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Abstract Constraints are essential for many sequential pattern mining applications.
However, there is no systematic study on constraint-based sequential pattern mining.
In this paper, we investigate this issue and point out that the framework developed
for constrained frequent-pattern mining does not fit our mission well. An extended
framework is developed based on a sequential pattern growth methodology. Our
study shows that constraints can be effectively and efficiently pushed deep into the
sequential pattern mining under this new framework. Moreover, this framework can
be extended to constraint-based structured pattern mining as well.
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1 Introduction

Sequential pattern mining (Agrawal & Srikant, 1995) is an important data mining
task with broad applications. In the last 10 years, there have been many studies
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on efficient sequential pattern mining and its applications (e.g., Agrawal & Srikant,
1995; Ayres, Flannick, Gehrke, & Yiu, 2002; Chiu, Wu, & Chen, 2004; Kum, Pei, &
Wang, 2003; Mannila, Toivonen, & Verkamo, 1997; Pei, Han, Mortazavi-Asl, Pinto,
Chen, Dayal, & Hsu, 2001; Pei, Han, & Wang, 2002; Pinto, Han, Pei, Wang, Chen, &
Dayal, 2001; Srikant & Agrawal, 1996; Tzvetkov, Yan, & Han, 2003; Wang & Tan,
1996; Yan, Han, & Afshar, 2003; Yang, Yu, Wang, & Han, 2002; Zaki, 2001).

Sequential pattern mining algorithms, in general, can be categorized into three
classes:

• Apriori-based, horizontal formatting method, with GSP Srikant and Agrawal
(1996) as its representative;

• Apriori-based, vertical formatting method, such as SPADE (Zaki, 2001); and
• Projection-based pattern growth method, such as PSP (Pei et al., 2001) and

SPAM (Ayres et al., 2002).

Although efficiency of mining the complete set of sequential patterns has been
improved substantially, in many cases, sequential pattern mining still faces tough
challenges in both effectiveness and efficiency. On the one hand, there could be a
large number of sequential patterns in a large database. A user is often interested
in only a small subset of such patterns. Presenting the complete set of sequential
patterns may make the mining result hard to understand and hard to use. This brings
in the effectiveness concern: “Can we only mine the sequential patterns that are
highly interesting to users?”

On the other hand, although efficient algorithms have been proposed, mining a
large amount of sequential patterns from large data sequence databases is inherently
a computationally expensive task. If we can focus on only those sequential patterns
interesting to users, we may be able to save a lot of computation cost by those
uninteresting patterns. This opens a new opportunity for performance improvement:
“Can we improve the efficiency of sequential pattern mining by focusing only on
interesting patterns?”

For effectiveness and efficiency considerations, constraints are essential in many
data mining applications. In the context of constraint-based sequential pattern min-
ing, Srikant and Agrawal (1996) generalized the scope of sequential pattern mining
(Agrawal & Srikant, 1995) to include time constraints, sliding time windows, and
user-defined taxonomy. Mining frequent episodes in a sequence of events studied
by Mannila et al. (1997) can also be viewed as a constrained mining problem,
since episodes are essentially constraints on events in the form of acyclic graphs.
Garofalakis, Rastogi, and Shim (1999) proposed regular expressions as constraints
for sequential pattern mining and developed a family of SPIRIT algorithms, while
members in the family achieve various degrees of constraint enforcement. The
algorithms use relaxed constraints with nice properties (like anti-monotonicity) to
filter out some unpromising patterns/candidates in their early stage.

The above interesting studies handle a few scattered classes of constraints. How-
ever, two problems remain. First, many practical constraints have not been covered.
Moreover, there lacks a systematic method to push various constraints into the
mining process. In other words, it is still unclear what is the general picture of
constraint-based sequential pattern mining and how to handle constraints beyond the
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studied classes. This forms a sharp contrast with constraint-based frequent pattern
mining, where systematic studies have been performed, and constraints have been
classified into a few classes, and efficient constraint-based mining methods have
been developed for each class (Bayardo, Agrawal, & Gunopulos, 1999; Grahne,
Lakshmanan, & Wang, 2000; Kifer, Gehrke, Bucila, & White, 2003; Ng, Lakshmanan,
Han, & Pang, 1998; Pei, Han, & Lakshmanan, 2001).

To elaborate on the above observation and also motivate this study, let us consider
the following example. To characterize a new disease, researchers may want to find
sequential patterns about symptoms, such as “finding patterns with constraint of
2–7 days of cough followed by fever in the range of 37.5–39C for 2–5 days with
average temperature of 38 ± 0.2C, and all these symptoms appear within 2 weeks.”
A pattern found could be “cough 5 days and fever 4 days with strong headache.”
This mining query contains a few constraints, involving sequences containing cer-
tain constants, and with average functions, etc. None of the previously developed
constraint-based sequential pattern mining methods can handle all these constraints.
Moreover, it is unclear how to incorporate all constraints in the mining process.

In this paper, we conduct a systematic study on constraint-based sequential
pattern mining, and make the following contributions.

• First, various kinds of constraints are classified in two orthogonal ways, based
on their application semantics and their roles in sequential pattern mining,
respectively. The latter scheme largely follows the conventional constraint-based
frequent pattern mining framework.

• Unfortunately, some commonly encountered sequence-based constraints, such
as regular expression constraints, are neither monotonic, nor anti-monotonic, nor
succinct. Instead of patching the classical framework, a new framework, called
PG, is built based on a prefix-monotone property. Interestingly, all the monotonic
and anti-monotonic constraints, as well as regular expression constraints, are
prefix-monotone, and can be pushed deep into a PG-based mining algorithm.
Moreover, some tough aggregate constraints, such as those involving average
or general sum, can also be pushed deep into a slightly revised PG mining
process.

• A performance study is conducted which demonstrates that constraint-based
mining prunes a large search space effectively in sequential pattern mining,
and PG is more efficient than other constraint-based sequential pattern mining
algorithms studied before.

The remainder of the paper is organized as follows. In Section 2, sequential
pattern mining is revisited. In Section 3, a set of frequently encountered constraints
are examined. In Section 4, we examine whether extending the classical constraint-
based frequent pattern mining framework can fit most of the popular constraints.
To handle a popular class of constraints not fitting into the classical framework, a
new framework, PG, is constructed in Section 5, by introducing a prefix-monotone
property of constraints and developing an efficient constraint-pushing method PG.
The framework is further enriched in Section 6 by handling some tough aggregate
constraints and pushing them deep into a slightly revised PG mining process. Results
on extensive experiments and performance study are reported and analyzed in
Section 7. Extension of the PG framework are discussed in Section 8, and our study
is concluded in Section 9.
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2 Sequential pattern mining: concepts

Let I = {x1, . . . , xn} be a set of items, each possibly being associated with a set of
attributes, such as value, price, profit, calling distance, period, etc. The value on
attribute A of item x is denoted by x.A. An itemset is a non-empty subset of items,
and an itemset with k items is called a k-itemset.

A sequence α = 〈X1 · · · Xl〉 is an ordered list of itemsets. An itemset Xi (1 ≤
i ≤ l) in a sequence is called a transaction, a term originated from analyzing
customers’ shopping sequences in a transaction database, such as in (Agrawal,
Imielinski, & Swami, 1993; Agrawal & Srikant, 1994, 1995; Srikant & Agrawal,
1996). A transaction Xi may have a special attribute, times-tamp, denoted by
Xi.time, which registers the time when the transaction was executed. For a sequence
α = 〈X1 · · · Xl〉, we assume Xi.time < X j.time for 1 ≤ i < j ≤ l.

The number of transactions in a sequence is called the length of the sequence. A
sequence with length l is called an l-sequence. For an l-sequence α, we have len(α) =
l. Furthermore, the i-th itemset is denoted by α[i]. An item can occur at most once in
an itemset, but can occur multiple times in various itemsets in a sequence.

A sequence α = 〈X1 . . . Xn〉 is called a subsequence of another sequence β =
〈Y1 . . . Ym〉 (n ≤ m), and β a super-sequence of α, denoted by α � β, if there exist
integers 1 ≤ i1 < . . . < in ≤ m such that X1 ⊆ Yi1 , . . . , Xn ⊆ Yin .

A sequence database SDB is a set of 2-tuples (sid, α), where sid is a sequence-id
and α a sequence. A tuple (sid, α) in a sequence database SDB is said to contain a
sequence γ if γ is a subsequence of α. The number of tuples in a sequence database
SDB containing sequence γ is called the support of γ , denoted by sup(γ ).

Given a positive integer min_sup as the support threshold, a sequence γ is a
sequential pattern in sequence database SDB if sup(γ ) ≥ min_sup. The sequential
pattern mining problem is to find the complete set of sequential patterns with respect
to a given sequence database SDB and a support threshold min_sup.

Example 1 (Sequential patterns) Table 1 shows a sequence database SDB with four
sequences. The first sequence contains three transactions (itemsets): {a}, {b , c} and
{e}. Its length is three. For the sake of brevity, the brackets are omitted if a transaction
has only one item.

As can be seen, an item can occur multiple times in various itemsets in a sequence.
For example, item b appears twice in sequence 20. Moreover, a sequence can even
contain identical transactions, such as transaction {d} in sequences 20, 30 and 40.
However, there is not any general assumption about the repetition of items or
transactions.

Table 1 Sequence database
SDB Sequence_id Sequence

10 〈a(bc)e〉
20 〈e(ab)(bc)dd〉
30 〈c(aef)(abc)dd〉
40 〈addcb〉
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Sequence 〈(ab)d〉 is a subsequence of both the second sequence, 〈e(ab)(bc)dd〉,
and the third one, 〈c(aef )(abc)dd〉. Thus, if the support threshold min_sup = 2,
〈(ab)d〉 is a sequential pattern.

Parallel to the case of frequent itemset mining problem (Agrawal et al., 1993),
there are two major difficulties in sequential pattern mining: (1) effectiveness: the
mining may return a huge number of patterns, many of which could be uninteresting
to users, and (2) efficiency: it often takes substantial computational time and space
for mining the complete set of sequential patterns in a large sequence database.

Constraint-based mining may overcome both difficulties since constraints usually
represent user’s interest and focus, which confines the patterns to be found to a
particular subset satisfying some strong conditions. Moreover, if constraints can
be pushed deep into the mining process, it is likely to achieve efficiency since the
search can be more focused. This motivates the study of constraint-based mining of
sequential patterns.

3 Categories of constraints

A constraint C for sequential pattern mining is a boolean function C(α) on the set
of all sequences. The problem of constraint-based sequential pattern mining is to find
the complete set of sequential patterns satisfying a given constraint C.

Constraints can be examined and characterized from different points of views.
We examine them first from the application point of view in this section and then
from the constraint-pushing point of view in the next section, and build up linkages
between the two by a thorough study of constraint-based sequence mining.

From the application point of view, we present the following seven categories of
constraints based on the semantics and the forms of the constraints. Although this is
by no means complete, it covers many interesting constraints in applications.

Constraint 1 (Item constraint) An item constraint specifies subset of items that
should or should not be present in the patterns. It is in the form of

Citem(α) ≡ (ϕi : 1 ≤ i ≤ len(α), α[i] θ V),

or

Citem(α) ≡ (ϕi : 1 ≤ i ≤ len(α), α[i] ∩ V 	= ∅),

where V is a subset of items, ϕ ∈ {∀, ∃} and θ ∈ {⊆, 	⊆,⊇, 	⊇,∈, 	∈}. For the sake of
brevity, we omit the strict operators (e.g., ⊂, ⊃) in our discussion here. However, the
same principles can be applied to them.

For example, when mining sequential patterns over a web log, a user may be
interested in only patterns about visits to online bookstores. Let B be the set of
online bookstores. The corresponding item constraint is Cbookstore (α) ≡ (∀i : 1 ≤ i ≤
len(α), α[i] ⊆ B).

Constraint 2 (Length constraint) A length constraint specifies the requirement on
the length of the patterns, where the length can be either the number of occurrences
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of items or the number of transactions. Length constraints can also be specified as
the number of distinct items, or even the maximal number of items per transactions.

For example, a user may want to find only long patterns (e.g., patterns consisting
of at least 50 transactions) in bio-sequence analysis. Such a requirement can be
expressed by a length constraint Clen(α) ≡ (len(α) ≥ 50).

Constraint 3 (Super-pattern constraint) A super-pattern constraint is in the form of

Cpat(α) ≡ (∃γ ∈ P s.t. γ � α),

where P is a given set of patterns, i.e., to find patterns that contain a particular set of
patterns as sub-patterns.

For example, an analyst might want to find sequential patterns that first buy a PC
and then buy a digital camera. The constraint can be expressed as

Cpat(α) ≡ 〈(PC)(digital_camera)〉 � α.

Constraint 4 (Aggregate constraint) An aggregate constraint is the constraint on an
aggregate of items in a pattern, where the aggregate function can be sum, avg, max,
min, standard deviation, etc.

For example, a marketing analyst may want sequential patterns where the average
price of all the items in each pattern is over $100.

Constraint 5 (Regular expression constraint) A regular expression constraint CRE

is a constraint specified as a regular expression over the set of items using the
established set of regular expression operators, such as disjunction and Kleene
closure. A sequential pattern satisfies CRE if and only if the pattern is accepted by its
equivalent deterministic finite automata.

For example, to find sequential patterns about a Web click stream starting from
Yahoo’s home page and reaching hotels in New York city, one may use regular
expression constraint

Travel (New York | New York City ) ( Hotels | Hotels and Motels | Lodging ),

where “|” stands for disjunction. The concept of regular expression constraint for
sequential pattern mining was first proposed in Garofalakis et al. (1999).

In some applications, one may want to have constraints on the duration of the
patterns, i.e., events happening within a certain duration.

Constraint 6 (Duration constraint) A duration constraint is defined only in sequence
databases where each transaction in every sequence has a time-stamp. It requires that
the sequential patterns in the sequence database must have the property such that
the time-stamp difference between the first and the last transactions in a sequential
pattern must be longer or shorter than a given period.

Formally, a duration constraint is in the form of

Cdur ≡ Dur(α) θ �t,
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where θ ∈ {≤,≥} and �t is a given integer. A sequence α satisfies the constraint if and
only if |{β ∈ SDB|∃1 ≤ i1 < · · · < ilen(α) ≤ len(β) s.t. α[1] � β[i1], . . . , α[len(α)] �
β[ilen(α)], and (β[ilen(α)].time − β[i1].time) θ �t}| ≥ min_sup.

In some other applications, the gap between adjacent transactions in a pattern
may be important.

Constraint 7 (Gap constraint) A gap constraint set is defined only in sequence
databases where each transaction in every sequence has a timestamp. It requires that
the sequential patterns in the sequence database must have the property such that
the timestamp difference between every two adjacent transactions must be longer or
shorter than a given gap.

Formally, a gap constraint is in the form of

Cgap ≡ Gap(α) θ �t,

where θ ∈ {≤,≥} and �t is a given integer. A sequence α satisfies the constraint if and
only if |{β ∈ SDB|∃1 ≤ i1 < · · · < ilen(α) ≤ len(β) s.t. α[1] � β[i1], . . . , α[len(α)] �
β[ilen(α)], and for all 1 < j ≤ len(α), (β[i j].time − β[i j−1].time) θ �t}| ≥ min_sup.

Among the constraints listed above, duration constraints and gap constraints are
support-related, i.e., they are applied to confine how a sequence matches a pattern.
To find whether a sequential pattern satisfies these constraints, one needs to examine
the sequence databases. For other constraints, whether the constraint is satisfied can
be determined by the frequent patterns themselves without referring to the support
counting process.

4 Characterization of constraints: a classical framework

In the recent studies of constrained frequent pattern mining (Ayres et al., 2002;
Ng et al., 1998; Pei & Han, 2000; Pei et al., 2001), constraints are characterized based
on the notion of monotonicity, anti-monotonicity, succinctness, and whether they can
be transformed into these categories if they do not belong to them. This has become
a classical framework for constraint-based frequent pattern mining. “Can we extend
this framework and solve the constraint-based sequential pattern mining problem?”

A constraint CA is anti-monotonic if a sequence α satisfying CA implies that every
non-empty subsequence of α also satisfies CA. A constraint CM is monotonic if a
sequence α satisfies CM implies that every super-sequence of α also satisfies CM. The
basic idea behind succinct constraint is that, with such a constraint, one can explicitly
and precisely generate all the sets of items satisfying the constraint without recourse
to a generate-everything-and-test approach. A succinct constraints is specified using
a precise “formula”. According to the “formula”, one can generate all the patterns
satisfying a succinct constraint. There is no need to iteratively check the constraint in
the mining process. Limited by space, we omit the formal definitions here.

For example, length constraint Clen(α) ≡ len(α) ≤ 10 and duration constraint
Dur(α) ≤ 30 are anti-monotonic, while super-pattern constraint and the duration
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constraint Dur(α) ≥ 30 are monotonic. It is easy to show that item constraints, length
constraints and super-pattern constraints are all succinct.

Based on the above definition, the anti-monotonic, monotonic and succinct char-
acteristics of some commonly used constraints for sequential pattern mining are
shown in Table 2.

We have the following result.

Theorem 1 The monotonicity, anti-monotonicity and succinctness asserted by Table 2
are correct.

Proof sketch The proof can be constructed by examining the constraints against
the definitions of anti-monotonicity, monotonicity and succinctness. We only show
one case here as an example, C ≡ len(α) ≤ l. For a sequential pattern α, let α′ � α

be a non-empty subsequence of α. Clearly, we have len(α′) ≤ len(α). If α satisfies the
constraint, i.e., len(α) ≤ l, then α′ must also satisfy the constraint. Thus, the constraint
is anti-monotonic, as shown in Table 2. �

From Table 2, one can see that the classical constraint-pushing framework
(Ng et al., 1998) based on anti-monotonicity, monotonicity, and succinctness can
be applied to many constraints. Thus the corresponding constraint-pushing strategy

Table 2 Characterization of commonly used constraints

Constraint Anti-mono Mono Succ

Item Citem(α) ≡ (∀i : 1 ≤ i ≤ len(α), Yes No Yes
α[i]θV) (θ ∈ {⊆,⊇})

Citem(α) ≡ (∀i : 1 ≤ i ≤ len(α), Yes No Yes
α[i] ∩ V 	= ∅)

Citem(α) ≡ (∃i : 1 ≤ i ≤ len(α), No Yes Yes
α[i]θV) (θ ∈ {⊆,⊇})

Citem(α) ≡ (∃i : 1 ≤ i ≤ len(α), No Yes Yes
α[i] ∩ V 	= ∅)

Length len(α) ≤ l Yes No Yes
len(α) ≥ l No Yes Yes

Super-pattern Cpat(α) ≡ (∃γ ∈ P s.t. γ � α) No Yes Yes
Simple max(α) ≤ v), min(α) ≥ v Yes No Yes
aggregates max(α) ≥ v), min(α) ≤ v No Yes Yes

sum(α) ≤ v (with non-negative values) Yes No No
sum(α) ≥ v (with non-negative values) No Yes No

Tough g_sum: sum(α) θ v, θ ∈ {≤,≥} No No No
aggregates (with positive and negative values)

average: avg(α) θ v No No No
RE (Regular Expression) a No No No
Duration Dur(α) ≤ �t Yes No No

Dur(α) ≥ �t No Yes No
Gap Gap(α) θ �t (θ ∈ {≤,≥}) Yes No No

(a In general, a regular expression (RE) constraint is not necessarily anti-monotonic, monotonic,
or succinct, though there are cases that are anti-monotonic, monotonic, or succinct. For example,
constraint “∗” (every pattern satisfies this constraint) is anti-monotonic, monotonic and succinct.)



J Intell Inf Syst

can be integrated easily into any sequential pattern mining algorithms, such as GSP,
SPADE, and PSP. However, some important classes of constraints, such as RE
(regular expressions), average(i.e., avg(α)θv, where θ ∈ ≤, ≥), and g_sum (i,e., sum
of positive and negative values), do not fit into this framework.

This problem, with respect to commonly used regular expression constraints, has
been pointed out by Garofalakis et al. (1999). They provided a solution of a set of
four SPIRIT algorithms, each pushing a stronger relaxation of regular expression
constraint R than its predecessor in the pattern mining loop. The first SPIRIT
algorithm SPIRIT(N) (“N” for “Naive”) only prunes candidate sequences containing
elements that do not appear in R. The second one, SPIRIT(L) (“L” for “Legal”),
requires every candidate sequence to be legal with respect to some state of AR. The
third, SPIRIT(V) (“V” for “Valid”), filters out candidate sequences that are not valid
with respect to any state of AR. The fourth, SPIRIT(R) (“R” for “Regular”), pushes
R all the way inside the mining process by counting support only for valid candidate
sequences. SPIRIT(R) looks most promising in constraint pushing, however, when
the RE constraint is not highly selective, the experiments in (Garofalakis et al.,
1999) show that the number of candidates generated by SPIRIT(R) explodes and
the algorithm fails to even complete execution for certain cases (run out of virtual
memory). Thus finally, SPIRIT(V) was recommended as the overall winner.

The above method, though interesting, might not be applicable to some other
types of constraints. Can we handle those difficult-to-push constraints in a nice and
elegant way? This is the theme of the next section.

5 Mining sequential patterns with prefix-monotone constraints

The classical framework on frequent and sequential pattern mining is based on
the anti-monotonic Apriori property of frequent patterns: “any super-pattern of an
infrequent pattern cannot be frequent.” A breadth-first, level-by-level search can be
conducted to find the complete set of patterns.

However, as shown in Table 2, some important and popularly used constraints
do not have the anti-monotonic or monotonic property. Instead of considering such
constraints as tough ones and find different kinds of relaxation or patching tricks
to “squeeze” them into the Apriori framework, as done by SPIRIT, we explore an
intuitive way by changing the sequential pattern mining framework so that such ugly
constraints can be naturally pushed deeply into the mining process.

Among the three typical sequential pattern mining methods, PSP seems to have
the best hope to accomplish this task because sequential patterns are mined with this
method by prefix-based database projection without candidate generation. A tough
constraint, such as a regular expression constraint, matches naturally with prefix-
based expansion and can be pushed deep into the subsequence expansion-based
mining process. Moreover, the classical anti-monotonic, monotonic, and succinct
constraints can be easily adapted to this evaluation framework as well.

In this section, we first present a prefix-monotone property for constraints and
show that most of the constraints discussed so far are prefix-monotone. Then, we
develop an efficient mining algorithm to push such constraints into sequential pattern
mining.
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5.1 Prefix-monotone property

Let R be an order of items in a sequence database. Since the item ordering in the
same transaction is irrelevant to sequential patterns, it is convenient to assume that
all items in a transaction are written with respect to the order R. For example, let R
be the alphabetical order. A sequence should be written in the form of 〈(ade)(bc)〉
instead of 〈(dae)(cb)〉. The fact that item x precedes item y in order R is denoted by
x ≺ y.

Given a sequence α = 〈X1 · · · Xn〉, sequence β = 〈X1 · · · XkY〉 is called a prefix of
α if (1) k < n, (2) Y ⊆ Xk+1, and (3) ∀y ∈ Y, ∀z ∈ (Xk+1 − Y), y ≺ z. For example,
sequence β = 〈(abc)(ac)〉 is a prefix of sequence α = 〈(abc)(acd)(bef )〉 but sequence
γ = 〈(abc)(ad)〉 is not a prefix of α. Here, the alphabetical order is used.

A constraint Cpa is called prefix anti-monotonic if for each sequence α satisfying
the constraint, so does every prefix of α. A constraint Cpm is called prefix monotonic
if for each sequence α satisfying the constraint, so does every sequence having α as
a prefix. A constraint is called prefix-monotone if it is prefix anti-monotonic or prefix
monotonic.

We immediately have the following result.

Lemma 1 An anti-monotonic constraint is prefix anti-monotonic. A monotonic
constraint is prefix monotonic.

Proof Let Ca and Cm be an anti-monotonic constraint and a monotonic constraint,
respectively. Suppose sequence α satisfies Ca. Consider a prefix β of α. Clearly, β is a
subsequence of α, i.e., β � α. Since Ca is anti-monotonic, β must also satisfy Ca. That
shows Ca is prefix anti-monotonic.

Similarly, suppose sequence α satisfies Cm. Consider a prefix γ of α. Clearly, γ is a
supersequence of α, i.e., γ � α. Since Cm is monotonic, γ must also satisfy Cm. That
is, Cm is prefix monotonic. �

For example, the length constraint len(α) ≤ 10 is anti-monotonic. It must also
be prefix anti-monotonic. This is because if the length of a sequence α is no more
than ten, the length of every prefix of α must be no more than ten as well. Similarly,
len(α) ≥ 10 is prefix monotonic since if the length of any prefix of α is no less than
ten, α must be no less than ten as well.

A succinct constraint is not necessarily prefix anti-monotonic or prefix monotonic.
However, since succinct constraints can be pushed deep directly into the mining
process (no matter which sequential pattern mining method is applied), the pushing
of such constraints will not be analyzed further here. We will further discuss the rela-
tionship between succinct constraints and prefix monotone constraints in Section 8.4.

Now, let’s examine regular expression constraints. A well-known result from the
formal language theory is that for every regular expression E, there exists a determin-
istic finite automata ME such that ME accepts exactly the language generated by E.

Given a regular expression E, let ME be the corresponding (deterministic finite)
automata. Let α be a sequence. α is called legal with respect to E if a state in ME

can be reached following α. From a regular expression constraint E, we can derive a
constraint LE such that a sequence α satisfies LE if and only if α is legal with respect
to E. Clearly, for each sequence α satisfying the regular expression constraint E,
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every prefix of α must be legal with respect to E. Furthermore, for each sequence β

legal with respect to E, every prefix of β must also be legal with respect to E. Thus,
we have the following lemma.

Lemma 2 Given a regular expression constraint E. Let LE be the constraint on legal
prefix with respect to E. Constraint LE is prefix anti-monotonic.

Based on the above discussion, we have the following statement.

Theorem 2 All the commonly used constraints discussed in Section 3, except for
g_sum and average, have prefix-monotone property.

Theorem 2 indicates that prefix-monotone property covers more commonly used
constraints than traditional anti-monotonic and monotonic properties, since prefix-
monotone property is weaker than anti-monotone and monotone properties. All
anti-monotonic or monotonic constraints are prefix-monotonic, but the reverse
direction is not true.

Often, mining with a weaker constraint may lead to the less efficiency. Thus, one
may wonder whether mining with prefix-monotone property is less efficient than
mining using the classical anti-monotonicity-based Apriori methods. The rest of this
paper will address this concern.

5.2 Pushing prefix-monotone constraints into sequential pattern mining

First, we introduce the concept of projected database. For sequence α � β, sequence
γ is said the projection of β with respect to α if (1) γ � β, (2) α is a prefix of γ ,
and (3) there exists no proper super-sequence γ ′ of γ such that γ ′ � β and γ ′ also
has α as a prefix. Projection is also denoted by γ = β/α. For example, if α = 〈bc〉,
β = 〈(abc)d(ace) f 〉, then γ = β/α = 〈b(ce) f 〉.

Projection can be computed using Algorithm 1.

Algorithm 1 (Computing projection)

Input: Sequences α = A1 · · · Am and β = B1 · · · Bn, where Ai and B j are trans-
actions, the global order R on the set of items;

Output: γ = β/α, the projection of β with respect to α;
Method:

1. j = 1;
2. for i = 1 to n do

(a) if j > n then output 〈〉 (since α 	� β); exit;
(b) if Ai 	⊆ B j then j = j + 1; goto Step 1;
(c) j = j + 1;

end for
3. Let x be the last item in Am according to order R;
4. Let Z be the set of items in B j−1 that follow x in order R;
5. output 〈A1 · · · Am−1(Am ∪ Z )B jB j+1 · · · Bn〉;
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Given a sequence database SDB and a sequence α, the α-projected database,
denoted by SDB|α , is the set of projections of sequences in SDB having α as a sub-
sequence, i.e., SDB|α = {γ |γ = β/α, β ∈ SDB ∧ α � β}. Since α appears as prefix in
every sequence in SDB|α , for the sake of brevity, we can omit the occurrences of α

as prefixes in SDB|α . For a sequence β ∈ SDB|α , we only record the suffix β ′. If the
last transaction of α and the first transaction of β ′ are in the same transaction of β,
then a symbol “_” is put in the first transaction of β ′. Therefore, we have β = α · β ′.

Now, let us examine an example of constraint pushing.

Example 2 Let the sequence database SDB be Table 1, and the task be mining
sequential patterns with a regular expression constraint C = 〈a ∗ {bb |(bc)d|dd}〉 and
support threshold min_sup = 2. The mining can be conducted in the following steps.

1. Find length-1 patterns and remove irrelevant sequences. Similar to sequential
pattern mining without constraint C, one needs to scan SDB once, which
identifies patterns 〈a〉, 〈b〉, 〈c〉, 〈d〉, and 〈e〉 as length-1 patterns. Infrequent items,
such as f , is removed. Also, in the same scan, the sequences that contain no
subsequence satisfying the constraint, such as the first sequence, 〈a(bc)e〉, should
be removed.

2. Divide the set of sequential patterns into subsets without overlap. Without consid-
ering constraint C, the complete set of sequential patterns should be divided into
five subsets without overlap according to the set of length-1 sequential patterns:
(1) those with prefix 〈a〉; (2) those with prefix 〈b〉; . . . ; and (5) those with prefix
〈e〉. However, since only patterns with prefix 〈a〉 may satisfy the constraint C, i.e.,
only 〈a〉 is legal with respect to constraint C, the other four subsets of patterns
are pruned.

3. Construct 〈a〉-projected database and mine it. Only the sequences in SDB
containing item a and satisfying constraint C should be projected. The 〈a〉-
projected database, SDB|〈a〉 = {〈(_b)(bc)dd〉, 〈(_e)(abc)dd〉, 〈ddcb〉}. Notice
that 〈e(ab)(bc)dd〉 is projected as 〈(_b)(bc)dd〉, where symbol “_” in the first
transaction indicates that it is in the same transaction with a.
During the construction of the 〈a〉-projected database, we also find locally
frequent items: (1) b can be inserted into the same transaction with a to form
a longer frequent prefix 〈(ab)〉, and (2) 〈b〉, 〈c〉 and 〈d〉 can be concatenated to
〈a〉 to form longer frequent prefixes, i.e., 〈ab〉, 〈ac〉 and 〈ad〉. Locally infrequent
items, such as e, should be ignored in the remaining mining of this projected
database.
Then the set of patterns with prefix 〈a〉 can be further divided into five subsets
without overlap: (1) pattern 〈a〉 itself; (2) those with prefix 〈(ab)〉; (3) those with
prefix 〈ab〉; (4) those with prefix 〈ac〉; and (5) those with prefix 〈ad〉. With the
existence of constraint C, pattern 〈a〉 fails C and thus is discarded; and 〈(ab)〉 is
illegal with respect to constraint C, so the second subset of patterns is pruned.
The remaining subsets of patterns should be explored one by one.

4. Mine subsets recursively. To mine patterns having 〈ab〉 as a prefix, we form the
〈ab〉-projected database SDB|〈ab〉 = {〈(_c)dd〉, 〈(_c)dd〉}. By recursively mining
the projected database, we identify sequential pattern 〈a(bc)d〉 which satisfies the
constraint.
To mine patterns with prefix 〈ac〉, we form 〈ac〉-projected database SDB|〈ac〉 =
{〈dd〉, 〈dd〉, 〈b〉. Every sequence in the projected database contains no sub-
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sequence satisfying the constrain. Thus, the search within T DB|〈ac〉 can be
pruned. In other words, we will never search any projected database which does
not potentially support patterns satisfying the constraint.
Similarly, we search the 〈ad〉-projected database and find 〈add〉 is a sequential
pattern satisfying the constraint.
In summary, during the recursive mining, if the prefix itself is a pattern satisfying
the constraint, it should be an output. The prefixes legal with respect to the
constraint should be grown and mined recursively. The process terminates when
there is no local frequent item or there is no legal prefix. It results in two final
patterns: {〈a(bc)d〉, 〈add〉}.

Let’s verify the correctness and completeness of the mining process in Example 2.
As shown in the example, if 〈x1〉, . . . , 〈xn〉 are the complete set of length-1 patterns,
the complete set of sequential patterns can be divided into n subsets without overlap
and the mining can also be reduced to mining n projected databases. Such a divide-
and-conquer strategy can be applied recursively. Its correctness has be shown in Pei
et al. (2001). We recall it as follows.

Theorem 3 Correctness of depth-first search mining, (Pei et al., 2001)

1. Given a sequence database SDB. Let 〈x1〉, . . . , 〈xn〉 be the complete set of length-1
patterns, the complete set of sequential patterns can be divided into n subsets
without overlap: the i th subset contains sequential patterns with prefix 〈xi〉 and can
be mined from 〈xi〉-projected database.

2. In the 〈X1 · · · Xl〉-projected database, let x1, . . . , xn be the complete set of items
such that 〈X1 · · · Xl−1(Xl ∪ {xi})〉 (1 ≤ i ≤ n) is frequent, and let y1, . . . , ym be
the complete set of items such that 〈X1 · · · Xl(yj)〉 (1 ≤ j ≤ m) is frequent. The
complete set of sequential patterns with prefix 〈X1 · · · Xl〉 can be divided into
(n + m + 1) subsets without overlap.

a. The first subset contains pattern 〈X1 · · · Xl〉 itself.
b. The (i + 1)th subset (1 ≤ i ≤ n) contains patterns with prefix 〈X1 · · · Xl−1(Xl ∪

{xi})〉 and can be mined from 〈X1 · · · Xl−1(Xl ∪ {xi})〉-projected database.
c. The (n + j + 1)th subset (1 ≤ j ≤ m) contains patterns with prefix

〈X1 · · · Xl(yj)〉 and can be mined from 〈X1 · · · Xl(yj)〉-projected database.

3. SDB|〈X1···Xl−1(Xl∪{x})〉 = (SDB|〈X1···Xl−1 Xl〉)|〈X1···Xl−1(Xl∪{x})〉
SDB|〈X1···Xl(y)〉 = (SDB|〈X1···Xl〉)|〈X1···Xl(y)〉

The removal of a sequence that does not satisfy the constraint is justified by the
following lemma.

Lemma 3 Let the given constraint be C.

1. In a sequence database SDB, if a sequence α does not contain any subsequence
satisfying C, then the set of sequential patterns satisfying C in SDB is identical
to the set of sequential patterns satisfying C in SDB − {α}.

2. Let α · β be a sequence in the α-projected database SDB|α . If there exists
no a subsequence α · γ � α · β satisfying C, then the set of sequential patterns
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satisfying C in SDB|α is identical to the set of sequential patterns satisfying C in
SDB|α − {α · β}.

Proof We prove the first claim. The second claim can be proved similarly.
Since SDB − {α} ⊂ SDB, every sequential pattern in SDB − {α} is also a sequen-

tial pattern in SDB. Thus, every sequential pattern in SDB − {α} satisfying C is also
a sequential pattern in SDB satisfying C. Moreover, for any sequence β that is not a
subsequence of α, the support of β in SDB − {α} is identical to the support of β in
SDB.

Suppose there exists a sequential pattern γ satisfying C in SDB but not in SDB −
{α}. γ must be a subsequence of α. That contradicts the assumption that α does not
contain any subsequence satisfying C. Thus, every sequential pattern satisfying C in
SDB is also a sequential pattern satisfying C in SDB − {α}. The claim is proved. ��

With a prefix-monotone constraint, one only needs to search in the projected
databases having prefixes potentially satisfying the constraint, as suggested in the
following lemma.

Lemma 4 Given a prefix-monotone constraint C. Let α be a sequential pattern.

1. When C is prefix anti-monotonic, if C(α) = f alse, then there exists no sequential
patterns that have α as a prefix and also satisfy constraint C.

2. When C is prefix monotonic, if C(α) = true, then every sequential pattern having
α as a prefix satisfies C.

3. When C is a regular expression constraint, if α is illegal with respect to C,
then there exists no sequential patterns that have α as a prefix and also satisfy
constraint C.

Proof The lemma follows the prefix-monotone property immediately. In case 2,
constraint testing can be waived for mining in SDB|α . ��

Based on the above discussion, we have the constrained sequential pattern mining
algorithm PG as follows.

Algorithm 2 (PG) Mining sequential patterns with prefix-monotone constraints.

Input: A sequence database SDB, support threshold min_sup, and prefix-
monotone constraint C;

Output: The complete set of sequential patterns satisfying C;
Method:

call pref ix_growth(〈〉, SDB).
Function pref ix_growth(α, SDB|α)

// α: prefix; SDB|α : the α-projected database

1. Let l be the length of α. Scan SDB|α once, find length-(l + 1)

frequent prefix in SDB|α , and remove infrequent items and useless
sequences;
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2. for each length-(l + 1) frequent prefix α′ potentially satisfying the
constraint C (Lemma 4) do

(a) if α′ satisfies C, then output α′ as a pattern;
(b) form SDB|α′ ;
(c) call pref ix_growth(α′, SDB|α′)

Theorem 4 Given a prefix-monotone constraint C, Algorithm PG finds the complete
set of sequential patterns satisfying the constraint.

Proof The correctness of the algorithm follows the lemmas and the analysis above
immediately. �

Is PG an efficient algorithm? We have the following analysis.
First, Algorithm PG takes PSP as the basic sequential pattern mining algorithm

and pushes prefix-monotone constraints deeply into the PSP mining process. The
performance study in Pei et al. (2001) shows that PSP outperforms GSP, owing to
the following factors.

• PSP adopts a prefix growth and database projection framework: for each fre-
quent prefix subsequence, only its corresponding suffix subsequences need to be
projected and examined without candidate generation.

• PSP applies a divide-and-conquer strategy so that sequential patterns are grown
by exploring only local frequent patterns in each projected database.

• PSP explores further optimizations, including a pseudo-projection technique
when the projected database and its associated pseudo-projection processing
structure fits in main memory, etc.

Second, PG handles a broader scope of constraints than anti-monotonicity and
monotonicity. A typical such example is regular expression constraints, which is
difficult to be explored using an Apriori-based method, as shown in SPIRIT. By PG,
such constraints can be naturally pushed deep into the mining process.

Interestingly, both PG and SPIRIT (Garofalakis et al., 1999) push regular
expression constraints by relaxing the constraint to achieve some nice property
facilitating the constraint-based pruning. In particular, SPIRIT(V) requires every
candidate sequence to be valid with respect to some state of the automata AR,
which shares a similar idea with PG. However, the SPIRIT methods adopts the
candidate-generation-and-test framework, which is more costly than the pattern
growth methods. Moreover, the SPIRIT methods are dedicated to pushing regular
expression constraints, while PG is capable in pushing many constraints more than
regular expression ones. For example, anti-monotonic or monotonic constraints that
are not regular expression constraints, such as super-pattern constraints and some
aggregate constraints in Table 2, can be consistently pushed in PG, but cannot be
handled by SPIRIT. As will be shown in the experimental results, PG outperforms
SPIRIT in pushing regular expression constraints.

Third, constraint checking by Lemma 3 further shrinks projected databases ef-
fectively, due to its removal of useless sequences with respect to a given constraint
during the prefix growth. This ensures that search is pursued in promising space only.
Since many irrelevant sequences can be pruned in large databases, the projected
databases keep shrinking quickly.
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One may wonder whether Apriori-based methods, such as GSP and SPADE,
can do similar prefix-based pruning using prefix-monotone constraints. Taking a
non-anti-monotonic regular expression constraint as an example, for Apriori-based
methods, a pattern whose prefix failing a constraint cannot be pruned since inserting
more items/transactions to the pattern at some other positions may still lead to a
valid pattern. However, by exploring prefix-monotone constraints, PG puts stronger
restrictions on the possible subsequences to grow and thus prunes search space more
effectively.

In summary, although prefix-monotone property is weaker than Apriori property,
since PG uses a different methodology for the mining, it still achieves better perfor-
mance than Apriori-based methods.

6 Handling tough aggregate constraints by PG

Besides regular expression constraints, one may wonder whether PG can effectively
handle the two tough aggregate constraints in Table 2, average and g_sum? Both
constraints are neither anti-monotonic nor monotonic. Even worse, they are not
prefix-monotone! Let’s examine such an example.

Example 3 Let us mine sequential patterns with constraint C ≡ avg(α) ≤ 25 in a
sequence database SDB as shown in Table 3, with support threshold = 2. The four
items in the database are of values 10, 20, 30 and 50, respectively. For convenience,
the item values are used as Ids of items.

Constraint C cannot be directly pushed into the PSP mining process. For example
α = 〈50〉 cannot be discarded even avg(α) 	≤ 25, since by appending more elements
to α, we may have α′ = 〈50 10 20 10〉 and avg(α′) ≤ 25. Also, one can easily verify
that C is not prefix-monotone.

In Pei et al. (2001), a technique was developed to push convertible constraints, like
avg(X) ≥ 25, into frequent itemset mining on transactional databases. The general
idea is to use a proper order of frequent items, like value descending order for
constraint avg(X) ≥ v, such that the list of frequent items according to the order
has a nice anti-monotonic or monotonic property.

Can we apply the technique in Pei et al. (2001) to tackle the aggregate constraints for
sequential pattern mining? Unfortunately, the answer is negative. For every sequence,
a temporal order has been pre-composed and we do not have the freedom to re-
arrange the items in sequences. The trick of simple ordering does not work well here.

Thus, new constraint pushing methods should be explored.

Table 3 Another sequence
database SDB Sequence_id Sequence

10 〈50 10 20 20〉
20 〈30 50 20〉
30 〈50 10 20 10 10〉
40 〈30 20 10〉
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Let’s examine how to push constraint “avg(α) ≤ v” deep into the PG mining
process.

Value-ascending order over the set of items should be used to determine the order
of projected databases to be processed. An item i is called a small item if its value
i.value ≤ v, otherwise, it is called a big item.

In the first scan of a (projected) database, unpromising big items in sequences
should be removed according to the following two rules.

Lemma 5 Unpromising sequence pruning rule In mining sequential patterns with
constraint avg(α) ≤ v, for a sequence α, let n be the number of instances of small
items and s be the sum of them. If there are multiple instances of one small item, the
value of that item should be counted multiple times. For any big item x in α such that
s+x.value

n+1 > v, there exists no any subsequence β � α that contains x and avg(β) ≤ v.

Proof Consider any β � α such that x is in β. Clearly, the occurrences of small items
in β is a subset of the occurrences of small items in α. Thus, avg(β) ≥ s+x.value

n+1 > v. �

The big items identified by Lemma 5 are called unpromising. Removal of un-
promising big items do not miss any sequential patterns satisfying the constraint.
Instead, it shrinks the sequence database and facilitates the mining.

Similarly, unpromising sequence pruning rule can be recursively applied in an α-
projected database. For a projection γ = β/α, let n be the number of instances of
small items appearing in γ but not in α and s be the sum of them. A big item x in α

is unpromising and should be removed if (s + sum(α) + x.value)/(n + #items(α) + 1)

violates the constraint. Here, function #items(α) returns the number of instances of
items in sequence α.

Moreover, an item marking method can be developed to mark and further prune
some unpromising items as follows. In the α-projected database,1 when a pattern β

is found where the first item following α is a small item, we check whether that small
item can be replaced by a big item x frequent in the projected database and still can
get average value satisfying the constraint. If so, prefix 〈α · x〉 is marked promising
and does not need to be checked and marked again in this projected database. When
all patterns with some small item as the first one following α have been found, for the
prefixes with a big item x following α having not been marked, 〈α · x〉 as well as the
projected databases can be pruned if 〈α · x〉 violates the constraint. We call this the
unpromising pattern pruning rule.

The rationale of this rule is as follows. For a big item x, if 〈α · x〉 violates the
constraint but 〈α · x · β〉 is a sequential pattern satisfying the constraint, then there
must be some β ′ � β such that β ′ starts with a small item and 〈α · β ′〉 is a sequential
pattern satisfying the constraint.

We elaborate on the rules and the mining procedure using the SDB in Example 3
as follows.

Example 4 Let us consider mining SDB in Table 3 with constraint C ≡ avg(α) ≤ 25.

1The whole database SDB can be regarded as SDB|〈〉.
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In the first scan of SDB, we remove the unpromising big items in sequences
by applying the unpromising sequence pruning rule. For example, in the second
sequence, 20 is the only small item and 20+50

2 = 35 > 25. This sequence cannot
support andy sequential patterns having item 50 and satisfying the constraint C. Thus,
item 50 in the second sequence should be moved.

In the same database scan, we also find length-1 patterns, 〈10〉, 〈20〉, 〈30〉 and 〈50〉.
The set of patterns can be partitioned into four subsets without overlap: (1) those
with prefix 〈10〉; (2) those with prefix 〈20〉; (3) those with prefix 〈30〉; and (4) those
with prefix 〈50〉. These subsets of patterns should be explored one by one in this
order.

1. The set of patterns with prefix 〈10〉 can be found by constructing 〈10〉-projected
database and mining it recursively. The items in 〈10〉-projected database are
small ones, so all patterns in it have average no greater than 25 and thus satisfy
the constraint. There are two patterns there: 〈10〉 and 〈10 20〉.
When pattern 〈10〉 is found, it can be regarded as a small item 10 following a
prefix 〈〉. Thus, we apply the unpromising pattern pruning rule to mark and prune
patterns. Prefix 〈30〉 is marked as promising, since avg(〈30〉 · 〈10〉) = 20 < 25.
Prefix 〈30〉 will not be checked against any other pattern after it is marked.
None of the patterns with prefix 〈10〉 can be used to mark prefix 〈50〉.

2. Similarly, we can find patterns with prefix 〈20〉 by constructing and mining 〈20〉-
projected database. They are 〈20〉 and 〈20 10〉. None of the patterns with prefix
〈20〉 can be used to mark prefix 〈50〉.

3. 30 is a big item and prefix 〈30〉 violates the constraint. For patterns with prefix
〈30〉, since prefix 〈30〉 is marked, we need to construct 〈30〉-projected database
and mine it. Pattern 〈30 20〉 is found.

4. Prefix 〈50〉 has not been marked. According to the unpromising pattern pruning
rule, no pattern with prefix 〈50〉 can satisfy the constraint. We do not need to
construct or mine 〈50〉-projected database.

Constraint avg(α);≥; v is dual with respect to constraint avg(α);≤; v. Therefore,
we can prune unpromising (small) items and patterns similarly. Moreover, with the
same idea, constraint sum(α); θ; v (where θ ∈ {≤,≥}, and items can be with non-
negative and negative values) can also be pushed deep into PG mining process. This
is left as an exercise for interested readers.

Thus, although the two concrete rules discussed above are specific for constraint
avg(α);≤; v, the idea is general and can be applied to some other aggregate con-
straints. The central point is that we can prune unpromising items and patterns as the
depth-first search goes deep. In summary, with minor revision, PG can be extended
to handle some tough aggregate constraints without prefix-monotone property. With
such extensions, all established advantages of PG still retain and the pruning is still
sharp. This is also verified by our experimental results.

7 Experimental results and performance study

To evaluate the effectiveness and efficiency of the algorithms, we performed an
extensive experimental evaluation on both synthetic and real datasets. The results
are consistent. Limited by space, in this section, we report only the results on some
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synthetic datasets generated by the IBM data generator described in Agrawal and
Srikant (1995). The same data generator has been used in most studies on sequential
pattern mining, such as Han et al. (2000); Srikant and Agrawal (1996); Zaki (1998).
We refer readers to (Agrawal & Srikant, 1995) for more details on the generation of
data sets.

All the experiments are performed on a 700 MHz AMD PC machine with
256 megabytes main memory, running Microsoft Windows 2000 Server. All methods
are implemented using Microsoft Visual C++ 6.0. We compare performance of four
methods as follows.

• GSP. GSP is an efficient sequential pattern mining method based on the
anti-monotonic Apriorix property proposed in association mining (Agrawal
& Srikant, 1994), which states the fact that any super-pattern of a infrequent
pattern cannot be frequent. The GSP algorithm was implemented as described
in Srikant and Agrawal (1996). We also revised GSP to push anti-monotonic and
monotonic constraints.

• SPIRIT. SPIRIT (Garofalakis et al., 1999) is a family of algorithms for sequential
pattern mining with regular expression constraints. Its general idea is to use
some relaxed constraint which has nice property (like Apriorix) to prune. The
main distinguishing factor among the schemes is the degree to which the regular
expression constraints are enforced to prune the search space. In particular,
algorithm SPIRIT(V) uses a relaxed constraint “valid with respect to some state
of ME” for a given regular expression E, where ME is the deterministic finite
automata corresponding to E. Since SPIRIT(V) has overall the best performance
among the SPIRIT family, we implemented it as described in (Garofalakis et al.,
1999).

• SPADE. It is an efficient sequential pattern mining algorithm based on vertical
format (Zaki, 2001). We got the source code from the author. We only study the
performance of SPADE on mining without constraint. Revision of SPADE to
handle constraints is non-trivial.

• Pg. Pg is the algorithm developed in this paper. In the implementation of
PG, we adopted the level-by-level projection and pseudo-projection techniques
described in Pei et al. (2001).

7.1 Comparison between PG and GSP without constraint

We first compare the efficiency of mining sequential patterns without constraint.
Figure 1 shows the scalability of PG, GSP and SPADE with support threshold on
dataset C10T5S4I1.25D200k, which contains 100, 000 sequences with 10, 000 items.
The expected average number of items within a transaction is 5 (denoted as T5
and the expected average number of transaction in maximal sequential pattern is
4 (denoted as S4).

As can be seen from the figure, PG is more efficient and scalable than GSP and
SPADE, while SPADE is faster than GSP, especially when support threshold is low.
When the support threshold is high, there are only a limited number of patterns and
the length of patterns is short, the gaps among the three methods are small. This
comparison confirms the inherent advantage of PG over GSP and SPADE. In the
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Fig. 1 Scalability of GSP,
SPADE and PG without
constraint
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remaining experiments, we study whether PG can carry the advantage to the extent
of mining with constraints.

7.2 Pushing anti-monotonic constraints into sequential pattern mining

To evaluate the effect of a constraint on mining sequential patterns, we define
the selectivity of a constraint as the ratio of the number of patterns FAILING the
constraint against the total number of patterns. Therefore, a constraint with 0%
selectivity filters out no pattern, while a constraint with 100% selectivity is the one
filtering out all the patterns.

Anti-monotonic constraints can be pushed deep into GSP. We modified GSP such
that it only generates candidates satisfying the constraint. Thus, both GSP and PG
can push anti-monotonic constraints deep into the mining processes. To show the
capability of GSP and PG in pushing anti-monotonic constraints into mining, we use
constraint Dur(α) ≤ �t as an example here. With various values of �t, the constraint
achieves various selectivity. The support threshold is fixed to 0.7%. For GSP and PG,
we compare the runtime with constraint to the one without constraint, respectively,
and plot Fig. 2. The relative runtime is the ratio of the runtime of an algorithm with
constraint over its runtime without constraint. In this way, the effect of constraint
pushing on runtime improvement can be measured objectively.

In general, both methods are capable in pushing anti-monotone constraints. When
the constraint selectivity is weak, since most patterns have to be generated and
tested, not too much time can be saved. However, when the selectivity is high, i.e.,
many patterns do not satisfy the constraint, a major saving can be observed and PG
performs better.

Comparing constraint pushing in GSP and PG, PG uses the constraint to prune
both the patterns and the sequences in projected databases, while GSP has to search
from the whole database all the time. When mining in large databases, the database
search cost in GSP is non-trivial.
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Fig. 2 Pushing anti-monotone
constraint
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7.3 Pushing monotonic constraints into sequential pattern mining

Monotonic constraints can be used to save the cost of constraint checking, but it
cannot cut the search space. In our experiments, since we use relatively simple
constraints, such as Dur(α) ≥ �t, the cost of constraint checking is CPU-bound.
However, the cost of the whole mining process is I/O-bound. This makes the effect
of pushing monotonic constraint into the mining process hard to be observed from
runtime reduction. However, if we look at the number of constraint tests performed,
the advantage of monotonic constraint pushing can be evaluated objectively. By
pushing a monotonic constraint, PG can save a lot of effort on constraint testing.
Therefore, in the experiment about pushing monotonic constraint, the number of
constraint tests is used as the performance measure. We also revise GSP to handle
monotonic constraints. Once a monotonic constraint is satisfied by a pattern, all
candidates which are supersets of this pattern do not need to be checked anymore.
Our results show that GSP and PG follow a similar trend on saving of constraint
checking: the higher the constraint selectivity, the more saving. PG performs better.
Since the constraint checking is often relatively efficient, the runtime saving is
relatively small.

7.4 Pushing regular expression constraints into sequential pattern mining

The complexity of regular expression constraints can be roughly measured by the
number of state changes (i.e., edges) in their corresponding deterministic finite
automata. For each level of complexity, we randomly generate 1, 000 constraints and
test both SPIRIT(V) and PG on them. The support threshold is set to 0.2%. The
results are shown in Table 4.

With simple regular expression constraints, both SPIRIT(V) and PG are efficient.
SPIRIT(V) is even better when the expression contains only two state changes.
However, when the complexity of the constraints goes up, the average runtime of
SPIRIT(V) increases dramatically. The increase of average runtime of PG is much
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Table 4 Experimental results
on mining with regular
expression constraints
(runtime is measured in
seconds

Number of Average runtime Average runtime
state changes of SPIRIT(V) of PG

10 199.176 1.20
9 98.241 1.00
8 48.540 0.89
7 23.824 0.82
6 11.500 0.71
5 5.400 0.67
4 2.453 0.61
3 1.031 0.60
2 0.381 0.57

more moderate. Even with rather complicated constraints, PG is still very efficient.
The results show that PG is more scalable and efficient than SPIRIT(V) in pushing
regular expression constraints.

Based on our analysis, the difference between the two methods in performance
can be explained as follows. With regular expression constraints, PG can prune
both patterns and projected databases. However, SPIRIT(V) has to scan the whole
sequence database repeatedly. On the other hand, even when SPIRIT(V) has pruned
many candidates, it still generates some candidates and has to test them against the
whole database.

7.5 Pushing constraints avg(α); θ; v (θ ∈ ≤, ≥) into sequential pattern mining

We also test PG on pushing constraint avg(α) ≤ v to sequential pattern mining. The
support threshold is set to 0.2%. The result is shown in Fig. 3. As can be seen, PG is
efficient and scalable with respect to selectivity of the constraint.

To test the effect of prefix marking and pruning technique in PG for mining with
constraint avg(α) ≤ v, we count the number of projected databases in Fig. 4. As can
be seen, the prefix marking technique in PG prunes a good number of projected
databases and contributes substantially to the scalability of PG. It is also interesting

Fig. 3 Scalability of PG with
constraint avg(α) ≤ v
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Fig. 4 Number of projected
database in PG with constraint
avg(α) ≤ v
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to see that the curves in Figs. 3 and 4 share similar shape. This indicates that the major
cost in PG is mining projected databases. As the number of projected databases can
be cut, the runtime can be brought down accordingly.

7.6 Scalability of PG with respect to support threshold and database size

We tested the scalability of pushing various constraints in PG with respect to support
threshold. The results are shown in Fig. 5. From the figure, we can see that PG is
scalable even when the support threshold is pretty low.

We also test the scalability of PG with respect to database size when mining with
various constraints. The results are shown in Fig. 6. PG has linear scalability when
mining with large databases.

In summary, the experimental results and performance study show that PG is
efficient and scalable in mining sequential patterns with various constraints. The
experimental results strongly support our theoretical analysis.

Fig. 5 Scalability of PG with
respect to support threshold

0.1

1

10

100

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
un

tim
e 

(s
ec

on
ds

)

Support threshold %

Dur()<=3
avg()<=2000

RE con. (complexity 10)



J Intell Inf Syst

Fig. 6 Scalability of PG with
respect to database size
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8 Discussion

8.1 Summary of contributions in this paper

This study distinguishes itself from previous work in the following aspects.

• Although PrefixSpan (Pei et al., 2001) is efficient in sequential pattern mining, it
does not address the problem of pushing any constraint into the mining. Thus,
it may suffer from returning too many patterns to the user and cannot achieve a
user-specified constraint-based search.
In this study, we push various commonly used constraints into sequential pattern
mining. Even when there are many patterns in the database, PG can return those
patterns really interesting to users. In this way, the effectiveness of sequential
pattern mining has been improved dramatically.
Technically, we identify properties facilitating constraint pushing and develop
integrated strategies to handle various constraints.

• In this study, we present a thorough study on pushing various kinds of constraints
into sequential pattern mining, not only just some particular kinds of constraints.
It covers not only the constraints with nice property (like anti-monotonic,
monotonic, and succinct ones), but also some tough and commonly used ones,
such as regular expression constraints and those involving aggregate avg() and
sum(). To our best knowledge, this is the first systematic study on sequential
pattern mining with all those constraints. Thus, it enriches the utilization of
constrained sequential pattern mining substantially.
The previous work most related to this study is from Garofalakis et al. (1999),
which proposes the use of regular expressions as a flexible constraint specifica-
tion tool that enables user-controlled focus to be incorporated into the sequential
pattern mining process. The family of SPIRIT algorithms are developed, while
members in the family achieve various degrees to which the regular expression
constraints are enforced to prune the search space. The general idea is that the
algorithms use relaxed constraints having nice properties (like Apriorix) to filter
out some unpromising patterns/candidates in their early stage.
The approaches proposed in this study is essentially different from the SPIRIT
algorithms. First, a pattern-growth pattern mining methodology is adopted.
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Second, when relaxing a regular expression constraint, we do not require the
relaxed constraint has an anti-monotonic property. Instead, we only looks for
a weaker prefix-monotonic property. As shown in the experimental results, PG
outperforms SPIRIT in pushing regular expression constraints.
Furthermore, instead of providing case by case solutions, we present a consistent
framework, PG in which many kinds of constraints can be pushed deep. Users are
liberated from the burden of choosing different methods depending on various
constraints.

• PG improves the efficiency of constrained sequential pattern mining substan-
tially. As verified by the theoretical analysis and performance study, PG clearly
wins previous proposed methods on mining sequential patterns with anti-
monotonic, monotonic and regular expression constraints. It is also efficient in
mining with some tough aggregate constraints. That makes the constraint-based
sequential pattern mining more powerful.

8.2 Mining with multiple constraints

We have studied the push of single constraints into sequential pattern mining. Can
we push multiple constraints deep into sequential pattern mining process?

Multiple constraints in a mining query may belong to the same category (e.g., all
are anti-monotonic) or to different ones. Moreover, different constraints may be on
different properties of items/transactions (e.g., some could be on item price, while
others could be on timestamps, etc.).

Fortunately, a constraint in the form of conjunctions and/or disjunction of prefix-
monotone constraints can be pushed deep into PG mining process. We only need
to keep track of which sub-constraints have been satisfied/violated. Based on that,
whether the whole constraint is satisfied and whether further recursive mining of
projected databases is needed can be determined. The details will not be presented
here for lack of space.

For constraints involving aggregates avg() and sum() (where items can be with
non-negative and negative values), PG uses a global order over all items to push
them into the mining process. However, when a constraint involves more than one
of such aggregates, and the orders required by these sub-constraints are conflicting,
some coordination is needed. The general philosophy is to conduct a cost analysis to
determine how to combine multiple order-consistent constraints and how to select
a sharper constraint among order-conflicting ones. Limited by space, the details are
omitted here.

8.3 Mining complex structures with constraints

We have shown that PG is effective and efficient for constraint-based sequential
pattern mining. In many applications, such as mining XML data and bio-molecular
data, constraint-based complex structure mining is required. Is it possible to extend
PG to handle those advanced tasks?

Many structures, e.g., trees and directed acyclic graphs (DAGs), can be con-
structed and enumerated using some order. For example, a tree can be recorded
and searched in breadth-first search or depth-first search order. By utilizing such
an order, the PG idea can be extended to mine such complex structures. The set
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of patterns can be divided and conquered. Accordingly, projected databases should
be formed and searched. Since there could be much more combinations in complex
structures than that in transactions and sequences, PG can prune search space and
speed up mining dramatically, while the level-by-level candidate-generation-and-test
methods may experience tremendous difficulties.

More interestingly, when mining complex structures with constraints, the order
used by extended PG may facilitate constraint writing and pushing. For example,
when mining frequent sub-tree structures in XML documents, it is natural to require
that the upper part of the subtree (e.g., root and first level nodes) satisfies the
constraint first, before pursuing the test of the lower parts. Thus, PG using the
breadth-first search order is not only efficient, but also effective and semantic natural.

A systematic extension of PG can mine complex structures efficiently and many
constraints can be pushed deep into the mining. As a future direction, interesting
constraints specific to complex structure mining should be explored and examined
further.

8.4 Succinct constraints and prefix-monotone constraints

Interestingly, succinct constraints can be rewritten using conjuncts and/or disjuncts of
prefix anti-monotonic and prefix monotonic ones, as stated in the following lemma.

Lemma 6 Every succinct constraint can be expressed using conjunction and/or
disjunction of prefix anti-monotonic and monotonic constraints.

Proof sketch The proof of the lemma can be constructed by induction on the structure
of SAT(C) for a succinct constraint C. We show the two key steps here.

From the definition of succinct sequence set, for every succinct constraint C such
that SAT(C) is a succinct sequence set, C is prefix anti-monotonic.

Moreover, for a succinct constraint C such that SAT(C) = S1 ∪ S2, where S1

and S2 are two succinct sequence sets, C can be expressed as C = C1 ∨ C2, where
C1 and C2 are the two prefix anti-monotonic constraints with SAT(C1) = S1 and
SAT(C2) = S2.

On the other hand, let S be a succinct sequence set. A succinct constraint C such
that SAT(C) = S̄ is a prefix monotonic constraint, since for each sequence α not in
S, every supersequence β having α as a prefix will not be in S either, i.e., β satisfies
the constraint. Thus, for a succinct constraint C such that SAT(C) = S1 − S2, where
S1 and S2 are two succinct sequence sets, C can be expressed as a disjunction of a
prefix anti-monotonic constraint and a prefix monotonic constraint. �

So far, we know that anti-monotonic, monotonic and succinct constraints all have
prefix-monotone property.

9 Conclusions

In this paper, we have systematically studied the problem of pushing various
constraints deep into sequential pattern mining. We characterize constraints for
sequential pattern mining from both the application and constraint-pushing points
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of views. A general property of constraints for sequential pattern mining, prefix-
monotone property, is identified. It covers many commonly used constraints. An
efficient algorithm, PG, is developed to push prefix-monotone constraints deep into
the mining process. With some minor extensions, some tough constraints, like those
involving aggregate avg() and sum(), can also be pushed deep into PG. Our extensive
experimental results and performance study show that PG is efficient and scalable in
mining large databases.

We have been working on a systematic implementation of constraint-based se-
quential pattern mining in a data mining system. Pg represents a new and promising
methodology at effective and efficient mining sequential patterns with constraints.
It is interesting to extend it towards mining sequential patterns with other more
complicated constraints, and mining other kinds of time-related knowledge with
various constraints.
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