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ABSTRACT

In addition to search queries and the corresponding click-
through information, search engine logs record multidimen-
sional information about user search activities, such as
search time, location, vertical, and search device. Multi-
dimensional mining of search logs can provide novel insights
and useful knowledge for both search engine users and de-
velopers. In this paper, we describe our topic-concept cube
project, which addresses the business need of supporting
multidimensional mining of search logs effectively and ef-
ficiently. We answer two challenges. First, search queries
and click-through data are well recognized sparse, and thus
have to be aggregated properly for effective analysis. Sec-
ond, there is often a gap between the topic hierarchies in
multidimensional aggregate analysis and queries in search
logs. To address those challenges, we develop a novel topic-
concept model that learns a hierarchy of concepts and top-
ics automatically from search logs. Enabled by the topic-
concept model, we construct a topic-concept cube that sup-
ports online multidimensional mining of search log data. A
distinct feature of our approach is that, in addition to the
standard dimensions such as time and location, our topic-
concept cube has a dimension of topics and concepts, which
substantially facilitates the analysis of log data. To handle a
huge amount of log data, we develop distributed algorithms
for learning model parameters efficiently. We also devise ap-
proaches to computing a topic-concept cube. We report an
empirical study verifying the effectiveness and efficiency of
our approach on a real data set of 1.96 billion queries and
2.73 billion clicks.
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1. INTRODUCTION

Search logs in search engines record rich information about
user search activities. In addition to search queries and the
corresponding click-through information, the related infor-
mation is also recorded on multiple attributes, such as search
time, location, vertical, and search device. Multidimensional
mining of such rich search logs can provide novel insights and
useful knowledge for both search engine users and develop-
ers. Let us consider two multidimensional analysis tasks.

A multidimensional lookup (lookup for short) spec-
ifies a subset of user queries and clicks using multidimen-
sional constraints such as time, location and general topics,
and requests for the aggregation of the user search activities.
For example, by looking up “the top-5 electronics that were
most popularly searched by the users in the US in Decem-
ber 2009”, a business analyst can know the common inter-
ests of search engine users on topic “Electronics”. Moreover,
search engine developers can use the results from the lookup
to improve query suggestion, document ranking, and spon-
sored search. Multidimensional lookups can be extended in
many ways to achieve advanced business intelligence analy-
sis. For example, using multiple lookups with different mul-
tidimensional constraints, one may compare the major in-
terests about electronics from users in different regions such
as the US, Asia, and Europe.

A multidimensional reverse lookup (reverse lookup
for short) is concerned about the multidimensional group-
bys where one specific object is intensively queried. For
example, using reverse lookup “What are the group-bys in
time and region where Apple iPad was popularly searched
for?”, an iPad accessory manufacturer can find the regions
where the accessories may have a good market. Using the
results from the reverse lookup, a search engine can improve
its service by, for example, locality-sensitive search. Again,
reverse lookups can be used to compose advanced business
intelligence analysis. For example, by organizing the results
from the reverse lookup about iPad, one may keep track of
how iPad becomes popular in time and in region, and also
compare the trend of iPad with those of iPod and iPhone.
This is interesting to both business parties and users.



1 ipad 1 ipad

2 apple ipad 2 kindle
3 ipad 32g 3 | iphone
4 kindle 4 | xbox 360
5 | amazon kindle 5 wii

(a) (b)

Table 1: Answers to “the top-5 electronics that were
most popularly searched by the users in the US in
December 2009” by (a) individual queries and (b)
concepts.

As search engines have accumulated rich log data, it
becomes more and more important to develop a service
that supports multidimensional mining of search logs effec-
tively and efficiently. To answer multidimensional analyti-
cal queries online, a data warehousing approach is a natural
choice, which pre-computes all multidimensional aggregates
offline. However, traditional data warehousing approaches
only explore a series of statistical aggregates such as MIN,
MAX, and AVG; they cannot summarize the semantic infor-
mation of user queries and clicks. In particular, multidi-
mensional analysis on search log data presents two special
challenges.

Challenge 1: sparseness of queries in log data.
Queries in search engine logs are usually very sparse, since
users may formulate different queries for the same informa-
tion need [9]. For example, to search for Apple iPad, users
may issue queries such as “ipad”, “apple ipad”, “ipad 3297
“ pad apple”, and so on. Aggregating only on individual
queries cannot summarize user information needs recorded
in logs comprehensively. For example, when a business ana-
lyst asks for “the top-5 electronics that were most popularly
searched by the users in the US in December 2009”, a naive
method may simply count the frequency of the queries in
the topic of “Electronics” and return the top-5 most fre-
quently asked queries. Due to the sparseness of queries in
the logs, the analyst may get an answer with many redun-
dant queries, such as the one shown in Table 1(a). Instead,
if we can summarize various query formulations of the same
information need and provide non-duplicate answers (e.g.,
Table 1(b)), the user experience can be improved greatly.
Similarly, in reverse lookup, when an iPad accessary manu-
facturer asks the question “What are the group-bys in time
and region where Apple iPad was popularly searched for?”,
the system should consider not only aggregates of the query
“Apple iPad” but also its various formulations. To address
the sparseness of log data, we have to aggregate queries and
click-through data in logs.

Challenge 2: mismatching between topic hierar-
chies used in analytics and learned from log data.
More often than not, people use different topic hierarchies
in searching detailed information and summarizing analytic
information. For example, when users search electronics on
the web, often the queries are about specific products, brand
names, or features. A query topic hierarchy automatically
learned from log data in a data-driven way depends on the
distribution and occurrences of such queries. “Apple prod-
ucts” may be a popular topic. When an analyst explores
a huge amount of log data, she may bear in her mind a
product taxonomy (e.g., a well adopted ontology), such as
TV & video, audio, mobile phones, cameras & camcorders,

computers, and so on being the first level categories. The an-
alytic topic hierarchy may be very different from the query
topic hierarchy learned from log data. For example, the
“Apple products” in the query topic hierarchy corresponds
to multiple topics in the analytic topic hierarchy. This mis-
matching in topic hierarchies is partly due to the different
information needs in web search and web log data analysis.
Web searches often opt for detailed information, while web
log analysis usually tries to summarize and characterize pop-
ular user behavior patterns. To bridge the gap, we need to
map the aggregates from logs to an analytic topic hierarchy.

In this paper, we describe our topic-concept cube project
that builds a multidimensional service on search log data.
We make the following contributions.

First, we tackle the sparseness of queries in logs and the
gap between concept taxonomy in analytics and queries in
logs by a novel concept-topic model. Figure 1 illustrates our
ideas. We first mine click-through information in search logs
and group similar queries into concepts. Intuitively, users
with the same information need tend to click on the same
URLs. Therefore, various query formulations, for example,
of Apple ipad, such as “ipad”, “apple ipad”, “ipad 329”, and “G
pad apple”, can be grouped into the same concept, since all
of them lead to clicks on the web page www.apple.com/ipad.
More interestingly, some misspelled queries, such as “apple
ipda” and “apple ipade”, can also be clustered into this con-
cept, since they also lead to clicks on the ipad page. Once we
summarize queries and clicks into concepts, we will answer
lookups and reverse lookups by concepts instead of individ-
ual queries. For each concept, we use the most frequently
asked query as the representative of the concept. In this
way, we can effectively avoid redundant queries in lookup
answers. At the same time, we can effectively cover all rel-
evant queries in reverse lookup answers.

Our concept-topic model further maps concepts to topics
in a given taxonomy, which is essentially a query classifica-
tion problem. For example, suppose a concept consists of
queries “apple ipad”, “ipad 32¢7, etc., we classify them into
the topic “Electronics”. Compared with classifying individ-
ual queries to topics, mapping concepts has several advan-
tages. For example, for a misspelled query “apple ipda”, the
classification problem becomes much easier once we know
that this query belongs to a concept that also contains other
queries such as “apple ipad”. Moreover, through the content
of the web pages that are commonly clicked as answers to the
queries in the concept, we may further enrich the features
to classify “apple ipda’.

Our concept-topic model provides the “semantic” aggre-
gates for search log data. Those concepts and topics not
only provide us a meaningful way to answer lookups and re-
verse lookups, but also serve as an important dimension for
multidimensional analysis and exploration.

Second, to handle large volumes of search log data, which
may contain billions of queries and clicks, we develop dis-
tributed algorithms to learn the topic-concept models effi-
ciently. In particular, we develop a strategy to initialize the
model parameters such that each machine only needs to hold
a subset of parameters much smaller than the whole set.

Third, to serve online multidimensional mining of search
log data, we build a topic-concept cube. In addition to
the standard dimensions such as time and location, a topic-
concept cube has a dimension of topics and concepts, such
as “electronics” and “Apple iPad” used in the loopup and
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Figure 1: The hierarchy of topics, concepts, queries,
and clicks.

Uid Time Stamp Location Type Value
Ul 100605110843  Seattle, WA, US Query  “wsdm 20117
U2 100605110843  Vancouver, BC, CA  Query “you tube”

Ul 100605110846  Seattle, WA, US Click wsdm2011.org

Figure 2: A search log as a stream of query and click
events with multidimensional information.

reverse lookup examples. We devise effective approaches for
computing a topic-concept cube. In particular, queries are
assigned to a hierarchy of concepts and topics in the mate-
rialization of the cube.

Finally, we conduct extensive experiments on a real log
data set containing 1.96 billion queries and 2.73 billion clicks.
We examine the effectiveness of the topic-concept model as
well as the efficiency and scalability of our training algo-
rithms. We also demonstrate several concrete examples of
lookups and reverse lookups answered by our topic-concept
cube system. The experimental results clearly show that our
approach is effective and efficient.

The rest of the paper is organized as follows. We present
the framework of our system in Section 2, review the related
work in Section 3, describe the topic-concept model in Sec-
tion 4, and develop the distributed algorithms for learning
the topic-concept model from large-scale log data in Sec-
tion 5. Section 6 briefly discusses computing topic-concept
cubes. We report the experimental results in Section 7, and
conclude the paper in section 8.

2. OUR FRAMEWORK

When a user raises a query to a search engine, a set of
URLs are returned by the search engine as the search results.
The user may browse the snippets of the top search results
and selectively click on some of them. A search log can be
regarded as a sequence of query-and-click events by users.
For each event, a search engine may record the type and
content of the event as well as some other information such
as the time stamp, location, and device associated with the
event. Figure 2 shows a small segment of a search log.

Some dimensions of search events may have a hierarchical
structure. For example, the location dimension can be or-
ganized into levels of country — state — city, and the time
dimension can be represented at levels of year — month —
day — hour. Therefore, the multi-dimensional, hierarchi-
cal log data can be naturally organized into a raw log data
cube [13], where each cell is a group-by using the dimensions.
For example, a cell may contain all query-and-click events
of time “February 2010” and location “Washington State”.

We can aggregate the query-and-click events in a cell and
derive a click-through bipartite, where each query node corre-
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Figure 3: An example of (a) click-through bipartite
and (b) QU-matrix.

sponds to a unique query in the cell and each URL node cor-
responds to a unique URL, as demonstrated in Figure 3(a).
An edge e;; is created between query node ¢; and URL node
u; if u; is a clicked URL of ¢;. The weight w;; of edge e;;
is the total number of times when u; is a clicked result of ¢;
among all events in the cell.

A click-through bipartite can be represented as a query-
URL matrix (QU-matriz for short), where each row corre-
sponds to a query node ¢; and each column corresponds to
a URL node u;. The value of entry n;; is simply the weight
wi; between ¢; and u;, as shown in Figure 3(b).

The QU-matrix at a cell is often sparse. Moreover, QU-
matrix represents information at the level of individual
queries and URLs. As discussed before, we need to summa-
rize and aggregate the information in a QU-matrix to facili-
tate online multidimensional analysis. This will be achieved
by the topic-concept model to be developed in Section 4.

Figure 4 shows the framework of our system. In the off-
line stage, we first form a raw log data cube by partitioning
the search log data along various dimensions and at different
levels. For each cell of the raw log data cube, we construct
a click-through bipartite and derive the QU-matrix. Then,
we materialize the cube by learning topic-concept models
that summarize the distributions of topics and concepts on
the QU-matrix for each cell. The resulting data cube is
called the topic-concept cube. In the online stage, we use
the learned model parameters to support multidimensional
lookups, reverse lookups, and advanced analytical explo-
rations.

3. RELATED WORK

Supporting multidimensional online analysis of large-scale
search log data is a new problem. To the best of our knowl-
edge, the most related work to our project is a query traffic
analysis service provided by a major commercial search en-
gine'. The service allows users to look up and compare the
hottest queries in specified time ranges, regions, verticals,
and topics. However, the service organizes the user interests
at only two levels: the lower individual query level contain-
ing individual queries, and the higher topic level consisting
of 27 topics such as “Health” and “Entertainment”.

As will be illustrated in our experiment results, using only
27 topics seems insufficient to summarize user interests from
time to time. Instead, a richer hierarchical structure of top-
ics learned from search logs, as implemented in our project,

Due to the policy of Microsoft, we cannot reveal the name
of the search engine mentioned here.



is more effective in multidimensional analysis. For example,
after browsing the hottest queries in topic “Entertainment”,
a user may want to drill down to a subtopic “Entertain-
ment/Film”. The current two layer structure in the existing
project can only provide limited analysis power.

Moreover, using individual queries to represent user inter-
ests seems ineffective. It is well recognized that users may
formulate various queries for the same information need.
Therefore, the search log data at the individual query level
may be sparse. For example, the system returns queries
“games”, “game”, “games online”, and “free games” as the
1st, 2nd, 7th, and 8th hottest queries, respectively, on topic
“Game” in the US. Clearly, those queries carry similar in-
formation needs. To make the analysis more effective, as
achieved by the topic-concept model in our project, we need
to summarize similar queries into concepts and represent
user interests by concepts instead of individual queries.

To a broader extent, our project is related to the previ-
ous studies on search query traffic patterns, user interest
summarization, and data cube computation.

Several previous studies explored the patterns of query
traffic with respect to various aspects, such as time, loca-
tions, and search devices. For example, Beitzel et al. [§]
investigated how the web query traffic varied hourly. Back-
strom et al. [5] reported a correlation between the locations
referred in queries and the geographic focus of the users
who issued those queries. Kamvar et al. [17] presented
a log-based comparison on the distribution and variabil-
ity of search tasks that users performed from three plat-
forms, namely computers, iPhones, and conventional mobile
phones. However, those studies mainly focused on the gen-
eral trends of user query traffic without mining user interests
from the log data.

Previous approaches to summarizing user search queries
can be divided into two categories: the clustering approaches
and the categorization approaches. A clustering approach
groups similar queries and URLs in an unsupervised way.
For example, Zhao et al. [21] identified events in a time-
series of click-through bipartites derived from search logs.
Each event consists of a set of queries and clicked URLs
that evolve synchronously along the time-series. In [6, 7, 9,
19], the authors clustered the click-through bipartites and
grouped similar queries into concepts. A categorization ap-
proach classifies queries into a set of pre-defined topics in a
supervised way. For example, Shen et al. [18] leveraged the
search results returned by a search engine and converted
the query categorization problem into a text categorization
problem. Both the clustering and categorization approaches
are effective to summarize user interests into events, con-
cepts, or topics. However, they do not consider how the
interests vary with respect to various dimensions such as
time and locations. Consequently, those methods cannot be
directly used to support lookups and reverse lookups as well
as advanced online multidimensional exploration.

Grey et al. [13] developed data cubes as the core of data
warehouses and OLAP systems. A data cube contains ag-
gregated numeric measures with respect to group-bys of di-
mensions. Zhang et al. [20] proposed a topic cube that ex-
tends the traditional data cube with a measure in a hierar-
chy of topics. Each cell in the cube stores the parameters
learned from a topic modeling process. Users can apply the
OLAP operations such as roll-up and drill-down along both
standard dimensions and the topic dimension. The system
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Figure 4: The framework of our system.

Figure 5: A graphical representation of TC-model.

was built on a single machine. There are several critical
differences between our topic-concept cube and the topic
cube [20]. The topic model pLSA [14] used in [20] targets at
modeling documents, which involves only two types of vari-
ables, namely the terms as observed variables and the topics
as hidden variables. However, to summarize the common in-
terests in search log data, we have to consider more variables,
especially, queries and clicked URLs as observed variables,
and concepts and topics as hidden variables. Therefore, the
traditional pLSA model cannot be applied in our project.
Consequently, the methods to materialize our topic-concept
cubes are very different from those to materialize the topic
cubes. Moreover, we reported an empirical study on a much
larger set of real data, containing billions of queries and
clicks, and processed in a distributed environment.

4. TOPIC-CONCEPT MODEL

We propose a novel topic-concept model (TC-model for
short), a graphical model as shown in Figure 5, to describe
the generation process of a QU-matrix. Essentially, we as-
sume that a user bears some search intent in mind when
interacting with a search engine. The search intent belongs
to certain topics and focuses on several specific concepts.
Based on the search intent, the user formulates queries and
selectively clicks on search results.

From the search log data, we can observe user queries g
and clicks u. Following the convention of graphical mod-
els, these two observable variables are represented by black
circles in Figure 5. Since user search intents cannot be ob-
served, the topics ¢t and concepts c are latent variables, which
are represented by white circles.

Let @ and U be the sets of unique queries and unique
URLs in a QU-matrix, respectively. Let C and T be the sets
of concepts and topics to model user interests. The training
process of the topic-concept model is to learn four groups
of model parameters © = (&, A, Tq,Tv). Here, the prior
topic distribution ® = {P(tx)}, where tx € T and P(tx) is



the prior probability that a user’s search intent involves topic
tiz. The concept generation distribution A = {P(ci|tk)},
where ¢; € C, ¢, € T, and P(¢|tx) is the probability that
topic tx generates concept ¢;. The query generation distribu-
tion Yo = {P(¢i|cr)}, where ¢; € Q, ¢; € C, and P(gi|c;) is
the probability that concept ¢; generates query ¢q;. The URL
generation distribution Yy = {P(uj|c)}, where u; € U,
¢ € C, and P(uj|q) is the probability that concept ¢; gen-
erates a click on URL wu;.

Given that a user bears a search intent on specific con-
cepts ¢, we assume that (1) the formulation of queries is
conditionally independent of the clicks on search results,
ie.,, P(q,ulc) = P(qlc) - P(u|c); and (2) both the formu-
lation of queries and the clicks on search results are condi-
tionally independent of the topics ¢ of the search intent, i.e.,
P(q,ult,c) = P(q,u|c). Then, the likelihood for each entry
(gi,u;) in the QU-matrix can be factorized as follows.

L(q’i7 Uj; @) = (ZtkeT chec P(Qi, Uj, Ci, tk; @))
= (Zier Sepec P)Palt) Plale) Plula))

where n;; is the value of entry (g;,u;) in the QU-matrix.
The likelihood for the whole QU-matrix D is L(D;0©) =
[y, ., P(gi us;0).

Since the data likelihood is hard to be maximized analyt-
ically, we apply the Expectation Maximization (EM) algo-
rithm [12]. The EM algorithm iterates between the E-step
and the M-step. The E-step computes the expectation of
the log data likelihood with respect to the distribution of
the latent variables derived from the current estimation of
the model parameters. In the M-step, the model parame-
ters are estimated to maximize the expected log likelihood
found in the E-step. We have the following equations for the
E-step in the r-th iteration.

Pr(cl\qi7uj) X Z (Pril(tk) . Pril(cl‘tk)

ty

nij

nij (1)

P N gila) - P (ugla)) (2)
P"(tk|gi, uj) o Z (Pr_l(tk) . Pr_l(cl\tk)

P giler) - P (ugle)  (3)

In the M-step of the r-th iteration, the model parameters
are updated by the following equations.

ni~PT t iy Uj
P () = Zqi7uj i P (telgs, uy) (@)
Dt 2qp iy Mg P (e 1gis ug)

2, nis P (clgis ug)

PT((I«L|CZ) = )
2‘17:"“1 nir Pr(cilqir, uy)
_Tl"'Pr ci|qi, U
PT(’U/j|Cl) — qu i (r | i ]) (6)
Zqi7uj/ nij/P (Cl|Qi,Uj/)
Z Cws nijpr(cl|qi7u]_)Pr(tk‘qi’uj)
Pr(Cl‘tk) — QiU

B ch/ Zqi,uj nijPr(cl/|qi7uj)Pr(tk|qi7u.7')

5. LEARNING LARGE TC-MODELS

Although the EM algorithm can effectively learn the pa-
rameters in TC-models, there are still several challenges to
apply it on huge search log data. In Section 5.1, we will
develop distributed algorithms for learning T'C-models from

Algorithm 1 The r-th round E-step for each process node.

Input: the subset of training data S; the model parameters
©" 1 of the last round

1: Load model parameters ©"1;
2: for each tuple (gi, u;,n;) in S do

31 o0y =0;

4:  for each topic tx € T do oy;; = 0;

5. let Cij = {ci|P" Hqilcr) > 0 && P (uj|er) > 0};

6: for each concept ¢; € C;; do

T: o1 =05

8: for each topic t;, € T such that P""(c|t) > 0
do

9: v =P " (tr) P (alte) P (gile) P (uglen);

10: ot =v; Ufjk—i— =v; 045+ = v;

11:  for each concept ¢; € C;; do

12: for each topic tx € T such that Prfl(cl\tk) >0
do

13: Ol,ltpl‘lt(qi7 Uy, Cr, tk, Nij, O',L-le/o'ij, Ufjk/a'i]');

a huge amount of data. In Section 5.2, we will discuss the
model initialization steps. Last, in Section 5.3 we will de-
velop effective heuristics to reduce the number of parameters
to learn in each machine.

5.1 Distributed Learning of Parameters

Search logs typically contain billions of query-and-click
events involving tens of millions of unique queries and URLs.
To address this challenge, we develop distributed algorithms
for the E-step and M-step.

In our learning process, a QU-matrix is represented by a
set of (g, uj;,m:;) tuples. Since a query usually has a small
number of clicked URLs, a QU-matrix is very sparse. We
only need to record the tuples where n;; > 0. We first
partition the QU-matrix into subsets and distribute each
subset to a machine (called a process node). Then we carry
out the E-step and the M-step.

In the E-step of the r-th iteration (Algorithm 1), each
process node loads the current estimation of the model
parameters and scans the assigned subset of training
data once. For each tuple (g;,u;,ni;), the process node
enumerates all the concepts ¢; such that Prfl(q¢|cl) >
0 and P"'(ujlc) > 0. TFor each enumerated con-
cept ¢, the process node further enumerates each topic
tr such that P"*l(cl\tk) > 0 and evaluates the value
vy = P 7 (te) P (a|tk) PT (g et) P (ug|er). The val-
ues of vk,; are summed up to estimate P"(c¢i|qi,u;) and
P" (tx|gi, u;) using Equations 2 and 3, respectively. Finally,
we output the probabilities for the latent variables. Those
results will serve as the input of the M-step.

In the M-step, we estimate the model parameters based
on the probabilities of the hidden variables. According to
Equations 4-6, the estimation for each parameter involves
a sum over all the queries and URLs. Since the matrix is
distributed on multiple machines, the summation involves
aggregating the intermediate results across machines, which
is particularly suitable for a Map-Reduce system [11].

In the map stage of the M-step, each process node receives
a subset of tuples (gi,u;,ci, tr, nij, 055/ 0i5,0%./0i5). For
each tuple, the process node emits four key-value pairs as
shown in Table 2. In the reduce stage, the process nodes



[ Key | Value | Key [ Value |

(tk) nij'gfjk/o'ij , (gircr) | mij - 0551/ 0i
(cistr) | mij - oiu - oi/oiy || (ug ) | mag - o5 /0

Table 2: The key/value pairs at the map stage of
the r-th round of M-step.

simply sum up all the values with the same key and update
the model parameters using Equations 4-6.

5.2 Model Initialization

The Topic-Concept model consists of four sets of param-
eters, ®, A, Tg and Yy. We first initialize the query-and-
click generation probabilities Y¢q and Yy by mining the con-
cepts from the click-through bipartite. We then initialize the
prior topic probabilities ® and the concept generation prob-
abilities A by assigning concepts to topics.

To mine concepts from a click-through bipartite, we clus-
ter queries from the query-URL bipartite graph by a two-
step propagation approach [10]. For each query cluster Qy,
we find the set of URLs U; such that each URL u € U is
connected with at least one query in ;. In the first step
of propagation, Q; is expanded to Q] such that each query
¢ € Q) is connected with at least one URL v € U;. In
the second step of propagation, U; is expanded to U, such
that each URL u’ € U is connected with at least one query
¢ € Q). Finally, we represent each concept ¢; by the pair
of query and URL sets (Q}, U;), and initialize the query and
URL generation probabilities by

qZ |Cl Z nljv u] |Cl Z n1]7

uJGU’ qIEQ/

where n;; is the value of entry (g;,u;) in the QU-matrix.

After deriving the set of concepts C, we consider the set
of topics T. Although we may automatically mine topics
by clustering concepts, in practice, there are several well-
accepted topic taxonomies, such as Yahoo! Directory [4],
Wikipedia [3], and ODP [2]. We use the ODP topic taxon-
omy in this paper, though others can be adopted as well.

The ODP taxonomy is a hierarchical structure where each
parent topic subsumes several sub topics, and each leaf topic
is manually associated with a list of URLs by the ODP edi-
tors. Given a set of topics at some level in the taxonomy, we
can initialize the concept generation probabilities P(c;|tx)
as follows.

According to Bayes Theorem, P(c|tr) o« P(c;)P(tk|c).
The prior probability P(c¢;) indicates the popularity of con-
cept ¢; and the probability P(tx|c;) indicates how likely ¢
involves topic tx. Suppose ¢; is represented by the query-
and-URL sets (Q7,U;]). The popularity of ¢; can be esti-
mated by P(¢;) o ZqieQ{,ujeU[ nij, where n;; is the value
of entry (¢i,u;) in the QU-matrix. To tell how likely ¢
involves topic tx, we merge the text content of the URLs
u € U] into a pseudo-document d;. Then, the problem of
estimating P(tx|c;) is converted into a text categorization
problem, and P(tx|c;) can be estimated by applying any
text categorization techniques (e.g., [15, 16]) on the pseudo-
document d;. Based on the estimated P(¢;) and P(t]c),

we initialize the parameters by

PO(Cl|tk) X P(CZ)P(tk|Cl);

ZP Cl tk|Cl)

Why do we still need the EM iterations given that we
can estimate all the model parameters in the initialization
stage? The EM iterations can improve the quality of con-
cepts and topics by a mutual reinforcement process. In the
TC-model, the probabilities P(g|c) and P(u|c) assign queries
and URLSs to concepts, while the probabilities P(c|t) assign
concepts to topics. In the initialization stage, those two
types of probabilities are estimated independently. If two
queries/URLs belong to the same concept, it is more likely
that they belong to the same topic, and vice versa. There-
fore, if we jointly consider those two types of probabilities,
we may derive more accurate assignments of concepts and
topics. In the EM iterations, the relationship between con-
cepts and topics is captured by the probabilities P(c|q, u)
and P(t|g,u), which contribute to the increase of the data
likelihood. In our experiments on a real data set, the data
likelihood is increased by 11% after the EM iterations.

5.3 Reducing Re-estimated Parameters

As described in Section 5.1, in the E-step, each process
node estimates P(ci|qi,u;) and P(tk|gi,u;) on the basis
of the last round estimation of parameters ®, A, Yo, and
Yy. Let Ny Ne,Ng, N, be the numbers of topics, con-
cepts, unique queries, and unique URLs, respectively. The
sizes of the parameter sets are |®| = Ny, |[A] = Ny - Ng,
[To| = Ng - Ne, and |Ty| = Ny - Ne. In practice, we usu-
ally have tens of millions of unique queries and URLs in
the search log data, which may form millions of concepts.
For example, in the real data set in our experiments, we
have 11.76 million unique queries, 9.5 million unique URLs,
4.71 million concepts, and several hundred topics. The total
size of the parameter space reaches 10**. Consequently, it
is infeasible to hold the full parameter space into the main
memory of a process node.

To reduce the number of parameters to be re-estimated,
we analyze the cases when the model parameters remain zero
during the EM iterations. Suppose a process node receives
a subset S of training data in the E-step, we give a tight
superset ©(S) of the nonzero model parameters that need
to be accessed by the process node in the E-step. In our
experiments, |©(S)| for each process node is several orders
of magnitudes smaller than the size of full parameters space.
Each process node only needs to process a subset of ©(S5).

LEMMA 1. The query generation probability at the r-th
iteration P"(q;|c;) = 0 if P%(qs|c) = 0.

PRrROOF. Let U be the whole set of unique URLs. From
Equation 2, if P"~'(g|c;) = 0, then P"(ci|gs,u;) = 0 holds
for every u; € U. According to Equation 5, if P"(¢i|gs, u;) =
0 holds for every u; € U, then P"(g|c;) = 0. Therefore,
we have P""!(gilc;) = 0 = P"(qs]c;) = 0. Using simple
induction, we can prove P°(g;|c;) = 0= P%(qi|c;) =0. O

Similarly, we can prove the following lemma.

LEMMA 2. The URL generation probability at the r-th it-
eration P (uj|c;) = 0 if P°(uj|c;) = 0.

Let us consider the concept generation probabilities
P(ci|ty). We call a pair (gi,u;) belongs to concept c;, de-
noted by (gi,u;) € ¢, if ny; > 0, P°(qiler) > 0, and



P%ujle;) > 0. Two concepts ¢; and ¢y are associated if
there exists a pair (¢;, u;) belonging to both concepts. Triv-
ially, a concept is associated with itself. Let A(c;) be the
set of concepts associated with ¢;, and QU(¢;) be the set of
pairs (g;,u;) that belong to at least one concept associated
with ¢, ie., QU(a) = {(qi,u;)|Fcr € Alar), (qi,u;) € ey}
We have the following.

LEMMA 3. The concept generation probability at the r-th
iteration P (ci|ty) = 0 if Vey € A(er), P™ " ey |ty) = 0.

PROOF. According to the definitions, for any (¢, u;) € ci,
one of the following three predicates holds (1) n;; = O0;
(2) P°gilcr) = 0; or (3) P°(ujle) = 0. If ny; = 0,
from Equation 7, (¢;,u;) does not contribute to P"(ci|tk).
Otherwise, if P°(g:|c;) = 0 or P°(uj|e;) = 0, according
to Lemmas 1 and 2, we have either P""!(g;lc;) = 0 or
P"!(uj|e; = 0). From Equation 2, if either P""*(g;|c;) = 0
or P""!(uj|e;) = 0, then P"(c1|qi,u;) = 0. Therefore, Equa-
tion 7 can be re-written as

Palte) o > i P (el u) P (telgiug)- (8)

(qi,uj)€cy

Now we only need to focus on P"(tx|gi,u;) for pairs
(gi;uj) € c. According to the definition of A(¢), for
any pair (¢,u;) € ¢ and concept ¢v ¢ A(c), either
P%gi|cir) = 0 or P°(uj|er) = 0 holds. Using Lemmas 1
and 2, we can rewrite Equation 3 for every pair (¢;,u;) € ¢
as

Pr(trlgi,ug) oo > PTTH(tR) - P (e ftr)
e €A(ey)

P Nailey) - PTH (usler). (9)

According to Equation 9, if Ve, € A(e), P™(ey|ty) = 0,
then P"(tx|g:,u;) = 0 holds for every (¢, u;) € ¢;. Further
according to Equation 8, if P"(tx|g:,u;) = 0 holds for every
(gi,uj) € ¢, then P"(¢i|tr) = 0. Therefore, if Ve € A(c),
P Y(cp|ty) = 0, then P"(¢|ty) = 0. O

Lemma 3 suggests that at each round of iteration, a con-
cept ¢; propagates its nonzero topics t (i.e., topics such that
P(ci|tr) > 0) one step further to all its associated concepts.

To further explore the conditions for P"(¢ltx) = 0, we
build a concept association graph G(V, E), where each vertex
v € V represents a concept ¢, and two concepts ¢, and
¢y are linked by an edge e,y € E if they are associated
with each other. In the association graph, two concepts
cq and c¢p are connected if there exists a path between c,
and ¢,. The connected component N*(cq) of concept cq
consists of all concepts ¢, that are connected with ¢,. The
distance between two concepts ¢, and ¢, is the length of the
shortest path between ¢, and ¢, in the graph. If ¢, and cp
are not connected, the distance is set to co. The set of m-
step neighbors N™(cq) (1 < m < o0) of concept ¢, consists
of the concepts whose distance from ¢, is at most m. We
have the following lemma by recursively applying Lemma 3.

LEMMA 4. The concept generation probability at the r-
th iteration P"(¢i|ty) = 0 if Ve € N™(¢r) 1 < m < 1),
P™" ™ (cp|tr) = 0. Moreover, P"(ci|tx) =0 if Vep € N*(ar),
PO(CZ/‘tk) =0.

Using Lemmas 1-4, we can give a tight superset of the
parameters needed in the E-step for any subset S of training

data. Let (gi, u;,ni;) be a training tuple in S. In the E-step,
we enumerate the concepts ¢; such that P""(g;|c;) > 0
and P""!(uj|e;) > 0. According to Lemmas 1 and 2, to
process (¢, uj,ni;j), we can enumerate only those concepts
Ci; = {al(gi u) € a}.

We consider the nonzero parameters for each concept c¢;.
Using Lemmas 1 and 2, the nonzero query and URL genera-
tion probabilities are simply T, (c;) = {P(q:|c1)|P°(qs]er) >
0} and Y# () = {P(uj|c)|P°(usler) > 0}, respectively.
Furthermore, let T(c;) = {P(ci|tr)|P°(ci|t) > 0} and
T (¢1) = Ucl/eN*(cz) T(cy). Using Lemma 4, the nonzero

concept generation probabilities are AT (¢;) = {P(ci|tr)|tx €
T*(er)}

Let C% be the set of concepts that are enumerated for the
training tuples in S, i.e., C§ = Usijes Ci;. We summarize
the above discussion as follows.

THEOREM 1. Let S be a subset of training data, the set
of nonzero parameters need to be accessed in the E-step for
S is a subset of ©(S), where

0S) = [ {Ptx)}, |J Tola), U Yilew), U AT(w)

qeCy qeCy qeCy

In practice, a concept association graph can be highly
connected. That is, for any two concepts ¢, and cp, there
likely exists a path cq,ci1,...,Cim,cp. In some cases, al-
though each pair of adjacent concepts on the path are re-
lated to each other, the two end concepts ¢, and ¢, of the
path may be about dramatically different topics. As dis-
cussed before, in the EM iterations, each concept propa-
gates its nonzero topics to its neighbors. Consequently, af-
ter several rounds of iterations, two totally irrelevant con-
cepts ¢, and ¢, may exchange their nonzero topics through
the path cq,ci1,...,cim,c. To avoid over propagation of
the nonzero topics, we may constrain the propagation up
to ¢ steps. Specifically, for each concept ¢, let T'(¢;) =
{P(ci|tr)|P°(ci|tr) > 0} and T°(¢;) = Ucl,eN<(cl) T(cy), we
constrain the concept generation probability P(c¢|tx) = 0 if
ty & T°(c;). In our experiments, we find that the nonzero
topics propagated from the neighbors of more than one step
away are often noisy. Therefore, we set ¢ to 1.

Theorem 1 greatly reduces the number of parameters to
be re-estimated in process nodes in practice. For example,
when we use 50 process nodes in our experiments, each pro-
cess node only needs to re-estimate 62 million parameters,
which is about 1077 of the size of the total parameter space.
In practice, 62 million parameters may still be too many for a
machine with small memory, e.g., less than 2G. In this case,
the process node can recursively split the assigned training
data S,, into smaller blocks S, C S, until the necessary
nonzero parameters ©(S,;) for each block can be loaded
into the main memory. Then, the process node can carry
out the E-step block by block. We report the details of the
experiment in Section 7.2.

6. CUBE CONSTRUCTION AND RE-
QUEST ANSWERING

Similar to a traditional data cube, a topic-concept cube
(TC-cube for short) contains some standard dimensions such
as time and locations. However, a TC-cube differs from



Parent cell C4

D+;04

Da1Ba1 D228z D021

Child cells 021, 022, ve sy CZM

(a) On standard dimension

ATy

JRERIRERIXEIN

Top-down

dn-woyog

Top-down
dn-woypog

(b) On TC-dimension
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a traditional data cube in several critical aspects. First,
for each cell in a TC-cube, we learn the TC-models from
the training data in the cell and use the model parameters
as the measure of the cell. Those parameters allow us to
effectively answer lookups and reverse lookups introduced
in Section 1. Second, a TC-cube contains a special topic-
concept dimension (TC-dimension for short) as shown in
Figure 1.

We have two alternative approaches to materialize the
whole TC-cube that consists of both standard dimensions
and the TC-dimension. The standard-dimension-first ap-
proach materializes a raw log data cube using the standard
dimensions, and then materializes along the TC-dimension
for each cell in the raw log data cube. The TC-dimension-
first approach processes the topic hierarchy level by level.
For each level, it materializes the cells formed by the stan-
dard dimensions. The full technical details can be found in
the extended version [1].

After materializing the whole TC-cube, we answer the
lookups and reverse lookups using the model parameters in
the TC-cube. Since the number of model parameters can be
large, we store the parameters distributively on a cluster of
process nodes, where each node contains the parameters for
a set of cells. When the system receives a lookup request, for
example, “(time=Dec., 2009; location=US; topic=Games)”,
it will delegate the query to the process node where the
model parameters of the corresponding cell are stored. Then
the process node will select the top k concepts ¢ with the
largest concept generation probabilities P(c|t = Games).
For each top concept, the process node will use the query ¢
with the largest P(q|c) as the representative query. Finally,
the system returns a list of representative queries of the top
concepts as the answer to the lookup request.

To answer the reverse lookups, we build inverted lists that
map key words to concepts. The inverted list can be stored
distributively on a cluster of process nodes, where each node
takes charge of a range of key words. Suppose a user re-
quests a reverse lookup about “hurricane Bill”. The system
will delegate the key words to the corresponding node that
stores the inverted list for “hurricane Bill”. The node re-
trieves from the inverted list the set of concepts Churricane Bill
where each concept is related to “hurricane Bill”. The sys-
tem then broadcasts the concepts inChyrricane Bin to all the
nodes that store the model parameters. Each node checks
the measures of all its cells and reports (Dval, Count) for
each cell, where Dwval consists of the corresponding val-
ues of the standard dimensions of the cell, and Count is
the frequency of the concepts in Churricane Bil in the cell,

ie,Count=3% o Zqi,ujec nij, where n;; is the

No. || baseline TC cube P(c|t)
1 games games 0.020
2 game pogo 0.013
3 cheats maxgames 0.012
4 WOwW aol games 0.011
5 lottery wow heroes 0.010
6 xbox killing games 0.009
7 games online || addicted games 0.008
8 free games age of war 0.008
9 wil powder game 0.008
10 runescape monopoly online | 0.008

Table 3: The top ten queries returned by our TC-
cube and the baseline for lookup “(time=ALL; loca-
tion=US; topic=Games)”.

value of entry (g;,u;) in the QU-matrix of the cell. If the
user specifies the levels of the standard dimensions, for ex-
ample, timeQday; location@country, the system returns the
Dwuals of the top k cells that match the specified levels of the
standard dimension. If the user does not specify the levels,
the system will answer the request at the default levels. The
user can further drill down or roll up to different levels.

7. EXPERIMENTS

In this section, we report the results from a systematic
empirical study using a large search log from a major com-
mercial search engine. The extracted log data set spans for
four months and contains 1.96 billion queries and 2.73 bil-
lion clicks from five markets, i.e., the United States, Canada,
United Kingdom, Malaysia, and New Zealand. In the follow-
ing, we first demonstrate the effectiveness of our approach
using several examples of the lookup and reverse lookup re-
quests. Then, we examine the efficiency and scalability of
our distributed training algorithms for the TC-model.

7.1 Lookups and Reverse Lookups Examples

In this subsection, we show some real examples for the
lookups and reverse lookups answered by our system. We
use the query traffic analysis service by a major commercial
search engine as the baseline. Please refer to Section 3 for a
more detailed description of the baseline.

Table 3 compares the results for the lookup request (time
= ALL; location = US; topic = Games) returned by our
system and the baseline. Since the baseline does not group
similar queries into concepts, the top 10 results are quite
redundant. For example, the 1st, 2nd, 7th, and 8th queries
are similar. Our system summarizes similar queries into con-
cepts and selects only one query as the representative for
each concept. Consequently, the top 10 queries returned by
our system are more informative. We further request the top
results for four sub topics of “Games”, namely “card games”,
“gambling”, “party games”, and “puzzles”. The queries re-
turned by our system are informative (Table 4). However,
the baseline only organizes the user queries by a flat set of
27 topics; it does not support drilling down to sub topics.

As an example for reverse lookup, we asked for the group-
bys where the search for Hurricane Bill was popular by
a request “(time@day, location@state, keyword=‘hurrican
bill’)”. Purposely we misspelled the keyword “hurricane” to
“hurrican” to test the summarization capability of our TC-



card_games P(c|t) gambling P(clt)
pogo 0.020 sun bingo 0.004
gogirlsgames 0.004 wink bingo 0.004
solitaire 0.004 tombola 0.003
aol games 0.003 skybet 0.003
scrabble blast | 0.003 ladbrokes 0.002
party_games | P(c|t) puzzles P(c|t)
tombola 0.003 pogo 0.006
oyunlar 0.003 sudoku 0.004
fashion games | 0.003 | meriam webster | 0.003
drinking games | 0.002 thesaurus com | 0.003
evite 0.002 mathgames 0.002

Table 4: The top queries returned by TC-cube for
four sub topics of “Games” in the US.
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Figure 7: The top five states of US where Hurricane
Bill was most intensively search in Aug. 2009.

model. Our system can infer that the keyword “hurrican
bill” belongs to the concept that consists of queries “hurri-
cane bill”, “hurrican bill”, “huricane bill”, “projected path of
hurricane bill”, “hurricane bill 2009” and some other vari-
ants. Therefore, the system sums up the frequencies of all
the queries in the concept and answers the top five states
during the days in August 2009 (Figure 7). Figure 8 vi-
sualizes the trend of the popularity of the whole concept
according to the output of the reverse lookup. The dates
in the figure indicate when the concept was most intensively
searched in different states in the US. Interestingly, the trend
shown in Figure 8 reflects well the trajectory and the influ-
ence of the hurricane geographically and temporally, which
indicates that the real world events can be reflected by the
popular queries issued to search engines. However, when we
sent the same request to the baseline, it answered that the
search volume was not enough to show trend. The reason is
that the baseline may only consider the query that exactly
matches the misspelled keyword “hurrican bill”, which may
not be searched often.

7.2 Training TC-models

The TC-model was initialized as described in Section 5.2.
We derived 4.71 million concepts, which involve 11.76 million
unique queries and 9.5 million unique URLs. On average,
a concept consists of 4.68 unique queries and 6.77 unique
URLs. We further chose the second level of the ODP [2]
taxonomy and applied the text classifier in [15] to categorize
the concepts into the 483 topics. For each concept, we kept
the top five topics returned by the classifier.

From the raw log data, we derived 23 million training
tuples where each training tuple is in the form (g;,uj, n:;)
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Figure 9: The data likelihood and the average per-
centage of parameter changes during EM iterations.

and ng; is the number of times URL u; was clicked on as
answers to query g;.

Figures 9(a) and (b) show the data likelihood and the av-
erage percentage of parameter changes with respect to the
number of EM iterations. The iteration process converges
fast; the data likelihood and parameters do not change much
(less than 0.1%) after five iterations. The results suggest
that our initialization methods are effective to set the ini-
tial parameters close to a local maximum. Moreover, the
data likelihood increases by 11% after ten iterations. As ex-
plained in Section 5.2, this indicates that the EM algorithm
is effective to improve the quality of the TC-model by jointly
mining the assignments of concepts and topics in a mutual
reinforcement process.

Figures 10(a) and (b) show the runtime of the E-step and
the M-step with respect to the percentage of the complete
data set with 50, 100, and 200 process nodes, respectively.
Each process node has a four-core 2.67GHz CPU and 4GB
main memory. We observe the following in Figure 10(a).
First, the more process nodes used, the shorter runtime for
the E-step. The runtime needed for the E-step on the com-
plete data set by 50, 100, and 200 process nodes is approxi-
mately in ratio 4:2:1. This suggests that our algorithm scales
well with respect to the number of process nodes. Second,
the more process nodes are used, the more scalable is the
E-step. For example, when 50 process nodes were used, the
runtime increased dramatically when 40%, 70%, and 100%
of the data was loaded. As explained in Section 5.3, if the
training data for a process node involves too many param-
eters to be held in the main memory, the algorithm recur-
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nonezero .

# pn S| |0(9)] ?farameters Ratio | # B
50 460,062 | 62,325,884 | 56,682,113 | 5.7 e-7 4
100 | 230,031 | 35,368,823 | 30,370,194 | 3.0 e-7 2
200 | 115,015 | 18,656,725 | 15,821,818 | 1.6 e-7 1

Table 5: The effectiveness of Theorem 1.

sively splits the training data into blocks until the param-
eters needed by a block can be held in the main memory.
Therefore, the runtime of the E-step mainly depends on the
number of disk scans of the parameter file, i.e., the number
of blocks to be processed. When we used 50 process nodes,
each node split the assigned training data into 2, 3, and 4
blocks when 40%, 70%, and 100% of the complete data set
was used for training, respectively. This explains why the
runtime increases dramatically at those points. When we
used 200 nodes, each node can process the assigned data
without splitting even for the complete data set. Conse-
quently, the runtime increases linearly.

In Figure 10(b), the runtime of M-step increases almost
linearly with respect to the data set size, indicating the good
scalability of our algorithm. Interestingly, the runtime of the
M-step does not change much with respect to the number of
process nodes. This is because the major cost of the map-
reduce process of the M-step is the merging of parameters,
which is done on a single machine. This bottleneck costs the
M-step much longer time than the E-step.

Table 5 evaluates the effectiveness of Theorem 1. We ex-
ecuted the E-step on the complete data set with 50, 100,
and 200 process nodes, respectively. For each setting, e.g.,
using 50 nodes, we recorded the average number of training
tuples |S| assigned to each process, the average number of
the estimated nonzero parameters ©(S) by Theorem 1, the
average number of nonzero parameters after ten iterations,
the ratio of the average size of ©(S) over the size of the
whole parameter space, and the number of blocks processed
by each process node. Table 5 suggests the following. First,
the average size of ©(S) over the size of the whole param-
eter space is very small, in the order of 1077. This means
Theorem 1 can greatly reduce the number of parameters to
be held by each process node. Moreover, the size of the
estimated nonzero parameters is close to that of nonzero
parameters during the iterations. This indicates that the
superset of nonzero parameters given by Theorem 1 is tight.

8. CONCLUSION

In this paper, we described our topic-concept cube project
that supports online multidimensional mining of search logs.
We proposed a novel topic-concept model to summarize user
interests and developed distributed algorithms to automati-
cally learn the topics and concepts from large-scale log data.
We also explored various approaches for efficient materializa-
tion of TC-cubes. Finally, we conducted an empirical study
on a large log data set and demonstrated the effectiveness
and efficiency of our approach. A prototype system that can
provide public online services is under development.
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