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ABSTRACT

It has been well recognized that frequent pattern mining
plays an essential role in many important data mining tasks.
However, frequent pattern mining often generates a very
large number of patterns and rules, which reduces not only
the efficiency but also the effectiveness of mining. Recent
work has highlighted the importance of the constraint-based
mining paradigm in the context of mining frequent itemsets,
associations, correlations, sequential patterns, and many other
interesting patterns in large databases.

Recently, we developed efficient pattern-growth methods for
frequent pattern mining. Interestingly, pattern-growth meth-
ods are not only efficient but also effective in mining with
various constraints. Many tough constraints which cannot
be handled by previous methods can be pushed deep into the
pattern-growth mining process. In this paper, we overview
the principles of pattern-growth methods for constrained fre-
quent pattern mining and sequential pattern mining. More-
over, we explore the power of pattern-growth methods to-
wards mining with tough constraints and highlight some in-
teresting open problems.

1. INTRODUCTION

It has been well recognized that frequent pattern mining
plays an essential role in many important data mining tasks,
such as mining association rules [2; 16], correlations [6],
causality [31], sequential patterns [3], episodes [20], multi-
dimensional patterns [15; 18|, max-patterns [4], partial pe-
riodicity [11], and emerging patterns [8]. Frequent pattern
mining techniques can also be extended to solve many other
problems, such as iceberg-cube computation [5] and classi-
fication [19]. Thus, effective and efficient frequent pattern
mining is an important research problem.

Frequent pattern mining often generates a very large num-
ber of frequent patterns and rules, which reduces not only
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the efficiency but also the effectiveness of mining since users
have to sift through a large number of mined rules to find
useful ones. Recent work has highlighted the importance of
the paradigm of constraint-based mining: User is allowed
to express her focus in mining, by means of a rich class of
constraints that capture application semantics. Besides al-
lowing user exploration and control, the paradigm allows
many of these constraints to be pushed deep into mining,
thus confining the search space of patterns to those of inter-
est to the user, and achieving superior performance.

Most of the previous studies on frequent pattern mining,
such as [2; 9; 16; 18; 21; 22; 29; 30; 32], adopt an Apriori-like
approach, which is based on an anti-monotone Apriori property
[2]: if any length k pattern is not frequent in the database,
its length (k + 1) super-pattern can never be frequent. The
essential idea is to iteratively generate the set of candidate
patterns of length (k + 1) from the set of frequent patterns
of length k (for k& > 1), and check their corresponding oc-
currence frequencies in the database. Therefore, an intu-
itive methodology to push constraints into Apriori-like ap-
proaches is to use anti-monotonic constraints to prune can-
didates. However, many commonly used constraints are not
anti-monotonic, like avg(X) > v, which requires that the
average value (price) in pattern X be greater than or equal
to v. Thus, the Apriori-like methods meet challenges when
mining with such constraints.

Recently, we developed efficient pattern-growth methods [12]
for frequent pattern mining [14; 26; 25] and sequential pat-
tern mining [13; 27]. Pattern-growth methods are not Apriori-
like. They avoid or dramatically reduce candidate-generation-
and-test. Interestingly, our studies [23; 24; 28] show that
pattern-growth methods are not only efficient but also effec-
tive in constraint-based frequent pattern mining and sequen-
tial pattern mining. Many tough constraints that cannot be
handled by previous methods, like avg() > v, can be pushed
deep into the pattern-growth mining process.

In this paper, we provide an overview of the principles of
the pattern-growth methods for frequent pattern/sequential
pattern mining with various constraints. Moreover, we ex-
plore the power of pattern-growth methods towards mining
with tough constraints and highlight some interesting open
problems.

The remaining of this paper is arranged as follows. In Sec-



tion 2, we recall the problem of constraint-based frequent
pattern mining and illustrate some categories of interest-
ing constraints according to their utilization and properties
for constraint pushing. In Section 3, we illustrate the ideas
of pushing various constraints deep into pattern-growth fre-
quent pattern mining. Pattern-growth sequential pattern
mining is exemplified in Section 4. Some implications and
extensions of pattern-growth methods for mining various
patterns with interesting constraints are discussed in Sec-
tion 5. This study is concluded in Section 6.

2. WHAT ARE THE INTERESTING CON-
STRAINTS?

In this section, we first recall the problem of constrained
frequent pattern mining, and then present some categories
of interesting constraints.

2.1 Constrained Frequent Pattern Mining

Let I = {i1,...,im} be a set of items, where an item is an
object with some predefined attributes (e.g., price, weight,
etc.). A transaction T = (tid,I;) is a tuple, where tid is
the identifier of the transaction and I; C I. A transaction
database 7T consists of a set of transactions. An itemset X C
I is a subset of the set of items. A k-itemset is an itemset
of size k. We write itemsets as S = i;, -+ - 4;,,, omitting set
brackets.

An itemset X is contained in a transaction T' = (tid, I3), if
X C I,. The support sup(X) of an itemset X in a transac-
tion database 7T is the number of transactions in 7 contain-
ing X. Given a support threshold min_sup (1 < min_sup <
|T1]), an itemset X is frequent provided sup(X) > min_sup.

EXAMPLE 1. Let Table 1 be our running transaction database

T, with a set of items I = {a,b,c,d,e, f,g,h}.

| Transaction ID | Items in transaction |

10 a,b,c,d, f
20 b7cﬂd7fﬂg7h
30 a,c,d,e, f
40 e fg

Table 1: The transaction database 7 in Example 1.

Let the support threshold be §& = 2. Itemset S = acd is
frequent since it is in transactions 10 and 30, respectively.
The complete set of frequent itemsets are listed in Table 2.

O

A constraint is a predicate on the powerset of the set of
items I, i.e. C : 27 +— {true, false}. An itemset X satisfies
a constraint C if C'(X) = true. The set of itemsets satisfying
a constraint C is SAT¢(I) = {X|X C I AC(X) = true}.
We call an itemset in SAC¢(I) valid.

Problem definition. Given a transaction database 7, a sup-
port threshold min_sup, and a constraints C, the problem of
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Length [ Frequent [l-itemsets |

1 a7b’c7d’e7f7g

2 ac’ad’af’bc’bd’bf70d7ce’cf7cg7df7ef7fg
3 acd, acf, adf, bed, bef, bdf, cdf, cef,cfg
4 acdf, bedf

Table 2: Frequent itemsets with support threshold £ = 2 in
transaction database 7 in Table 1.

constrained frequent pattern mining is to find the complete
set of frequent itemsets satisfying C, i.e. find F¢ = {X|X €
SATc(I) A sup(X) > min_sup}.

2.2 Categories of Constraints

For real-world data miners, it is interesting to examine some
interesting constraints from the application point of view.
We present the following categories of constraints on the
semantics and the forms of the constraints. Although this
is by no means complete, it covers most of the interesting
constraints in applications.

CONSTRAINT 1 (ITEM CONSTRAINT). An item constraint
specifies what are the particular individual or groups of items
that should or should not be present in the pattern. O

For example, a dairy company may be interested in patterns
containing only dairy products, when it mines transactions
in a grocery store.

CONSTRAINT 2 (LENGTH CONSTRAINT). A length con-
straint specifies the requirement on the length of the patterns,
i.e., the number of items in the patterns. O

For example, when mining classification rules for documents,
a user may be interested in only frequent patterns with at
least 5 keywords, a typical length constraint.

CONSTRAINT 3  (MODEL-BASED CONSTRAINT). A model-
based constraint looks for patterns which are sub- or super-
patterns of some given patterns (models). ad

For example, a travel agent may be interested in what other
cities that a visitor is likely to travel if s/he visits both Wash-
ington and New York city. That is, they want to find fre-
quent patterns which are super-patterns of {Washington,
New York city}.

CONSTRAINT 4 (AGGREGATE CONSTRAINT). An aggre-
gate constraint is on an aggregate of items in a pattern,
where the aggregate function can be SUM, AVG, MAX, MIN,
etc. O

For example, a marketing analyst may like to find frequent
patterns where the average price of all items in each pattern
is over $100.

Volume 4, Issue 1 - page 2



Alternatively, constraints can be categorized according to
their properties for constraint pushing. Two categories of
constraints, succinctness and anti-monotonicity, were pro-
posed in [21; 17]; whereas the third category, monotonicity,
was studied in [6; 9; 23] in the contexts of mining correlated
sets and frequent itemsets. We briefly recall these notions
below.

DEFINITION 2.1. (Anti-monotone, Monotone, Suc-
cinct, and Convertible Constraints) A constraint C, is
anti-monotone if and only if whenever an itemset S violates
Ca, so does any superset of S. A constraint Cy, is mono-
tone if and only if whenever an itemset S satisfies Cp,, s0
does any superset of S. Succinctness is defined in steps, as
follows.

o An itemset I, C I is a succinct set, if it can be ex-
pressed as op(I) for some selection predicate p, where
o is the selection operator.

e SP C 2! is a succinct powerset, if there is a fized

number of succinct sets I1,I2,...,Ix C I, such that
SP can be expressed in terms of the strict powersets of
Ih,...,Ix using union and minus.

e Finally, a constraint Cs is succinct provided satc, (I)
18 a succinct powerset. O

A fourth category, convertibility, was studied in [23; 24],
which covers many tough constraints, like avg() > v.

DEFINITION 2.2. (Convertible constraints) Given an
order R over the set of items I, an itemset S’ = d142 -+ -4
is called a prefix of itemset S = i1i2 -+ im w.r.t. R, where
items in both itemsets are listed according to order R and
(I <m). S’ is called a proper prefix of S if (I < m).

A constraint C is convertible anti-monotone provided there
is an order R on items such that whenever an itemset S sat-
isfies C, so does any prefix of S. It is convertible monotone
provided there is an order R on items such that whenever an
itemset S wviolates C, so does any prefiz of S. A constraint
is convertible whenever it is convertible anti-monotone or
monotone. O

Note that any anti-monotone (resp., monotone) constraint is
trivially convertible anti-monotone (resp., convertible mono-
tone): just pick any order on items.

EXAMPLE 2. Let each item in the transaction database
in Table 1 have an attribute value (such as profit), with the
concrete value shown in Table 8. In all constraints such as
sum(S) 6 v, we implicitly refer to this value.

|Item|a|b| c |d| e |f|g| h‘
[ Value [40 JO [ -20 [ 10 [ —30 [ 30 [ 20 | —10 |

Table 3: The values (e.g., profit) of items in 7 in Table 1.
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The constraint range(S) < 15 requires that for an itemset
S, the value range of the items in S must be no greater than
15. It is an anti-monotone constraint, in the sense that if an
itemset, say ab, violates the constraint, any of its supersets
will violate it; and thus ab can be removed safely from the
candidate set during an Apriori-like frequent itemset mining
process [21].

Constraint Cavg = avg(S) > 25 is not anti-monotone (nor
monotone, nor succinct, which can be verified by readers).
For ezample, avg(df) = (10 + 30)/2 < 25, violates the con-
straint. However, upon adding one more item a, avg(adf) =
(40 + 10 + 30)/3 > 25, adf satisfies Caug.

If we arrange the items in value-descending order, {a, f,
g, d, b, h, c, €), we can observe an interesting property, as
follows. Writing itemsets w.r.t. this order leads to a notion
of a prefix. For example, itemset afd has itemsets af and
a as its prefizes. Interestingly, the average of an itemset
is no more than that of its prefix, according to this order.
Thus, if a prefit X wviolates the constraint, so does every
longer itemset with X as prefiz. Thus, constraint Cavg is
convertible (anti-monotone). m|

These four categories of constraints cover a large class of
popularly encountered constraints. A representative subset
of commonly used, SQL-based constraints is listed in Table
4 and 5. (For brevity, we only show a small subset of repre-
sentative constraints, involving aggregates. See [21; 17] for
more details.)

3. CONSTRAINED FREQUENT PATTERN
MINING IN PATTERN-GROWTH METH-
ODS

With the above enumerated interesting constraints, one may
ask “how can we push those constraints deep into the fre-
quent pattern mining process?’ In this section, we illustrate
the general ideas of constrained frequent pattern mining in
pattern-growth methods with some examples.

Although there are many frequent pattern mining algorithms
and many interesting constraints, not every constraint can
be pushed deep into the mining process of every frequent
pattern mining algorithm. A typical such example is that
a convertible constraint that is neither monotonic, nor anti-
monotonic, nor succinct, cannot be pushed deep into the
Apriori mining algorithm.

For example, itemset df in our running example violates the
constraint avg(S) > 25. However, an Apriori-like algorithm
cannot prune such an itemset. Otherwise, its super-pattern,
adf, which satisfies the constraint, cannot be generated. In
general, sub-patterns or super-patterns of a valid pattern
could well be invalid and vice versa. Thus, within the level-
wise framework, no direct pruning based on such a con-
straint can be made.

“Are there any method that is more powerful at pushing the
above categories of constraints deeply into the mining pro-
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Constraint

| Anti-monotone

Monotone I Succinct

min(S) <wv no yes yes
min(S) > v yes no yes
maz(S) <wv yes no yes
max(S) > v no yes yes
count(S) <w yes no weakly
count(S) > v no yes weakly
sum(S) <v (Va€ S, a>0) yes no no
sum(S) > v (Va € S, a>0) no yes no
sum(S) 0 v,0 € {<,>} (Va€ S, ab0) no no no
range(S) <wv yes no no
range(S) > v no yes no
avg(S) 8 v, 0 € {<,>} no no no
sup(S) > ¢ yes no no
sup(S) < ¢ no yes no
Table 4: Characterization of commonly used constraints.
Constraint Convertible Convertible Strongly
anti-monotone | monotone | convertible
avg(8) 0 v (8 € <, 5)) yes yos yes
median(S) 0 v (6 € {<,>}) yes yes yes
sum(S) <wv (v>0,Va € S,a90,60,9 € {<,>}) yes no no
sum(S) <v (v<0,Va € S,ad0,0,9 € {<,>}) no yes no
sum(S) > v (v>0,Va € S,a90,0,9 € {<,>}) no yes no
sum(S) > v (v<0,Va € S,a90,6,9 € {<,>}) yes no no
f(S) > v (f is a prefix decreasing function) yes * *
f(S) > v (f is a prefix increasing function) * yes *
f(S) <w (f is a prefix decreasing function) * yes *
f(S) <w (f is a prefix increasing function) yes * *

Table 5: Characterization of some commonly used convertible constraints. (* means it depends on the specific constraint.)

2

cess?’ Our answer is “yes,” with a special recommendation

of the pattern-growth method.

EXAMPLE 3. Let us mine frequent patterns with constraint
C = avg(S) > 25 over transaction database T in Table 1,
with the support threshold £ = 2. Items in every itemset
are listed in value descending order R: (a(40), £(30), g(20),
d(10), b(0), h(—10), c(—20), e(—30)). It is shown in Table
5 that constraint C is convertible anti-monotone w.r.t. R.
The mining process is shown in Figure 1.

By scanning T once, we find the support counts for every
item. Since h appears in only one transaction, it is an in-
frequent items and is thus dropped without further consid-
eration. The set of frequent 1-itemsets are a, f, g, d, b, ¢
and e, listed in order R. Among them, only a and f sat-
isfy the constraint'. Since C is a convertible anti-monotone
constraint, itemsets having g, d, b, c or e as prefix cannot
satisfy the constraint. Therefore, the set of frequent itemsets
satisfying the constraint can be partitioned into two subsets:

1. The ones having itemset a as a prefic w.r.t. R, i.e.,
those containing item a; and

2. The ones having itemset f as a prefic w.r.t. R, i.e.,
those containing item f but no a.

!The fact that itemset g does not satisfy the constraint im-
plies none of any 1-itemsets after g in order R can satisfy
the constraint avg.
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The two subsets can be mined respectively.

1. Find frequent itemsets satisfying the constraint and hav-
ing a as a prefix. First, a is a frequent itemset satis-
fying the constraint. Then, the frequent itemsets hav-
ing a as a proper prefiz can be found in the subset of
transactions containing a, which is called a-projected
database. Since a appears in every transaction in the
a-projected database, it is omitted. The a-projected
database contains two transactions: bedf and cdef.
Since items b and e are infrequent within this pro-
jected database, neither ab nor ae can be frequent. So,
they are pruned. The frequent items in the a-projected
database is f,d,c, listed in the order R. Since ac does
not satisfy the constraint, there is no need to create an
ac-projected database.

To check what can be mined in the a-projected database
with af and ad, as prefiz, respectively, we need to
construct the two projected databases and mine them.
This process is similar to the mining of a-projected
databases. The af-projected database contains two
frequent items d and ¢, and only afd satisfies the con-
straint. Moreover, since afdc does not satisfy the con-
straint, the process in this branch is complete. Since
afc violates the constraint, there is mo need to con-
struct a fc-projected database. The ad-projected database
contains one frequent item c, but adc does not satisfy
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Tran. DB

afdbc
fgdbc
afdce
fghce

C(a)=true
C(f)=true
C(g)=true

freq. items: a, f, g, d, b,c, €

R: a-f-g-d-b-c-e

/\

a-proj. DB f-proj. DB
fdbc dbc
fdce gdbc
freq. items: f, d, g dce
C(af)=true gce _
C(ad)=true freqg. items. g, d, b, c, e
C(ac)=false C(fg)=true
C(fd)=false
:fc proj. DB ad-proj. DB fg-proj. DB
de c dbc
c ce
freq. items: d, c | | freq. items: ¢ freg. items: ¢
C(afd)=true C(adc)=false C(fgo)=false
C(afc)=false

Figure 1: Mining frequent itemsets satisfying constraint avg(S) > 25.

the constraint. Therefore, the set of frequent itemsets
satisfying the constraint and having a as prefix con-
tains a, af, afd, and ad.

2. Find frequent itemsets satisfying the constraint and hav-
ing f as a prefix. Similarly, the f-projected database is
the subset of transactions containing f, with both a and
f removed. It has four transactions: bed, bedg, cde and
ceg. The frequent items in the projected database are
g,d,b,c, e, listed in the order of R. Since only itemsets
fg and fd satisfy the constraint, we only need to ex-
plore if there is any frequent itemset with fg or fd as
a proper prefic that satisfies the constraint. The pro-
jected fg-database contains no frequent itemset with
fg as a proper prefix that satisfies the constraint. Since
b is the item immediately after d in order R, and fdb
violates the constraint, any itemset with fd as a proper
prefix cannot satisfy the constraint. Thus, f and fg are
the only two frequent itemsets having f as a prefiz and
satisfying the constraint.

In summary, the complete set of frequent itemsets satisfying
the constraint contains 6 itemsets: a, f, af, ad, afd, fg.
This pattern-growth method generates and tests only a small
set of patterns. O

As shown in the example, a pattern-growth method mines
frequent patterns by growing short patterns to long ones.
Unlike the Apriori-like methods which proceed level-by-level
for candidate-generation-and-test, a pattern growth method
found frequent patterns in three steps. First, it finds length-
1 frequent patterns as seeds. Then, for each frequent length-
1 pattern, it forms a dedicated projected database, which
contains only transactions having that pattern. Local fre-
quent items are identified in the projected database and used
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to grow longer patterns recursively. One distinct advan-
tage of pattern-growth methods is that there is no candidate
generation nor candidate test. It has been shown that the
pattern-growth method outperforms the Apriori-like meth-
ods in mining large databases and databases with many long
patterns.

Why can one push some tough constraints deep into the
pattern-growth mining process? Constraints involving holis-
tic functions such as median, algebraic functions such as
avg, or even those involving distributive functions like sum
over sets with positive and negative item values are diffi-
cult to incorporate in an Apriori-like frequent pattern min-
ing method, because such constraints do not exhibit nice
properties like monotonicity, etc. A pattern-growth method
can handle such tough constraints by imposing an appro-
priate order on items and convert them into ones possessing
monotonic behavior. By growing frequent patterns in an ap-
propriate order, a pattern-growth method can mine frequent
patterns with such constraints effectively.

Interestingly, the ideas for constraint pushing used in pattern-
growth methods may also be applied to some recently pro-
posed frequent pattern mining algorithms, such as Depth-
First Search [1], MAFIA [7], and CHARM ([33]. They adopt
a depth-first manner to enumerate frequent patterns accord-
ing to a set enumeration tree, which is essentially dynamic
tree-structuring of the search space. Thus, they share with
pattern-growth methods the similar idea of growing long
patterns from shorter ones. Thus, these methods can also
be adapted to handle some tough constraints, like convert-
ible ones.

The efficiency of pattern-growth methods on mining with
constraints is that they push the constraints deep into the
mining process so that one does not need to generate the
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complete set of frequent patterns in most cases. Instead,
only related frequent patterns are identified and tested. As
shown in Example 3, the search space is reduced dramati-
cally when the constraint is sharp.

4. PATTERN-GROWTHSEQUENTIAL PAT-
TERN MINING WITH CONSTRAINTS

In many applications, people want to know not only frequent
patterns, but also frequent subsequences as patterns. That
leads to the problem of sequential pattern mining [3].

In general, a sequence is an ordered list of transactions.
Given a sequence database containing a set of sequences,
the problem of sequential pattern mining is to find subse-
quences that appear frequently in the database.

Sequential pattern mining may return too many patterns
from large sequence databases. Thus, it is natural to ex-
plore whether constrained frequent pattern mining can be
extended to sequential pattern mining. In this section, we
exemplify the general idea of pattern-growth sequential pat-
tern mining with constraints.

4.1 Interesting Constraints

For many applications, people may feel interested in some
extensions of constraints we have discussed in Section 2.2.
That is, people can compose constraints about items appear-
ing in the patterns (i.e. item constraints), the length of the
patterns (i.e. length constraints), patterns related to some
sequences (i.e. model-based constraints), and aggregates re-
lated to patterns (i.e. aggregate constraints). Furthermore,
the following three kinds of constraints are also helpful for
mining sequences.

CONSTRAINT 5 (REGULAR EXPRESSION CONSTRAINT).
A regular expression constraint is a constraint specified as a
reqular expression over the set of items using the established
set of reqular expression operators, such as disjunction and
Kleene closure. A sequential pattern satisfies a regqular ex-
pression constraint if the pattern is accepted by its equivalent
deterministic finite automata. O

For example, to find sequential patterns about a web click
stream starting from Yahoo’s home page and reaching hotels
in New York city, one may use regular expression constraint
“Travel (New York | New York city) (Hotels | Hotels and
Motels | Lodging)”, where “ | ” stands for disjunction. The
concept of regular expression constraint was first proposed
in [10].

CONSTRAINT 6 (DURATION CONSTRAINT). A duration
constraint is defined only in sequence databases where each
transaction in every sequence has a time stamp. It requires
that the pattern appears frequently in the sequence database
such that the time stamp difference between the first and the
last transactions in the pattern must be longer or shorter
than a given period. O

SIGKDD Explorations. Copyright©2002 ACM SIGKDD, June 2002.

For example, when a financial analyst mining for long-term
investment patterns, she may set a duration constraint that
the first and the last items in the pattern must last at least
1 year.

CONSTRAINT 7 (GAP CONSTRAINT). A gap constraint
is also defined only in sequence databases where each trans-
action in every sequence has a time stamp. It requires that
the pattern appears frequently in the sequence database such
that the time stamp difference between every two adjacent
transactions must be longer or shorter than a given gap. O

For example, to find the sequential patterns of NBA bas-
ketball players, one may only be interested in those on the
field regularly, say every week, i.e., the gap being less than
2 weeks.

Among the constraints listed above, duration constraints
and gap constraints are support-related, i.e., they are ap-
plied to confine how a sequence matches a pattern. To find
whether a sequential pattern satisfies these constraints, one
needs to examine the sequence databases. In other words,
they are not succinct. Table 6 shows the anti-monotonic,
monotonic and succinct characteristics of some commonly
used constraints for sequential pattern mining.

4.2 Pattern-growth Mining Sequential Patterns
with Constraints

Sequential patterns can also be mined using level-by-level,
candidate-generation-and-test Apriori-like methods. For ex-
ample, to find a sequential pattern (abc), which is an or-
dered list of three transactions {a}, {b} and {c}?, we can
first find frequent length-1 patterns (a), (b), and {(c). Then,
length-2 candidates (aa), {ab), ..., {cc), ((ab))?, ((ac)), and
((be)) can be generated and tested. If (ab), (ac) and (bc) are
all frequent, length-3 candidate {abc) can be generated and
tested.

Even Apriori-like sequential pattern mining methods are in-
tuitive extensions, they meet difficulties in handling many
constraints. For example, an Apriori-like method cannot
push a regular expression constraint a * ¢ deep into its level-
by-level candidate-generation-and-test mining procedure. Short
patterns like (b) and (bc) cannot be pruned even they fail
the constraint. Otherwise, some longer super-patterns like
(abc) cannot be assembled later.

One proposal within the Apriori evaluation framework is to
use some relaxed constraints having nice properties (like
anti-monotonicity) to prune some unpromising patterns and
candidates in the early stage. The SPIRIT family algorithms
[10] achieve various degrees of constraint enforcement. By
doing so, regular expression constraints can be pushed into
the Apriori-based mining to some degree. However, there

2for brevity, the brackets are omitted if a transaction has
only one item.

3(ab) means a and b are in two different transactions, while
((ab)) means both a and b are in the same transaction.
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Constraint

I Anti-mono

Mono [ Succ |

Item Citem(a) = (Vi: 1 < i <len(a), a[i]dV) (6 € {C,D}) Yes No Yes
Citem(a) = (Vi: 1 <i<len(a), ailNV # 0) Yes No Yes

Citem(a) = (i : 1 <i<len(a), a[ildV) (6 € {C,D}) No Yes Yes

Citem(a) = (Fi:1 <i<len(a), ailNV # 0) No Yes | Yes

Length len(a) <1 Yes No Yes
len(a) > 1 No Yes Yes

Super-pattern Cpat(a) =(Fy € Pst.yC a) No Yes Yes
Simple maz(a) < v), min(a) > v Yes No Yes
aggregates maz(a) > v), min(a) <v No Yes Yes
sum(a) < v (with non-negative values) Yes No No

sum(a) > v (with non-negative values) No Yes No

Tough g_sum: sum(ca) 0 v, 8 € {<, >} (with positive and negative values) No No No
aggregates average: avg(a) 0 v No No No
RE (Regular Expression) T No No No
Duration Dur(a) < At Yes No No
Dur(a) > At No Yes No

Gap Gap(a) 6 At (6 € {<,>}) Yes No No

Table 6: Characterization of commonly used constraints. (¥ In general, a regular expression (RE) constraint is not necessarily
anti-monotonic, monotonic, or succinct, though there are cases that are anti-monotonic, monotonic, or succinct. For example,

constraint #* is anti-monotonic, monotonic and succinct.)

exist two problems. First, many practical constraints are
not covered, like the aggregate constraints. Second, such
patches are more ad-hoc: it lacks systematic handling of
various kinds of constraints in the same mining process.

“Is it possible to extend the pattern-growth methods to mine
sequential patterns with various constraints? The answer is
yes. We illustrate the general idea in the following example.

EXAMPLE 4. Let the sequence database SDB be Table 7,
and the task be mining sequential patterns with a regular
expression constraint C = {a * {bb|(bc)d|dd}) and support
threshold min_sup = 2. The mining can be performed in the
following steps.

| Sequence_id | Sequence ‘
10 (a(bc)e)
20 (e(ab)(bc)dd)
30 (c(aef)(abc)dd)
40 (addcb)

Table 7: Sequence database SDB.

1. Find length-1 patterns and remove irrelevant sequences.

Scanning SDB once, patterns {(a), (b}, {c), {d), and {e)
are identified as length-1 patterns. Infrequent items,
such as f, is removed. Also, in the same scan, the
sequences that contain no subsequence satisfying the
constraint, such as the first sequence, (a(bc)e), should
be removed.

2. Divide the set of sequential patterns into subsets with-
out overlap. The complete set of sequential patterns
can be divided into five subsets without overlap accord-
ing to the set of length-1 sequential patterns: (1) those
with prefiz (a); (2) those with prefix (b); ...; and (5)
those with prefix (e). Since only patterns with prefiz {a)
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may satisfy the constraint, i.e. only (a) is legal w.r.t.
constraint C, the other four subsets of patterns can be
pruned.

. Construct (a)-projected database and mine it. Only

the sequences in SDB containing item a and satisfy-
ing constraint C should be projected. The (a)-projected
database, SDB|<a> = {{(-b)(bc)dd), {(-e)(abc)dd), (ddcb)}.
Notice that (e(ab)(bc)dd) is projected as {(-b)(bc)dd),
where symbol “.” in the first transaction indicates that

it is in the same transaction with a.

During the construction of the (a)-projected database,
we also find locally frequent items: (1) b can be inserted
into the same transaction with a to form a longer fre-
quent prefiz ((ab)), and (2) (b), {c) and {d) can be con-
catenated to {a) to form longer frequent prefizes, i.e.,
(ab), {(ac) and {(ad). Locally infrequent items, such as
e, should be ignored in the remaining mining of this
projected database.

Then the set of patterns with prefiz (a) can be further
divided into five subsets without overlap: (1) pattern
(a) itself; (2) those with prefiz ((ab)); (3) those with
prefiz {ab); (4) those with prefiz {ac); and (5) those
with prefiz (ad). By examining constraint C, one can
see that pattern {(a) fails C and thus is discarded; and
((ab)) is illegal w.r.t. constraint C, so the second sub-
set of patterns is pruned. The remaining subsets of
patterns should be explored one by one.

. Recursive mining. The mining proceeds recursively. In

the mining, if the prefix itself is a pattern satisfying
the constraint, it should be an output. The prefizes
legal w.r.t. the constraint should be grown and mined
recursively. The process terminates when there is no
local frequent item or there is no legal prefix. It results
in two final patterns: {{a(bc)d), (add)}. a
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As shown in the example, a pattern-growth method mines
sequential patterns with constraints in the following steps.
First, length-1 sequential patterns are found. Then, a se-
quential pattern is used to grow longer pattern only if it
is a prefix of some patterns potential for the constraint.
Only sequences in the database satisfying the constraint
and supporting the current pattern as well as its potential
extensions are collected and projected into the projected
database. Then, recursive mining grows longer patterns.

“Why can tough constraints be pushed deep into a pattern
growth-based sequential pattern mining process?’ If a pat-
tern satisfies a constraint, its prefix must partially satisfy
the constraint. A pattern-growth method takes advantage
of this property and grows longer patterns from shorter ones
that partially satisfy the given constraints. Any prefix, if not
promising, should be pruned immediately.

It can be shown that one can push many tough constraints,
including those involving aggregates like avg(), deep into the
pattern-growth mining process. Thus, it is an effective and
efficient methodology.

5. DISCUSSION

The above sections show that constraints can be classified
into a few categories, such as monotonic, anti-monotonic,
succinct, convertible, and inconvertible, based on their in-
teractions with a frequent pattern mining process. Many
commonly used constraints have nice properties, such as
monotonic, anti-monotonic, and succinct, and they can be
pushed deep into the mining process, no matter which min-
ing approach is adopted: Apriori-based or pattern-growth-
based. However, at handling some tough classes of con-
straints, such as convertible constraints, and regular expres-
sion constraints in the case of sequential pattern mining,
there is a sharp distinction between the two mining ap-
proaches.

In this section, we discuss (1) why there is such a sharp
distinction between the two approaches, and (2) whether
the pattern-growth method can be extended to mining more
complex types of structured patterns.

As shown in the previous two sections, the pattern-growth-
based approach is more powerful than the Apriori-based one
at pushing tough constraints deep into the mining process.
This can be explained as follows. The Apriori-based method
grows its frequent patterns from length & to length (k + 1)
relying on its downward closure property: a pattern is fre-
quent only if every of its subpatterns is frequent. This is
perfectly sound for mining frequent patterns without con-
straints. However, for constraint pushing, the testing of
the downward closure property (which is the essence of the
Apriori approach) implies that it follows a revised statement:
a pattern is a candidate only if every of its subpatterns (1)
is frequent and (2) satisfies the constraint. Unfortunately,
this statement is not always true for all kinds of constraints
(e.g., convertible ones) since not every candidate that satis-
fies a constraint must have all of its subpatterns satisfy the
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same constraint. For example, for a constraint avg(S) > 25,
generating a candidate pattern “S = afd” requires the test-
ing of constraint satisfaction for every of its subpatterns:
“af,ad, fd”, however, even when “avg(afd) > 25”, there
is still a chance that “avg(fd) < 25”. Therefore, this con-
straint cannot be pushed deep into Apriori-based mining.
On the other hand, the pattern-growth approach can grow
a pattern in a desired direction, without checking all the
combinations of its subpatterns. Thus it is possible to allow
a convertible constraint to be pushed deep if the pattern
grows in a controlled manner, such as in value descending
order as shown in Example 3.

With the similar reasoning, one can show the strength of
pattern-growth approach in constraint-based sequential pat-
tern mining, especially at handling regular expression con-
straints, as illustrated in Section 4, and aggregate constraints.

Constraint-based mining with the pattern-growth approach
can be extended to structured pattern mining as well. For
example, constraints associated with structured patterns,
such as trees, lattices and graphs, can be categorized simi-
larly as the cases of mining frequent and sequential patterns.
By extension of the pattern-growth approach towards min-
ing such patterns, it is obvious that the constraint-based
pattern mining framework developed here can be extended
accordingly to cover such patterns. The detailed extension
will be left to interested readers as an exercise.

6. CONCLUSIONS

Due to the fact that a large number of patterns or rules are
often found in frequent pattern mining, it is highly desirable
for a user to pose constraints as mining queries to make the
mining focused on the desired data sets and patterns, and
therefore improve the mining effectiveness. As a data mining
system implementor, especially a mining query optimizer
implementor, the critical issue at handling user- or expert-
specified constraints is how to push such constraints deep
into the mining process to improve the efficiency of mining.

In this paper, we have examined the methods for pushing
constraints deep into the frequent and sequential pattern
mining processes. Our focus is at introducing a pattern-
growth method and showing its strength at constraint push-
ing over the popular Apriori-based constraint-based mining
approach.

There are still many interesting research issues to be exam-
ined. For example, constraint-based mining of max-patterns
and closed patterns, in the context of mining frequent, se-
quential and structured patterns, and constraint-based clas-
sification, clustering, outlier analysis in large data sets are
interesting topics for future research.
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