
APPENDIX
This appendix provides the mathematical proofs of the the-
oretical results in our paper “Probabilistic Path Queries
in Road Networks: Traffic Uncertainty Aware Path
Selection”, in Proceedings of the Thirteenth International
Conference on Extending Database Technology (EDBT’10),
Lausanne, Switzerland, March 22-26, 2010.

Proof of Theorem 1

Proof. Since P is a simple path, each edge ei ∈ P (1 ≤
i ≤) is only adjacent to ei−1 (if i > 1) and ei+1 (if i < n)
in P . Therefore, given wei , the weights we1 , . . . , wei−1 are
conditionally independent on wei+1 , . . . , wen . Equation 2
follows with the basic probability theory.

Proof of Theorem 2

Proof. Pm contains subpath Pm−2 and edges em−1 and
em, as illustrated in Figure 11. Therefore,

fPm|em(x|y) = Pr[wPm−1 = x− y|wem = y]
=

∑
z1+z2=x−y Pr[wPm−2 = z1, wem−1 = z2|wem = y]

Using the basic probability theory,

Pr[wPm−2 = z1, wem−1 = z2|wem = y]
= Pr[wem−1 = z2|wem = y] · Pr[wPm−2 = z1|wem−1 = z2]

Since z1 + z2 = x− y, we have

Pr[wPm−2 = z1|wem−1 = z2]
= Pr[wPm−1 = x− y|wem−1 = z2]

Thus, Equation 5 holds. Equation 6 follows with the basic
principles of probability theory.

Proof of Lemma 2

Proof. We prove by contradiction. In the worst case,
each bucket contains only one value in wPm , which means
that the probability sum of any two consecutive values in
wPm is greater than 1

t
. Then, if the number of values in

wPm is greater than 2t, the probability sum of all values in
wPm will be greater than 1, which contradicts the fact that
wPm is a discrete random variable.

Proof of Lemma 3

Proof. F ′Pm+1
(l)− F ′′Pm+1

(l) is the sum of the probabil-

ities in the shaded area in Figures 12(a) and 12(b). In each
bucket φi, the width of the shaded area is Pr(φi) < 1

t
. The

sum of the lengthes of all pieces of the shaded area is at
most 1. Thus, the probability of the shaded area is at most
1
t
× 1 = 1

t
. That is, F ′Pm+1

(l)− F ′′Pm+1
(l) ≤ 1

t
.

Inequality |F̂Pm+1(l) − FPm+1(l)| ≤ 1
2t

follows immedi-
ately.
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Figure 11: A path Pm.

Proof of Theorem 3

Proof. P contains m edges, so m − 1 steps of bucket
approximation are needed to compute the probability dis-
tribution of P . We prove the theorem using mathematical
induction.

In the first step (computing the probability of P3 =

〈v1, v2, v3〉), we have |F̂P3(l)− FP3(l)| ≤ 1
2t

, which is shown
in Lemma 3.

Assume that the conclusion holds for the j-th step which
computes the probability of Pj+2 (j ≥ 1). That is,

|F̂Pj+2(l)− FPj+2(l)| ≤
j

2t
(10)

for any real value l > 0.
To compute the probability distribution of wPj+3 , the ap-

proximate weight of wPj+2 is divided into buckets, such that

the probability of each bucket φi = [xzi , xz′i ] is at most 1
t
.

Since the buckets are constructed based on the approxima-
tion probability distribution of Pj+2, we have

P̂ r(bi) = F̂Pj+2(x
′
i)− F̂Pj+2(x

′
i−1) ≤ 1

t
.

From Inequality 10, we have

|F̂Pj+2(x
′
i)− FPj+2(x

′
i)| ≤ j

2t

and

|F̂Pj+2(x
′
i−1)− FPj+2(x

′
i−1)| ≤ j

2t
.

The exact probability of φi is

Pr(φi) = FPj+2|ei+2(xz′i |y)− FPj+2|ei+1(xzi |y)

= 1
t

+ j
2t
× 2 = j+1

t
.

Similar to the proof of Lemma 3, the approximation quality
of Pj+3 in the (j + 1)-th step can be derived as

|F̂Pj+3(x)− FPj+3(x)| ≤ j + 1

2t
.

To compute the distribution of P , there are overall m− 1
steps. Thus, the theorem holds.

Proof of Theorem 4

Proof. The theorem is an immediate application of the
well known Chernoff-Hoeffding bound [1].
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(a) The upper bound.
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(b) The lower bound.

Figure 12: The upper/lower bound of FPm+1(l).

Proof of Theorem 5

Proof. The weight of P is wP = wP1 + wP2 . Therefore,

FP (l) = Pr[wP ≤ l]
= Pr[wP1 + wP2 ≤ l]
=

∑
x1+x2≤l Pr[wP1 = x1, wP2 = x2]

=
∑

x1+x2≤l Pr[wP1 = x1]Pr[wP2 = x2|wP1 = x1]

Since wP1 and wP2 are conditionally independent given
we, we have

Pr[wP2 = x2|wP1 = x1] =
∑

y≤x1

Pr[wP2 = x2|we = y]

Equation 8 follows directly.

Proof of Theorem 6

Proof. (Direction if) If for any path P =
〈u, . . . , vi, . . . , v〉, ∆(vi, l) ≥ FP (l), P∗ considers all such
paths and evaluates their exact FP (l) values. Therefore, P∗

can return all paths P such that FP (l) ≥ τ .
(Direction only-if) We prove by contradiction. Assume

that there is a path P such that ∆(vi, l) < τ ≤ FP (l). Then,
P will not be returned by P* but it is actually an answer
path.

Proof of Theorem 7

Proof. Comparing two paths P = P1 + Popt and P ′ =
P1 + P2i (P2i ∈ P2), we have

Pr[wP ≤ l] =
∑

x≤l

Pr[wP1 = x]× Pr[wPopt ≤ l − x]

and

Pr[w′P ≤ l] =
∑

x≤l

Pr[wP1 = x]× Pr[wP2i
≤ l − x].

Since

Pr[wPopt ≤ l − x] ≥ Pr[wP2i
≤ l − x],

we have

Pr[wP ≤ l] ≥ Pr[w′P ≤ l].


