Cross Table Cubing: Mining Iceberg Cubes from Data Warehduses

Moonjung Cho Jian Pei David W. Cheung
State University of New York at Buffalo, U.S.A. Simon Fraser University, Canada The University of Hong Kong, China
mcho@cse.buffalo.edu jpei@cs.sfu.ca dcheung@csis.hku.hk
Abstract (K] A - TA [M]
All of the existing (iceberg) cube computation algorithms ask ¥ | @11 | - | a1.n | M1 (K[B[Bm]
sume that the data is stored in a single base table, howeverlin - | -~ [-~ [-~ [- [[k][b [[bm |
practice, a data warehouse is often organized in a schema of la | | Ain | mu
multiple tables, such as star schema and snowflake schema. lableF TableD
In terms of both computation time and space, materializing (A [[A [K[Bi] - [Bn]| M]
a universal base table by joining multiple tables is oftenvery | @11 | == [@in | kK | b [-2 | b | ™1
expensive or even unaffordable in real data warehouses. In | -~~~ |~~~ | -tc pccc | f) it]
this paper, we investigate the problem of computing iceberg L 4.1 | ~** | n kb |- | bm | mu
cubes from data warehouses. Surprisingly, our study shows Universal base tabl® = F' X D

that computing iceberg cube from multiple tables directly o
can be even more efficient in both space and runtime tHaigure 1: A simple case of computing iceberg cube from two
computing from a materialized universal base table. We dables.

velop an efficient algorithm, CTC (forr@ss Table Abing) gy \yip1 e 1. (INTUITION) Consider computing the iceberg

to tacklg the problem. An extensive performance study_eﬂ e from tableg” and D in Figure 1. Suppose attribufel
gynthetlc data sets demonstrates that our new approach i5%8ke measure. A rudimentary method may first compute a
ficient and scalable for large data warehouses. universal base tablB = F X D, as also shown in the figure,
, and then compute the iceberg cube frd&nHowever, such a
1 Introduction rudimentary method may suffer from two non-trivial costs.
Given a base tabld3(Dy,...,D,, M) and an aggregate Space costAs shown in the figure, the tuple in tabi2
function, whereD,, ..., D,, aren dimensions and/ is a is replicated! times in the universal base tahi®, wherel
measure, a data cube consists of the complete set of gragpthe number of tuples in the fact table. Moreover, every
bys on any subsets of dimensions and their aggregates usittigoute in the tables appears in the universal base table.
the aggregate function. A data cube in practice is often huffeus, the universal base table is wider than any table in the
due to the very large number of possible dimension valodginal database. In real applications, there can be a large
combinations. Since many detailed aggregate cells whosenber of tuples in the fact table, and hundreds of attributes
aggregate values are too small may be trivial in data analysisthe database. Then, the dimension information may be
instead of computing a complete cube, an iceberg cube eaplicated many times, and the universal base table may be
be computed, which consists of only the set of group-bysry wide — containing hundreds of attributes.
whose aggregates are no less than a user-specified aggregat@ime cost.The large base table may have to be scanned
threshold. many times and many combinations of attributes may have
In the previous studies, several efficient algorithms hatebe checked. As the universal base table can be much wider
been proposed to compute (iceberg) cubes efficiently frorard larger than the original tables, the computation time can
single base table, with simple or complex measures, sugé dramatic.
as BUC [1] and H-Cubing [4]. All of them assume that Can we compute iceberg cubes directly frdmand
the data is stored in a single base table. However, a dBtavithout materializing the universal base tabi#? The
warehouse in practice is often organized in a schemafalfowing two observations help.
multiple tables, such as star schema or snowflake schema. First, for any combination of attributes in tabi2, the
Although mining iceberg cube from single table becomeggregate value is» = aggr({m1,...,m;}). Therefore,
more and more efficient, such algorithms cannot be appliédn satisfies the iceberg condition, then every combination
directly to real data warehouses in many applications. of attributes inD is an iceberg cell. Here, we compute these
iceberg cells using tablB only, which contains only tuple.
_ , In the rudimentary method, we have to use many tuples in
*This research is supported in part by NSF Grant 11S-0308001,t3h|e B to compute these iceberg cells.

President’s Research Grant, an Endowed Research Fellowship Award and a
startup grant in Simon Fraser University. All opinions, findings, conclusions Second, for any |ceberg cell mvolvmg attributes in table
and recommendations in this paper are those of the authors and dolhothe aggregate value can be computed from tabtnly.

necessarily reflect the views of the funding agencies. In order words, if we find an iceberg cell if", we can

(A]B[E]M]

enumerate a whole bunch of iceberg cells by inserting more
attributes inD and the aggregate value retains. Please note
that we only useF, which has only(n + 1) attributes, to
compute these iceberg cells. In the rudimentary method,
we have to compute these iceberg cells using a much wider
universal base tablB.

Although the observations here are based on an over-
simplified case, as shown in the rest of the paper, the obser-
vations can be generalized. [

M

al bl €1 1
az b2 €2 3
2

4

2

az | bz | e3
ail bl €2
as b4 €4

(b) Fact tabizct

(E[F]G]H]

€1 f1 g1 h1

. . . . €2 f1 QQ hQ
In this paper, we make the following contributions. es T fi Tor | T

First, we address the problem of mining iceberg cubes from s [o o [P
data warehouses of multiple tableshMe use star schema (c) Dimension tableD, (d) Dimension table);
as an example. Our approach can be easily extended to

handle other schemas in data warehouses, such as snowflakgyure 2: Data warehoud@W as the running example.
schema.

Second,we develop an efficient algorithm, CTC (for [A[B|[C[D[E[F|G|[H]M)|
Cross Table Qubing), to compute iceberg cub&3ur method oo ldlealilol 1
does not need to materialize the universal base table. Instead, T, ¢, T [es | f1 | 02 | P2
CTC works in three steps. First, CTC propagates the as | b3 | e | ds [es | fi] g1 | Rz
information of keys and measure to each dimension table. [, 5, i [di | e2 | /1 | g2 | P2
Second, the local iceberg cube in each table is computed. [a, [b, |2 | di | es | f2 | g1 | M1
Last, the global iceberg cube is derived from the local ones.
We show that CTC is more efficient in both space and Figure 3: The universal base talllg, ..
runtime than computing iceberg cube from a materialized
universal base table.

Last, we conduct an extensive performance study %H
synthetic data sets to examine the efficiency and the scd
bility of our approach The experimental results show th
CTC is efficient and scalable for large data warehouses.

The rest of the paper is organized as follows. In SeExampPLE 3. (ICEBERG CUBB In base tableTy,.. (Fig-
tion 2, we formulate the problem and review related workre 3), for aggregate cell= (%,b1, %,dy, %, f1,%, %), cov(c)
Algorithm CTC is developed in Section 3 by examples. fontains2 tuples, the first and the fourth tuples ..,
performance study is briefly reported in Section 4. since they match: in dimensionsB, D and F. We have

COUNTcov(c)) = 2.
2 Problem Definition and Related Work Consider iceberg conditiod® = (COUNTe) > 2).
Without loss of generality, we assume that the domains of fh@gregate cell satisfies the condition and thus is in the
attributes in the tables are exclusive, except for the foreitfi§Perg cube. n
keys K; in the fact tableF' referencing to the primary keys
K; in dimension tableD;.

DO | DN o

For aniceberg conditionC, whereC' is defined using
me aggregate functions, a ceib called ariceberg cellif
Batisfies”. An iceberg cubés the complete set of iceberg
ells.

Problem definition. Theproblem of computing iceberg cube
from data warehousgs that, given a data warehouse and an

EXAMPLE 2. (STAR SCHEMA) Consider the data ware-iceberg condition, compute the iceberg cube. Limited by
houseDW i.n Figure 2. We will use this data warehousgPace: we only discuss data warehouses in star schema in

as the running example in the rest of the paper. is paper.) "
The star schema is shown in Figure 2(a). In data ware- For aggregate cells: = (a1,...,am) and ¢ =
houseD W, the fact tabléFact has3 dimensions, namelyl, (ai,--.,a;,), cis called anancestorof ¢’ and¢’ a descen-

B and E. The measure id/. DimensionsB and E refer- dantof cifforanya; # =, aj = a; (1 < i < m), denoted by
ence to dimension table®; and D, respectively. In data ¢’ C c. Aniceberg conditiort” is calledmonotonidf for any
warehouseDW, the universal base tablg,,.. = Fact X aggregate celt, if C' holds forc, thenC' also holds for every
D, X D, is shown in Figure 3. m ancestor ofe. In this paper, we only consider monotonic
iceberg conditions, such &0UNTc) > v, MAXc) > v,

Let B = (Ay,..., A, M) be a universal base tableMIN(¢) < v, SUMc) > v (if the domain of the measure
where A4,,..., A,, are either dimensions or attributes ionsists of only non-negative numbers).
dimension tables. A celt = (ai,...,a,) is called an Many approaches have been proposed to compute data
aggregate cellwherea; € A; ora; = % (1 < ¢ < m). cubes efficiently from scratch (e.g., [6, 1]). In general, they
The coverof ¢ is the set of tuples itB that match all non- speed up the cube computation by sharing partitions, sorts,
a;'s, i.e.,cov(c) = {t € B|Va; # *,t.A; = a;}. or partial sorts for group-bys with common dimensions.

For an aggregate functiarygr() on the domain of\/, Fang et al. [2] proposed the concept of iceberg queries
aggr(c) = aggr(cov(c)). and developed some sampling algorithms to answer such

queries. Beyer and Ramakrishnan [1] introduced the prob-B [C [D [Count] [E[F [G [H [Count]

lem of iceberg cube computation in the spirit of [2] and de-| b1 | c1 | di 2 er | filgn | 1
veloped algorithm BUC. BUC conducts bottom-up computaq b2 | ¢1 | d2 1 e2 | f1 | g2 | he 2
tion and can use the monotonic iceberg conditions to prune, b3 | ¢1 | d3 1 es | J1 | g1 | ho 1
H-cubing [4] uses a hyper-tree data structure called Ht 04 | ¢2 | di 1 ea | folo | 1
tree to compress the base table. The H-tree can be traversed(®) Propagated Dy (b) Propagated’D-

bottom-up to compute iceberg cubes. It also can prune
unpromising branches of search using monotonic iceberg
conditions. Moreover, a strategy was developed in [4]
to use weakened but monotonic conditions to approximate This computation of the aggregates on the keys is imple-

non-monotonic conditions to compute iceberg cubes. Thented as group-by aggregate queries on the key attributes
strategies of pushing non-monotonic conditions into bottoia-the fact table. Only the fact table is needed to conduct

up iceberg cube computation were further improved Ryich queries. The aggregate information is appended to the
Wang et al. [5]. A new strategy, divide-and-approximatgecords in the dimension tables after the aggregates are com-

Figure 4: The propagated dimension tables.

was developed. puted. In general, we extend every dimension table to in-
All of the previous studies on computing (iceberg) cubefude a measure column.
assume thad universal base table is materializeldowever, CTC never really joins multiple tables. Instead, it

many real data warehouses are stored in tens or hundredsif conducts group-by queries on each key attribute and
tables. It is often unaffordable to compute and materializgropagates the aggregates to the corresponding dimension
a universal base table for iceberg cube computatidis table. When there are multiple dimension tables, propagating

observation motivates the study in this paper. the aggregates is much more cheaper than joining multiple
tables and materializing a universal base table. We notice
3 CTC: A Cross Table Cubing Algorithm that there are efficient indexing techniques to join tables in

condition, its projections on the fact table and the dimensié® Propagate the aggregates to dimension tables efficiently.

tables must also be local iceberg celllstead of directly

computing the iceberg cube from a universal base table, ¥ Computation of Local Iceberg CubesLocal iceberg

can compute local iceberg cubes from the fact table and gwes on propagated dimension tables can be computed us-

dimension tables, respectively. Then, we can try to derild an adaption of any algorithms for iceberg cube computa-

the global iceberg cube from the local ones. tion. For each iceberg cell we maintain the histogram of
Based on the above observation, algorithm CTC worRgmary key values that the tuplesdnv(c) carry.

in three steps. First, the aggregate information is propagated

from the fact table to each dimension tables. Then, th&LE 5. (COMPUTING LOCAL ICEBERG CUBE _

iceberg cubes in the propagated dimension tables as Wi can compute the iceberg cube on propagated dimen-

as in the fact table (i.e., thecal iceberg cubesare mined SIon table PD, (Figure 4(b)) with respect to condition

independently using the same iceberg cube condition. L4st=COUNTe) > 2 using algorithm BUC [1]. One advan-

the iceberg cells involving attributes in multiple dimensioffd€ ©f computing iceberg cubes on propagated dimension

tables are derived from the local iceberg cubes. tables is thabne tuple in the propagated dimension table
may summarize multiple tuples in the corresponding projec-

tion of the universal base tabl&hus, we reduce the number
of tuples in the computation.

For each iceberg cell, we record the histogram of pri-
EXAMPLE 4. (PROPAGATING AGGREGATE INFORMATION mary key values that the tuples in the cell carry. For exam-
Consider our running example data warehouse (Figurepfd, for iceberg cellx, f1, %,) with count4, we record the
again. To propagate the aggregate information from t§€t of primary key valuege:, e, e3} that the tuples having
fact table Fact to the dimension table®); and D2, we f, carry. This is called thsignatureof the iceberg cell. It
create a new attribut€ountin every dimension table. Bywill be used in the future to derive global iceberg cells. To
scanning the fact table once, the number of occurrenggaintain the signature, we can use a vectonobits for
of each foreign key value in the fact table can be countedlery iceberg cell, where: is the number of distinct values

Such information is registered in the column @buntin appearing in attributé’ (the primary key attribute) in table
the dimension tables, as shown in Figure 4. Hereafter, thg),. -

propagated dimension tables are denotef® B and P D5,
respectively, to distinguish from the original dimension Let D be a dimension table and be a primary key
tables. attribute such thak’ is used in the fact table as the foreign
In the rest of the computation, we only use the fact talitey referencing toD. For an iceberg celk in D, the
and the propagated dimension table®, and PD,. We signatureof ¢, denoted asg.sig, is the set of primary key
will show that the iceberg cube computed from these threglues (i.e., values i) that appear in the tuples iv(c)
tables is the same as the one computed from the univemsaD. Clearly, to maintain the signaturesin we only need
base table. m m bits, wherem is the number of distinct values iR that

3.1 Propagation Across Tables

appear in the fact tablen is at most the number of tuples in s

D, and no more than the cardinality Af. bi2 b3l b3l bT:l

3.3 Computation of Global Iceberg CubesThe set of elll e2l el e3l edl

global iceberg cells can be divided into two exclusive sub-

sets: the ones having some newalues on the dimension Figure 5: The H-tree for foreign key attribute values.
attributes in the fact table, and the ones whose projections on Runtime Main memory usage
the fact table aréx, . .., x). We handle them separately. 10000 ‘ ‘

T 110
BUC —*—
CTC —a— 100 -

90
80
70

1000 o t
g L
z L
g
40

EXAMPLE 6. (ICEBERG CELL INVOLVING FACT TABLE)

Now, we consider the iceberg cells that contain somenon-
values in the dimension attributes in fact tablct To find
such iceberg cells, we first apply an iceberg cube computin

,4
2
8

Memory Usage (M)

(QBun Time (seconds)

algorithm, such as BUC [1], to the fact table. o} . |
For eXample, we find(al,*7>k) : 2 0s an iceberg # of Dimension Tables # of Dimension Tables
cell in the fact table. In the cover ofaq,*,*) (i.e., 0 8 [

CTC —a— 50 cTc —— |
k%

(M)
&

Run Time (seconds)
Memory Usage

@

&

20

BUC —*—
50 cTC —— |

45

40

35

Run Time (seconds)
Memory Usage (M)

30

the first and the fourth tuples in Figure 2(b}), appears ®
in attribute B, which references to dimension table,.
Thus, for any local iceberg celt in PD; whose signa-]
ture contain®;, such agby, x, *), (x,c1, %), and(x, ¢y, dy), B g /
the joint of (a1, *,*) andc, such as(ay, by, *, *, *, *, *), S] P]
(a1) *7017 *7 *’ *7 *, *) and (ala *’ Cly d17 *’ *7 *7 *), must be 10 20 30 40 Cz?mn::v 70 80 90 100 10 20 30 40 C:’odm:ﬁv 70 80 90 100
a global iceberg cell of count 2 (yielding to the measure of .
the iceberg cell in the fact table). As another example, ice- | &=
berg cell(aq, *, c1, *, *, %, *, %), e; andes appear in attribute
E, which reference to dimension tahl#®. Thus, for any lo- ol
cal iceberg celk in P D, whose signature contairsg or es, o0
such ag, f1, , %), can be a global iceberg cell, if the over- = ot——" .| zs
lap of the signatures can lead to an aggregate value satisfying °c s 1 15 2 25 = B os 1 15 2 25
the iceberg condition. Then, we can further join them to get e tFecer
iceberg celllay, , cq, *, *, f1,*, *). : . .
In sucfs a recursive way, zlve can find all the global Figure 6: Experimental results — Part 1.
iceberg cells that contain some values in the attributes in fagtibutes in the fact table. Those global iceberg cells can be
tableFact Limited by space, we omit the details here. m dijvided into two subsets: (1) the descendants of some local
We never need to join the fact table with any dimensidf€Perg cells in?Dy, and (2) the descendants of some local
tables to generate a global iceberg cell. Instead, we join tA@berg cells in>Ds but not descendant of any local iceberg
local iceberg cells based on the signatures. Recall that @S inPD:. In both cases, we only consider the cells that
maintain the signatures using bitmap vectors, the matchf#gnot contain any nor-value in the key attributes.
of signatures is efficient. To facilitate matching, we also 10 find the first subset, we consider the local iceberg
index the iceberg cells in the dimension tables by th&glls in PD; one by one. For examplgx, c1,) is a local
signatures. Another advantage of the algorithm is thaticgPerg cell inPDy with signature{by, b, bs}. To find the
local iceberg cell is found only once but is used many tim&gal iceberg cells in>D, that can be joined witltx, c1, %)
to join with other local iceberg cells to form global oned0 form a global iceberg cell, we should collect all the tuples
If we compute the global iceberg cells from the universH) the fact table that contain eith&y, b, or bs, and find their
base table, we may have to search the same portion of $i¢g1ature on attributé&. _
universal base table for the (local) iceberg cell many times Clearly, to derive the signature on attributefor a local
for different global iceberg cells. The cross table algorithiePerg cell in table? D, by collecting the tuples in the fact
eliminates the redundancy in the computation. table is mefﬁuent, since we have to scan the fact table once
for each local iceberg cell. To tackle the problem, we build
EXAMPLE 7. (JOINING LOCAL ICEBERG CELLS We con- an H-tree [4] using only the foreign key attributes in the fact
sider how to compute the global |ceb¢rg cells in data_waqgme, as shown in Figure 5.
houseDW (Figure 2) that do not contain any nenvalue in With the H-tree, for a given signature on attribiiteit is
efficient to retrieve the corresponding signature on attribute
TLete; andcs be aggregate cells on tabl&s and Ty, respectively, such E. For example, for(x,cy,), its signature (onB) is
that if Ty andT% have any common attribute thep andcz have the same {bl’ ba, bg}_ From the H-tree, we can retrieve its signature
value in every such common attribute. Tjoin of c1 andcz, denoted as o F is {61’627 63}, i.e., the union of the nodes at levEl
c1 X ca, is the tuplec such that (1) for any attrlbutra_thatcl has a none that are descendants faf. by or b
value,c has the same value ag on A; (2) for any attributeB thatcy has a » U2 V1 U3 . .
non- value,c has the same value as on B; (3) ¢ has valuex in all other Then, we can search the iceberg cells in dimension table
attributes. PD,. For example, iceberg celk, x, g1*) in dimension

Runtime Main memory usage system. We compare two algorithms: BUC [1] and CTC.
T == Both algorithms are implemented in C++.

ol] We generate synthetic data sets following the Zipf distri-
] bution. By default, the fact table haglimensions] million

ol] tuples and the cardinality of each dimension is seitowe
50/ = of 1 set3 dimension tables, and each dimension table has
o] tributes; the Zipf factor is set tb.0.

" BUC —x—
cre

Run Time (seconds)
=
5
3

Memory Usage (M)

® ettonoreon ey Dimersons. ? otonsomn ey Diverons In a data warehouse generated by the above data gener-
20 S 5 N ator, if there are: dimensions in the fact table ahddimen-
o e o k— sion tablegn > k), and there aréattributes in each dimen-
P F] sion table, then the universal base table flag + (n — k))
t Ea] dimensions. Thus, by default, a data warehouselhadi-
£] mensions. In all our experiments, we use aggregate function
50 . - . . .
» 1 count (). Therefore, the domain, cardinality and distribu-
0125 455678 0w Pol 25 a5 6 78 5w tion on the measure attribute have no effect on the experi-
Iceberg Condition Threshold (%) Iceberg Condition Threshold (%) . .
oo » mental results. By default, we set the iceberg condition to
ool & w0 He “COUNTx) > number of tuples in fact table5%".
awol 300 1 In all our experiments, the runtime of CTC is the
250 b
oo | 200 |] elapsing time that CTC computes iceberg cube from multiple

400

Run Time (seconds)
Memory Usage (M)

1 tables, including the CPU time and I/O time. However, the
0])] runtime of BUC is only the time th&UC computes iceberg
o e o cube from the universal base tablacluding the CPU time

1 2 3 4 5 6 7 1 2 3 4 5 6 7

The Number of Tuples in Fact Table (in Millions) The Number of Tuples in Fact Table (in Millions) and |/O t|me That |ihe t|me Of der|V|ng the un|versa| table
)) is not counted in the BUC runtima/Ne believe that such a
Figure 7: Experimental results — Part 2. setting does not bias towards CTC.

. . : To simplify the comparison, we assume that the univer-
table PD, has signatureley, es, es}. The intersection of sal base table can be held into main memory in our exper-

the two signatures i§e;, es}. From the H-tree, we know: . .
that the total aggregate of tuples havingor ¢; andbs, b, iments. When the universal base table cannot be held into

or bs is 2 (the sum of the first and the fourth leaf nodes iWa‘” memory, the performance of BUC will be degraded

. L stantially. CTC does not need to store all the tables in
the H-tree). Thus, the two iceberg cells can be joined aﬁléb. .
(, %, C1, %, %, % g1, +) is a global iceberg cell. main memory. Instead, it loads tables one by one. The lo-

: . . cal iceberg cells can be indexed and stored on disk. One
Moreover, if we have more thahforeign key attributes, jor consumption of main memory in CTC is to store the

once all the global iceberg cells that are descendants of | X
iceberg cells in dimension tabl@D, are computed, theqrg%ee for the fact table. As shown before, the H-tree is often

level of attribute3 in the H-tree can be removed and themaller than the fact table and much smaller than the univer-

remaining sub-trees can be collapsed according to the n %base table. When the H-tree is too large to fit into main
attribute, . That will further reduce the tree size and searcf." 0" the disk management techniques as discussed N [4]
cost o and also the techniques for disk-based BUC can be applied.

The second subset of global iceberg cells, i.e., the ones The experimental results are shown in Figures 6 and 7,

; R while the curves are self-explained. By the extensive per-
Lhoit;r%%iscaergd;?;t?;(iofi I())CQI Iccev?/ﬁ;% ecce is a I otz:tzjatl formance study using synthetic data sets, we show that CTC

. : is consistently more efficient and more scalable than BUC.
iceberg cell i D,. ® The performance of BUC in our experiments is consistent in

The space complexity of the H-tree in CTCG¥kn), trend with the results reported in [1].

where k is the number of dimension tables andis the References

number of tuples in the fact table. In many cases, the H-

tree is smaller than the fact table and much smaller than thd K. Beyer and R. Ramakrishnan. Bottom-up computation of
universal base table. The signatures of local iceberg cells can SParse and iceberg cubes.3rGMOD'99

be stored on disk and do not have to be maintained in maf M- Fang et al. Computing iceberg queries efficiently. In
memory VLDB'98.

[3] J. Gray et al. Data cube: A relational operator generalizing
. group-by, cross-tab and sub-totals.IGDE’96.

4 Experimental Results [4] J. Han et al. Efficient computation of iceberg cubes with

In this section, we briefly report an extensive performance complex measures. BIGMOD'01 _ .

study on computing iceberg cubes from data warehousesla K- Wang etal. Pushing aggregate constraints by divide-and-
star schema, using synthetic data sets. All the experime%ﬁ $p%rk?x'mafe-|'”CADE 03. based aldorithm for Simult

are conducted on a Dell Latitude C640 laptop computer witf?' * < d"’i‘%:ns?o'nal ;‘ aﬁ;aﬁteis%é,\ﬁgﬂyg? or simultaneous

a 2.0 GHz Pentium 4 processor, 20 G hard drive, and 512 MB ggregates. '

main memory, running Microsoft Windows XP operating

