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Abstract

Previous studies propose that associative classification
has high classification accuracy and strong flexibility at
handling unstructured data. However, it still suffers from
the huge set of mined rules and sometimes biased classi-
fication or overfitting since the classification is based on
only single high-confidence rule.

In this study, we propose a new associative classi-
fication method, CMAR, i.e., Classification based on
Multiple Association Rules. The method extends an ef-
ficient frequent pattern mining method, FP-growth, con-
structs a class distribution-associated FP-tree, and mines
large database efficiently. Moreover, it applies a CR-tree
structure to store and retrieve mined association rules ef-
ficiently, and prunes rules effectively based on confidence,
correlation and database coverage. The classification is
performed based on a weighted ��� analysis using multiple
strong association rules. Our extensive experiments on ���
databases from UCI machine learning database repository
show that CMAR is consistent, highly effective at classifi-
cation of various kinds of databases and has better aver-
age classification accuracy in comparison with CBA and
C4.5. Moreover, our performance study shows that the
method is highly efficient and scalable in comparison with
other reported associative classification methods.

1 Introduction

Building accurate and efficient classifiers for large
databases is one of the essential tasks of data mining and
machine learning research. Given a set of cases with class
labels as a training set, classification is to build a model
(called classifier) to predict future data objects for which
the class label is unknown.

Previous studies have developed heuristic/greedy
search techniques for building classifiers, such as decision
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trees [10], rule learning [2], naı̈ve-Bayes classification [4],
and statistical approaches [8]. These techniques induces a
representative subset of rules (e.g., a decision tree or a set
of rules) from training data sets for quality prediction.

Recent studies propose the extraction of a set of high
quality association rules from the training data set which
satisfy certain user-specified frequency and confidence
thresholds. Effective and efficient classifiers have been
built by careful selection of rules, e.g., CBA [9], CAEP
[3], and ADT [11]. Such a method takes the most effec-
tive rule(s) from among all the rules mined for classifi-
cation. Since association rules explore highly confident
associations among multiple variables, it may overcome
some constraints introduced by a decision-tree induction
method which examines one variable at a time. Extensive
performance studies [6, 9, 3, 11] show that association-
based classification may have better accuracy in general.
However, this approach may also suffer some weakness as
shown below.

On one hand, it is not easy to identify the most effective
rule at classifying a new case. Some method, such as [9,
3, 11], simply selects a rule with a maximal user-defined
measure, such as confidence. As we will see later, such a
selection may not always be the right choice in many cases.
Such a simple pick may affect the classification accuracy.

On the other hand, a training data set often generates a
huge set of rules. It is challenging to store, retrieve, prune,
and sort a large number of rules efficiently for classifica-
tion. Many studies [1, 5] have indicated the inherent nature
of a combinatorial explosive number of frequent patterns
and hence association rules that could be generated when
the support threshold is small (i.e., when rare cases are also
be included in the consideration). To achieve high accu-
racy, a classifier may have to handle a large set of rules,
including storing those generated by association mining
methods, retrieving the related rules, and pruning and sort-
ing a large number of rules.

Can we solve the above two problems? To solve the
first problem, that is, to predict a new case accurately, in-
stead of applying only a single rule, one may consider a
small subset of the most related, highly confident rules and
make a collective and all-around decision. Intuitively, that



would help us avoid bias, exceptions, and overfitting of too
small data sets. To overcome the second problem, the effi-
ciency and scalability problem of association-based classi-
fication, one needs to develop efficient methods for storing
and retrieving rules. This may help improve efficiency as
well as the accuracy of classification since more rules can
be stored and considered. This is the motivation of this
research.

In this paper, we develop a new technique, CMAR, for
accurate and efficient classification and make the follow-
ing contributions.

First, instead of relying on a single rule for classifica-
tion, CMAR determines the class label by a set of rules.
Given a new case for prediction, CMAR selects a small set
of high confidence, highly related rules and analyzes the
correlation among those rules. To avoid bias, we develop a
new technique, called weighted ��� , which derives a good
measure on how strong the rule is under both conditional
support and class distribution. An extensive performance
study shows that CMAR in general has higher prediction
accuracy than CBA [9] and C4.5 [10].

Second, to improve both accuracy and efficiency,
CMAR employs a novel data structure, CR-tree, to com-
pactly store and efficiently retrieve a large number of rules
for classification. CR-tree is a prefix tree structure to ex-
plore the sharing among rules, which achieves substantial
compactness. CR-tree itself is also an index structure for
rules and serves rule retrieval efficiently.

Third, to speed up the mining of complete set
of rules, CMAR adopts a variant of recently devel-
oped FP-growth method. FP-growth is much faster than
Apriori-like methods used in previous association-based
classification, such as [9, 3, 11], especially when there ex-
ist a huge number of rules, large training data sets, and
long pattern rules.

The remaining of the paper is arranged as follows. Sec-
tion 2 revisits the general idea of associative classification.
Section 3 devotes to the generation of rules for classifica-
tion. Section 4 discusses how to classify a new data ob-
ject using the generated rules. The experimental results on
classification accuracy and the performance study on effi-
ciency and scalability are reported in Section 5. The paper
is concluded in Section 6.

2 Associative Classification

Suppose a data object � �������	��
���������������
follows the

schema
����
����������������

, where
��


, . . . ,
���

are called at-
tributes. Attributes can be categorical or continuous. For a
categorical attribute, we assume that all the possible values
are mapped to a set of consecutive positive integers. For a
continuous attribute, we assume that its value range is dis-
cretized into intervals, and the intervals are also mapped
to consecutive positive integers. By doing so, all the at-
tributes are treated uniformly in this study.

Let � ���� �
����������� �!#"
be a finite set of class labels. A

training data set is a set of data objects such that, for each
object � ��� , there exists a class label

 %$'&�(*) � associated
with it. A classifier + is a function from

��� 
 ���������,� � �
to� . Given a data object � ��� , + � � ���-��) � returns a class

label.
In general, given a training data set, the task of classi-

fication is to build a classifier from the training data set
such that it can be used to predict class labels of unknown
objects with high accuracy.

Besides many different approach for classification, such
as decision tree approach, naive Bayesian approach, . -
nearest neighbors approach, neural network approach, a
new approach is to explore association relationships be-
tween object conditions and class labels [9]. The idea is
natural since it utilizes frequent patterns and association
relationships between cases and class labels in training
data set to do classification. If strong associations among
some frequent patterns and class labels can be observed in
training data set, the future object of similar patterns can
be classified.

In general, a pattern / � ��0213�����4��0�5
is a set of

attribute-values such that for
��6879�:7 . � , � 0<; )�� 0<;

,
and = (?>� = (�@ for

�AB>�C�
. A data object � ��� is said to match

pattern / �D��0213�����4��0�5
if and only if for

�,6E7F�G7 . � , � ���
has value

� 0<;
in attribute

� 0<;
.

Given a training data set H , let
 

be a class label. For
rule IKJ�/ML  

, the number of data objects in H match-
ing pattern / and having class label

 
is called the support

of I , denoted as N�OQP � I � . The ratio of the number of ob-
jects matching pattern / and having class label

 
versus

the total number of objects matching pattern / is called
the confidence of I , denoted as

 �RTS � I � .
For example, if UQV�W of customers who have no job

cannot get a credit limit more than XQY�ZQZQZ , i.e., the confi-
dence of rule I[J no job L credit limit less than YQZ�ZQZ
is UQV�W , then we can use rule I to classify future data
objects. To avoid noise, a rule is used for classification
only if it has enough support. Given a support thresh-
old and a confidence threshold, associative classification
method finds the complete set of class-association rules
(CAR) passing the thresholds. When a new (unknown)
object comes, the classifier selects the rule which matches
the data object and has the highest confidence and uses it
to predict the class label of the new object.

Recent studies show that associative classification is in-
tuitive and effective and has good classification accuracy
in many cases. In most existing associative classification
methods [9, 3, 11], the rule with the highest confidence is
used for classification. However, such a decision may not
always be the correct one.

For example, suppose we want to determine the credit
limit of a customer with attribute values (no job, invest-
ment immigrant, oversea asset \]V�ZQZ�. ). The top- Y most
confident rules matching the customer are as follows.

^ Rule I 
 : no job L credit limit YQZ�ZQZ`_ (support:YQZ�ZQZ , confidence: U�VQW );



^ Rule I � : investment immigrant L
credit limit Y�ZQZQZ�� (support: VQZQZ�Z , confidence:U�YQW ); and

^ Rule I�� : oversea asset \ VQZ�ZQ. L
credit limit Y�ZQZQZ�� (support:

� ZQZ�Z , confidence:U 6 W ).

So, given such a customer, what class label should we pre-
dict?

A conventional associative classification method, like
CBA, may predict credit limit Y�ZQZ�Z`_ according to rule I 

only, since it has the highest confidence. However, a closer
look at rules I � and I � may suggest that we reconsider the
decision seriously. The three rules have very similar confi-
dence, but I � and I�� have stronger support. The decision
based on rules I � and I�� seems to be more reliable.

The above example indicates that to make a reliable and
accurate prediction, the most confident rule may not al-
ways be the best choice, and a thorough, detailed, and all-
around measure analysis based on multiple rules may lead
to better quality prediction.

3 Generating Rules for Classification

In this section, we develop a new associative-
classification method, called CMAR, which performs
Classification based on Multiple Association Rules.

CMAR consists of two phases: rule generation and
classification.

In the first phase, rule generation, CMAR computes the
complete set of rules in the form of I J /ML  

, where /
is a pattern in the training data set, and

 
is a class label

such that N�O�P � I � and
 �RTS � I � pass the given support and

confidence thresholds, respectively. Furthermore, CMAR
prunes some rules and only selects a subset of high quality
rules for classification.

In the second phase, classification, for a given data ob-
ject � ��� , CMAR extracts a subset of rules matching the ob-
ject and predicts the class label of the object by analyzing
this subset of rules.

In this section, we develop methods to generate rules
for classification. The second phase, classification, will be
discussed in Section 4.

3.1 Mining Class-Association Rules Passing Sup-
port and Confidence Thresholds

To find rules for classification, CMAR first mines the
training data set to find the complete set of rules passing
certain support and confidence thresholds. This is a typi-
cal frequent pattern or association rule mining task [1]. To
make mining highly scalable and efficient, CMAR adopts a
variant of FP-growth method [5]. FP-growth is a frequent
pattern mining algorithm which is faster than conventional
Apriori-like methods, especially in the situations where

there exist large data sets, low support threshold, and/or
long patterns. The general idea of mining rules in CMAR
is shown in the following example.

Example 1 (Mining class-association rules) Given a
training data set H as shown in Table 1. Let the support
threshold is � and confidence threshold is V�ZQW . CMAR
mines class-association rules as follows.

Row-id � � � � Class label
1 	�
 �
 ��
 ��
 �
2 	�
 ��� ��
 ��� �
3 	�� ��� ��� ��� �
4 	 
 � � � � � � �
5 	 
 � � � 
 � � �
Table 1. A training data set.

First, CMAR scans the training data set H once, find the
set of attribute values happening at least twice in H . The
set is � �K�� 
����

�
�� �
���� � " and is called frequent item set.

All other attribute values, which fail the support threshold,
cannot play any role in the class-association rules, and thus
can be pruned.

Then, CMAR sorts attribute values in � in support de-
scending order, i.e., F-list

� � 
��C�
�
�: �
���� � . Then,

CMAR scans the training data set again to construct an
FP-tree, as shown in Figure 1(a).

FP-tree is a prefix tree w.r.t. F-list. For each tuple in
the training data set, attributes values appearing in F-list
are extracted and sorted according to F-list. For example,
for the first tuple,

�2� 
�� �
��
are extracted and inserted in the

tree as the left-most branch in the tree. the class label is
attached to the last node in the path.

Tuples in the training data set share prefixes. For exam-
ple, the second tuple carries attribute values

�	� 
 ���
�
�� 
 �

in
F-list and shares a common prefix

��

with the first tuple.

So, it also shares the
� 


sub-path with the left-most branch.
All nodes with same attribute value are linked together

as a queue started from the header table.

root

b2(A:1)
c1

d3
(A:1)

a1

(B:1)
c1

(C:1)
d3

Header Table

Item Link

a1

b2

c1

d3

(C:1)
d3

root

(A:1)
c1

a1

Header Table

Item Link

a1

b2

c1

(C:1)
b2

(B:1, C:1)
c1

(b) FP-tree after merging nodes of d3(a) FP-tree

Figure 1. FP-tree in Example 1.

Third, based on F-list, the set of class-association rules
can be divided into � subsets without overlap: (1) the ones



having
� � ; (2) the ones having

 �

but no

� � ; (3) the ones
having

�
� but no

� � nor
 �


; and (4) the ones having only� 

. CMAR finds these subsets one by one.
Fourth, to find the subset of rules having

� � , CMAR tra-
verses nodes having attribute value

� � and look “upward”
to collect a

� � -projected database, which contains three tu-
ples:

�	� 
���
�
�� �
���� � � J � ,

�2� 
����
�
��� � � J � and

� � J � . It
contains all the tuples having

� � . The problem of finding
all frequent patterns having

� � in the whole training set
can be reduced to mine frequent patterns in

� � -projected
database.

Recursively, in
� � -projected database,

� 

and

�
� are the

frequent attribute values, i.e., they pass support thresh-
old. (In

� � -projected database,
� � happens in every tu-

ple and thus is trivially frequent. We do not count
� � as

a local frequent attribute value.) We can mine the pro-
jected database recursively by constructing FP-trees and
projected databases. Please see [5] for more details.

It happens that, in
� � -projected database,

� 

and

�
� al-

ways happen together and thus
� 
 �

� is a frequent pattern.� 

and

�
� are two subpatterns of

��
��
� and have same sup-

port count as
� 
 �

� . To avoid triviality, we only adopt fre-
quent pattern

� 
 �
�
� � . Based on the class label distribution

information, we generate rule
��
 �

�
� �8L � with support

� and confidence
6 Z�ZQW .

After search for rules having
� � , all nodes of

� � are
merged into their parent nodes, respectively. That is, the
class label information registered in a

� � node is regis-
tered in its parent node. The FP-tree is shrunk as shown
in Figure 1(b). Please note that this tree-shrinking opera-
tion is done at the same scan of collecting the

� � -projected
database.

The remaining subsets of rules can be mined similarly.

There are two major differences in the rule mining in
CMAR and the standard FP-growth algorithm.

On one hand, CMAR finds frequent patterns and gen-
erates rules in one step.

Conventionally, association rules must be mined in two
steps [1]. This is also the case for traditional associative
classification methods [9]. First, all the frequent patterns
(i.e., patterns passing support threshold) are found. Then,
all the association rules satisfying the confidence threshold
are generated based on the mined frequent patterns.

The difference of CMAR from other associative clas-
sification methods is that for every pattern, CMAR main-
tains the distributionof various class labels among data ob-
jects matching the pattern. This is done without any over-
head in the procedure of counting (conditional) databases.
Thus, once a frequent pattern (i.e., pattern passing support
threshold) is found, rules about the pattern can be gener-
ated immediately. Therefore, CMAR has no separated rule
generation step.

On the other hand, CMAR uses class label distribution
to prune.

For any frequent pattern / , let
 

be the most dominant
class in the set of data objects matching / . If the number
of objects having class label

 
and matching / is less than

the support threshold, there is no need to search any super-
pattern (superset) / A of / since any rule in the form of/ A L  

cannot satisfy the support threshold either.

3.2 Storing Rules in CR-tree

Once a rule is generated, it is stored in a CR-tree, which
is a prefix tree structure. We demonstrate the general idea
of CR-tree in the following example.

Example 2 (CR-tree) After mining a training data set,
four rules are found as shown in Table 2.

Rule-id Rule Support Confidence
1 	�� � � � ��� �����
2 	�� ��� � � ��� 	����
3 	���
 � � ��� �����
4 � ��� � � ���� �����

Table 2. Rules found in a training data set.

A CR-tree is built for the set of rules, as shown in Figure
2, while the construction process is explained as follows.

a

b

root

b

c

a
b
c
d
e d (C, 210, 70%)

Header Table

item head of node-links

e (B, 36, 60%)

d (A, 63, 90%)

c (A, 80, 80%)

Figure 2. A CR-tree for rules in Example 2.

A CR-tree has a root node. All the attribute values ap-
pearing at the left hand side of rules are sorted according
to their frequency, i.e., the most frequently appearing at-
tribute value goes first.

The first rule,
� �% L �

is inserted into the tree as a
path from root node. The class label as well as the support
and confidence of the rule, denoted as

��� � � Z � � Z�W � , are
registered at the last node in the path, i.e., node

 
for this

rule.
The second rule,

� �  � L �
, shares a prefix

� �  
with

the first rule. Thus, it is inserted into the tree by extending
a new node

�
to the path formed by the first rule. Again,

the class label, support and confidence of the rule are reg-
istered at the last node, i.e.,

�
.

The third and fourth rules can be inserted similarly. All
the nodes with the same attribute value are linked together



by node-link to a queue. The head of each queue is stored
in a Header table.

To store the original rule set,
6 Y cells are needed for the

left hand sides of the rules. Using CR-tree, only U nodes
are needed.

As can be seen from the above example, the CR-tree
structure has some advantages as follows.

CR-tree is a compact structure. It explores potential
sharing among rules and thus can save a lot of space on
storing rules. Our experimental results show that, in many
cases, about V�Z � ��ZQW of space can be saved using CR-tree.

CR-tree itself is an index for rules. For example, if we
want to retrieve all the rules having attribute value

�
and

�
in the set of rules in Example 2, we only need to traverse
node-links of

�
, which starts at the header table, and keep

looking upward for
�
.

Once a CR-tree is built, rule retrieval becomes efficient.
That facilitates the pruning of rules and using rules for
classification dramatically.

3.3 Pruning Rules

The number of rules generated by class-association rule
mining can be huge. To make the classification effective
and also efficient, we need to prune rules to delete redun-
dant and noisy information.

According to the facility of rules on classification, a
global order of rules is composed. Given two rules I 

and I � , I



is said having higher rank than I � , denoted

as I 
�� I � , if and only if (1)
 �RTS � I 
 ���C �RTS � I �

�
; (2) �RTS � I 
 �#�  �RTS � I �

�
but N�O�P � I 
���� N�O�P � I �

�
; or (3) �RTS � I 
 � �  �RTS � I �

�
, N�O�P � I 
 � � N�O�P � I �

�
but I 
 has

fewer attribute values in its left hand side than I � does. In
addition, a rule I 
 JT/ L  

is said a general rule w.r.t.
rule I � JQ/

A L  �A
, if and only if / is a subset of / A .

CMAR employs the followingmethods for rule pruning.
First, using general and high-confidence rule to prune

more specific and lower confidence ones. Given two rulesI 
 and I � , where I 
 is a general rule w.r.t. I � . CMAR
prunes I � if I 
 also has higher rank than I � . The ratio-
nale is that we only need to consider general rules with
high confidence, and thus more specific rules with low
confidence should be pruned.

This pruning is pursued when the rule is inserted into
the CR-tree. When a rule is inserted into the tree, retrieval
over the tree is triggered to check if the rule can be pruned
or it can prune other rules that are already inserted. Our
experimental results show that this pruning is effective.

Second, selecting only positively correlated rules. For
each rule I�JQ/ML  

, we test whether / is positively cor-
related with

 
by � � testing. Only the rules that are posi-

tively correlated, i.e., those with ��� value passing a signif-
icance level threshold, are used for later classification. All
the other rules are pruned.

Algorithm 1 (Selecting rules based on database coverage)

Input: a set of rules and a coverage threshold �
Output: a subset of rules for classification

Method:

1. Sort rules in the rank descending order;

2. For each data object in the training data set, set its
cover-count to � ;

3. While both the training data set and rule set are not
empty, for each rule � in rank descending order, find
all data objects matching rule � . If � can correctly
classify at least one object then select � and increase
the cover-count of those objects matching � by  . A
data object is removed if its cover-count passes cov-
erage threshold � ;

Figure 3. Selecting rules based on database
coverage.

The rationale of this pruning is that we use the rules re-
flecting strong implications to do classification. By remov-
ing those rules not positively correlated, we prune noise.

This pruning happens when a rule is found. Since the
distribution of class labels w.r.t. frequent patterns is kept
track during the rule mining, the ��� testing is done almost
for free.

Third, pruning rules based on database coverage.
CMAR selects a subset of high quality rules for classifica-
tion. That is achieved by pruning rules based on database
coverage. CMAR uses a coverage threshold [7] to select
database coverage, as shown in Figure 3.

The database coverage method used in CMAR is simi-
lar to that in CBA. The major difference is that, instead of
removing one data object from the training data set imme-
diately after it is covered by some selected rule, we let it
stay there until it is covered by at least � rules. That allows
more selected rules. When classifying a new data object, it
may have more rules to consult and may have better chance
to be accurately predicted.

This pruning is pursued when the rule mining process
finishes. It is the last pruning of rules.

4 Classification Based on Multiple Rules

After a set of rules is selected for classification, as dis-
cussed in Section 3, CMAR is ready to classify new ob-
jects. Given a new data object, CMAR collects the subset
of rules matching the new object from the set of rules for
classification. In this section, we discuss how to determine
the class label based on the subset of rules.

Trivially, if all the rules matching the new object have
the same class label, CMAR just simply assigns that label
to the new object.



If the rules are not consistent in class labels, CMAR di-
vides the rules into groups according to class labels. All
rules in a group share the same class label and each group
has a distinct label. CMAR compares the effects of the
groups and yields to the strongest group.

To compare the strength of groups, we need to mea-
sure the “combined effect” of each group. Intuitively, if
the rules in a group are highly positively correlated and
have good support, the group should have strong effect.

There are many possible ways to measure the combined
effect of a group of rules. For example, one can use the
strongest rule as a representative. That is, the rule with
highest � � value is selected. However, simply choosing
the rule with highest � � value may be favorable to minority
classes, as illustrated in the following example.

Example 3 In a credit card application approval case,
there are two rules.
I 
 J � � � � RT� L ��� � �  �� � � � N�O�PQP ��� � ��� �RTS�= � ��R  � � �QZQW � , and
I � J��

� O  ��� =2�R � O RT=��	�
�N�= ��� L � PQP������ ��� N�O�P �
�QZ�Z ,  �RTS = � ��R  � � UQU � V�W �

The observed and expected contingencies are shown in
Figure 4.

� 
 approved rejected total
job=yes � ��� ��� �����
job=no �� �� � �

total ����� � � � ���
The observed contingency of rule � 
 .

� � approved rejected total
ed=univ �	�	  � ���
ed �� univ ���� � 	 � ���

total ����� � � � ���
The observed contingency of rule � � .

��
 approved rejected total
job=yes ����� ��� �����
job=no � � � � �

total ����� � � � ���
The expected contingency of rule � 
 .

� � approved rejected total
ed=univ ���� � � � ���
ed �� univ � ��� � � � ���

total ����� � � � ���
The expected contingency of rule � � .

Figure 4. Observed and expected contingen-
cies for rules.

Based on the observed and expected values, the � � val-
ues for I 
 and I � are

� � � � and Y�Y � � , respectively. For a

customer having no job and with university education, we
may predict her application would be rejected using ruleI 
 , if the choice of rules is based on only ��� values.

However, rule I � is intuitively much better than I 

since I � has much higher support and confidence.

Another alternative is to use the compound of correla-
tion of rules as measure. For example, we can sum up � �
values in a group as the measure of the group. However,
this method suffers from the same problem that it may fa-
vors minority too much.

A better way is to integrate both information of cor-
relation and popularity into the measure. After empirical
verification, CMAR adopts a weighted ��� measure [7] as
follows.

For each rule I�J /ML  
, let N�O�P �2 � be the number of

data objects in training data set that associated with class
label

 
and � H�� the number of data objects in the training

data set. We define � ��� � � for rule I as follows.
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�#+ ,-+ _ �����	�& �"#"*�#+ ,-+ _ �����	�&%'"#"� ��� � � computes the upper bound of ��� value of the
rule w.r.t. other settings are fixed. Then, for each group of
rules, the weighted � � measure of the group is defined as1 2�3�2�3!5476 2 3 .

As can be seen, we use the ratio of ��� value against
its upper bound (i.e., � ��� � � ) to overcome the bias of � �
value favoring minority class. Please note that, theoreti-
cally, it is hard to verify the soundness or effect of mea-
sures on strength of groups of rules. Instead, we explore
the effect of measures empirically, and according to our
experimental results, weighted ��� value is the best from
among a good set of candidate measure formulas that can
be worked out by us.

5 Experimental Results and Performance
Study

To evaluate the accuracy, efficiency and scalability
of CMAR, we have performed an extensive performance
study. In this section, we report our experimental results on
comparing CMAR against two popular classification meth-
ods: CBA [9] and C4.5 [10]. It shows that CMAR outper-
forms both CBA and C4.5 in terms of average accuracy,
efficiency and scalability.

All the experiments are performed on a 600MHz Pen-
tium PC with 128M main memory, running Microsoft
Windows/NT. CBA and C4.5 were implemented by their
authors, respectively. In the experiments, the parameters
of the three methods are set as follows.



All C4.5 parameters are default values. We test both
C4.5 decision tree method and rule method. Since the rule
method has better accuracy, we only report the accuracy
for rule method.

For CBA, we set support threshold to
6 W and confi-

dence threshold to VQZ�W and disable the limit on number of
rules. Other parameters remain default.

For CMAR, the support and confidence thresholds are
set as same as CBA. The database coverage threshold is
set to � and the confidence difference threshold to ��ZQW .

All reports of the runtime include both CPU time and
I/O time.

We test ��� data sets from UCI Machine Learning
Repository. We use C4.5’s shuffle utility to shuffle the data
sets. Also, we adopt the same method used by CBA to
discretize continuous attributes.

Data set # attr # cls # rec C4.5 CBA CMAR

Anneal 38 6 898 94.8 97.9 97.3
Austral 14 2 690 84.7 84.9 86.1
Auto 25 7 205 80.1 78.3 78.1

Breast 10 2 699 95 96.3 96.4
Cleve 13 2 303 78.2 82.8 82.2
Crx 15 2 690 84.9 84.7 84.9

Diabetes 8 2 768 74.2 74.5 75.8
German 20 2 1000 72.3 73.4 74.9

Glass 9 7 214 68.7 73.9 70.1
Heart 13 2 270 80.8 81.9 82.2

Hepatic 19 2 155 80.6 81.8 80.5
Horse 22 2 368 82.6 82.1 82.6
Hypo 25 2 3163 99.2 98.9 98.4
Iono 34 2 351 90 92.3 91.5
Iris 4 3 150 95.3 94.7 94

Labor 16 2 57 79.3 86.3 89.7
Led7 7 10 3200 73.5 71.9 72.5

Lymph 18 4 148 73.5 77.8 83.1
Pima 8 2 768 75.5 72.9 75.1
Sick 29 2 2800 98.5 97 97.5

Sonar 60 2 208 70.2 77.5 79.4
Tic-tac 9 2 958 99.4 99.6 99.2
Vehicle 18 4 846 72.6 68.7 68.8

Waveform 21 3 5000 78.1 80 83.2
Wine 13 3 178 92.7 95 95
Zoo 16 7 101 92.2 96.8 97.1

Average 83.34 84.69 85.22

Table 3. The comparison of C4.5, CBA and
CMAR on accuracy.

As can be seen from the table, CMAR outperforms both
C4.5 and CBA on accuracy. Furthermore, out of the ���
data sets, CMAR achieves the best accuracy in

6 Y ones.
In another word, CMAR wins in VQZ�W of test data sets. In
some data sets, e.g. Lymph, CMAR wins the second place
over VQW in accuracy.

There are two important parameters, database coverage
threshold and confidence difference threshold, in CMAR.

As discussed before, these two thresholds control the num-
ber of rules selected for classification.

In general, if the set of rules is too small, some effective
rules may be missed. On the other hand, if the rule set
is too large, the training data set may be overfit. Thus,
we need to test the sensitivities of the two thresholds w.r.t.
classification accuracy.

As an example, we test different database coverage
threshold values on the Sonar data set from UCI Machine
Learning Database Repository. The results are shown in
Figure 5, where the confidence difference threshold is set
to Z . On the other hand, we test different confidence differ-
ence threshold values on the Sonar data set. The results are
shown in Figure 6, where the database coverage threshold
is set to
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Figure 5. The effect of coverage
threshold on accuracy.
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Figure 6. The effect of confidence
difference threshold on accuracy.

From the figures, one can see that the peaks of accu-
racy are achieved at the middle of both curves. That is,
there are optimal settings for both thresholds. However,
according to our experimental results, there seems no way
to pre-determine the best threshold values. Fortunately,
both curves are quite plain. That means the accuracy is not
very sensitive to the two thresholds values.

CR-tree is a compact structure to store rules. To test
the effectiveness of CR-tree, we compare the main mem-
ory usage of CBA and CMAR on large test data sets. The



results are shown in Table 4.

Dataset # attr # cls # rec CBA CMAR saving
mem (M) mem (M) � ���

Auto 25 7 205 488 101 � 	�� �����
Hypo 25 2 3163 330 90 � ��� �����
Iono 34 2 351 334 86 � ��� �
� �
Sick 29 2 2800 321 85 � ��� ��� �

Sonar 60 2 208 590 88 ����� ��	��
Vehicle 18 4 846 590 88 ����� ��	��
Average 393.33 90 � ���  � �

Table 4. The comparison of CBA and CMAR
on main memory usage.

Please note that, in this experiment, we disable the lim-
itation of number of rules in CBA. In such a setting, CBA
and CMAR generate all the rules necessary for classifica-
tion and thus are compared in a fair base. From the table,
one can see that, on average, CMAR achieves ��� �<6 �QW sav-
ing on main memory usage.

The saving in main memory usage can be explained
from two apsects.

First, CMAR uses CR-tree. The compactness of CR-tree
brings significant gain in storing a large set of rules where
many items in the rules can be shared.

On the other hand, CR-tree is also an index structure
of rules. Before a rule is inserted into a CR-tree, CMAR
checks if there is a general rule or some more specific rules
in the tree. If so, related pruning is pursued immediately.
Such a pruning techique also contributes to the saving of
main memory.

To test the scalability of CMAR, we compare the run-
time of CBA and CMAR on six data sets. The results are
shown in Figure 5. Again, we disable the limit on number
of rules in CBA. In the experiments, CBA spends a large
portion of runtime on I/O.

Dataset # attr # cls # rec CBA runtime CMAR runtime
Auto 25 7 205 612s 408s
Hypo 25 2 3163 92s 19s
Iono 34 2 351 150s 89s
Sick 29 2 2800 74s 13s

Sonar 60 2 208 226s 145s
Vehicle 18 4 846 284s 192s

Table 5. The runtime of CBA and CMAR.

As can be seen from the table, CMAR is faster than CBA
in many cases. Please be note that the machine we use
for testing is with relatively small size of main memory
(128M). Both CBA and CMAR can be expected running
significantly faster if more main memory is available.

6 Conclusions

In this paper, we examined two major challenges in
associative classification: (1) efficiency at handling huge
number of mined association rules, and (2) effectiveness
at predicting new class labels with high classification ac-
curacy. We proposed a novel associative classification
method, CMAR, i.e., Classification based on Multiple
Association Rules. The method has several distinguished
features: (1) its classification is performed based on a
weighted � � analysis enforced on multiple association
rules, which leads to better overall classification accu-
racy, (2) it prunes rules effectively based on confidence,
correlation and database coverage, and (3) its efficiency
is achieved by extension of an efficient frequent pat-
tern mining method, FP-growth, construction of a class
distribution-associated FP-tree, and applying a CR-tree
structure to store and retrieve mined association rules effi-
ciently.

Our experiments on ��� databases in UCI machine
learning database repository show that CMAR is consis-
tent, highly effective at classification of various kinds of
databases and has better average classification accuracy in
comparison with CBA and C4.5, and is more efficient and
scalable than other associative classification methods.
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