
Cross Table Cubing: Mining Iceberg Cubes from Data Warehouses∗

Moonjung Cho
State University of New York at Buffalo, U.S.A.

mcho@cse.buffalo.edu

Jian Pei
Simon Fraser University, Canada

jpei@cs.sfu.ca

David W. Cheung
The University of Hong Kong, China

dcheung@csis.hku.hk

Abstract
All of the existing (iceberg) cube computation algorithms as-
sume that the data is stored in a single base table, however, in
practice, a data warehouse is often organized in a schema of
multiple tables, such as star schema and snowflake schema.
In terms of both computation time and space, materializing
a universal base table by joining multiple tables is often very
expensive or even unaffordable in real data warehouses. In
this paper, we investigate the problem of computing iceberg
cubes from data warehouses. Surprisingly, our study shows
that computing iceberg cube from multiple tables directly
can be even more efficient in both space and runtime than
computing from a materialized universal base table. We de-
velop an efficient algorithm, CTC (for Cross Table Cubing)
to tackle the problem. An extensive performance study on
synthetic data sets demonstrates that our new approach is ef-
ficient and scalable for large data warehouses.

1 Introduction
Given a base tableB(D1, . . . , Dn, M) and an aggregate
function, whereD1, . . . , Dn aren dimensions andM is a
measure, a data cube consists of the complete set of group-
bys on any subsets of dimensions and their aggregates using
the aggregate function. A data cube in practice is often huge
due to the very large number of possible dimension value
combinations. Since many detailed aggregate cells whose
aggregate values are too small may be trivial in data analysis,
instead of computing a complete cube, an iceberg cube can
be computed, which consists of only the set of group-bys
whose aggregates are no less than a user-specified aggregate
threshold.

In the previous studies, several efficient algorithms have
been proposed to compute (iceberg) cubes efficiently from a
single base table, with simple or complex measures, such
as BUC [1] and H-Cubing [4]. All of them assume that
the data is stored in a single base table. However, a data
warehouse in practice is often organized in a schema of
multiple tables, such as star schema or snowflake schema.
Although mining iceberg cube from single table becomes
more and more efficient, such algorithms cannot be applied
directly to real data warehouses in many applications.

∗This research is supported in part by NSF Grant IIS-0308001, a
President’s Research Grant, an Endowed Research Fellowship Award and a
startup grant in Simon Fraser University. All opinions, findings, conclusions
and recommendations in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

K A1 · · · An M

k a1,1 · · · a1,n m1

· · · · · · · · · · · · · · ·
k al,1 · · · Al,n ml

K B1 · · · Bm

k b1 · · · bm

TableF TableD

A1 · · · An K B1 · · · Bm M

a1,1 · · · a1,n k b1 · · · bm m1

· ·
al,1 · · · al,n k b1 · · · bm ml

Universal base tableB = F 1 D

Figure 1: A simple case of computing iceberg cube from two
tables.

EXAMPLE 1. (INTUITION) Consider computing the iceberg
cube from tablesF andD in Figure 1. Suppose attributeM
is the measure. A rudimentary method may first compute a
universal base tableB = F 1 D, as also shown in the figure,
and then compute the iceberg cube fromB. However, such a
rudimentary method may suffer from two non-trivial costs.

Space cost.As shown in the figure, the tuple in tableD
is replicatedl times in the universal base tableB, wherel
is the number of tuples in the fact table. Moreover, every
attribute in the tables appears in the universal base table.
Thus, the universal base table is wider than any table in the
original database. In real applications, there can be a large
number of tuples in the fact table, and hundreds of attributes
in the database. Then, the dimension information may be
replicated many times, and the universal base table may be
very wide – containing hundreds of attributes.

Time cost.The large base table may have to be scanned
many times and many combinations of attributes may have
to be checked. As the universal base table can be much wider
and larger than the original tables, the computation time can
be dramatic.

Can we compute iceberg cubes directly fromF and
D without materializing the universal base tableB? The
following two observations help.

First, for any combination of attributes in tableD, the
aggregate value ism = aggr({m1, . . . , ml}). Therefore,
if m satisfies the iceberg condition, then every combination
of attributes inD is an iceberg cell. Here, we compute these
iceberg cells using tableD only, which contains only1 tuple.
In the rudimentary method, we have to use many tuples in
tableB to compute these iceberg cells.

Second, for any iceberg cell involving attributes in table
F , the aggregate value can be computed from tableF only.
In order words, if we find an iceberg cell inF , we can

enumerate a whole bunch of iceberg cells by inserting more
attributes inD and the aggregate value retains. Please note
that we only useF , which has only(n + 1) attributes, to
compute these iceberg cells. In the rudimentary method,
we have to compute these iceberg cells using a much wider
universal base tableB.

Although the observations here are based on an over-
simplified case, as shown in the rest of the paper, the obser-
vations can be generalized.

In this paper, we make the following contributions.
First, we address the problem of mining iceberg cubes from
data warehouses of multiple tables. We use star schema
as an example. Our approach can be easily extended to
handle other schemas in data warehouses, such as snowflake
schema.

Second,we develop an efficient algorithm, CTC (for
Cross Table Cubing), to compute iceberg cubes. Our method
does not need to materialize the universal base table. Instead,
CTC works in three steps. First, CTC propagates the
information of keys and measure to each dimension table.
Second, the local iceberg cube in each table is computed.
Last, the global iceberg cube is derived from the local ones.
We show that CTC is more efficient in both space and
runtime than computing iceberg cube from a materialized
universal base table.

Last, we conduct an extensive performance study on
synthetic data sets to examine the efficiency and the scala-
bility of our approach. The experimental results show that
CTC is efficient and scalable for large data warehouses.

The rest of the paper is organized as follows. In Sec-
tion 2, we formulate the problem and review related work.
Algorithm CTC is developed in Section 3 by examples. A
performance study is briefly reported in Section 4.

2 Problem Definition and Related Work
Without loss of generality, we assume that the domains of the
attributes in the tables are exclusive, except for the foreign
keysKi in the fact tableF referencing to the primary keys
Ki in dimension tableDi.

EXAMPLE 2. (STAR SCHEMA) Consider the data ware-
houseDW in Figure 2. We will use this data warehouse
as the running example in the rest of the paper.

The star schema is shown in Figure 2(a). In data ware-
houseDW , the fact tableFact has3 dimensions, namelyA,
B andE. The measure isM . DimensionsB andE refer-
ence to dimension tablesD1 andD2, respectively. In data
warehouseDW , the universal base tableTbase = Fact 1
D1 1 D2 is shown in Figure 3.

Let B = (A1, . . . , Am,M) be a universal base table,
where A1, . . . , Am are either dimensions or attributes in
dimension tables. A cellc = (a1, . . . , am) is called an
aggregate cell, whereai ∈ Ai or ai = ∗ (1 ≤ i ≤ m).
Thecoverof c is the set of tuples inB that match all non-∗
ai’s, i.e.,cov(c) = {t ∈ B|∀ai 6= ∗, t.Ai = ai}.

For an aggregate functionaggr() on the domain ofM ,
aggr(c) = aggr(cov(c)).

Fact

M
E
B
A

D2

H
G
F
ED1

D
C
B

A B E M

a1 b1 e1 1
a2 b2 e2 3
a3 b3 e3 2
a1 b1 e2 4
a2 b4 e4 2

(a) The star schema (b) Fact tableFact

B C D

b1 c1 d1

b2 c1 d2

b3 c1 d3

b4 c2 d1

E F G H

e1 f1 g1 h1

e2 f1 g2 h2

e3 f1 g1 h2

e4 f2 g1 h1

(c) Dimension tableD1 (d) Dimension tableD2

Figure 2: Data warehouseDW as the running example.

A B C D E F G H M

a1 b1 c1 d1 e1 f1 g1 h1 1
a2 b2 c1 d2 e2 f1 g2 h2 3
a3 b3 c1 d3 e3 f1 g1 h2 2
a1 b1 c1 d1 e2 f1 g2 h2 4
a2 b4 c2 d1 e4 f2 g1 h1 2

Figure 3: The universal base tableTbase.

For an iceberg conditionC, whereC is defined using
some aggregate functions, a cellc is called aniceberg cellif
c satisfiesC. An iceberg cubeis the complete set of iceberg
cells.

EXAMPLE 3. (ICEBERG CUBE) In base tableTbase (Fig-
ure 3), for aggregate cellc = (∗, b1, ∗, d1, ∗, f1, ∗, ∗), cov(c)
contains2 tuples, the first and the fourth tuples inTbase,
since they matchc in dimensionsB, D and F . We have
COUNT(cov(c)) = 2.

Consider iceberg conditionC ≡ (COUNT(c) ≥ 2).
Aggregate cellc satisfies the condition and thus is in the
iceberg cube.

Problem definition. Theproblem of computing iceberg cube
from data warehouseis that, given a data warehouse and an
iceberg condition, compute the iceberg cube. Limited by
space, we only discuss data warehouses in star schema in
this paper.

For aggregate cellsc = (a1, . . . , am) and c′ =
(a′1, . . . , a

′
m), c is called anancestorof c′ andc′ a descen-

dantof c if for any ai 6= ∗, a′i = ai (1 ≤ i ≤ m), denoted by
c′ v c. An iceberg conditionC is calledmonotonicif for any
aggregate cellc, if C holds forc, thenC also holds for every
ancestor ofc. In this paper, we only consider monotonic
iceberg conditions, such asCOUNT(c) ≥ v, MAX(c) ≥ v,
MIN(c) ≤ v, SUM(c) ≥ v (if the domain of the measure
consists of only non-negative numbers).

Many approaches have been proposed to compute data
cubes efficiently from scratch (e.g., [6, 1]). In general, they
speed up the cube computation by sharing partitions, sorts,
or partial sorts for group-bys with common dimensions.

Fang et al. [2] proposed the concept of iceberg queries
and developed some sampling algorithms to answer such

queries. Beyer and Ramakrishnan [1] introduced the prob-
lem of iceberg cube computation in the spirit of [2] and de-
veloped algorithm BUC. BUC conducts bottom-up computa-
tion and can use the monotonic iceberg conditions to prune.

H-cubing [4] uses a hyper-tree data structure called H-
tree to compress the base table. The H-tree can be traversed
bottom-up to compute iceberg cubes. It also can prune
unpromising branches of search using monotonic iceberg
conditions. Moreover, a strategy was developed in [4]
to use weakened but monotonic conditions to approximate
non-monotonic conditions to compute iceberg cubes. The
strategies of pushing non-monotonic conditions into bottom-
up iceberg cube computation were further improved by
Wang et al. [5]. A new strategy, divide-and-approximate,
was developed.

All of the previous studies on computing (iceberg) cubes
assume thata universal base table is materialized. However,
many real data warehouses are stored in tens or hundreds of
tables. It is often unaffordable to compute and materialize
a universal base table for iceberg cube computation. This
observation motivates the study in this paper.

3 CTC: A Cross Table Cubing Algorithm
For an iceberg cellc with respect to a monotonic iceberg
condition, its projections on the fact table and the dimension
tables must also be local iceberg cells. Instead of directly
computing the iceberg cube from a universal base table, we
can compute local iceberg cubes from the fact table and the
dimension tables, respectively. Then, we can try to derive
the global iceberg cube from the local ones.

Based on the above observation, algorithm CTC works
in three steps. First, the aggregate information is propagated
from the fact table to each dimension tables. Then, the
iceberg cubes in the propagated dimension tables as well
as in the fact table (i.e., thelocal iceberg cubes) are mined
independently using the same iceberg cube condition. Last,
the iceberg cells involving attributes in multiple dimension
tables are derived from the local iceberg cubes.

3.1 Propagation Across Tables

EXAMPLE 4. (PROPAGATING AGGREGATE INFORMATION)
Consider our running example data warehouse (Figure 2)
again. To propagate the aggregate information from the
fact table Fact to the dimension tablesD1 and D2, we
create a new attributeCount in every dimension table. By
scanning the fact table once, the number of occurrences
of each foreign key value in the fact table can be counted.
Such information is registered in the column ofCount in
the dimension tables, as shown in Figure 4. Hereafter, the
propagated dimension tables are denoted asPD1 andPD2,
respectively, to distinguish from the original dimension
tables.

In the rest of the computation, we only use the fact table
and the propagated dimension tablesPD1 and PD2. We
will show that the iceberg cube computed from these three
tables is the same as the one computed from the universal
base table.

B C D Count

b1 c1 d1 2
b2 c1 d2 1
b3 c1 d3 1
b4 c2 d1 1

E F G H Count

e1 f1 g1 h1 1
e2 f1 g2 h2 2
e3 f1 g1 h2 1
e4 f2 g1 h1 1

(a) PropagatedPD1 (b) PropagatedPD2

Figure 4: The propagated dimension tables.

This computation of the aggregates on the keys is imple-
mented as group-by aggregate queries on the key attributes
in the fact table. Only the fact table is needed to conduct
such queries. The aggregate information is appended to the
records in the dimension tables after the aggregates are com-
puted. In general, we extend every dimension table to in-
clude a measure column.

CTC never really joins multiple tables. Instead, it
only conducts group-by queries on each key attribute and
propagates the aggregates to the corresponding dimension
table. When there are multiple dimension tables, propagating
the aggregates is much more cheaper than joining multiple
tables and materializing a universal base table. We notice
that there are efficient indexing techniques to join tables in
star schema fast. Most of those techniques can also be used
to propagate the aggregates to dimension tables efficiently.

3.2 Computation of Local Iceberg CubesLocal iceberg
cubes on propagated dimension tables can be computed us-
ing an adaption of any algorithms for iceberg cube computa-
tion. For each iceberg cellc, we maintain the histogram of
primary key values that the tuples incov(c) carry.

EXAMPLE 5. (COMPUTING LOCAL ICEBERG CUBE)
We can compute the iceberg cube on propagated dimen-
sion tablePD2 (Figure 4(b)) with respect to condition
C ≡COUNT(c) ≥ 2 using algorithm BUC [1]. One advan-
tage of computing iceberg cubes on propagated dimension
tables is thatone tuple in the propagated dimension table
may summarize multiple tuples in the corresponding projec-
tion of the universal base table. Thus, we reduce the number
of tuples in the computation.

For each iceberg cell, we record the histogram of pri-
mary key values that the tuples in the cell carry. For exam-
ple, for iceberg cell(∗, f1, ∗, ∗) with count4, we record the
set of primary key values{e1, e2, e3} that the tuples having
f1 carry. This is called thesignatureof the iceberg cell. It
will be used in the future to derive global iceberg cells. To
maintain the signature, we can use a vector ofm bits for
every iceberg cell, wherem is the number of distinct values
appearing in attributeE (the primary key attribute) in table
PD2.

Let D be a dimension table andK be a primary key
attribute such thatK is used in the fact table as the foreign
key referencing toD. For an iceberg cellc in D, the
signatureof c, denoted asc.sig, is the set of primary key
values (i.e., values inK) that appear in the tuples incov(c)
in D. Clearly, to maintain the signatures inD, we only need
m bits, wherem is the number of distinct values inK that

appear in the fact table.m is at most the number of tuples in
D, and no more than the cardinality ofK.

3.3 Computation of Global Iceberg CubesThe set of
global iceberg cells can be divided into two exclusive sub-
sets: the ones having some non-∗ values on the dimension
attributes in the fact table, and the ones whose projections on
the fact table are(∗, . . . , ∗). We handle them separately.

EXAMPLE 6. (ICEBERG CELL INVOLVING FACT TABLE)
Now, we consider the iceberg cells that contain some non-∗
values in the dimension attributes in fact tableFact. To find
such iceberg cells, we first apply an iceberg cube computing
algorithm, such as BUC [1], to the fact table.

For example, we find(a1, ∗, ∗) : 2 is an iceberg
cell in the fact table. In the cover of(a1, ∗, ∗) (i.e.,
the first and the fourth tuples in Figure 2(b)),b1 appears
in attribute B, which references to dimension tableD1.
Thus, for any local iceberg cellc in PD1 whose signa-
ture containsb1, such as(b1, ∗, ∗), (∗, c1, ∗), and(∗, c1, d1),
the join1 of (a1, ∗, ∗) and c, such as(a1, b1, ∗, ∗, ∗, ∗, ∗),
(a1, ∗, c1, ∗, ∗, ∗, ∗, ∗) and (a1, ∗, c1, d1, ∗, ∗, ∗, ∗), must be
a global iceberg cell of count 2 (yielding to the measure of
the iceberg cell in the fact table). As another example, ice-
berg cell(a1, ∗, c1, ∗, ∗, ∗, ∗, ∗), e1 ande2 appear in attribute
E, which reference to dimension tableD2. Thus, for any lo-
cal iceberg cellc in PD2 whose signature containse1 or e2,
such as(∗, f1, ∗, ∗), can be a global iceberg cell, if the over-
lap of the signatures can lead to an aggregate value satisfying
the iceberg condition. Then, we can further join them to get
iceberg cell(a1, ∗, c1, ∗, ∗, f1, ∗, ∗).

In such a recursive way, we can find all the global
iceberg cells that contain some values in the attributes in fact
tableFact. Limited by space, we omit the details here.

We never need to join the fact table with any dimension
tables to generate a global iceberg cell. Instead, we join the
local iceberg cells based on the signatures. Recall that we
maintain the signatures using bitmap vectors, the matching
of signatures is efficient. To facilitate matching, we also
index the iceberg cells in the dimension tables by their
signatures. Another advantage of the algorithm is that, a
local iceberg cell is found only once but is used many times
to join with other local iceberg cells to form global ones.
If we compute the global iceberg cells from the universal
base table, we may have to search the same portion of the
universal base table for the (local) iceberg cell many times
for different global iceberg cells. The cross table algorithm
eliminates the redundancy in the computation.

EXAMPLE 7. (JOINING LOCAL ICEBERG CELLS) We con-
sider how to compute the global iceberg cells in data ware-
houseDW (Figure 2) that do not contain any non-∗ value in

1Let c1 andc2 be aggregate cells on tablesT1 andT2, respectively, such
that if T1 andT2 have any common attribute thenc1 andc2 have the same
value in every such common attribute. Thejoin of c1 andc2, denoted as
c1 1 c2, is the tuplec such that (1) for any attributeA thatc1 has a non-∗
value,c has the same value asc1 onA; (2) for any attributeB thatc2 has a
non-∗ value,c has the same value asc2 onB; (3) c has value∗ in all other
attributes.

root

e4:1

b4:1

e3:1

b3:1

e2:1

b2:1b1:2

e2:1e1:1

Figure 5: The H-tree for foreign key attribute values.
Runtime Main memory usage

 10

 100

 1000

 10000

 3 4 5 6 7

R
un

 T
im

e
(s

ec
on

ds
)

of Dimension Tables

BUC
CTC

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 3 4 5 6 7

M
em

or
y

U
sa

ge
 (

M
)

of Dimension Tables

BUC
CTC

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

R
un

 T
im

e
(s

ec
on

ds
)

Cardinality

BUC
CTC

 20

 25

 30

 35

 40

 45

 50

 55

 10 20 30 40 50 60 70 80 90 100

M
em

or
y

U
sa

ge
 (

M
)

Cardinality

BUC
CTC

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.5 1 1.5 2 2.5 3

R
un

 T
im

e
(s

ec
on

ds
)

Zipf Factor

BUC
CTC

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.5 1 1.5 2 2.5 3

M
em

or
y

U
sa

ge
 (

M
)

Zipf Factor

BUC
CTC

Figure 6: Experimental results – Part 1.

attributes in the fact table. Those global iceberg cells can be
divided into two subsets: (1) the descendants of some local
iceberg cells inPD1, and (2) the descendants of some local
iceberg cells inPD2 but not descendant of any local iceberg
cells inPD1. In both cases, we only consider the cells that
do not contain any non-∗ value in the key attributes.

To find the first subset, we consider the local iceberg
cells inPD1 one by one. For example,(∗, c1, ∗) is a local
iceberg cell inPD1 with signature{b1, b2, b3}. To find the
local iceberg cells inPD2 that can be joined with(∗, c1, ∗)
to form a global iceberg cell, we should collect all the tuples
in the fact table that contain eitherb1, b2 or b3, and find their
signature on attributeE.

Clearly, to derive the signature on attributeE for a local
iceberg cell in tablePD1 by collecting the tuples in the fact
table is inefficient, since we have to scan the fact table once
for each local iceberg cell. To tackle the problem, we build
an H-tree [4] using only the foreign key attributes in the fact
table, as shown in Figure 5.

With the H-tree, for a given signature on attributeB, it is
efficient to retrieve the corresponding signature on attribute
E. For example, for(∗, c1, ∗), its signature (onB) is
{b1, b2, b3}. From the H-tree, we can retrieve its signature
on E is {e1, e2, e3}, i.e., the union of the nodes at levelE
that are descendants ofb1, b2 or b3.

Then, we can search the iceberg cells in dimension table
PD2. For example, iceberg cell(∗, ∗, g1∗) in dimension

Runtime Main memory usage

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12

R
un

 T
im

e
(s

ec
on

ds
)

of Non-Foreign Key Dimensions

BUC
CTC

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12

M
em

or
y

U
sa

ge
 (

M
)

of Non-Foreign Key Dimensions

BUC
CTC

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8 9 10

R
un

 T
im

e
(s

ec
on

ds
)

Iceberg Condition Threshold (%)

BUC
CTC

 20

 25

 30

 35

 40

 45

 50

 55

 0 1 2 3 4 5 6 7 8 9 10

M
em

or
y

U
sa

ge
 (

M
)

Iceberg Condition Threshold (%)

BUC
CTC

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7

R
un

 T
im

e
(s

ec
on

ds
)

The Number of Tuples in Fact Table (in Millions)

BUC
CTC

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7

M
em

or
y

U
sa

ge
 (

M
)

The Number of Tuples in Fact Table (in Millions)

BUC
CTC

Figure 7: Experimental results – Part 2.

table PD2 has signature{e1, e3, e4}. The intersection of
the two signatures is{e1, e3}. From the H-tree, we know
that the total aggregate of tuples havinge1 or e3 andb1, b2

or b3 is 2 (the sum of the first and the fourth leaf nodes in
the H-tree). Thus, the two iceberg cells can be joined and
(∗, ∗, c1, ∗, ∗, ∗, g1, ∗) is a global iceberg cell.

Moreover, if we have more than2 foreign key attributes,
once all the global iceberg cells that are descendants of local
iceberg cells in dimension tablePD1 are computed, the
level of attributeB in the H-tree can be removed and the
remaining sub-trees can be collapsed according to the next
attribute,E. That will further reduce the tree size and search
cost.

The second subset of global iceberg cells, i.e., the ones
that are descendants of some local iceberg cells inPD2, but
not of PD1, are exactly(∗, ∗, ∗,) 1 c, wherec is a local
iceberg cell inPD2.

The space complexity of the H-tree in CTC isO(kn),
where k is the number of dimension tables andn is the
number of tuples in the fact table. In many cases, the H-
tree is smaller than the fact table and much smaller than the
universal base table. The signatures of local iceberg cells can
be stored on disk and do not have to be maintained in main
memory.

4 Experimental Results
In this section, we briefly report an extensive performance
study on computing iceberg cubes from data warehouses in
star schema, using synthetic data sets. All the experiments
are conducted on a Dell Latitude C640 laptop computer with
a 2.0 GHz Pentium 4 processor, 20 G hard drive, and 512 MB
main memory, running Microsoft Windows XP operating

system. We compare two algorithms: BUC [1] and CTC.
Both algorithms are implemented in C++.

We generate synthetic data sets following the Zipf distri-
bution. By default, the fact table has5 dimensions,1 million
tuples and the cardinality of each dimension is set to10; we
set3 dimension tables, and each dimension table has3 at-
tributes; the Zipf factor is set to1.0.

In a data warehouse generated by the above data gener-
ator, if there aren dimensions in the fact table andk dimen-
sion tables(n ≥ k), and there arel attributes in each dimen-
sion table, then the universal base table has(l · k + (n− k))
dimensions. Thus, by default, a data warehouse has11 di-
mensions. In all our experiments, we use aggregate function
count (). Therefore, the domain, cardinality and distribu-
tion on the measure attribute have no effect on the experi-
mental results. By default, we set the iceberg condition to
“COUNT(∗) ≥ number of tuples in fact table×5%”.

In all our experiments, the runtime of CTC is the
elapsing time that CTC computes iceberg cube from multiple
tables, including the CPU time and I/O time. However, the
runtime of BUC is only the time thatBUC computes iceberg
cube from the universal base table, including the CPU time
and I/O time. That is,the time of deriving the universal table
is not counted in the BUC runtime. We believe that such a
setting does not bias towards CTC.

To simplify the comparison, we assume that the univer-
sal base table can be held into main memory in our exper-
iments. When the universal base table cannot be held into
main memory, the performance of BUC will be degraded
substantially. CTC does not need to store all the tables in
main memory. Instead, it loads tables one by one. The lo-
cal iceberg cells can be indexed and stored on disk. One
major consumption of main memory in CTC is to store the
H-tree for the fact table. As shown before, the H-tree is often
smaller than the fact table and much smaller than the univer-
sal base table. When the H-tree is too large to fit into main
memory, the disk management techniques as discussed in [4]
and also the techniques for disk-based BUC can be applied.

The experimental results are shown in Figures 6 and 7,
while the curves are self-explained. By the extensive per-
formance study using synthetic data sets, we show that CTC
is consistently more efficient and more scalable than BUC.
The performance of BUC in our experiments is consistent in
trend with the results reported in [1].

References

[1] K. Beyer and R. Ramakrishnan. Bottom-up computation of
sparse and iceberg cubes. InSIGMOD’99.

[2] M. Fang et al. Computing iceberg queries efficiently. In
VLDB’98.

[3] J. Gray et al. Data cube: A relational operator generalizing
group-by, cross-tab and sub-totals. InICDE’96.

[4] J. Han et al. Efficient computation of iceberg cubes with
complex measures. InSIGMOD’01.

[5] K. Wang et al. Pushing aggregate constraints by divide-and-
approximate. InICDE’03.

[6] Y. Zhao et al. An array-based algorithm for simultaneous
multidimensional aggregates. InSIGMOD’97.

