Can We Push More Constraints into Frequent Pattern Mining?

Jian Pei and Jiawei Han
School of Computing Science
Simon Fraser University

Burnaby, B.C., Canada V5A 156
{peijian, han}@cs.sfu.ca

Abstract

Recent studies show that constraint pushing may substan-
tially improve the performance of frequent pattern mining,
and methods have been proposed to incorporate interest-
ing constraints in frequent pattern mining. However, some
popularly encountered constraints are still considered as
“tough” constraints which cannot be pushed deep into the
mining process.

In this study, we extend our scope to those tough con-
straints and identify an interesting class, called convert-
tble constraints, which can be pushed deep into frequent
pattern mining. Then we categorize all the constraints
into five classes and show that four of them can be in-
tegrated into the frequent pattern mining process. This
covers most of the constraints popularly encountered and
composed by SQL primitives. Moreover, a new constraint-
based frequent pattern mining method, called constrained
frequent pattern growth, or simply CFG, which integrates
constraint pushing with a recently developed frequent pat-
tern growth method, is developed. We show this integra-
tion opens more room on constraint pushing since finer
constraint checking can be enforced on each projected
database. Our performance study shows that the method
is powerful and outperforms substantially the existing con-
strained frequent pattern mining algorithms.

1 Introduction

As an active research theme in data mining, fre-
quent pattern mining covers a broad spectrum of data
mining tasks. Most of the previous studies work
on some variants of the Apriori algorithm [1]. How-
ever, the Apriori-like method suffers from two ma-
jor inefficiencies: (1) the candidate sets so generated
could be very large, and (2) it is costly to repeat-
edly scan the database and accumulate the counts
for a large set of candidates by pattern matching.
Our recent research [3] proposes a frequent pattern

growth method, FP-growth, which constructs a com-
pressed frequent pattern tree, FP-tree, and applies
a divide-and-conquer strategy to grow long patterns
from short ones. This method avoids the costly can-
didate set generation and test, dramatically reduces
the cost of frequent pattern mining, and has demon-
strated an order of magnitude performance gain over
the Apriori algorithm.

There is another research frontier on efficient
frequent pattern mining: the ezploration of user-
specified constraints. Constrained mining facilitates
user exploration and control, focuses its search on
only the subset of patterns of interest to the user,
and leads to efficient mining as well as concise,
user-desired mining results. A systematic method
of the incorporation of two important classes of
constraints, antimonotonicity and succinctness, in
frequent pattern mining are presented in [5, 4].

In this study, we propose to integrate the two
frontiers, highly efficient frequent pattern maining
method and constrained mining, and develop a con-
strained frequent pattern mining method which han-
dles “tough” constraints and integrates constraint
pushing with the newly developed frequent pattern
growth method [3]. Our study has made the follow-
ing contributions.

1. We extend our scope of constrained mining to
the unsolved, “tough” constraints and identify
an interesting class, called convertible constraints,
which can be pushed deep into frequent pattern
mining. Then we categorize all the constraints
into five classes, 1.e., succinct, anti-monotone,
monotone, convertible, and inconvertible, and
show that the first four of them can be pushed
deep into the frequent pattern mining process.
This covers most of the constraints popularly
encountered and composed by SQL primitives.

2. We integrate constraint pushing with a recently
developed frequent pattern growth mining method,
and show this integration opens additional room
on constraint pushing since finer constraint check-
ing can be enforced on each projected database.

3. An integrated new constraint-based frequent pat-
tern mining method, called constrained frequent



pattern growth, or simply CFG, is proposed for in-
tegration of multiple classes of constraints in fre-
quent pattern mining. Our performance study
shows that CFG achieves significant performance
improvement over previously proposed constraint-
based mining algorithms, and is efficient and scal-
able in large databases.

The remaining of the paper is organized as follows.
In Section 2, we define the problem of constrained
pattern mining, categorize the constraints, identify a
new class of constraints, convertible constraint, and
study the relationships among different classes of con-
straints. In Section 3, we develop constraint-based
frequent pattern mining methods and report perfor-
mance study results. In Section 4, we summarize the
study.

2 Categories of Constraints

Let I = {i1,is,...,im} be a set of items. A
transaction T = (tid, I;) is a tuple, where tid is
the identifier of the transaction, and I; is a subset
of the set of items. A transaction database T'DB
is a set of transactions. A pattern S is a subset
of the set of items. If [S| = [, S is also called a
(length) [-pattern. For the sake of simplicity, a
pattern S = {i;,,%;,,...,4;,} can also be denoted as
S =1j,14, - - -1;, in short.

A pattern S is contained in a transaction 7" =
(tid, Iy if and only if S C I;. A pattern S’ is a
subpattern of pattern .S and S is a super pattern
of &', if and only if S C S. If 8" C S, S is
called a proper subpattern of S and S a proper
super pattern of S’. The support of a pattern
S in a transaction database T'DB is the number of
transactions in TDB containing S.

Given a support threshold ¢, 1 < ¢ < |TDBJ, a
pattern S is called a frequent pattern if and only if
support(S) > €.

Given a transaction database TDB and a support
threshold ¢, the problem of frequent pattern
mining is to find the complete set of frequent patterns
in TDB.

A comstraint C is a predicate on the powerset
of the set of items I. A pattern S satisfies a
constraint C'if and only if C(S) is true. The complete
set of patterns satisfying a constraint C', denoted as
SATc (1), is called satisfying pattern set, where T
is the set of items.

Given a transaction database, a support threshold
and a set of constraints C, the problem of mining
frequent patterns with constraints is to find the
complete set of frequent patterns satisfying C.

Many kinds of constraints can be associated with
frequent pattern mining. Two categories of con-
straints, succinctness and anti-monotonicity, were
proposed in [5, 4]; whereas the third category, mono-
tonicity, was introduced in [2] in the context of min-
ing correlated sets. Although the three categories of

constraints cover a large portion of the constraints in
frequent pattern mining, there still exist some useful
constraints, such as avg(S) 0 v where 0 € {<, >},
which do not fall into either of them and are regarded
as tough (i.e., hard to push) constraints.

Definition 1 (Anti-monotone and monotone con-
straints) A constraint C, is anti-monotone if and
only if for any pattern S not satisfying C,, none of
the super-patterns of S can satisfy Cj,.

A constraint C, is monotone if and only if for any
pattern S satisfying the constraint, C),, every super-
pattern of S also satisfies C),. a

Definition 2 (Succinct constraint)

1. A subset of items I; 1s a succinct set, if it can be
expressed as o, () for some selection predicate p,
in which 7 is the set of items, and o is the selection
operator.

2. SP C 2! is a succinct powerset, if there is a
fixed number of succinct sets Iy,..., Iy C I, such
that SP can be expressed in terms of the strict
powersets of Iy, ..., Iy using union and minus.

3. Finally, a constraint C is succinct provided
SATe, (I) is a succinct powerset. O

A large portion of constraints in applications
belongs to one of the above three categories of
constraints. However, there are still many useful
constraints which do not fall into any of these
categories. For example, avg(S) 0 v where 0 € {<, >
}, which requires that the average value of a pattern is
no less (or no greater) than a given value v, is neither
anti-monotone, nor monotone, nor succinct.

Fortunately, many of such tough constraints belong
to a new category of constraints, called convertible
constraints, which can still be effectively integrated
into the frequent pattern mining process.

Given a total order R over the set of items I, a
pattern S’ is a suffix of a pattern S w.r.t. the order
R if pattern S = 145 - - -4,,, In which items are sorted
according to order R, and S’ = #dj41 - im, where
1<l<m. Ifl>1,95 is called a proper suffix of S
(w.r.t. R).

Definition 3 (Convertible constraint) A constraint
C(S) is convertible anti-monotone if and only if
(i) C'(S) is neither monotone, nor anti-monotone, nor
succinct, and (ii) there exists an order R over the set
of items [ such that any pattern S satisfying the con-
straint implies that each suffix of S w.r.t. order R also
satisfies the constraint.

A constraint C(S) is convertible monotone if
and only if (i) C(S) is neither monotone, nor anti-
monotone, nor succinct, and (ii) there exists an order
R over the set of items [ such that any pattern S
satisfying the constraint implies that each pattern of
which S is a suffix w.r.t. order R also satisfies the
constraint.



A constraint C'(S) is convertible if and only if
C'(S) is either convertible anti-monotone or convert-
ible monotone. O

Example 1 (Convertible constraint) We first show
avg(S) 0 v where 6§ € {<,>} is a convertible con-
straint.

Let R be the value descending order over the set of
items I and S’ be a suffix of a pattern S. There must
exist some S” such that (i) S = S”S5’, and (ii) each
item in S” is greater than every item in S’. That
follows avg(S) > avg(S’). That is, if avg(S') > v,
then avg(S) > v. Thus, avg(S) > v is convertible
monotone.

Let R~! be the reversed order of R, i.e., R™! be the
value ascending order over the set of items, and S’ be
a suffix of a pattern S. Tt is easy to see that avg(S’) >
avg(S). That is, if the constraint avg(S’) > v is
violated, avg(S) > v cannot be satisfied. Therefore,
avg(S) > v is convertible anti-monotone.

Similarly, we can show that avg(S) < v is also a
convertible constraint.

From this example, we can observe an interesting
relationship between convertible monotone and con-
vertible anti-monotone constraints for the constraint
avg(S) 6 v where 0 € {<,>}: “If a constraint C' is
convertible anti-monotone w.r.t. an order R over a set
of items, C is convertible monotone w.r.t. order R71,
which 1s the reversed order of R, and vice versa.” Un-
fortunately, this property does not hold for all the con-
vertible constraints. For example, maz(S)/avg(S) <

v (Va € S;a > 0) is a convertible anti-monotone con-
stramt with respect to value ascending order. How-
ever, the constraint is not convertible monotone with
respect to the value descending order.

Notice this does not mean that every tough con-
straint is convertible. For example, sum(S) 6 v, where
0 € {<, >} and each element in S could be of any real
value, is not convertible. This implies that there still
exists a distinct category of constraints, called incon-
vertible constraints, which belongs to none of the four
categories discussed so far.

As a summary, a representative subset of con-
straints 1s listed in Table 1. Limited by space, only
existence operators (e.g., =, €, but not #,¢) and
comparison (or contamment) operators with equality
(e.g., <, C) are given.

Based on the above discussion, all the constraints
can be classified into the following five categories
w.r.t. frequent pattern mining: (1) anti-monotone,
(2) monotone, (3) succinct, (4) convertible, and (5)
inconvertible. Figure 1 illustrates the relationships
among these five categories of constraints.

Although there still exist some tough constraints
which are not even convertible, the good news is
that most simple SQL expressions with built-in SQL
aggregates belong to one of the first four categories
to which efficient constraint mining methods can be
explored, as shown in the next section.

| Constraint | Anti. | Succ. | Mono.
veES | no | yes | yes
SOV no yes yes
SCV yes yes no
min(S) <v no yes yes
min(S) > v yes yes no
maz(S) <wv yes yes no
maz(S) > v no yes yes
count(S) <wv yes weakly no
count(S) > v no weakly yes
sum(S) <v (Va €S, a>0) yes no no
sum(S) > v (Va € S, a > 0) no no yes
range(S) < wv yes no no
range(S) > v no no yes

[ avg(S) 8v, 0 €{< >} [conv. | no | conv.
support(S) > ¢ yes no no
support(S) < & no no yes

Table 1: Characterization of commonly used, SQL-based
constraints.

Succinctness

Anti-monotonicity Monotonicity

Convertible constraints

Inconvertible constraints

Figure 1:

constraints.

Relationships among different categories of

3 Pushing Constraints into
Frequent Pattern Growth

In [3], we have demonstrated that the frequent pat-
tern growth approach may achieve an order of mag-
nitude performance gain in large databases over the
Apriori approach. Thus 1t is natural to examine how
constraints can be pushed into the frequent pattern
growth process and whether further improvements
can be explored with this new framework. Here,
we only introduce the primitives of frequent pattern
growth using the following short example, which will
help us to pursue our constraint pushing techniques.
We refer readers to [3] for details on frequent pattern
growth approach.

Example 2 Let the transaction database T'DB be
Table 2, and the support threshold be ¢ = 3. The
frequent pattern growth mining proceeds as follows.
The first scan of the transaction database T DB
collects the support count of every item. The frequent
items are sorted according to the support descending
order (in the format of item: frequency) as a : b, e :
4b:3,¢:3,d:3,f:3.

The prefixes of the ordered item list in each

transaction can be projected to the corresponding
conditional databases TDB|¢, TDB|4, TDB|,, ...,



[ Transaction ID [ Items in transaction |

100 a,c,d,e, f
200 a,

300 a,c.e, f
400 a,b,c,d,e, f
500 a,b,d e

Table 2: The transaction database TDB.

and TDB|., respectively, as shown in Figure 2.
For example, the ordered item list {a,e, ¢, d, f) of
transaction ID = 100 will insert f’s prefix (a,e,c,d)
into TDB|s, then d’s prefix (a,e,c) into TDB]q4,
¢’s prefix {a,e) into TDB|., and e’s prefix {a) into
TDB|.. By doing so, the set of frequent patterns
in transaction database T'DB are divided into: the
frequent patterns containing f, the ones containing d
but no f, the ones containing ¢ but no d or f, etc.

TDB { aecdf, ab, aecf, aebcdf, aebd}
frequentitems: a, e, b, ¢, d, f

f-conditional database TDBJf |TDBJd]
{aecd, aec, aebcd}
frequent items: a, e, ¢

[TDBIc| [TDBI] [TDBIe]

Figure 2: Mining frequent patterns in pattern growth
paradigm.

A conditional database has the following property:
If a pattern a is frequent in TDB|y, a U f must be
a frequent pattern in TDB. On the other hand,
for every frequent pattern containing f in TDB
except for the length-1 pattern f, the subpattern
formed by removing f from it must also be frequent
in TDB|;. Thus, the problem of mining frequent
patterns containing f is reduced to (i) including f as
a frequent pattern, and (ii) finding frequent patterns
in TDB|;.

This process proceeds recursively: find the set
of frequent items, §, in TDB]|;, called conditional
frequent itemset of f, and for each frequent item e
in 3, find the set of frequent items in TDB|.f, and
so on. This is the core of frequent pattern growth
method. With such frequent pattern growth, all the
frequent patterns for TD B can be discovered without
generation of any candidate itemsets. a

Now, let us examine how to push constraints
into frequent pattern mining using frequent pattern
growth approach. To illustrate the principle, we mine
frequent patterns with an anti-monotone constraint
in the following example.

Example 3 Suppose an anti-monotone constraint
Cy = sum(S) < 180 is enforced at mining the
transaction database in Table 2. Let the values (such
as price) of items a, b, ¢, d, e and f be 50, 150, 10, 200,
20 and 80, respectlvely, and the support threshold

£=3.

There are several ways that the constraint C; can
be pushed into the mining process.

1. Removing individual items which cannot satisfy the
constraint. For example, item d is a single item
whose value is 200 > 180, so it can be removed
from consideration.

2. Not generating a conditional itemset a nor a's con-
ditional database T'DB|,, if a does not satisfy the
constraint. Since sum({a,b}) = 200 > 180 cannot
satisfy C, any super-pattern containing {a, b} will
violate the constraint. Thus the conditional item-
set {a,b} and its associated conditional database
should not be generated at all.

3. No constraint checking in the remaining conditional
database TDB|, if a U [ satisfies the constraint,
where 3 is the set of frequent items in T'DB|,.
Suppose an f-conditional database, TDB|¢, con-
tains only 3 frequent (single) items, {a,c, e}, and
sum({a,c,e, f}) = 160 < 180. Obviously, any
subpattern of {a ¢, e, f} satisfies the constraint
C,. Thus, there is no need to check constraint C,
in the mining of this conditional database, which
avoids some unnecessary constraint checking in
the mining process.

An appropriate ordering of items' may help early
pruning of the conditional databases. For example,
if a more expensive item is ordered first, and so on
(i.e., b (= 150) first, then f (=80), and so on), it
may avoid generation of conditional itemset bf and
conditional database TDB|yr. It may also create
a better chance for the sum of the items in the
remaining conditional databases to be less than 180,
and thus avoid unnecessary constraint checking. 0O

This example leads to the following mining strategy
for pushing an anti-monotone constraint into the
frequent pattern growth.

Strategy 1 (Frequent pattern growth with an
anti-monotone constraint) When mining frequent
patterns with an anti-monotone constraint C, in
the pattern growth paradigm, the constraint can be
pushed into the mining process as follows,

1. Removing the individual items which cannot satisfy
the constraint.

2. Not generating a conditional itemset a nor a's
conditional database T'DB|, if @ does not satisfy
the constraint.

3. No constraint checking in the remaining conditional
database TDB|, if « U [ satisfies the constraint,
where 3 is the set of frequent items in TDB|,. O

INotice that in the frequent pattern growth method [3],
as stated in Section 3.1, the items are ordered in the item
occurrence frequency descending order. This is to facilitate
item sharing in order to generate a smaller FP-tree. However,
based on our performance study, this ordering improves the
performance only minorly. Thus, it is reasonable to explore
other possibleitem ordering to facilitate constrained processing.



Notice that one may find similar pruning rules for
strategies 1.1 & 1.2 in Apriori-based constraint mining
[5]. However, strategy 1.3 works only with frequent
pattern growth method. This is because the saving
is related to a particular TDB|, together with a
particular set of frequent items in T DB],.

Similarly, monotone and succinct constraints can
be pushed into the frequent pattern growth mining
process. Furthermore, since convertible constraints
can be treated as anti-monotone/monotone ones using
specific order of items, they can also be pushed into
the frequent pattern growth mining process. Strate-
gies for the constraints can be developed respectively.
Based on the strategies, we develop an efficient algo-
rithm, CFG, for constraint-based pattern growth min-
ing.

50
40 1

30 4

20 4

Runtime (sec.)

—— CFG (with Strategy 1.3)

—3 -CFG (without Strategy 1.3)

0% 20% 40% 60% 80% 100%
Selectivity

Figure 3: Exploring different strategies with anti-
monotone constraints.

25 —&— -CAP
»
—a—CFG P s
~20 1 . ) ’
S —&— CFG with Convertible '
@ Constraint z
215 4 4
P 4
4
E ’
S 10 4
g s
x '
5 4 e
0 T T T T 1
0% 20% 40% 60% 80% 100%
Selectivity

Figure 4: Scalability with constraint selectivity of
CAP, CFG and CFG with convertible constraint.

We test CFG and the Apriori-based algorithm CAP
[5] on various datasets with various constraints.
Limited by space, we only report results here on
data set T25I120D100k on a 233MHz Pentium PC
with 128 M main memory. Figure 3 shows the effect
of Strategy 1.3 that cannot be used in Apriori-like
methods.

CFG can push convertible constraints deep into
the mining process, while CAP can only employ
some post-processing to treat convertible constraints.
Figure 4 shows that CFG outperforms CAP with a
wide margin in mining with convertible constraints.

We believe that the performance improvement
is due to two factors: (1) the high performance
of the FP-growth mining method which avoids the
generation of a large number of candidates, and
focuses the subsequent search to projected small
databases, and (2) the strategies proposed in this
paper achieve good effect in constraint-based mining.

4 Conclusions

We have re-examined the issues on constrained mining
of frequent patterns and made the following progress.

First, we have proposed and studied one class of
constraints, called convertible constraints, which can-
not be handled efficiently in previous studies. We
show this class covers a good set of useful constraints
and can be nicely integrated into the existing frame-
work of constrained frequent pattern mining. Second,
we introduced monotone constraint in the framework
of frequent pattern mining, and classified constraints
into five categories. We show that four categories:
succinct, anti-monotone, monotone and convertible,
can be integrated nicely into the frequent pattern
growth mining process. Third, we integrated con-
straint pushing and frequent pattern growth mining
into one unified framework, which leads to further im-
provement of mining efficiency.

Our study show the integration of two frameworks,
constraint pushing and frequent pattern growth, leads
to high performance in data mining.
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