
DiMaC: A System for Cleaning Disguised Missing Data∗

Ming Hua
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada
mhua@cs.sfu.ca

Jian Pei
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

jpei@cs.sfu.ca

ABSTRACT
In some applications such as filling in a customer information
form on the web, some missing values may not be explicitly
represented as such, but instead appear as potentially valid
data values. Such missing values are known as disguised
missing data, which may impair the quality of data analy-
sis severely. The very limited previous studies on cleaning
disguised missing data highly rely on domain background
knowledge in specific applications and may not work well
for the cases where the disguise values are inliers.

Recently, we have studied the problem of cleaning dis-
guised missing data systematically, and proposed an effective
heuristic approach [2]. In this paper, we describe a demon-
stration of DiMaC, a Disguised Missing Data Cleaning sys-
tem which can find the frequently used disguise values in
data sets without requiring any domain background knowl-
edge. In this demo, we will show (1) the critical techniques
of finding suspicious disguise values; (2) the architecture and
user interface of DiMaC system; (3) an empirical case study
on both real and synthetic data sets, which verifies the ef-
fectiveness and the efficiency of the techniques; (4) some
challenges arising from real applications and several direc-
tion for future work.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms, Design, Experimentation

Keywords
Data Quality, Data Cleaning, Disguised Missing Data

1. INTRODUCTION
Processing missing values is one of the most important

tasks in data cleaning. Many methods have been developed

∗This work was supported in part by an NSERC Discovery
grant and an IBM Faculty Award. All opinions, findings,
conclusions and recommendations in this paper are those of
the authors and do not necessarily reflect the views of the
funding agencies.

Copyright is held by the author/owner(s).
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
ACM 978-1-60558-102-6/08/06.

to handle explicitly missing values or conduct analysis and
data mining on noisy data sets with explicitly missing data.

Interestingly, in many applications, some missing values
may not be explicitly represented as such, but instead ap-
pear as potentially valid data values. Such missing values
are known as disguised missing data [8].

Example 1 (Disguised missing values). Consider
the situation where a customer fills in an online applica-
tion form of a frequent flyer program. Attribute gender has
two choices: male or female. A system may set one of the
two values, say male in this example, as the default value.
Many customers may not want to disclose this information,
or may not want to spend time to fill in the information.
The consequence is that many missing values may disguise
themselves as the default value, male in this case.

Using system default values is not the only cause trans-
lating to disguised missing data. As another example, the
attribute birth date is often required in many customer ac-
count registration forms. However, many customers do not
want to disclose their privacy. Popularly, one may choose
January 1 (the first value in the pop-up lists of month and
day, respectively) in order to pass. Here, January 1 is a
disguise for the missing data.

Disguised missing data exist in real applications, and may
impair the quality of data analysis severely. In this demon-
stration, we will analyze two real data sets, where disguised
missing data are detected. Some simple statistics may shift
to some anomalous values. Moreover, hypothesis tests, cor-
relation analysis and regressions using disguised missing data
may give misleading results.

Disguised missing data pose a much more serious challenge
for data cleaning than explicitly missing values, since we may
not even know the exact missing entries. In the situations
illustrated in Example 1, the resulting data set may contain
the male customers who did provide the information, and
some customers born on January 1. How to distinguish those
disguised missing values and those real values is far from
trivial.

Recently, we have studied the problem of cleaning dis-
guised missing data systematically and made the following
contributions [2]. First, we analyze the distribution of dis-
guised missing values and identify the important and inter-
esting embedded unbiased sample (EUS) heuristic that of-
ten holds for disguised missing values. Based on this prop-
erty, we propose a general framework to identify suspicious
frequently used disguise values. Second, mining frequently
used disguise values from large data sets is computationally

challenging. We devise efficient and scalable heuristic al-
gorithms. Last, we test our approach using both real data
sets and synthetic data sets. The experimental results show
that our method is effective—the frequently used disguise
values found by our method match the values identified by
the domain experts nicely. Our method is also efficient and
scalable for processing large data sets.

Based on the above techniques, we developed DiMaC (for
Disguised Missing Data Cleaner), a system that can find the
possible values frequently used as disguises. In Section 2,
we describe disguised missing data and discuss the critical
techniques used in DiMaC. In Section 3, we propose a system
demonstration plan.

2. SYSTEM OVERVIEW
In this section, we describe disguised missing data and

present the embedded unbiased sample heuristic of frequent
disguise values. We also propose a framework for cleaning
disguised missing data, and analyze the computational chal-
lenges.

2.1 Disguised Missing Data
For a tuple t in a table T , the value of t on attribute A

is denoted by t.A, which is also called an entry. In data
collection, for an entry t.A, three situations may arise.

• Case 1: The user provides a value to the entry that, to
the best of the user’s knowledge, reflects the fact in the
real world and should be captured. The entry value is
not missing in its nature.

• Case 2: The user does not provide a value. In other
words, t.A is explicitly missing, denoted by t.A = ⊗,
where ⊗ is a meta symbol not in the domain of any
attribute.

• Case 3: The user does not intend to provide a value
that reflects the fact in the real world. However, due to
some data collection mistakes, a value in the domain of
A is recorded in the table. In other words, a disguised
missing value happens. Although the entry value is
missing in its nature, the table records a “fake” value,
which is called a disguise value.

Formally, let T be the truth table and �T be the recorded
table. If t.A = ⊗, then �t.A can be either ⊗ or a legal value
in the domain of A. Particularly, an entry �t.A is called
disguised missing if t.A = ⊗ but �t.A �= ⊗. The value �t.A
is the disguise of the disguised missing entry, or called a
disguise value.

In data cleaning, we are given the recorded table �T , the
problem of cleaning disguised missing data is to find the
values that are frequently used as disguise values, and the
set of disguised missing entries.

Cleaning disguised missing data in general is very difficult.
As an extreme example, if the missing values in the truth
table are disguised by independent and random values in
the domain of the attribute, it is very hard to unmask them
without any hints.

There are many previous studies on data mining and data
analysis with explicitly missing data [5, 4, 7]. However,
cleaning disguised missing data is more challenging. Al-
though this problem has been tackled from some angles, the
existing approaches often rely on domain knowledge heavily,
and are developed for specific applications [6, 1].

2.2 Embedded Unbiased Sample Heuristic
If missing values disguise themselves randomly, it is very

difficult to identify the disguised missing data. Fortunately,
such random disguising often does not happen extensively
in practice. Instead, as illustrated in Example 1, a small
number of values (typically one or two in an attribute) are
frequently used as the disguises. It is practical to make the
following assumption.

Assumption 1 (Frequently used disguises). On an
attribute, there often exist only a small number of disguises
that are frequently used by the disguised missing data.

Under the missing completely at random (MCAR) and
missing at random (MAR) models [5], missing data are often
distributed randomly in real data sets. Consequently, dis-
guised missing entries are often distributed randomly, too,
as verified by our experimental results using real data sets.

For a value v on attribute A, the set of tuples in �T carrying
the value on the attribute is called the projected database of

v, denoted by �TA=v = {�t ∈ �T |�t.A = v}. Hereafter, for the
sake of brevity, we assume that the domains of attributes
are exclusive, and thus a value belongs to the domain of at

most one attribute. Then, we can write �TA=v as �Tv.
We observe the following embedded unbiased sample heuris-

tic (EUS heuristic for short) of disguised missing data.

The Embedded Unbiased Sample Heuristic If v is a

frequently used disguise value on attribute A, then �TA=v con-

tains a large subset Sv ⊆ �TA=v such that Sv is an unbiased

sample of �T except for attribute A.

2.3 A General Framework
Since a small number of values may be used frequently as

disguises, a critical step in cleaning disguised missing data
is to find the disguise values used frequently in attributes.

For each value v on attribute A, let Tv be the set of tuples

carrying value v in the truth table. Clearly, Tv ⊆ �Tv. Then,

Sv = (�Tv −Tv) is the set of tuples using v as the disguise on
attribute A. We call Sv the disguised missing set of v.

According to the EUS heuristic, Sv is an unbiased sample

of �T . The larger the size of Sv, the more frequently v is used
as the disguise value. A value v is called a frequent disguise
value if it is frequently used as disguises.

Unfortunately, Sv is unknown and cannot be computed

accurately from �T in general. The EUS heuristic suggests
a heuristic way to find those frequent disguise values. Es-
sentially, on each attribute, we can find a small number of
attribute values whose projected databases contain a large
subset as an unbiased sample of the whole table. Such at-
tribute values are suspects of frequently used disguise values.
The larger the unbiased sample subset, the more likely the
value is a disguise value.

Based on the above discussion, a general framework of
cleaning disguised missing data in two phases is proposed.
In the first phase, we analyze each attribute to check whether
our heuristic approach is applicable. We find the candidates
of frequent disguise values on the applicable attributes. In
second phase, those candidates can be verified by domain
experts or other data cleaning methods.

DiMaC focuses on the first phase of the framework, which
reduces the number of candidates substantially and thus
makes the domain experts’ analysis effective. The archi-
tecture of DiMaC is shown in Figure 1. The disguise value

Applicability testFrequent value detection

Disguise value detection engine

Interactive user interface

Data storage

Figure 1: The architecture of DiMac.

detection engine finds frequent attribute values on applicable
attributes, and then detects disguise values.

2.4 Critical Techniques
There are some important technical challenges. First, how

can we measure whether a set of tuples is an unbiased sam-
ple of a table? We propose DV-score, a correlation-based
sample quality score, to measure the quality of a sample.
By intuition, correlations can capture the distribution of a
data set nicely. Thus, the maximal embedded unbiased sam-

ple Mv is a subset of the projected database �Tv maximizing
the DV-score.

However, the DV-score is not monotonic with respect to
the set containment relation, which makes computing the
maximal embedded unbiased samples computationally chal-
lenging. How can we compute a maximal embedded unbi-

ased sample Mv from the projected database �Tv efficiently?
To tackle the problem practically, we adopt a greedy ap-

proach. We start with the projected database of an attribute
�Tv as the initial sample. In each iteration, for a tuple �t in
the current sample, we calculate the DV-score gain if �t is re-
moved from the current sample set. A tuple with the largest
positive DV-score gain is removed as the result of the cur-
rent iteration. The iteration continues until the DV-score
cannot be improved further by removing one tuple from the
current sample. The resulting sample is output as the ap-
proximation of Mv.

A straightforward implementation of the greedy algorithm
may still be costly on large databases. Once a tuple is re-
moved, the total number of tuples in the current sample is
reduced, and thus the correlation between every value pair
changes. To address the challenge, we present some tech-
niques to improve the efficiency of the greedy search.

First, since the DV-score of a tuple changes whenever
the sample changes, and computing the DV-score gain can
be costly, we use a contribution score to guide the greedy
search. Comparing to computing DV-score gains, contri-
bution scores are often much easier to maintain. Second,
we propose an efficient pruning technique to avoid checking
each frequent value in an attribute in the greedy algorithm.

Equipped by the above techniques, detecting disguise val-

ues is efficient in large data sets. The details of the tech-
niques can be found in [2].

3. DEMONSTRATION PLAN
The design and development of DiMaC involve a few chal-

lenging database and data cleaning issues, including efficient
mining of frequent attribute values and testing the quality
of large samples.

We will present our prototype system thoroughly in our
demo. Particularly, we will focus on the following aspects.

• First, we will illustrate the sources of disguised missing
data and their consequences in data analysis. We will
show the audience different sources of disguised miss-
ing data, and why the existing methods cannot handle
disguised missing data well. The audience will gain
more understanding about the essence of disguised miss-
ing data, and raise awareness of disguised missing data
in their research work.

• Second, we will present the technical details in DiMaC,
including the efficient implementation. We will ana-
lyze the rationale behind the design, as well as the
consideration regarding the scalability issues. This will
show the audience how our system can efficiently and
effectively identify suspicious frequently used disguise
values.

• Third, we will demonstrate a set of real case studies on
our prototype system, and report the experimental re-
sults on real and synthetical data sets. We will demon-
strate the disguised missing data detected from two
data sets: the Pima Indians Diabetes database con-
taining records about Pima Indian females who are at
least 21 years old and tested either positive or negative
for diabetes, and the Adverse Event Reporting System
data set from the U.S. Food and Drug Administration
in the first quarter of 2004. Interestingly, many previ-
ous machine learning studies (e.g., [3, 9]) use the Pima
Indians Diabetes database but presume that the data
set has no missing data. Moreover, we will show some
challenging cases that even DiMaC cannot handle well,

and the possible extensions. We will share with the au-
dience our interesting findings in the real cases.

• Finally, we will showcase our prototype system, includ-
ing a disguise value detection engine and an interac-
tive user interface. The audience is encouraged to test
drive our prototype system on various data sets to fur-
ther understand disguise missing data and experience
the DiMaC prototype system.

4. REFERENCES
[1] D. DesJardins. Outliers, inliers, and just plain liars –

new graphical EDA+ (EDA Plus) techniques for
understanding data. In Proc. SAS User’s Group
International Conference (SUGI26), Long Beach, CA,
2001.

[2] M. Hua and J. Pei. Cleaning disguised missing data: a
heuristic approach. In KDD, pages 950–958, 2007.

[3] B. Kégl and L. Wang. Boosting on manifolds:
Adaptive regularization of base classifiers. In
Lawrence K. Saul, Yair Weiss, and Léon Bottou,
editors, Advances in Neural Information Processing
Systems 17, pages 665–672, Cambridge, MA, 2005.
MIT Press.

[4] S. L. Lauritzen. The EM algorithm for graphical
association models with missing data. Computational
Statistics and Data Analysis, 19:191–201, 1995.

[5] R. J. A. Little and D. B. Rubin. Statistical Analysis
with Missing Data. Wiley, New York, 1987.

[6] R. Pearson. Mining imperfect data: Dealing with
contamination and incomplete records. In Proc. 2005
SIAM Int. Conf. Data Mining, New Port Beach, CA,
April 2005.

[7] R. K. Pearson. Data mining in the face of
contaminated and incomplete records. In Proc. 2002
SIAM Int. Conf. Data Mining, Arlington, VA, April
2002.

[8] R. K. Pearson. The problem of distuised missing data.
ACM SIGKDD Explorations, 8:(1) 83–92, 2006.

[9] G. Webb. Further experimental evidence against the
utility of occam’s razor. The Journal of Artificial
Intelligence Research, 4:397–417, 1996.

