
Mining Sequential Patterns with Constraints in Large Databases

Jian Pei
State University of New York at Buffalo

jianpei@cse.buffalo.edu

Jiawei Han
Univ. of Illinois at Urbana-Champaign

hanj@cs.uiuc.edu

Wei Wang
Fudan University

weiwang1@fudan.edu.cn

ABSTRACT
Constraints are essential for many sequential pattern min-
ing applications. However, there is no systematic study on
constraint-based sequential pattern mining. In this paper,
we investigate this issue and point out that the frame-
work developed for constrained frequent-pattern mining
does not fit our missions well. An extended framework is
developed based on a sequential pattern growth methodol-
ogy. Our study shows that constraints can be effectively
and efficiently pushed deep into sequential pattern min-
ing under this new framework. Moreover, this framework
can be extended to constraint-based structured pattern
mining as well.

1. INTRODUCTION
There have been many studies on efficient sequential

pattern mining and its applications (e.g. [2, 10, 5, 9, 11]).
Sequential pattern mining algorithms, in general, can be
categorized into three classes: (1) Apriori-based, horizon-
tal formatting method, with GSP [10] as its representa-
tive; (2) Apriori-based, vertical formatting method, such
as SPADE [11]; and (3) projection-based pattern growth
method, such as PrefixSpan [9].

For effectiveness and efficiency considerations, constraints
are essential in many data mining applications. In the
context of constraint-based sequential pattern mining, Srikant
and Agrawal [10] generalize the scope of sequential pat-
tern mining [2] to include time constraints, sliding time
windows, and user-defined taxonomy. Mining frequent
episodes in a sequence of events studied by Mannila, et
al. [5] can also be viewed as a constrained mining prob-
lem, since episodes are essentially constraints on events in
the form of acyclic graphs. Garofalakis et al. [3] propose
regular expressions as constraints for sequential pattern
mining and develop a family of SPIRIT algorithms, while
members in the family achieve various degrees of con-
straint enforcement. They use relaxed constraints having
nice properties (e.g. anti-monotonicity) to filter out some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’02, November 4–9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-492-4/02/0011 ...$5.00.

unpromising patterns/candidates in their early stage.
The above interesting studies handle a few scattered

classes of constraints. However, two problems remain: (1)
many practical constraints are not covered, and (2) there
lacks a systematic method to push various constraints into
the mining process.

To motivate this study, let us consider the following
example. To characterize a new disease, researchers may
want to find sequential patterns about symptoms, such
as “finding patterns with constraint of 2−7 days of cough
followed by fever in range of 37.5−39C for 2−5 days with
average temperature of 38±0.2C, and all these symptoms
appear within 2 weeks.”. A pattern found could be “cough
5 days and fever 4 days with strong headache.” This min-
ing query contains a few constraints, involving sequences
containing certain constants, and with average functions,
etc. None of the previously developed constraint-based
sequential pattern mining methods can handle all these
constraints. Moreover, it is unclear how to incorporate
all constraints in the mining process.

In this paper, we conduct a systematic study on constraint-
based sequential pattern mining. First, various kinds of
constraints are classified in two orthogonal ways, based on
their application semantics (Section 2) and their roles in
sequential pattern mining (Section 3), respectively. The
later scheme largely follows the conventional constraint-
based frequent pattern mining framework. Unfortunately,
some commonly encountered sequence-based constraints,
such as regular expression constraints, are neither mono-
tonic, nor anti-monotonic, nor succinct. Instead of patch-
ing the classical framework, a new framework, called Prefix-
growth, is built based on a prefix-monotone property (Sec-
tion 4). Interestingly, all the monotonic and anti-monotonic
constraints, as well as regular expression constraints, are
prefix-monotone, and can be pushed deep into a prefix-growth-
based mining algorithm. Moreover, some tough aggre-
gate constraints, such as those involving average or gen-
eral sum, can also be pushed deep into a slightly revised
prefix-growth mining process (Section 5). A performance
study is conducted which demonstrates that constraint-
based mining prunes a large search space effectively in
sequential pattern mining, and prefix-growth is more effi-
cient than other constraint-based sequential pattern min-
ing algorithms studied before (Section 6).

2. SEQUENTIAL PATTERN MINING AND
CATEGORIES OF CONSTRAINTS

Let I = {x1, . . . , xn} be a set of items, each possibly
being associated with a set of attributes, such as value,

price, profit, calling distance, period, etc. The value on
attribute A of item x is denoted as x.A. An itemset is a
non-empty subset of items, and an itemset with k items
is called a k-itemset.

A sequence α = 〈X1 · · ·Xl〉 is an ordered list of item-
sets. An itemset Xi (1 ≤ i ≤ l) in a sequence is called
a transaction, a term originated from analyzing cus-
tomers’ shopping sequences in a transaction database,
such as in [10]. A transaction Xi may have a special
attribute, times-tamp, denoted as Xi.time, which regis-
ters the time when the transaction was executed. As a
notational convention, for a sequence α = 〈X1 · · ·Xl〉,
Xi.time < Xj .time for 1 ≤ i < j ≤ l.

The number of transactions in a sequence is called the
length of the sequence. A sequence α with length l is
called an l-sequence, denoted as len(α) = l. The i-th
itemset is denoted as α[i]. Following the convention in
[10], an item can occur at most once in an itemset, but
can occur multiple times in various itemsets in a sequence.

A sequence α = 〈X1 . . . Xn〉 is called a subsequence
of another sequence β = 〈Y1 . . . Ym〉 (n ≤ m), and β a
super-sequence of α, denoted as α v β, if there exist
integers 1 ≤ i1 < . . . < in ≤ m such that X1 ⊆ Yi1 , . . . ,
Xn ⊆ Yin .

A sequence database SDB is a set of 2-tuples (sid, α),
where sid is a sequence-id and α a sequence. A tuple
(sid, α) in a sequence database SDB is said to contain
a sequence γ if γ is a subsequence of α. The number of
tuples in a sequence database SDB containing sequence
γ is called the support of γ, denoted as sup(γ).

Given a positive integer min sup as the support thresh-
old, a sequence γ is a sequential pattern in sequence
database SDB if sup(γ) ≥ min sup. The sequential
pattern mining problem is to find the complete set of se-
quential patterns with respect to a given sequence database
SDB and a support threshold min sup.

For example, Table 1 shows a sequence database SDB
with four sequences. The first contains three transactions
(itemsets) (i.e., length = 3): {a}, {b, c} and {e}. For
brevity, the brackets are omitted if a transaction has only
one item.

Sequence id Sequence

10 〈a(bc)e〉
20 〈e(ab)(bc)dd〉
30 〈c(aef)(abc)dd〉
40 〈addcb〉

Table 1: Sequence database SDB.

Sequence 〈(ab)d〉 is a subsequence of both the second se-
quence, 〈e(ab)(bc)dd〉, and the third one, 〈c(aef)(abc)dd〉.
So, if the support threshold min sup = 2, 〈(ab)d〉 is a se-
quential pattern.

Like many frequent pattern mining problems [1, 4],
there are two major difficulties in sequential pattern min-
ing: (1) effectiveness: mining may return a huge num-
ber of patterns, many of which could be uninteresting to
users, and (2) efficiency: it often takes substantial pro-
cessing power for mining the complete set of sequential
patterns in a large sequence database. Constraint-based
mining may overcome both difficulties since constraints
usually represent user’s interest and focus, which confines
the patterns to be found to a particular set of condi-
tions. Moreover, if constraints can be pushed deep into
the mining process, it is likely to achieve efficiency since

the search can be more focused. This motivates the study
of constraint-based mining of sequential patterns.

Let constraint C for a sequential pattern α be a boolean
function C(α). The problem of constraint-based se-
quential pattern mining is to find the complete set
of sequential patterns, denoted as SAT (C), satisfying a
given constraint C.

Constraints can be examined and characterized from
different points of views. We examine them first from the
application point of view in this section and then from the
constraint-pushing point of view in the next section, and
build up linkages between the two by a thorough study of
constraint-based sequence mining.

From the application point of view, we present the fol-
lowing seven categories of constraints based on the se-
mantics and the forms of the constraints. Although this
is by no means complete, it covers most of the interesting
constraints in applications.

Constraint 1. An item constraint specifies what are the
particular individual or groups of items that should or
should not be present in the patterns. It is in the form of
Citem(α) ≡ (ϕi : 1 ≤ i ≤ len(α), α[i] θ V), or Citem(α) ≡
(ϕi : 1 ≤ i ≤ len(α), α[i] ∩ V 6= ∅), where V is a subset
of items, ϕ ∈ {∀, ∃} and θ ∈ {⊆, 6⊆,⊇, 6⊇,∈, 6∈}.1

For example, when mining sequential patterns over a
web log, a user may be interested in only patterns about
visits to online bookstores. Let B be the set of online
bookstores. The corresponding item constraint is Cbookstore(α)
≡ (∀i : 1 ≤ i ≤ len(α), α[i] ⊆ B). 2

Constraint 2. A length constraint specifies the require-
ment on the length of the patterns, where the length can
be either the number of occurrences of items or the num-
ber of transactions. Length constraints can also be speci-
fied as the number of distinct items, or even the maximal
number of items per transactions.

For example, a user may want to find only long pat-
terns (e.g., at least 50 transactions) in bio-sequence anal-
ysis. Such a requirement can be expressed by a length
constraint Clen(α) ≡ (len(α) ≥ 50). 2

Constraint 3. A super-pattern constraint is in the form
of Cpat(α) ≡ (∃γ ∈ P s.t. γ v α), where P is a given set
of patterns, i.e., to find patterns that contain a particular
set of patterns as sub-patterns.

For example, an analyst may like to find the sequential
patterns that contain first buying a PC and then a digital
camera, the constraint can be expressed as Cpat(α) ≡
〈(PC)(digital camera)〉 v α. 2

Constraint 4. An aggregate constraint is the constraint
on an aggregate of items in a pattern, where the aggregate
function can be sum, avg, max, min, standard deviation,
etc.

For example, a marketing analyst may like sequential
patterns where the average price of all the items in each
pattern is over $100. 2

Constraint 5. A regular expression constraint CRE is a
constraint specified as a regular expression over the set
of items using the established set of regular expression
operators, such as disjunction and Kleene closure. A se-
quential pattern satisfies CRE if and only if the pattern is
accepted by its equivalent deterministic finite automata.

1For brevity, we omit the strict operators (e.g., ⊂,⊃) in
our discussion. However, the same principles can be ap-
plied to them.

For example, to find sequential patterns about a Web
click stream starting from Yahoo’s home page and reach-
ing hotels in New York city, one may use regular expres-
sion constraint Travel (New York | New York City)(Ho-
tels | Hotels and Motels | Lodging), where “|” stands for
disjunction. The concept of regular expression constraint
was first proposed in [3]. 2

In some applications, one may want to have constraints
on the duration of the patterns, i.e., events happening
within a certain duration.

Constraint 6. A duration constraint is defined only in
sequence databases where each transaction in every se-
quence has a time-stamp. It requires that the pattern ap-
pears frequently in the sequence database such that the
time-stamp difference between the first and last trans-
actions in the pattern must be longer or shorter than
a given period. Formally, a duration constraint is in
the form of Dur(α) θ ∆t, where θ ∈ {≤,≥} and ∆t is
a given integer. A sequence α satisfies the constraint
if and only if |{β ∈ SDB|∃1 ≤ i1 < · · · < ilen(α) ≤
len(β) s.t. α[1] v β[i1], . . . , α[len(α)] v β[ilen(α)], and
(β[ilen(α)].time− β[i1].time) θ ∆t}| ≥ min sup. 2

In some other applications, the gap between adjacent
transactions in a pattern may be important.

Constraint 7. A gap constraint set is defined only in
sequence databases where each transaction in every se-
quence has a timestamp. It requires that the pattern ap-
pears frequently in the sequence database such that the
timestamp difference between every two adjacent trans-
actions must be longer or shorter than a given gap. For-
mally, a gap constraint is in the form of Gap(α) θ ∆t,
where θ ∈ {≤,≥} and ∆t is a given integer. A sequence α
satisfies the constraint if and only if |{β ∈ SDB|∃1 ≤ i1 <
· · · < ilen(α) ≤ len(β) s.t. α[1] v β[i1], . . . , α[len(α)] v
β[ilen(α)], and for all 1 < j ≤ len(α), (β[ij].time −
β[ij−1].time) θ ∆t}| ≥ min sup. 2

Among the constraints listed above, duration constraints
and gap constraints are support-related, i.e. they are ap-
plied to confine how a sequence matches a pattern. To find
whether a sequential pattern satisfies these constraints,
one needs to examine the sequence databases. For other
constraints, whether the constraint is satisfied can be de-
termined by the frequent patterns themselves, without
referring to the support counting process.

3. A CLASSICAL FRAMEWORK OF CHAR-
ACTERIZATION OF CONSTRAINTS

In recent studies of constrained frequent pattern min-
ing [6, 7, 8], constraints are characterized based on the
notion of monotonicity, anti-monotonicity, succinctness,
and whether they can be transformed into these cate-
gories if they do not belong to them. This has become
a classical framework for constraint-based frequent pat-
tern mining. “Can we extend this framework and solve
the constraint-based sequential pattern mining problem?”

A constraint CA is anti-monotonic if a sequence α sat-
isfying CA implies that every non-empty subsequence of α
also satisfies CA. A constraint CM is monotonic if a se-
quence α satisfies CM implies that every super-sequence of
α also satisfies CM . The basic idea behind succinct con-
straint is that, with such a constraint, one can explicitly
and precisely generate all the sets of items satisfying the
constraint without recourse to a generate-everything-and-
test approach. A succinct constraints is specified using a

precise “formula”. According to the “formula”, one can
generate all the patterns satisfying a succinct constraint.
There is no need to iteratively check the constraint in the
mining process. Limited by space, we omit the formal
definitions here.

For example, length constraint Clen(α) ≡ len(α) ≤ 10
and duration constraint Dur(α) ≤ 30 are anti-monotonic,
while super-pattern constraint and the duration constraint
Dur(α) ≥ 30 are monotonic. It is easy to show that item
constraints, length constraints and super-pattern constraints
are all succinct.

Based on the above definition, the anti-monotonic, mono-
tonic and succinct characteristics of some commonly used
constraints for sequential pattern mining are shown in Ta-
ble 2.

From Table 2, one can see that the classical constraint-
pushing framework [6] based on anti-monotonicity, mono-
tonicity, and succinctness can be applied to a large class of
constraints. Thus the corresponding constraint-pushing
strategy can be integrated easily into any one of sequen-
tial pattern mining algorithms, such as GSP, SPADE, and
PrefixSpan. However, some important classes of constraints,
such as RE (regular expressions), average(i.e., avg(α) θ v,
where θ ∈ {≤,≥}), and g sum (i,e., sum of positive and
negative values), do not fit into this framework.

This problem, w.r.t. commonly used regular expression
constraints, has been pointed out by Garofalakis, et al. [3].
They provide a solution of a set of four SPIRIT algorithms,
each pushing a stronger relaxation of regular expression
constraint R than its predecessor in the pattern mining
loop. The above method, though interesting, does not
elegant and systematic for all kinds of constraints. Can
we handle those ugly constraints in a nice and elegant
way? This is the theme of the next section.

4. A NEW FRAMEWORK: MINING SE-
QUENTIAL PATTERNS WITH PREFIX-
MONOTONE CONSTRAINTS

The classical frequent pattern mining framework is based
on the anti-monotonic Apriori property [1]. To handle
regular expression-like “ugly” but popularly encountered
constraints effectively, one needs to jump out of this frame-
work to re-examine the basic properties of constraints and
their evaluation framework.

4.1 Prefix-Monotone Property
Let R be an order of items in a sequence database.

Since the item ordering in the same transaction is unim-
portant to sequential patterns, it is convenient to assume
that all items in a transaction are written with respect to
the order R. For example, let R be the alphabetical order.
A sequence should be written in the form of 〈(ade)(bc)〉
instead of 〈(dae)(cb)〉. The fact that item x is before item
y according to order R is denoted as x ≺ y.

Given a sequence α = 〈X1 · · ·Xn〉, sequence β = 〈X1 · · ·
XkY 〉 is called a prefix of α if (1) k < n, (2) Y ⊆ Xk+1,
and (3) ∀y ∈ Y, ∀z ∈ (Xk+1 − Y), y ≺ z. For ex-
ample, sequence β = 〈(abc)(ac)〉 is a prefix of sequence
α = 〈(abc)(acd)(bef)〉 but sequence γ = 〈(abc)(ad)〉 is
not a prefix of α. Here, the alphabetical order is used.

A constraint Cpa is called prefix anti-monotonic if
for each sequence α satisfying the constraint, so does every
prefix of α. A constraint Cpm is called prefix monotonic
if for each sequence α satisfying the constraint, so does
every sequence having α as a prefix. A constraint is called

Constraint Anti-mono Mono Succ

Item Citem(α) ≡ (∀i : 1 ≤ i ≤ len(α), α[i]θV) (θ ∈ {⊆,⊇}) Yes No Yes
Citem(α) ≡ (∀i : 1 ≤ i ≤ len(α), α[i] ∩ V 6= ∅) Yes No Yes

Citem(α) ≡ (∃i : 1 ≤ i ≤ len(α), α[i]θV) (θ ∈ {⊆,⊇}) No Yes Yes
Citem(α) ≡ (∃i : 1 ≤ i ≤ len(α), α[i] ∩ V 6= ∅) No Yes Yes

Length len(α) ≤ l Yes No Yes
len(α) ≥ l No Yes Yes

Super-pattern Cpat(α) ≡ (∃γ ∈ P s.t. γ v α) No Yes Yes
Simple max(α) ≤ v), min(α) ≥ v Yes No Yes

aggregates max(α) ≥ v), min(α) ≤ v No Yes Yes
sum(α) ≤ v (with non-negative values) Yes No No
sum(α) ≥ v (with non-negative values) No Yes No

Tough g sum: sum(α) θ v, θ ∈ {≤,≥} (with positive and negative values) No No No
aggregates average: avg(α) θ v No No No

RE (Regular Expression) ¶ No No No
Duration Dur(α) ≤ ∆t Yes No No

Dur(α) ≥ ∆t No Yes No
Gap Gap(α) θ ∆t (θ ∈ {≤,≥}) Yes No No

Table 2: Characterization of commonly used constraints. (¶ In general, a regular expression (RE)
constraint is not necessarily anti-monotonic, monotonic, or succinct, though there are cases that some of
them are.)

prefix-monotone if it is prefix anti-monotonic or prefix
monotonic.

Clearly, if β is a prefix of α, β is also a subsequence
of α. Intuitively, an anti-monotonic constraint is (triv-
ially) prefix anti-monotonic. A monotonic constraint is
(trivially) prefix monotonic. For example, the length con-
straint len(α) ≤ 10 is anti-monotonic. It must also be
prefix anti-monotonic. This is because if the length of a
sequence α is no more than 10, the length of every prefix of
α must be no more than 10 as well. Similarly, len(α) ≥ 10
is prefix monotonic since if the length of any prefix of α
is no less than 10, α must be no less than 10 as well.

A succinct constraint is not necessarily prefix anti-monotonic
or prefix monotonic. However, since succinct constraints
can be pushed deep directly into the mining process (no
matter which sequential pattern mining method is ap-
plied), the pushing of such constraints will not be ana-
lyzed further in our discussion.

Now, let’s examine regular expression constraints. A
well-known result from the formal language theory is that
for every regular expression E, there exists a deterministic
finite automata ME such that ME accepts exactly the
language generated by E.

Given a regular expression E, let ME be the corre-
sponding (deterministic finite) automata. Let α be a se-
quence. α is called legal w.r.t. E if a state in ME can be
reached following α. From a regular expression constraint
E, we can derive a constraint LE such that a sequence α
satisfies LE if and only if α is legal w.r.t. E. Clearly,
for each sequence α satisfying the regular expression con-
straint E, every prefix of α must be legal w.r.t. E. Fur-
thermore, for each sequence β legal w.r.t. E, every prefix
of β must also be legal w.r.t. E. That is, the constraint LE

on legal prefix w.r.t. E is prefix anti-monotonic. Based
on the above discussion, we have the following statement.

Theorem 4.1. All the commonly used constraints dis-
cussed in Section 2, except for g sum and average, have
prefix-monotone property. 2

Theorem 4.1 indicates that prefix-monotone property
covers more constraints commonly used than traditional
anti-monotonic and monotonic properties, since prefix-
monotone property is weaker than anti-monotone and mono-

tone properties. All anti-monotonic or monotonic con-
straints are prefix-monotonic. One may wonder whether
that means mining with prefix-monotone property is less
efficient than the classical anti-monotonicity-based Apriori
methods? Fortunately and surprisingly, the answer is no.

4.2 Pushing Prefix-Monotone Constraints into
Sequential Pattern Mining

First, we introduce the concept of projected database.
For sequence α v β, sequence γ is said the projection of
β w.r.t. α if (1) γ v β, (2) α is a prefix of γ, and (3) there
exists no proper super-sequence γ′ of γ such that γ′ v β
and γ′ also has α as a prefix. Projection is also denoted
as γ = β/α. For example, if α = 〈bc〉, β = 〈(abc)d(ace)f〉,
then γ = β/α = 〈b(ce)f〉.

Give a sequence database SDB and a sequence α. The
α-projected database, denoted as SDB|α, is the set
of projections of sequences in SDB having α as a subse-
quence, i.e., SDB|α = {γ|γ = β/α, β ∈ SDB ∧ α v β}.2

Now, let us examine an example of constraint pushing.
Let the sequence database SDB be Table 1, and the

task be mining sequential patterns with a regular expres-
sion constraint C = 〈a∗{bb|(bc)d|dd}〉 and support thresh-
old min sup = 2. The mining can be performed in the
following steps.

Step 1: find length-1 patterns and remove irrelevant se-
quences. Scanning SDB once, patterns 〈a〉, 〈b〉, 〈c〉, 〈d〉,
and 〈e〉 are identified as length-1 patterns. Infrequent
items, such as f , is removed. Also, in the same scan,
the sequences that contain no subsequence satisfying the
constraint should be removed, such as the first sequence,
〈a(bc)e〉, which fails the regular expression constraint.

Step 2: divide the set of sequential patterns into subsets
without overlap. The complete set of sequential patterns
can be divided into five subsets without overlap according

2Since α appears as prefix in every sequence in SDB|α,
for brevity, we can omit the occurrences of α as prefixes
in SDB|α. For a sequence β ∈ SDB|α, we only record
the suffix β′. If the last transaction of α and the first
transaction of β′ are in the same transaction of β, then a
symbol “ ” is put in the first transaction of β′. Therefore,
we have β = α · β′.

to the set of length-1 sequential patterns: (1) those with
prefix 〈a〉; (2) those with prefix 〈b〉; . . . ; and (5) those
with prefix 〈e〉. Since only patterns with prefix 〈a〉 may
satisfy the constraint, i.e. only 〈a〉 is legal w.r.t. constraint
C, the other four subsets of patterns can be pruned.

Step 3: construct 〈a〉-projected database and mine it.
Only the sequences in SDB containing item a and satis-
fying constraint C should be projected. The 〈a〉-projected
database, SDB|〈a〉 = {〈(b)(bc)dd〉, 〈(e)(abc)dd〉, 〈ddcb〉}.
Notice that 〈e(ab)(bc)dd〉 is projected as 〈(b)(bc)dd〉, where
symbol “ ” in the first transaction indicates that it is in
the same transaction with a.

During the construction of the 〈a〉-projected database,
we also find locally frequent items: (1) b can be inserted
into the same transaction with a to form a longer frequent
prefix 〈(ab)〉, and (2) 〈b〉, 〈c〉 and 〈d〉 can be concatenated
to 〈a〉 to form longer frequent prefixes, i.e., 〈ab〉, 〈ac〉 and
〈ad〉. Locally infrequent items, such as e, should be ig-
nored in the remaining mining of this projected database.

Then the set of patterns with prefix 〈a〉 can be further
divided into five subsets without overlap: (1) pattern 〈a〉
itself; (2) those with prefix 〈(ab)〉; (3) those with prefix
〈ab〉; (4) those with prefix 〈ac〉; and (5) those with prefix
〈ad〉. By examining constraint C, one can see that pattern
〈a〉 fails C and thus is discarded; and 〈(ab)〉 is illegal w.r.t.
constraint C, so the second subset of patterns is pruned.
The remaining subsets of patterns should be explored one
by one.

Step 4: recursive mining. The mining proceeds recur-
sively. To mine patterns having 〈ab〉 as a prefix, we form
the 〈ab〉-projected database TDB|〈ab〉 = {〈(c)dd〉, 〈(c)dd}.
By recursively mining the projected database, we identify
sequential pattern 〈a(bc)d〉 which satisfies the constraint.

To mine patterns with prefix 〈ac〉, we form 〈ac〉-projected
database TDB|〈ac〉 = {〈dd〉, 〈dd〉, 〈b〉. Every sequence in

the projected database contains no sub-sequence satisfy-
ing the constrain. Thus, the search within TDB|〈ac〉 can

be pruned. In other words, we will never search any pro-
jected database which does not potentially support pat-
terns satisfying the constraint.

Similarly, we search the 〈ad〉-projected database and
find 〈add〉 is a sequential pattern satisfying the constraint.

In summary, during the recursive mining, if the prefix
itself is a pattern satisfying the constraint, it should be
an output. The prefixes legal w.r.t. the constraint should
be grown and mined recursively. The process terminates
when there is no local frequent item or there is no legal
prefix. It results in two final patterns: {〈a(bc)d〉, 〈add〉}.

The correctness and completeness of the mining process
in the above example can be verified. Limited by space,
we omit the details here. The constrained sequential pat-
tern mining algorithm is outlined as follows.

Algorithm 1. (prefix-growth)Mining sequential patterns
with prefix-monotone constraints.

Input: A sequence database SDB, support threshold min sup,
and prefix-monotone constraint C;

Output: The complete set of sequential patterns satisfying C;

Method:
call prefix growth(〈〉, SDB).

Function prefix growth(α, SDB|α)
// α: prefix; SDB|α: the α-projected database
Step 1. Let l be the length of α. Scan SDB|α once,
find length-(l+1) frequent prefix in SDB|α, and remove
infrequent items and useless sequences;

Step 2. for each length-(l + 1) frequent prefix α′ poten-
tially satisfying the constraint C do

Step 2a. if α′ satisfies C, then output α′ as a pattern;
Step 2b. form SDB|α′ ;
Step 2c. call prefix growth(α′, SDB|α′) 2

Is prefix-growth an efficient algorithm? First, Algo-
rithm prefix-growth takes PrefixSpan as the basic sequen-
tial pattern mining algorithm and pushes prefix-monotone
constraints deeply into the PrefixSpan mining process. The
performance study in [9] shows that PrefixSpan outper-
forms GSP, owing to (1) PrefixSpan adopts a prefix growth
and database projection framework: for each frequent
prefix subsequence, only its corresponding suffix subse-
quences need to be projected and examined without can-
didate generation; (2) it applies a divide-and-conquer strat-
egy so that sequential patterns are grown by exploring
only local frequent patterns in each projected database;
and (3) it explores further optimizations, including a pseudo-
projection technique when the projected database and its
associated pseudo-projection processing structure fits in
main memory, etc.

Second, prefix-growth handles a broader scope of con-
straints than anti-monotonicity and monotonicity. A typ-
ical such example is regular expression constraints, which
is difficult to be explored using an Apriori-based method,
as shown in SPIRIT. By prefix-growth, such constraints
can be naturally pushed deep into the mining process.

Interestingly, both prefix-growth and SPIRIT [3] push
regular expression constraints by relaxing the constraint
to achieve some nice property facilitating the constraint-
based pruning. However, the SPIRIT methods requires
that the relaxed constraints must have the strong anti-
monotonic property, while prefix-growth only enforces the
prefix-monotonic property which is weaker than the anti-
monotonicity. As will be shown in the experimental re-
sults, prefix-growth outperforms SPIRIT in pushing regu-
lar expression constraints.

Third, constraint checking in Step 1 further shrinks
projected databases effectively, due to its removal of use-
less sequences w.r.t. a given constraint during the prefix
growth.

People may wonder whether Apriori-based methods, such
as GSP and SPADE, can do similar prefix-based pruning
using prefix-monotone constraints. Taking a non-anti-
monotonic regular expression constraint as an example,
for Apriori-based methods, a pattern whose prefix fail-
ing a constraint cannot be pruned since inserting more
items/transactions to the pattern at some other positions
may still lead to a valid pattern. However, by exploring
prefix-monotone constraints, prefix-growth puts stronger
restrictions on the possible subsequences to grow and thus
prunes search space more effectively.

5. HANDLING TOUGH AGGREGATE CON-
STRAINTS IN THE NEW FRAMEWORK

Besides regular expression constraints, one may wonder
whether prefix-growth can handle effectively the two tough
aggregate constraints in Table 2, average and g sum? Both
constraints are neither anti-monotonic nor monotonic. Even
worse, they are not prefix-monotone!

For example, let us mine sequential patterns with con-
straint C ≡ avg(α) ≤ 25 in a sequence database SDB of
Table 3, with support threshold = 2, and four items with
values 10, 20, 30 and 50, respectively. For convenience,
item value is used as its ID.

Sequence id Sequence

10 〈50 10 20 20〉
20 〈30 50 20〉
30 〈50 10 20 10 10〉
40 〈30 20 10〉

Table 3: Another sequence database SDB.

Constraint C cannot be pushed naively into the PrefixSpan
mining process. For example α = 〈50〉 cannot be dis-
carded even avg(α) 6≤ 25, since by appending more el-
ements to α, we may have α′ = 〈50 10 20 10〉 and
avg(α′) ≤ 25. Also, one can easily verify C is not prefix-
monotone.

In [8], a technique is developed to push convertible con-
straints, like avg(X) ≥ 25, into frequent pattern mining
on transactional databases. The general idea is to use a
proper order of frequent items, like value descending order
for constraint avg(X) ≥ v, such that the list of frequent
items according to the order has a nice anti-monotonic or
monotonic property.

Can we apply the technique in [8] to attack aggregate
constraints for sequential pattern mining? Unfortunately,
the answer is negative. For every sequence, a temporal or-
der has been pre-composed and we do not have the free-
dom to re-arrange the items in sequences. The trick of
simple ordering does not work well here.

Value-ascending order over the set of items should be
used to determine the order of projected databases to be
processed. An item i is called a small item if its value
i.value ≤ v, otherwise, it is called a big item.

In the first scan of a (projected) database, unpromising
big items in sequences should be removed according to
the following two rules.
Unpromising sequence pruning rule. For a sequence
α, let n be the number of instances of small items and s
be the sum of them3. A big item x in α is unpromising
and should be removed if (s + x.value)/(n + 1) violates
the constraint.

Similarly, unpromising sequence pruning rule can be
applied recursively in an α-projected database. For a pro-
jection γ = β/α, let n be the number of instances of small
items appearing in γ but not in α and s be the sum of
them. A big item x in α is unpromising and should be
removed if (s + sum(α) + x.value)/(n + #items(α) + 1)
violates the constraint4.
Unpromising pattern pruning rule. An item mark-
ing method can be developed to mark and further prune
some unpromising items as follows. In the α-projected
database5, when a pattern β is found where the first item
following α is a small item, we check whether that small
item can be replaced by a big item x frequent in the pro-
jected database and still can get average value satisfying
the constraint. If so, prefix 〈α · x〉 is marked promising
and does not need to be checked and marked again in this
projected database. When all patterns with some small
item as the first one following α have been found, for the
prefixes with a big item x following α having not been
marked, 〈α · x〉 as well as the projected databases can be

3If there are multiple instances of one small item, the
value of that item should be counted multiple times.
4Function #items(α) returns the number of instances of
items in sequence α.
5The whole database SDB can be regarded as SDB|〈〉.

pruned if 〈α · x〉 violates the constraint.
The rationale of this rule is as follows. For a big item x,

if 〈α·x〉 violates the constraint but 〈α·x·β〉 is a sequential
pattern satisfying the constraint, then there must be some
β′ v β such that β′ starts with a small item and 〈α · β′〉
is a sequential pattern satisfying the constraint.

These rules can be proved easily. Limited by space, we
illustrate them by mining SDB in Table 3 with constraint
C ≡ avg(α) ≤ 25.

In the first scan of SDB, we remove the unpromising
big items in sequences by applying the unpromising se-
quence pruning rule. For example, in the second sequence,
20 is the only small item and 20+50

2
= 35 > 25. This se-

quence cannot support andy sequential patterns having
item 50 and satisfying the constraint C. Thus, item 50 in
the second sequence should be moved.

In the same database scan, we also find length-1 pat-
terns, 〈10〉, 〈20〉, 〈30〉 and 〈50〉. The set of patterns can be
partitioned into four subsets without overlap: (1) those
with prefix 〈10〉; (2) those with prefix 〈20〉; (3) those with
prefix 〈30〉; and (4) those with prefix 〈50〉. These subsets
of patterns should be explored one by one in this order.
Step 1. The set of patterns with prefix 〈10〉 can be found
by constructing 〈10〉-projected database and mining it re-
cursively. The items in 〈10〉-projected database are small
ones, so all patterns in it have average no greater than 25
and thus satisfy the constraint. There are two patterns
there: 〈10〉 and 〈10 20〉.

When pattern 〈10〉 is found, it can be regarded as a
small item 10 following a prefix 〈〉. Thus, we apply the
unpromising pattern pruning rule to mark and prune pat-
terns. Prefix 〈30〉 is marked as promising, since avg(〈30〉 ·
〈10〉) = 20 < 25. Prefix 〈30〉 will not be checked against
any other pattern after it is marked. None of the patterns
with prefix 〈10〉 can be used to mark prefix 〈50〉.
Step 2. Similarly, we can find patterns with prefix 〈20〉 by
constructing and mining 〈20〉-projected database. They
are 〈20〉 and 〈20 10〉. None of the patterns with prefix
〈20〉 can be used to mark prefix 〈50〉.
Step 3. 30 is a big item and prefix 〈30〉 violates the con-
straint. For patterns with prefix 〈30〉, since prefix 〈30〉
is marked, we need to construct 〈30〉-projected database
and mine it. Pattern 〈30 20〉 is found.
Step 4. Prefix 〈50〉 has not been marked. According to
the unpromising pattern pruning rule, no pattern with
prefix 〈50〉 can satisfy the constraint. We do not need to
construct or mine 〈50〉-projected database.

With the same spirit, constraints avg(α) ≥ v and
sum(α) θ v (where θ ∈ {≤,≥}, and items can be with
non-negative and negative values) can also be pushed deep
into prefix-growth mining process.

In summary, with minor revision, prefix-growth can be
extended to handle some tough aggregate constraints with-
out prefix-monotone property. With such extensions, all
established advantages of prefix-growth still retain and the
pruning is still sharp.

6. EXPERIMENTAL RESULTS AND PER-
FORMANCE STUDY

To evaluate the effectiveness and efficiency of the algo-
rithms, we performed an extensive experimental evalua-
tion on both synthetic and real datasets. The results are
consistent. Limited by space, in this section, we report
only the results on some synthetic datasets generated by
the IBM data generator described in [2].

All the experiments are performed on a 700MHz AMD
PC machine with 256 megabytes main memory, running
Microsoft Windows 2000 Server. All methods are imple-
mented using Microsoft Visual C++ 6.0. We compare
performance of four methods: (1) GSP as described in [1].
We also revised GSP to push anti-monotonic and mono-
tonic constraints. (2) SPIRIT as described in [3]. We
implemented SPIRIT(V), the overall fastest one among
the SPIRIT family. (3) SPADE [11]. We got the source
code from the author. We only study the performance of
SPADE on mining without constraint. Revision of SPADE
to handle constraints is non-trivial. (4) Prefix-growth, the
algorithm developed in this paper. We adopted the level-
by-level projection and pseudo-projection techniques de-
scribed in [9].

We first compare the efficiency of mining sequential pat-
terns without constraint. Figure 1 shows the scalability
of prefix-growth, GSP and SPADE with support threshold
on dataset C10T5S4I1.25D200k, which contains 100, 000
sequences with 10, 000 items. The expected average num-
ber of items within a transaction is 5 (denoted as T5 and
the expected average number of transaction in maximal
sequential pattern is 4 (denoted as S4).

As can be seen from the figure, prefix-growth is more
efficient and scalable than GSP and SPADE, while SPADE
is faster than GSP, especially when support threshold is
low. This comparison confirms the inherent advantage
of prefix-growth over GSP and SPADE. In the remaining
experiments, we study whether prefix-growth can carry the
advantage to the extent of mining with constraints.

To evaluate the effect of a constraint on mining sequen-
tial patterns, we define the selectivity of a constraint as
the ratio of the number of patterns FAILING the con-
straint against the total number of patterns. Therefore, a
constraint with 0% selectivity filters out no pattern, while
one with 100% selectivity filters out all the patterns.

Anti-monotonic constraints can be pushed deep into
GSP. We modified GSP such that it only generates can-
didates satisfying the constraint. Thus, both GSP and
prefix-growth can push anti-monotonic constraints deep
into the mining processes. To show the capability of GSP
and prefix-growth in pushing anti-monotonic constraints
into mining, we use constraint Dur(α) ≤ ∆t as an ex-
ample here. With various values of ∆t, the constraint
achieves various selectivity. The support threshold is fixed
to 0.7%. For GSP and prefix-growth, we compare the run-
time with constraint to the one without constraint, re-
spectively, and plot Figure 2. The relative runtime is the
ratio of the runtime of an algorithm with constraint over
its runtime without constraint. In this way, the effect of
constraint pushing on runtime improvement can be mea-
sured objectively. In general, both methods are capable in
pushing anti-monotone constraints. When the constraint
selectivity is weak, since most patterns have to be gener-
ated and tested, not too much time can be saved. How-
ever, when the selectivity is high, i.e., many patterns do
not satisfy the constraint, a major saving can be observed
and prefix-growth performs better. Comparing constraint
pushing in GSP and prefix-growth, prefix-growth uses the
constraint to prune both the patterns and the sequences
in projected databases, while GSP has to search from
the whole database all the time. When mining in large
databases, the database search cost in GSP is non-trivial.

Monotonic constraints can be used to save the cost of
constraint checking, but it cannot cut the search space.
In our experiments, since we use relatively simple con-

straints, such as Dur(α) ≥ ∆t, the cost of constraint
checking is CPU-bound. However, the cost of the whole
mining process is I/O-bound. This makes the effect of
pushing monotonic constraint into the mining process hard
to be observed from runtime reduction. However, if we
look at the number of constraint tests performed, the ad-
vantage of monotonic constraint pushing can be evalu-
ated objectively. /nopBy pushing a monotonic constraint,
prefix-growth can save a lot of effort on constraint test-
ing. Therefore, in the experiment about pushing mono-
tonic constraint, the number of constraint tests is used as
the performance measure. We also revise GSP to handle
monotonic constraints. Once a monotonic constraint is
satisfied by a pattern, all candidates which are supersets
of this pattern do not need to be checked anymore. Our
results show that GSP and prefix-growth follow a similar
trend on saving of constraint checking: the higher the
constraint selectivity, the more saving. Prefix-growth per-
forms better. Limited by space, we omit the details here.

The complexity of regular expression constraints can
be roughly measured by the number of state changes (i.e.,
edges) in their corresponding deterministic finite automata.
For each level of complexity, we randomly generate 1, 000
constraints and test both SPIRIT(V) and prefix-growth on
them. The support threshold is set to 0.2%. The re-
sults are shown in Table 4. With simple regular expres-
sion constraints, both SPIRIT(V) and prefix-growth are
efficient. SPIRIT(V) is even better when the expression
contains only two state changes. However, when the com-
plexity of the constraints goes up, the average runtime of
SPIRIT(V) increases dramatically. The increase of aver-
age runtime of prefix-growth is much more moderate. Even
with rather complicated constraints, prefix-growth is still
very efficient. The results show that prefix-growth is more
scalable and efficient than SPIRIT(V) in pushing regular
expression constraints.

Number of Average runtime Average runtime
state changes of SPIRIT(V) of prefix-growth

10 199.176 1.20
9 98.241 1.00
8 48.540 0.89
7 23.824 0.82
6 11.500 0.71
5 5.400 0.67
4 2.453 0.61
3 1.031 0.60
2 0.381 0.57

Table 4: Experimental results on mining with reg-
ular expression constraints (runtime is measured
in seconds.

Based on our analysis, the difference between the two
methods in performance can be explained as follows. With
regular expression constraints, prefix-growth can prune both
patterns and projected databases. However, SPIRIT(V)
has to scan the whole sequence database repeatedly. On
the other hand, even when SPIRIT(V) has pruned many
candidates, it still generates some candidates and has to
test them against the whole database.

We also test prefix-growth on pushing constraint avg(α) ≤
v to sequential pattern mining. The support threshold is
set to 0.2%. The result is shown in Figure 3. As can be
seen, prefix-growth is efficient and scalable w.r.t. selectiv-
ity of the constraint. To test the effect of prefix marking
and pruning technique in prefix-growth for mining with

0

100

200

300

400

500

600

700

800

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
un

tim
e

(s
ec

on
ds

)

Support threshold %

GSP
SPADE

Prefix-growth

Figure 1: Scalability of GSP,
SPADE and prefix-growth without
constraint.

0

20

40

60

80

100

0 20 40 60 80 100

R
el

at
iv

e
ru

nt
im

e
%

Selectivity %

GSP
Prefix-growth

Figure 2: Capability of GSP and
prefix-growth on pushing anti-
monotone constraint.

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

R
el

at
iv

e
ru

nt
im

e
(%

)

Selectivity %

Prefix-growth

Figure 3: Scalability of
prefix-growth with constraint
avg(α) ≤ v.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 20 40 60 80 100

of

 p
ro

je
ct

ed
 d

at
ab

as
es

Selectivity %

Prefix-growth

Figure 4: Number of projected
database in prefix-growth with
constraint avg(α) ≤ v.

0.1

1

10

100

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
un

tim
e

(s
ec

on
ds

)

Support threshold %

Dur()<=3
avg()<=2000

RE con. (complexity 10)

Figure 5: Scalability of
prefix-growth w.r.t. support
threshold.

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000

R
un

tim
e

(s
ec

on
ds

)

of sequences in database (k)

Dur()<=2
avg()<=3000

RE con. (complexity 10)

Figure 6: Scalability of
prefix-growth w.r.t. database
size.

constraint avg(α) ≤ v, we count the number of projected
databases in Figure 4. As can be seen, the prefix mark-
ing technique in prefix-growth prunes a good number of
projected databases and contributes substantially to the
scalability of prefix-growth. It is also interesting to see that
the curves in Figure 3 and 4 share similar shape. This in-
dicates that the major cost in prefix-growth is mining pro-
jected databases. As the number of projected databases
can be cut, the runtime can be brought down accordingly.

We tested the scalability of pushing various constraints
in prefix-growth w.r.t. support threshold. The results are
shown in Figure 5. We also test the scalability of prefix-growth
w.r.t. database size when mining with various constraints.
The results are shown in Figure 6.

In summary, the experimental results and performance
study show that prefix-growth is efficient and scalable in
mining sequential patterns with various constraints. That
strongly supports our theoretical analysis.

7. CONCLUSIONS
In this paper, we have systematically studied the prob-

lem of pushing various constraints deep into sequential
pattern mining. We characterize constraints for sequen-
tial pattern mining from both the application and constraint-
pushing points of views. A general property of constraints
for sequential pattern mining, prefix-monotone property,
is identified. It covers many commonly used constraints.
An efficient algorithm, prefix-growth, is developed to push
prefix-monotone constraints deep into the mining process.
With some minor extensions, some tough constraints, like
those involving aggregate avg() and sum(), can also be
pushed deep into prefix-growth. Our extensive experimen-
tal results and performance study show that prefix-growth
is efficient and scalable in mining large databases.

We have been working on a systematic implementa-
tion of constraint-based sequential pattern mining in a

data mining system. Prefix-growth represents a new and
promising methodology at effective and efficient mining
sequential patterns with constraints. It is interesting to
extend it towards mining sequential patterns with other
more complicated constraints, and mining other kinds of
time-related knowledge with various constraints.

ACKNOWLEDGEMENTS. The work was supported
in part by research grants from NSERC and NCE of Canada,
and the University of Illinois, and a gift from Microsoft
Research. We thank Dr. Mohammed J. Zaki for providing
us the source code of SPADE.

8. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. VLDB’94.
[2] R. Agrawal and R. Srikant. Mining sequential patterns.

ICDE’95.
[3] M. Garofalakis, R. Rastogi, and K. Shim. Spirit:

Sequential pattern mining with regular expression
constraints. VLDB’99.

[4] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. SIGMOD’00.

[5] H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of
frequent episodes in event sequences. Data Mining and
Knowledge Discovery, 1:259–289, 1997.

[6] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang.
Exploratory mining and pruning optimizations of
constrained associations rules. SIGMOD’98.

[7] J. Pei and J. Han. Can we push more constraints into
frequent pattern mining? KDD’00.

[8] J. Pei et al. Mining frequent itemsets with convertible
constraints. ICDE’01.

[9] J. Pei et al. PrefixSpan: Mining sequential patterns
efficiently by prefix-projected pattern growth. ICDE’01.

[10] R. Srikant and R. Agrawal. Mining quantitative
association rules in large relational tables. SIGMOD’96.

[11] M. Zaki. SPADE: An efficient algorithm for mining
frequent sequences. Machine Learning, 40:31–60, 2001.

