited size
window of a data stream.

To ensure the completeness of frequent patterns for stream data, it is necessary to
store not only the information related to frequent items, but also that related to infre-
quent ones. If the information about the currently infrequent items were not stored,
such information would be lost. If these items become frequent later, it would be im-
possible to figure out their correct overall support and their connections with other
items. However, it is also unrealistic to hold all streaming data in the limited main
memory. Thus, we divide patterns into three categories: frequent patterns, subfrequent
patterns, and infrequent patterns.

Definition 1 The frequency of and itemset I over a time period T is the number of
transactions in T in which I occurs. The support of I is the frequency divided by
the total number of transactions observed in T . Let the min support be � and the
relaxation ratio be � = �=�, where � is the maximum support error. I is frequent if
its support is no less than �; it is sub-frequent if its support is less than � but no less
than �; otherwise, it is infrequent.

We are only interested in frequent patterns. But we have to maintain subfrequent
patterns since they may become frequent later. We want to discard infrequent pat-
terns since the number of infrequent patterns are really large and the loss of support
from infrequent patterns will not affect the calculated support too much. The defini-
tion of frequent, subfrequent, and infrequent patterns is actually relative to period T .
For example, a pattern I may be subfrequent over a period T1, but it is possible that
it becomes infrequent over a longer period T2 (T1 � T2). In this case, we can con-
clude that I will not be frequent over period T2. In our design, the complete structure,
FP-stream, consists of two parts: (1) a global frequent pattern-tree held in main mem-
ory, and (2) tilted-time windows embedded in this pattern-tree. Incremental updates
can be performed on both parts of the FP-stream. Incremental updates occur when
some infrequent patterns become (sub)frequent, or vice versa. At any moment, the
set of frequent patterns over a period can be obtained from FP-stream residing in the
main memory (with a support error bounded above by �).

3.3 Mining Time-Sensitive Frequent Patterns in Data
Streams

The design of the tilted-time window [5] is based on the fact that people are often
interested in recent changes at a fine granularity, but long term changes at a coarse
granularity. Fig. 3.1 shows such a tilted-time window: the most recent 4 quarters of
an hour, then the last 24 hours, and 31 days. Based on this model, one can compute

AUTHOR 195

frequent itemsets in the last hour with the precision of a quarter of an hour, the last day
with the precision of an hour, etc. This model registers only 4+ 24+ 31 = 59 units of
time, with an acceptable trade-off of lower granularity at distant times.

4 qtrs24 hours31 days

t

Figure 3.1: Natural Tilted-Time Window Frames

As shown in Figure 3.2, for each tilted-time window, a collection of patterns and
their frequencies can be maintained. Assuming these collections contain the frequent
patterns (and possibly more), the following queries can be answered: (1) what is the
frequent pattern set over the period t2 and t3? (2) what are the periods when (a; b)
is frequent? (3) does the support of (a) change dramatically in the period from t3 to
t0? and so on. That is, one can (1) mine frequent patterns in the current window, (2)
mine frequent patterns over time ranges with granularity confined by the specification
of window size and boundary, (3) put different weights on different windows to mine
various kinds of weighted frequent patterns, and (4) mine evolution of frequent patterns
based on the changes of their occurrences in a sequence of windows. Thus we have the
flexibility to mine a variety of frequent patterns associated with time.

time

t0t1t2t3

...

a 100

b 92

c 80

ab 78

ac 75

... ...

b 120

a 85

c 76

ab 76

ac 63

... ...

a 48

b 50

c 45

ab 37

ac 29

... ...

Figure 3.2: Pattern Frequencies for Tilted-Time Windows

A compact tree representation of the pattern collections, called pattern-tree, can be
used. Figure 3.3 shows an example. Each node in the pattern tree represents a pattern
(from root to this node) and its frequency is recorded in the node. This tree shares a
similar structure with an FP-tree. The difference is that it stores patterns instead of
transactions. In fact, we can use the same FP-tree construction method in [10] to build
this tree by taking the set of patterns as input.

The patterns in adjacent time windows will likely be very similar. Therefore, the
tree structure for different tilted-time windows will likely have considerable overlap.
Embedding the tilted-time window structure into each node, will likely save consid-
erable space. Thus we propose to use only one pattern tree, where at each node, the
frequency for each tilted-time window is maintained. Figure 3.4 shows an example of a

196 CHAPTER THREE

Pattern Tree

a: 100

b: 78

c:63

c:75

pattern support
a 100

b 92

c 80

ab 78

ac 75

bc 70

abc 63

b: 92

c:70

c:80

Figure 3.3: Pattern Tree

pattern tree with tilted-time windows embedded. We call this structure an FP-stream.

...

tilt window support
t3 75

t2 63

t1 32

t0 29

Tilted-time Window Table

a

b

c

c

d

ac

Pattern Tree

Figure 3.4: Pattern-Tree with Tilted-Time Windows Embedded

3.4 Maintaining Tilted-Time Windows

With the arrival of new data, the tilted-time window table will grow. In order to make
the table compact, tilted-time window maintenance mechanisms are developed based
on a tilted-time window construction strategy.

3.4.1 Natural Tilted-Time Window

For the natural tilted-time window discussed before (shown in Figure 3.1), the mainte-
nance of windows is straightforward. When four quarters are accumulated, they merge
together to constitute one hour. After 24 hours are accumulated, one day is built. In
the natural tilted-time window, at most 59 tilted windows need to be maintained for a

AUTHOR 197

period of one month. In the following section, we introduce a logarithmic tilted-time
window schema which will reduce the number of tilted-time windows used.

3.4.2 Logarithmic Tilted-Time Window

As an alternative, the tilted-time window frame can also be constructed based on a
logarithmic time scale as shown in Figure 3.5. Suppose the current window holds the
transactions in the current quarter. Then the remaining slots are for the last quarter, the
next two quarters, 4 quarters, 8 quarters, 16 quarters, etc., growing at an exponential
rate of 2. According to this model, one year of data will require log2(365�24�4)+1t
17 units of time instead of 366�24�4 = 35; 136 units. As we can see, the logarithmic
tilted-time window schema is very space-efficient.

t2t4t8t t
time

...

Figure 3.5: Tilted-Time Window Frame with Logarithmic Partition

Formally, we assume that the stream of transactions is broken up into fixed sized
batches B1; B2; : : : ; Bn; : : :, where Bn is the most current batch and B1 the oldest.
For i > j, let B(i; j) denote

Si

k=j Bk. For a given itemset, I , let fI(i; j) denote the
frequency of I in B(i; j) (I is omitted if clear from context). A logarithmic tilted-time
window is used to record frequencies for itemset I . The following frequencies are kept

f(n; n); f(n� 1; n� 1); f(n� 2; n� 3); f(n� 4; n� 7); : : : :

The ratio r between the size of two neighbor tilted-time windows reflects the growth
rate of window size, which usually should be larger than 1. The above example illus-
trates a logarithmic tilted-time window with ratio of 2. Note that there are dlog2(n)e+1
frequencies. So even for a very large number of batches, the maximum number of fre-
quencies is reasonable (e.g., 109 batches requires 31 frequencies).

However, in a logarithmic tilted-time window, intermediate buffer windows need to
be maintained. These intermediate windows will replace or be merged with tilted-time
windows when they are full.

3.4.3 Logarithmic Tilted-Time Window Updating

Given a new batch of transactions B, we describe how the logarithmic tilted-time win-
dow for I is updated. First, replace f(n; n), the frequency at the finest level of time
granularity (level 0), with f(B) and shift f(n; n) back to the next finest level of time
granularity (level 1). f(n; n) replaces f(n � 1; n � 1) at level 1. Before shifting
f(n� 1; n� 1) back to level 2, check if the intermediate window for level 1 is full. If
not, f(n� 1; n� 1) is not shifted back; instead it is placed in the intermediate window
and the algorithm stops (in the example in the previous sub-section, the intermediate
window for all levels is empty). If the intermediate window is full (say with a fre-
quency f), then f(n� 1; n� 1) + f is shifted back to level 2. This process continues

198 CHAPTER THREE

until shifting stops. Consider the following example over batches B1, : : :, B8. The
tilted-time window initially looks like

f(8; 8); f(7; 7); f(6; 5); f(4; 1):

f(8; 8) resides in the window for granularity level 0, f(7; 7) for level 1, f(6; 5) for
level 2, f(4; 1) for level 3. The intermediate windows at each level are empty and thus
not shown. Upon arrival of B9 we update the tilted-time window

f(9; 9); f(8; 8)[f(7; 7)]; f(6; 5); f(4; 1):

f(9; 9) replaces f(8; 8) at level 0 which is shifted back to level 1 replacing f(7; 7).
Since the intermediate window for level 1 is empty, f(7; 7) is put into the window
and the shifting stops ([: : :] denotes an intermediate window). Upon arrival of B10,
updating requires several steps. First, we replace f(9; 9) by f(10; 10) and shift f(9; 9)
back. The intermediate window at level 1 is full, so the frequencies at level 1 are
merged (producing f(8; 7) = f(8; 8) + f(7; 7)). f(8; 7) is shifted back to level 2
replacing f(6; 5). Since the intermediate window at that level is empty, f(6; 5) is put
into the intermediate window and the shifting stops. The result is

f(10; 10); f(9; 9); f(8; 7)[f(6; 5)]; f(4; 1):

Upon arrival of B11 we update and get

f(11; 11); f(10; 10)[f(9; 9)]; f(8; 7)[f(6; 5)]; f(4; 1):

Finally, upon arrival of B12 we get

f(12; 12); f(11; 11); f(10; 9); f(8; 5)[f(4; 1)]:

Notice that only one entry is needed in intermediate storage at any granularity level.
Hence, the size of the tilted-time window can grow no larger than 2dlog2(N)e + 2
where N is the number of batches seen thus far in the stream. There are two basic
operations in maintaining logarithmic tilted-time windows: One is frequency merging;
and the other is entry shifting. For N batches, we would like to know how many such
operations need to be done for each pattern. The following claim shows the amortized
number of shifting and merging operations need to be done, which shows the efficiency
of logarithmic scale partition. For any pattern, the amortized number of shifting and
merging operations is the total number of such operations performed over N batches
divided by N .

Claim 3.4.1 In the logarithmic tilted-time window updating, the amortized number of
shifting and merging operations for each pattern is O(1).

3.5 Minimum Support

Let t0; : : : ; tn be the tilted-time windows which group the batches seen thus far in the
stream, where tn is the oldest (be careful, this notation differs from that of the B’s in

AUTHOR 199

the previous section). We denote the window size of ti (the number of transactions in
ti) by wi. Our goal is to mine all frequent itemsets whose supports are larger than �
over period T = tk [tk+1 [: : : [tk0 (0 6 k 6 k0 6 n). The size of T is W =
wk +wk+1 + : : :+wk0 . If we maintained all possible itemsets in all periods no matter
whether they were frequent or not, this goal could be met.1 However, this will require
too much space, so we only maintain fI(t0); : : : ; fI(tm�1) for some m (0 6 m 6 n)
and drop the remaining tail sequences of tilted-time windows. Specifically, we drop
tail sequences fI(tm); : : : ; fI(tn) when the following condition holds,

8i;m 6 i 6 n; fI(ti) < �wi and
iX

j=0

fI(tj) < �
iX

j=0

wj : (3.1)

As a result, we no longer have an exact frequency over T , rather an approximate

frequency f̂I(T) =
Pminfm�1;k0g

i=k fI(ti) if m > k and f̂I(T) = 0 if m 6 k. The
approximation is less than the actual frequency

fI(T)� �W 6 f̂I(T) 6 fI(T): (3.2)

Thus if we deliver all itemsets whose approximate frequency is larger than (� �
�)W , we will not miss any frequent itemsets in period T ([15] discussed the landmark
case). However, we may return some itemsets whose frequency is between (� � �)W
and �W . This is reasonable when � is small.

Based on inequality (3.2), we draw the following claim that the pruning of the tail
of a tilted-time window table does not compromise our goal.

Claim 3.5.1 Consider itemset I . Let m be the minimum number satisfying the con-
dition (3.1). We drop the tail frequencies from fI(tm) to fI(tn). For any period
T = tk [: : : [tk0 (0 6 k 6 k0 6 n), if fI(T) > �W , then f̂I(T) > (� � �)W .

The basic idea of Claim 3.5.1 is that if we prune I’s tilted-time window table to
t0; : : : ; tm�1, then we can still find all frequent itemsets (with support error �) over any
user-defined time period T . We call this pruning tail pruning.

Itemsets and their tilted-time window tables are maintained in the FP-stream data
structure. When a new batch B arrives, mine the itemsets from B and update the
FP-stream structure. For each I mined in B, if I does not appear in the structure, add
I if fI(B) > �jBj. If I does appear, add fI(B) to I’s table and then do tail pruning. If
all of the windows are dropped, then drop I from FP-stream.

This algorithm will correctly maintain the FP-stream structure, but not very effi-
ciently. We have the following anti-monotone property for the frequencies recorded in
tilted-time window tables.

Claim 3.5.2 Consider itemsets I � I 0 which are both in the FP-stream structure at
the end of a batch. Let fI(t0); fI(t1); : : : ; fI(tk) and fI0(t0); fI0(t1); : : : ; fI0(tl) be

1Maintaining only frequent tilted-time window entries will not work. As the stream progresses, infrequent
entries may be needed to account for itemsets going from infrequent to frequent.

200 CHAPTER THREE

the entries maintained in the tilted-time window tables for I and I 0, respectively. The
following statements hold.

1. k > l.
2. 8i; 0 6 i 6 l, fI(ti) > fI0(ti).

Claim 3.5.2 shows the property that the frequency of an itemset should be equal to
or larger than the support of its supersets still holds under the framework of approx-
imate frequency counting and tilted-time window scenario. Furthermore, the size of
the tilted-time window table of I should be equal to or larger than that of its supersets.
This claim allows for some pruning in the following way. If I is found in B but is not
in the FP-stream structure, then by Claim 3.5.2 part 1, no superset is in the structure.
Hence, if fI(B) < �jBj, then none of the supersets need be examined. So the mining
of B can prune its search and not visit supersets of I . We call this type of pruning Type
I Pruning.

By Claim 3.5.1 and 3.5.2, we conclude the following anti-monotone property which
can help in efficiently cutting off infrequent patterns.

Claim 3.5.3 Consider a pattern I � I 0, the following statements hold.
1. if the tail frequencies fI(tm) : : : fI(tn) can be safely dropped based on Claim

3.5.1, then I 0 can safely drop any frequency among fI0(tm) : : : fI0(tn) if it has.
2. if all the frequencies fI(t0) : : : fI(tn) can be safely dropped based on Claim

3.5.1, then I 0 together with all its frequencies can be safely dropped.

Claim 3.5.3 part 2 essentially says that if all of I’s tilted-time window table entries
are pruned (hence I is dropped), then any superset will also be dropped. We call this
type of pruning Type II Pruning.

3.6 Algorithm

In this section, we describe in more detail the algorithm for constructing and maintain-
ing the FP-stream structure. In particular we incorporate the pruning techniques into
the high-level description of the algorithm given in the previous section.

The update to the FP-stream structure is bulky, done only when enough incom-
ing transactions have arrived to form a new batch Bi. The algorithm treats the first
batch differently from the rest as an initialization step. As the transactions for B1 ar-
rive, the frequencies for all items are computed, and the transactions are stored in main
memory. An ordering, f list, is created in which items are ordered by decreasing fre-
quencies (just as done in [10]). This ordering remains fixed for all remaining batches.
Once all the transactions for B1 have arrived (and stored in memory), the batch in
memory is scanned creating an FP-tree pruning all items with frequency less than
�jB1j. Finally, an FP-stream structure is created by mining all �-frequent itemsets
from the FP-tree (the batch in memory and transaction FP-tree are discarded). All
the remaining batches Bi, for i > 2, are processed according to the algorithm below.

Algorithm 1 (FP-streaming) (Incremental update of the FP-stream structure with
incoming stream data)

AUTHOR 201

INPUT: (1) An FP-stream structure, (2) a min support threshold, �, (3) an error
rate, �, and (4) an incoming batch, Bi, of transactions (these actually are arriv-
ing one at a time from a stream), (5) an item ordering f list.

OUTPUT: The updated FP-stream structure.

METHOD:

1. Initialize the FP-tree to empty.

2. Sort each incoming transaction t, according to f list, and then insert it into the
FP-tree without pruning any items.

3. When all the transactions in Bi are accumulated, update the FP-stream as fol-
lows.

(a) Mine itemsets out of the FP-tree using FP-growth algorithm in [10] mod-
ified as below. For each mined itemset, I , check if I is in the FP-stream
structure. If I is in the structure, do the following.

i. Add fI(B) to the tilted-time window table for I as described in Section
3.4.3.

ii. Conduct tail pruning.
iii. If the table is empty, then FP-growth stops mining supersets of I (Type

II Pruning). Note that the removal of I from the FP-stream structure
is deferred until the scanning of the structure (next step).

iv. If the table is not empty, then FP-growth continues mining supersets
of I .

If I is not in the structure and if fI(B) > �jBj, then insert I into the
structure (its tilted-time window table will have only one entry, fI(Bi)).
Otherwise, FP-growth stops mining supersets of I (Type I Pruning).

(b) Scan the FP-stream structure (depth-first search). For each itemset I en-
countered, check if I was updated when B was mined. If not, then insert 0
into I’s tilted-time window table (I did not occur in B)2. Prune I’s table
by tail pruning.
Once the search reaches a leaf, if the leaf has an empty tilted-time window
table, then drop the leaf. If there are any siblings of the leaf, continue the
search with them. If there were no siblings, then return to the parent and
continue the search with its siblings. Note that if all of the children of the
parent were dropped, then the parent becomes a leaf node and might be
dropped.

3.7 Performance Study and Experiments

In this section, we report our performance study. We describe first our experimental
set-up and then our results.

2By recording some additional time-stamp information, these zero tilted-time window entries could be
dropped. However, in the interests of simplicity, we did not do so and leave it for future work.

202 CHAPTER THREE

3.7.1 Experimental Set-Up

Our algorithm was written in C and compiled using gcc with the -lm switch. All of
our experiments are performed on a SUN Ultra-5 workstation using a 333 MHz Sun
UltraSPARC-IIi processor, 512 MB of RAM, and 1350 MB of virtual memory. The
operating system in use was SunOS 5.8. All experiments were run without any other
users on the machine.

The stream data was generated by the IBM synthetic market-basket data generator,
available at “www.almaden.ibm.com/cs/quest/syndata.html/#assocSynData” (man-
aged by the Quest data mining group). In all the experiments 3M transactions were
generated using 1K distinct items. The average number of items per transaction was
varied as described below. The default values for all other parameters of the synthetic
data generator were used (i.e., number of patterns 10000, average length of the maxi-
mal pattern 4, correlation coefficient between patterns 0.25, and average confidence in
a rule 0.75).

The stream was broken into batches of size 50K transactions and fed into our pro-
gram through standard input. The support threshold � was varied (as described below)
and � was set to 0:1�.3 Note that the underlying statistical model used to generate
the transactions does not change as the stream progresses. We feel that this does not
reflect reality well. In reality, seasonal variations may cause the underlying model (or
parameters of it) to shift in time. A simple-minded way to capture some of this shifting
effect is to periodically, randomly permute some item names. To do this, we use an
item mapping table, M . The table initially maps all item names to themselves (i.e.
M(i) = i). However, for every five batches 200 random permutations are applied to
the table4.

3.7.2 Experimental Results

We performed two sets of experiments. In the first set of experiments, � was fixed
at 0:005 (0:5 percent) and � at 0:0005. In the second set of experiments � was fixed
at 0:0075 and � at 0:00075. In both sets of experiments three separate data sets were
fed into the program. The first had an average transaction length 3, the second 5, and
the third 7. At each batch the following statistics were collected: the total number of
seconds required per batch (TIME),5 the size of the FP-stream structure at the end
of each batch in bytes (SIZE),6 the total number of itemsets held in the FP-stream
structure at the end of the batch (NUM ITEMSETS), and the average length of an
itemset in the FP-stream at the end of each batch (AVE LEN). In all graphs presented
the x axis represents the batch number. Moreover “Support” is used to denote �.

Figures 3.6 and 3.7 show TIME and SIZE results, respectively. In each figure the
top graph shows the results for average transaction length 3, the middle one shows

3Not all 3M transactions are processed. In some cases only 41 batches are processed (2.05M transac-
tions), in other cases 55 batches (2.75M transactions).

4A random permutation of table entries i and j means that M(i) is swapped with M(j).
When each transaction fi1; : : : ; ikg is read from input, before it is processed, it is transformed to
fM(i1); : : : ;M(ik)g.

5Includes the time to read transactions from standard input.
6Does not include the temporary FP-tree structure used for mining the batch.

AUTHOR 203

average transaction length 5, and the bottom one shows average transaction length 7.

0 5 10 15 20 25 30 35 40 45
0

20

40

60
TIME with Ave Trans Len 3

S
ec

on
ds

Support 0.005
Support 0.0075

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150
TIME with Ave Trans Len 5

S
ec

on
ds

Support 0.005
Support 0.0075

0 10 20 30 40 50 60
0

100

200

300
TIME with Ave Trans Len 7

S
ec

on
ds

Support 0.005
Support 0.0075

Figure 3.6: FP-stream time requirements

As expected, the item permutation causes the behavior of the algorithm to jump at
every five batches. But, stability is regained quickly. In general, the time and space
requirements of the algorithm tend to stabilize or grow very slowly as the stream pro-
gresses (despite the random permutations). For example, the time required with aver-
age transaction length 5 and support 0.0075 (middle graph figure 3.6) seems to stabilize
at 50 seconds with very small bumps at every 5 batches. The space required (middle
graph figure 3.7) seems to stabilize at roughly 350K with small bumps. The stability
results are quite nice as they provide evidence that the algorithm can handle long data
streams.

The overall space requirements are very modest in all cases (less than 3M). This
can easily fit into main memory. To analyze the time requirements, first recall that
the algorithm is to be used in a batch environment. So, we assume that while the
transactions are accumulating for a batch, updates to the FP-stream structure from the
previous batch can be commencing. The primary requirement, in our opinion, is that
the algorithm not fall behind the stream. In other words, as long as the FP-stream
structure can be updated before the next batch of transactions is processed, the primary
requirement is met. Consider the case of average transaction length three and � =
0:0075 (top graph in figure 3.6). The time stabilizes to roughly 25 seconds per batch.
Hence, the algorithm can handle a stream with arrival rate 2000 transaction per second
(batch size divided by time). This represents the best case of our experiments. In

204 CHAPTER THREE

0 5 10 15 20 25 30 35 40 45
0

2

4

6
x 10

5 SIZE with Ave Trans Len 3

B
yt

es

Support 0.005
Support 0.0075

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15
x 10

5 SIZE with Ave Trans Len 5

B
yt

es

Support 0.005
Support 0.0075

0 10 20 30 40 50 60
0

1

2

3
x 10

6 SIZE with Ave Trans Len 7

B
yt

es

Support 0.005
Support 0.0075

Figure 3.7: FP-stream space requirements

the worst case (average transaction length 7 and � = 0:0075) the rate is roughly 180
transactions per second. While this rate is not as large as we would like, we feel
that considerable improvement can be obtained since the implementation is currently
simple and straight-forward with no optimizations.

In some circumstances it is acceptable to only mine small itemsets. If the assump-
tion is made that only small itemsets are needed, then the algorithm can prune away
a great deal of work. Figure 3.8 shows the time performance of the algorithm when
the length of the itemsets mined in bounded by two. We see that the times for average
transaction length 3 (figure 3.8 top graph) are not much smaller than those where all
itemsets were mined (figure 3.6 top graph). But the difference is significant for average
transaction length 7. Here the algorithm with itemsets of length bounded by two at
support 0.005 can handle a stream with arrival rate 556 transactions pre second (the
unbounded itemset lengths algorithm could handle a rate of 180).

An interesting observation can be made concerning the “spikes” and “troughs” in
figures 3.6 and 3.7. Considering SIZE we see that the random permutations cause
a narrow trough (drop) in space usage. We conjecture that the permutations cause
some itemsets in the tree to be dropped due to a sharp decrease in their frequency.
Considering TIME we see that the permutations cause a narrow spike (increase) in the
top graph at both support thresholds. In the middle graph the spiking behavior persists
for threshold 0.0075 but switches to troughs for threshold 0.005. Finally, in the bottom

AUTHOR 205

0 5 10 15 20 25 30 35 40 45
0

20

40

60
TIME with Ave Trans Len 3

S
ec

on
ds

Support 0.005
Support 0.0075

0 5 10 15 20 25 30 35 40 45 50
20

40

60

80
TIME with Ave Trans Len 5

S
ec

on
ds

Support 0.005
Support 0.0075

0 10 20 30 40 50 60
20

40

60

80

100
TIME with Ave Trans Len 7

S
ec

on
ds

Support 0.005
Support 0.0075

Figure 3.8: FP-stream time requirements—itemset lengths mined are bounded by two

graph, troughs can be seen for both thresholds.
The switching from spikes to troughs is an interesting phenomena. As of yet we

do not know its cause but do put forth a conjecture. When an item permutation occurs,
many itemsets that appear in the FP-stream structure no longer appear in the new
batch and many itemsets that do not appear in the structure appear in the new batch.
This results in two competing factors: (1) mining the batch requires less work because
itemsets in the structure that do not appear in the batch need not be updated; and (2)
mining the batch requires more work because itemsets not in the structure that were
sub-frequent in the current batch need be added. When the average transaction length
is small (say 3), condition (2) dominates—resulting in a spike. When it is large (say
7), condition (1) dominates—resulting in a trough.

Finally, we describe some results concerning the nature of the itemsets in the
FP-stream structure. Figures 3.9 and 3.10 show the average itemset length and the
total number of itemsets, respectively.7

Note that while the average itemset length does not seem to increase with average
transaction length, the number of itemsets does. This is consistent with our running
the Apriori program of C. Borgelt8 on two datasets consisting of 50K transactions, 1K
items, and average transaction lengths 5 and 7, respectively. The support threshold

7The maximum itemset length was between 8 and 11 in all experiments.
8fuzzy.cs.uni-magdeburg.de/ borgelt/software.html/#assoc

206 CHAPTER THREE

0 5 10 15 20 25 30 35 40 45
1

2

3

4
AVE LEN with Ave Trans Len 3 Support 0.005

Support 0.0075

0 5 10 15 20 25 30 35 40 45 50
2

2.5

3

3.5
AVE LEN with Ave Trans Len 5 Support 0.005

Support 0.0075

0 10 20 30 40 50 60
2

2.5

3

3.5
AVE LEN with Ave Trans Len 7 Support 0.005

Support 0.0075

Figure 3.9: FP-stream average itemset length

in each case was 0.0005 (corresponding to � in our � = 0:005 experiments). The
itemsets produced by Apriori should be exactly the same as those in the FP-stream
after the first batch (the leftmost point in middle and bottom graphs in figure 3.10). We
observed that the make-up of the itemset lengths from Apriori was nearly the same for
both datasets: � 3% size one, � 33% size two, � 23% size three, � 18% size four,
� 12% size five, � 7% size six, � 3% size seven, and � 1% sizes eight, nine, and ten
combined.

3.8 Time Fading Framework

In the previous discussion, we introduced natural and logarithmic tilted-time window
partitions. Both of them give finer granularity to the recent and coarser granularity to
the past. However, they do not discount the support of past transactions. In order to dis-
count the past transactions, we introduce a fading factor �. Suppose we have fixed sized
batches B1; B2; : : : ; Bn, where Bn is the most current batch and B1 the oldest. For
i > j, let B(i; j) denote

Si

k=j Bk. For B(i; j), the actual window size is
Pi

k=j jBkj.

In a fading framework, the faded window size for B(i; j) is
Pi

k=j �
i�k jBkj and its

faded support is
Pi

k=j �
i�kfI(Bk). We do not change Algorithm 1, that means, we

still drop infrequent patterns whose support is less than �. Assume the real faded sup-

AUTHOR 207

0 5 10 15 20 25 30 35 40 45
0

5000

10000

15000
NUM ITEMSETS with Ave Trans Len 3 Support 0.005

Support 0.0075

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3
x 10

4 NUM ITEMSETS with Ave Trans Len 5 Support 0.005
Support 0.0075

0 10 20 30 40 50 60
0

2

4

6
x 10

4 NUM ITEMSETS with Ave Trans Len 7 Support 0.005
Support 0.0075

Figure 3.10: FP-stream total number of itemsets

port of I for B(i; j) is fI =
Pi

k=j �
i�kfI(Bk), the approximate support we get for I

is f̂I , then we have

fI � �

iX

k=j

�i�k jBkj 6 f̂I 6 fI (3.3)

Inequality (3.3) is consistent with inequality (3.2) if actual support is replaced with
faded support and the actual window size is replaced with the faded window size. When
we merge two tilted-time windows, ti and ti+1, the merged frequency is f̂I(ti) +

f̂I(ti+1) � �li , where li is the number of batches contained in tiled-time window ti.
As we can see, our tilted-time window framework also works for time fading model by
changing the definition of merging operation. The claims discussed before also hold
for the time fading model.

3.9 Broader Stream Mining Issues

In the last few years a great deal of work has been conducted on the managing and
mining of stream data (see [3] for a good survey). One of the broader issues addressed
is the development of systems for processing queries on data streams. For example,

208 CHAPTER THREE

the data stream management system (DSMS) at Stanford aims to serve the analogous
role of a relational DBMS on data streams. Also, the issue of stream data mining
has been addressed by extending static data mining models to a stream environment:
classification [7, 11], clustering [9, 16], and frequent itemset discovery [15].

Dong et al. [8] argue that “online mining of the changes in data streams is one of
the core issues” in stream data mining and that the previously mentioned studies have
not addressed this issue substantially. Dong et al. describe three categories of research
problems: modeling and representation of changes, mining methods, and interactive
exploration of changes.

Modeling and representation of changes refers to the development of query lan-
guages for specifying mining queries on changes in data streams and the development
of methods of summarizing and representing the discovered changes. Mining methods
refers to the development of efficient algorithms for evaluating specific change mining
queries as well as general queries specified by a change mining query language. Fi-
nally, interactive exploration of changes refers to the development of methods to sup-
port a user’s evaluation of changes. For example, a user may initially want to monitor
changes at a high level, then more closely inspect the details of interesting high-level
changes.

We envision the FP-stream model as a foundation upon which frequent itemset
change mining queries can be answered. For example, the change in frequency of
itemsets across multiple time granularities can be computed.

Acknowledgments

The authors express their thanks to An-Hai Doan for his constructive comments on a
draft of the paper. C. Giannella thanks the NSF for their support through grant IIS-
0082407.

Bibliography

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
1994 Int. Conf. Very Large Data Bases (VLDB’94), pages 487–499, Santiago,
Chile, Sept. 1994.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 1995 Int. Conf.
Data Engineering (ICDE’95), pages 3–14, Taipei, Taiwan, Mar. 1995.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In Proc. 2002 ACM Symp. Principles of Database Systems
(PODS’02), pages 1–16, Madison, WI, June 2002.

[4] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg
cubes. In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIG-
MOD’99), pages 359–370, Philadelphia, PA, June 1999.

[5] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-dimensional regression
analysis of time-series data streams. In Proc. 2002 Int. Conf. Very Large Data
Bases (VLDB’02), pages 323–334, Hong Kong, China, Aug. 2002.

[6] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, and P.-N. Tan. Data
mining for network intrusion detection. In Proc. 2002 NSF Workshop on Data
Mining, pages 21–30, Baltimore, MD, Nov. 2002.

[7] P. Domingos and G. Hulten. Mining high-speed data streams. In Proc. 2000 ACM
SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD’00), pages 71–80,
Boston, MA, Aug. 2000.

[8] G. Dong, J. Han, L. Lakshmanan, J. Pei, H. Wang, and P. Yu. Online Mining
of Changes from Data Streams: Research Problems and Preliminary Results. In
Proc. 2003 ACM SIGMOD Workshop on Management and Processing of Data
Streams, 2003.

[9] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams. In
Proc. IEEE Symposium on Foundations of Computer Science (FOCS’00), pages
359–366, Redondo Beach, CA, 2000.

[10] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proc. 2000 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’00),
pages 1–12, Dallas, TX, May 2000.

209

210 CHAPTER THREE

[11] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams.
In Proc. 2001 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases
(KDD’01), San Francisco, CA, Aug. 2001.

[12] T. Imielinski, L. Khachiyan, and A. Abdulghani. Cubegrades: Generalizing as-
sociation rules. Data Mining and Knowledge Discovery, 6:219–258, 2002.

[13] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc. 2001 Int.
Conf. Data Mining (ICDM’01), pages 313–320, San Jose, CA, Nov. 2001.

[14] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.
In Proc. 1998 Int. Conf. Knowledge Discovery and Data Mining (KDD’98), pages
80–86, New York, NY, Aug. 1998.

[15] G. Manku and R. Motwani. Approximate frequency counts over data streams. In
Proc. 2002 Int. Conf. Very Large Data Bases (VLDB’02), pages 346–357, Hong
Kong, China, Aug. 2002.

[16] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. High-
performance clustering of streams and large data sets. In Proc. 2002 Int. Conf.
Data Engineering (ICDE’02), San Francisco, CA, April 2002.

[17] J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining frequent
closed itemsets. In Proc. 2000 ACM-SIGMOD Int. Workshop Data Mining and
Knowledge Discovery (DMKD’00), pages 11–20, Dallas, TX, May 2000.

[18] H. Wang, J. Yang, W. Wang, and P. S. Yu. Clustering by pattern similarity in
large data sets. In Proc. 2002 ACM-SIGMOD Int. Conf. on Management of Data
(SIGMOD’02), pages 418–427, Madison, WI, June 2002.

[19] M. J. Zaki and C. J. Hsiao. CHARM: An efficient algorithm for closed itemset
mining. In Proc. 2002 SIAM Int. Conf. Data Mining, pages 457–473, Arlington,
VA, April 2002.

