
Mining changing regions from access-constrained
snapshots: a cluster-embedded decision tree approach

Irene Pekerskaya & Jian Pei & Ke Wang

Springer Science + Business Media, LLC 2006

Abstract Change detection on spatial data is important in many applications, such as
environmental monitoring. Given a set of snapshots of spatial objects at various
temporal instants, a user may want to derive the changing regions between any two
snapshots. Most of the existing methods have to use at least one of the original data
sets to detect changing regions. However, in some important applications, due to data
access constraints such as privacy concerns and limited data online availability, original
data may not be available for change analysis. In this paper, we tackle the problem by
proposing a simple yet effective model-based approach. In the model construction
phase, data snapshots are summarized using the novel cluster-embedded decision trees
as concise models. Once the models are built, the original data snapshots will not be
accessed anymore. In the change detection phase, to mine changing regions between
any two instants, we compare the two corresponding cluster-embedded decision trees.
Our systematic experimental results on both real and synthetic data sets show that our
approach can detect changes accurately and effectively.

Keywords Data mining . Change mining . Clustering . Decision trees .

Spatial data mining . Change detection . Access-constrained data sets

J Intell Inf Syst (2006) 27: 215–242
DOI 10.1007/s10844-006-9951-9

Irene Pekerskaya_s and Jian Pei_s research is supported partly by National Sciences and Engineering
Research Council of Canada and National Science Foundation of the US, and a President_s
Research Grant and an Endowed Research Fellowship Award at Simon Fraser University. Ke
Wang_s research is supported partly by Natural Sciences and Engineering Research Council of
Canada. All opinions, findings, conclusions and recommendations in this paper are those of the
authors and do not necessarily reflect the views of the funding agencies.

I. Pekerskaya (*) : J. Pei :K. Wang
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
e-mail: ipekersk@cs.sfu.ca

J. Pei
e-mail: jpei@cs.sfu.ca

K. Wang
e-mail: wangk@cs.sfu.ca

1 Introduction

Detecting and analyzing changes on multidimensional spatial data is critical for
many applications. Particularly, mining changing regions, which are areas significant
in population, and whose dominant data classes are changed between two data sets,
is often interesting and informative.

For example, changes in the distribution of plant species can be monitored by
taking snapshots over time. Mining changing regions from those temporal and spatial
data sets is essential for understanding environmental changes. To analyze the
changes, a user may want to compare two snapshots and capture the changing regions.

Change detection has been studied extensively for a long time in both statistics
and machine learning. While a survey of the related work will be presented in
Section 2, most of the previous studies focused on measuring the global difference
between two data sets rather than identifying the regions of changes. A few methods
that address the problem of mining changing regions implicitly or explicitly assume
that original data sets can be accessed to identify and evaluate changing regions.

In many applications, original data sets may not be available at the time of change
analysis. For example, due to the privacy and information protection concerns,
owners of some census or customer data sets may be unwilling to release the data sets
for direct analysis. Moreover, in applications of mining large and fast evolving data,
when a user wants to compare the scenarios at two instants in history, it might be
impossible (or, at least, very costly) to recall the two historical data sets. In those
applications, the existing change detection methods requiring accesses to original data
sets may not be applied. Those applications naturally raise a challenge: With access
constraints, can we still mine changing regions effectively?

In this paper, we study the problem of mining changing regions from access-
constrained data sets. Essentially, given a set of spatial data snapshots taken at various
temporal instants, we want to build a database of summaries of the snapshots so that
when a query on the changing regions between any two snapshots is raised, we can
mine the changes and return the answer effectively and efficiently. We make the
following contributions:

& We develop a two-phase framework for changing region detection from
access-constrained data sets.

& We propose a novel model called cluster embedded decision trees (CEDT for
short) to summarize every snapshot. The model carries concise information
for comparison of the original data sets.

& We develop a method to compare two cluster-embedded decision trees. The
method can identify changing regions accurately. A heuristic method
effective in practice is proposed to estimate the population of regions.

& We empirically evaluate our cluster-embedded decision tree method using
both synthetic and real data sets. Our systematic performance study shows
that the method is effective in both accuracy and recall, and is scalable for
large data sets.

The remainder of the paper is structured as follows. In Section 2, we present an
overview of related work. In Section 3, a novel two-phase change detection method
is developed. The experimental results on both synthetic and real data sets are
shown in Section 4. Section 5 concludes the paper.

216 J Intell Inf Syst (2006) 27: 215–242

2 Related work

Change detection has been studied extensively for a long time in both statistics and
machine learning. Many previous studies try to compute the difference between two
data sets. For example, the Hausdorff distance (Rote, 1991), which is often used for
image matching, is defined as the maximum distance between any point in one set
and its nearest point in the other set. A problem with the Hausdorff distance is that
it is very sensitive to extreme points. In other words, it does not take into account
the overall structure of the entire data sets. In addition to the Hausdorff distance,
many approaches tried to define similarity between two point sets for different
applications, such as the surjection measure, the fair surjection measure, the
minimum link distance, etc (Eiter & Mannila, 1997).

In the field of information theory, relative entropy, or the Kullback Leibler (K–L)
divergence (Cover & Thomas, 1991), has been suggested as an appropriate measure
for comparing discrete data distributions. The K–L distance between two
distributions with probability functions pk and qk is defined as D p qjð Þ ¼

P
k pklog

pk

qk.
The major difficulty with this measure is how to estimate the distribution for

high-dimensional data. Without prior knowledge about distribution, we usually
estimate by counting the frequency of each data point. This means that we may need
a huge amount of data in order to get some statistically meaningful estimation.

If the object identities are available, i.e., we can trace the occurrences of the same
object in two data sets, we can compute the distance between its occurrences. The
similarity of two data sets can be defined as the sum of the pairwise label distances.
Moreover, for objects appearing only in one data set, we can use interpolation to
predict unknown values from values observed at known locations. One critical issue
is to assign proper weights to objects so that the sum of distances can reflect the
distance between two data sets appropriately. The Kriging method (Oliver &
Webster, 1990) developed in the field of geostatistics uses semivariogram to assign
weights. Semivariogram characterizes the spatial continuity roughness of the data
set. Kriging is superior to other interpolation methods because it provides an
optimal interpolation estimate for a given coordinate location.

However, all of the above approaches try to identify global changes. That is, they
try to measure the differences between data sets. In this paper, we are concerned
with identifying regions of changes instead of measuring the global difference.

In the context of association rule mining (Agrawal, Imielinski, & Swami, 1993;
Agrawal & Psaila, 1995) addresses the problem of monitoring the support and
confidence of association rules. Given an association rule, the techniques track the
support and confidence variations of the rule over time. The discovered rules from
different time periods are collected into a rule base. Changes in support and
confidence over time, called history, are defined using specific shape operators. The
user can then query the rule base by specifying some history specifications.

In Liu, Hsu, and Ma (2001), fundamental rule changes are obtained by pruning
Bredundant rules’’. That is, they report only changes that cannot be explained by the
presence of other changes. The algorithm only considers changes in support or
confidence of the rules that are not direct consequences of changes in the conditions
of the rules. Therefore, many interesting changes may be missing.

None of those studies deal with the classification problem where changes should
be extracted with respect to the changes in class label.

J Intell Inf Syst (2006) 27: 215–242 217

To the best of our knowledge, there are three existing studies that are most related
to ours. In (Ganti, Gehrke, & Ramakrishnan, 1999), Ganti et al. developed a frame-
work for measuring the deviation between two data sets in terms of the classifiers they
induce. The change is measured by the amount of work required to transform them
into some common specialization. More precisely, the deviation between two data
sets D1 and D2 is computed as follows. The decision tree is viewed as a set of regions
associated with the leaf nodes. To compare two models, sets of regions for two
decision trees are made identical. They are refined to the finer partition obtained by
overlaying the two partitions of the attribute space. Next, the deviation is computed
between D1 and D2 with respect to each region in that partition. To do this, each
region is associated with a measure reflecting the fraction of tuples in the data set
that maps into it. Then, the deviation between D1 and D2 is computed by summing
up the deviations of all regions in the refined set of regions. Different measures of
the deviation are considered in the paper, such as the misclassification rate and the
chi-squared metric. The computation requires accessing original data sets.

While the method determines whether the changes between two data sets exist and
how significant the changes are, it does not provide an efficient way of identifying
changing regions. In other words, additional techniques are needed to obtain the
description of changes, which is the topic of this paper.

In (Liu, Hsu, Han, & Xia, 2000), Liu et al. detected changes by requiring the old
decision tree to be similar to the new one. To compare two data sets D1 and D2 with a
decision tree on D1 available, a new decision tree on D2 is constructed such that it uses
the same attributes and splitting points as the decision tree on D1. It composes a
severe restriction that does not allow us to compare arbitrary two models. For ex-
ample, if important changes occur at the top levels of the decision tree, the method
cannot be used. It is not applicable either in the situations where the original data
sets are not available for direct analysis.

In (Wang, Zhou, Fu, & Yu, 2003), Wang et al. transformed a decision tree to a set
of rules. Then, the change mining problem is reduced to characterize how well the
set of rules obtained from an old data set fits a new data set. They proposed a four-
step approach. First, a decision tree is built on the new data set. Second, for each
sample in the new data set, the corresponding rules in both the old decision tree and
the new decision tree are identified. Third, for each old rule, the corresponding new
rules are found which classify the same set of objects, and the quantitative change is
estimated. Last, the changes are presented as a comparison (a pair) of rules on the
old and the new data sets. Again, such a method has to access the original data sets,
and thus cannot handle the data sets with access constraints.

This paper is also remotely related to symbolic data analysis. In (Billard & Diday,
2003), Billiard and Diday describe Bsymbolic’’ data that is more complex than
standard data. Instead of the single value, it can be represented by lists, intervals,
distributions and the like. They define FSymbolic Data Analysis’’ as the extension of
standard data analysis in order to work with symbolic data. In (Diday & Esposito,
2003), Diday provides an overview on recent development in this area, as well as
presents some tools and methods to work with symbolic data.

3 Cluster-embedded decision trees

Most of the previous change detection methods described in Section 2 require
accesses to the original data sets. In this section, we propose a framework that is

218 J Intell Inf Syst (2006) 27: 215–242

able to mine changes from data with access constraints. The framework, as shown in
Fig. 1, is in two phases: model construction and change detection from models.

& In the phase of model construction, every data set that may be used later for
change detection is summarized using a cluster-embedded decision tree
developed in this section. This model construction phase can be conducted
at the data owner_s site. Only the models are released for data analysis.

& In the phase of change detection, we detect changing regions between any
two data sets specified by the user using the models constructed in the first
phase. At this stage, we do not need to access the original data.

The details of the method are presented in this section. In Section 3.1, we define
the problem precisely. Section 3.2 addresses what models should be used in the
model construction phase. Section 3.3 describes two approaches used in the change
detection phase.

3.1 Problem description

Generally, we consider a spatial data set as a set of objects in a multidimensional,
numeric space D. Moreover, each object belongs to a pre-defined class. For an
object o, o.Ai denotes the value of o on attribute Ai and o.Class denotes the class to
which o belongs. Here, we assume that populations in D1 and D2 may be different
and object identities are not available.

A hyperrectangle region, or region for short, is a generalization of a rectangle to n
dimensional space, defined by the upper and the lower bounds for each dimension.
Formally, a hyperrectangle region R = ((l1, u1), ..., (lk, uk)), where jV e li e ui e V

for 1 e i e k and k is the dimensionality. R.Ai = (li, ui) is the scope of region R on
attribute Ai.

The population of R with respect to data set D is the number of objects in D that
fall into R, denoted by popD (R). Moreover, the population of R with respect to
class C is the number of objects from class C in D that fall into R, denoted by
popC

D Rð Þ. Clearly, we have popD Rð Þ ¼
P

Ci
popCi

D Rð Þ. A region is called dominated by a
class C if the population of C in R is larger than the population of any other classes.

To capture the distribution of classes over space, we can take snapshots at various
time instants. Each snapshot is a spatial data set. Let D1 and D2 be two spatial data
sets at two instants. Intuitively, a changing region from D1 to D2 is dominated by
objects from different classes in the two data sets. To avoid triviality, such changing
regions should have enough population.

Fig. 1 The framework of mod-
el-based change detection
construction phase

J Intell Inf Syst (2006) 27: 215–242 219

Definition 3.1 (Changing region) Given two data sets D1 and D2 and a minimum
population threshold min_ population, a region R is called a changing region from
D1 to D2 if (1) R is dominated by class C in D2 but not in D1; (2) popD1

(R) Q

min_ population; and (3) popD2
(R) Q min_ population.

The problem of mining changes is to identify changing regions as accurately as
possible.

3.2 Model construction phase

3.2.1 Choosing a model for changing region detection

Classification and clustering are two categories of popularly used models in machine
learning. It is natural to ask whether we can directly borrow them for changing
region detection. One intuitive idea is to build a decision tree for each dataset and
compare the two decision trees.

Example 3.1 (Change detection by decision tree comparison) Consider two data sets
D1 and D2, each has two attributes and two classes. We build decision trees on D1

and D2 as shown in Fig. 2(a) and (b), respectively. After a tree is built, the data is
partitioned into disjoint regions in the attribute space. The corresponding partitions
are shown in Fig. 2(c) and (d), respectively.

Generally, a decision tree partitions the space of a data set into hyper-rectangles.
An intuitive way of identifying areas of changes is to simply overlay the hyper-rect-
angles from the two decision trees, as exemplified in Fig. 2. A hyper-rectangle is
reported as a changing region if it carries different class labels in the decision trees
under comparison. In this example, the two rectangles on the left are reported as
changing regions.

However, if we take a closer look at the data sets, we can find that the changes derived
by the direct comparison may not be accurate, or even may not be right. Consider the
north-western rectangle. There is no change between the two data sets in this area. It just
happens the label of the rectangle is affected by different neighbour regions because it
has only very few objects. In other words, this rectangle should not be reported.

On the other hand, the south-western rectangle is also reported as a changing
region from class Class1 to class Class3 in Fig. 2(e). However, within the rectangle,
only a new group of objects in Class3 appear. There are in fact no objects in Class1 in
the region in D1. Therefore, reporting this as a changing region is inaccurate. Instead,
a smaller region ([0.2, 0.4], [0.1, 0.5] should be reported, as shown in Fig. 2(f).

Why directly comparing decision trees may not be accurate or even may not be
correct? First, in decision tree construction, the space is divided into hyper-
rectangles recursively until the resulted hyper-rectangles are pure or the population
is less than a user-specified threshold. Therefore, the information about the data
distribution can be largely lost and cannot be recovered for comparison. Second, the
order of dimensions used in decision tree constructions is easily different from one
data set to another. With minor changes in the data set, or even with minor changes
in parameters, two differently structured decision trees may be produced. Some
sparse and noisy regions in the data sets with no changes at all may be bound to
some other regions and thus be labelled differently in different trees. That may

220 J Intell Inf Syst (2006) 27: 215–242

introduce false changing regions in the tree comparison. In other words, decision
tree models do not contain enough information to distinguish such cases.

There exist some other classification models, such as neural networks and support
vector machines. In terms of changing regions detection by model comparison, they
suffer from similar problems as decision trees or may be even worse. For example, it
is hard to compare two neural networks and a naı̈ve comparison is hard to
understand due to the weak understandability of this model.

Clustering models are another category of popular models in machine learning.
However, global clustering models cannot serve the tasks of changing region
detection due to the following reasons. First, global clustering typically needs some
background information about the distribution of the data, such as the number of
clusters. This parameter can strongly affect the efficiency of the clustering. Second,
clustering is often costly and does not scale well with respect to dimensionality.

Another intuitive approach to change mining is to construct a grid. Assume for
each dataset the space is divided into cells of the same sizes. Inside each cell we get

Attribute 2

Class 1

<=0.5 >0.5

Class 2

Attribute 1

Attibute 2

Class 2

>0.4

Class 1

<=0.5 >0.5

<=0.4

Class 3

(a) Decision tree T1 (b) Decision tree T2

0

0. 2

0. 4

0. 6

0. 8

1

0 0.2 0.4 0.6 0.8 1

class 1

class 2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

class 1

class 2

class 3

(c) Data set D1 (d) Data set D2

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(f) Real(e) Change reported by decision tree comparison change

Change from

class 2 to

class 3

Change from
class 1 to class 3

Class 2

Class 1

Fig. 2 Two data sets, the decision trees and the changes

J Intell Inf Syst (2006) 27: 215–242 221

the population for each class. Now we can compare the class distributions of two
corresponding grids from two different datasets. There are several problems with
this approach as well. First, in high dimensional space this method has a huge space
complexity. Second, this method strongly depends on the granularity of the grid. If
the grid is too fine, many small changes of little use can be found. If the grid is too
coarse, it doesn_t provide much insight to the data, because each cell contains a
mixture of objects from different classes.

One may wonder whether we can build a spatial index such as an R-tree to index
the objects and find the changes using the index. Two obstacles exist for this kind of
approaches. First, it is hard to control the purity of objects in bounding boxes in the
spatial index. Thus, using the bounding boxes to find changes is difficult. Second,
with access constraints, we are not allowed to index the spatial objects directly.

Therefore, we need to develop a new type of model for our change detection
task.

3.2.2 Cluster-embedded decision trees (CEDT)

Although decision trees cannot be used directly for model-based changing region
detection, heuristically it can help us to identify relatively pure regions dominated
by some classes. The major deficiency of decision trees for our task is that they
cannot capture the spatial distribution of the objects in leaf nodes. While the
decision trees cannot maintain information about local distributions well, clustering
can provide good summarization of local distribution. On the other hand, while
clustering often requires global background knowledge to perform well, decision
trees carry such information naturally (each leaf node is a relatively pure area). This
leads us to integrate the two types of models and design the cluster-embedded
decision trees (CEDT for short).

The general idea is as follows. For a data set, we construct a decision tree. To
capture the spatial distribution of the objects in leaf nodes, we construct clusters and
keep the information on those clusters at leaf nodes. The details of the CEDT
construction are presented in the following sections.

3.2.2.1 Decision tree construction Given a data set, to construct a decision tree that
will be later extended to embed clusters, we can adopt any decision tree
construction algorithm. The only requirement is that any node containing less
than min_ population (i.e., the minimum population threshold) objects should not be
split any more, because the corresponding region cannot contain any changing
regions. In a data set D, a leaf node V in a decision tree may be in one of the
following two cases.

& Case 1: Every class has a population lower than the user-specified minimum
population threshold. The hyper-rectangle corresponding to this node is
considered sparse and statistically insignificant. Such a node V cannot
contain any changing regions from the other data set to D. Thus, we only
keep the population of objects with respect to various classes at the node, as
a usual decision tree does.

& Case 2: At least one class has a population higher than or equal to
min_ population. Then, the corresponding node can contain changing
regions. Thus, we will capture the local distribution of objects in various
classes using clustering.

222 J Intell Inf Syst (2006) 27: 215–242

3.2.2.2 Clustering Recall that we are not allowed to store the details about all
objects due to access constraints. However, the output of any decision tree
algorithm (for example C4.5) does not provide enough information to determine
the changes. The information at a leaf node is often insufficient to indicate the
changes in an informative way. To summarize the objects, a natural method is to
construct clusters and keep only the summary of the clusters.

Generally, we can use any clustering methods to construct clusters at leaf nodes
for a cluster-embedded decision trees. This gives CEDT the flexibility to meet the
requirements in various applications.

As a simple yet effective solution we discuss the case where K-means clustering is
used to form clusters. The problem now is to determine the number of clusters.
Typically, without background knowledge and many trials, a number leading to the
optimal clustering is hard to find.

However, clustering within the leaf node may be somewhat easier. Recall that at
a leaf node most objects belong to a dominant class. Therefore, comparing to global
clustering where the data objects are generally mixed, the clustering quality is less
sensitive to the number of clusters.

In the cluster-embedded decision tree design, we adopt a heuristic method to set
the number of clusters for a leaf node. The intuition is that the number of clusters is
proportional to the population of objects in the leaf node.

Technically, let min_ pop be a user-specified minimum population threshold. It
should be selected so that any clusters with the population less than min_ pop are
considered insignificant and can be ignored from data analysis.

Consider a leaf node with n data objects, where the objects are in classes C1, ...,
Ck, and the number of objects in the classes are n1, ..., nk, respectively. For class Ci,
we form up to ni

min pop

j k
clusters to capture the distribution of objects in the class.

Clearly, for a node with n objects, at most n
min pop

j k
clusters are formed. An object

must be in one and only one leaf node of a decision tree. Thus, we have the
following claim.

Lemma 3.1 (Number of Clusters in CEDT) For a data set of m objects and a
minimum population threshold min_ pop, there are at most m

min pop

j k
clusters at leaf

nodes of the tree.

3.2.2.3 Cluster representation Now, the problem is how the clusters should be
represented. Typically, K-means returns clusters as hyper-spheres. However, it is
not convenient for our purpose. To determine changing regions, it is often required
to compare two regions and compute the overlapping populations. Computing the
intersection of two hyper-spheres in a high-dimensional space is far from trivial.
Thus, it is highly desirable that the regions are in regular shapes, such as hyper-
rectangles whose edges are parallel to the dimensions. Now we have to find a way to
use hyper-rectangles determined by some simple parameters to record the scope of
a cluster.

Here, we propose a cluster representation in hyper-rectangles. Technically, for a
cluster of objects, we keep the mean of the cluster and the standard deviation di on
each dimension. We approximate the cluster by a hyper-rectangle with the mean
and the edge 2 I t I di on each dimension, where t is a small number greater than 1.
The quality of the approximation is guaranteed by the following result.

J Intell Inf Syst (2006) 27: 215–242 223

Theorem 3.1 (Cluster representation) In a k-dimensional space (R1, ..., Rk), suppose
that dimensions are statistically independent. Let S be a set of n objects, whose mean
is (c1, ..., ck) and the standard deviation on each dimension is di. Then, for any t >1, in
expectation, at least n I 1� 1

t2

� �k
data objects appear in the hyper-rectangle ([c1–t I

d1,c1+t I d1],...,[ck – t I dk, ck+t I dk]).

Proof According to Chebyshev_s inequality (Papoulis, 1984), the probability that a
random variable differs from its expectation by t I d or more cannot exceed 1

t2, where
d is the standard deviation and t is a number greater than 1. Therefore, the
probability that an object is in the hyper-rectangle in the theorem is 1� 1

t2

� �k
. The

theorem follows. Í
Theorem 3.1 provides a lower bound for the quality of summarizing a cluster

using hyper-rectangles. Interestingly, as shown in the experimental results, the
summarization quality is fairly good in practice. That is, with a small t value, we can
obtain good accuracy and recall.

To compute hyper-rectangles for each cluster in the node we should store the
mean (i.e., the center) and the variance of objects. Also, we should keep the number
of objects in each cluster.

The overall algorithm used for cluster-embedded decision tree construction is
described in Fig. 3.

3.3 Mining changing regions

Cluster-embedded decision trees provide enough information for mining changes.
We propose two different approaches to use CEDTs: leaf-based and cluster-based.
The leaf-based approach returns a small amount of broad regions of changes. It
provides high accuracy, but overlooks smaller regions. The clusters-based approach,
on the other hand, is able to find many subtle changes between the data sets, while
the result is not as accurate as the leaf-based method. Depending on the preferences
of the user, one of the methods can be chosen for change detection.

Fig. 3 The CEDT construction algorithm

224 J Intell Inf Syst (2006) 27: 215–242

3.3.1 Leaf-based changing regions

The general idea of this approach is the following. First, we compare two decision
trees to find the differences between them. After that, we use the detailed
information from CEDTs to eliminate those false changing regions. Also, we rank
the regions according to the significance of the changes.

3.3.1.1 Overlay of two trees To understand this approach, let us first have a closer
look at the decision tree construction. After a tree is built, the data is partitioned
into disjoint regions in the attribute space. Each path from the root node to a leaf
represents a hyperrectangle region. In a decision tree, for each dimension, the
splitting points can be used to set upper and lower bounds. Notice that the
procedure of constructing a tree with numeric attributes can use the same attribute
for splitting several times.

Definition 3.2 (Path) A path from the root to a leaf node is a pair bregion, Class
labelÀ, where region is a vector of intervals for attributes. Notice that for every path
we use the attributes in the same order.

For convenience, we represent a path as:

L1, U1ð Þ, L2, U2ð Þ, ::: , Ln, Unð Þh i) Class label;

where Li are the lower bounds and Ui are the upper bounds of the intervals for the
corresponding attributes. If the attribute is not used for partitioning the data, we set
its interval to (jV, +V).

Given two decision trees, we can easily compare them by overlaying the
partitions.

Definition 3.3 (Intersection) To form an intersection of two paths P1 = {[L1,
U1],...[Lk, Uk]} and P2 ¼ L

0

1;U
0

1

� �
; ::: L

0

k;U
0

k

� �� �
from decision trees T1 and T2,

respectively, we compute an intersection for each attribute: P1 \ P2 ¼
max L1; L

0

1

� �
; min U1; U

0

1

� �� �
; :::; max Lk; L

0

k

� �
; min Uk; U

0

k

� �� �� �
. An intersection

is empty if there exist an attribute Ai such that max Li; L
0
i

� �
> min Ui; U

0
i

� �
.

Definition 3.4 (Exclusive paths) We call two paths P1 and P2 exclusive if their
intersection P1 7 P2 is empty.

Definition 3.5 (Delta region) Given data sets D1 and D2, a delta region is a region
that has different class labels in the decision trees in D1 and D2.

Definition 3.6 (Overlay) An overlay of two decision trees D1 and D2 is a set of delta
regions. It can be described by a set of rules:

R Á OldClass, NewClass, where OldClass and NewClass are class labels in D1

and D2, respectively, and R is a delta region. To form such an overlay the procedure
in Fig. 4 is used. Using the procedure in Fig. 4, we can identify all possible changing
regions by finding all the intersections between paths in the old and the new
decision trees.

J Intell Inf Syst (2006) 27: 215–242 225

Theorem 3.2 If decision tree T1 has n leaf nodes, and T2 has m leaf nodes, then the
time complexity to compute the overlay of two trees is O(n*;m).

3.3.1.2 Real and false changing regions Path-by-path comparison of two trees may
enumerate many differences between the models. However, many of them can be
trivial or caused by noise.

Suppose R is a candidate changing region. Two cases may happen:

& The corresponding samples in the data sets have changed their class labels
& R is a false changing region. The data distribution in R does not really

change. It is assigned different class labels due to the fact that decision trees
are constructed in different ways

The first case is exactly what we are looking for. However, we should eliminate
cases falling into the second category. Several reasons can be found to explain the
second case.

First, there might be no or very few examples in a data set covering the particular
region. In this case, the region can be classified by a decision tree to either class.
Therefore, if they are classified differently by decision trees from D1 and D2, it
appears as a change but actually it is not.

Another possible reason is that some regions may be noisy, i.e., they may contain
samples from different classes without any class being strongly prevalent. With
changes in the neighbouring areas of the region, those noisy regions will be classified
differently by two decision trees. It is reported as a change region if a path-by-path
comparison is used, but actually it is not.

In summary, a naı̈ve comparison of regions may raise false signals. Particularly,
two cases may exist:

& BEmpty’’ regions — there are very few samples in such a region. Empty
regions can be identified by estimating its population and comparing it with
a pre-specified threshold.

& BNoisy’’ regions — the regions that are Bimpure’’, i.e., there are many
samples with the class label different from the prevalent one. However,
impurity by itself is not what we are trying to avoid. Rather, it is just an
indicator that the change between populations of dominant classes in data
sets D1 and D2 is not strong. In the next section, we develop a measure of
change significance.

3.3.1.3 Using CEDT to estimate region population Recall that given two decision
trees T1 and T2, delta regions are obtained by intersecting the leaf nodes from T1

and T2. Therefore, each delta region R belongs to a node in T1 and a node in T2. The
population of a region R in a data set can be estimated using the clusters at the leaf
nodes to which R belongs. Let R = ([x1, y1], ..., [xk, yk]) be a region. Three cases may
happen:

Fig. 4 The procedure for computing overlay

226 J Intell Inf Syst (2006) 27: 215–242

& The leaf node has low population thus no clusters are stored. In this case, the
population of R is also low and insignificant for our analysis.

& Although the leaf node has a population passing the minimum population
threshold, R has no overlaps with any clusters at the leaf node. In this case,
the population of R is still low and insignificant.

& R overlaps with some clusters at the leaf node. In this case, we can estimate
the population of R as well as the class distribution using the clusters.

Example 3.2 (Estimating Region Population) Let us revisit the data sets described in
Example 3.2. The region (524,689], (0,584] [Region R1 in Fig. 5(a)] is classified as
class 3 by decision tree on D1, while the region (608, 781], (0, 453] [Region R2 in
Fig. 5(b)] is classified as class 2 by decision tree on D2. Therefore, their intersection
is a potential changing region. The clusters summarizing the objects in these regions
are shown in Fig. 6. To estimate the population of R = R1 7 R2, we have to check
whether R has any overlaps with clusters from R1 and R2.

Generally, let L = ([x1¶, y1¶],..., [xk¶, yk¶]) be a cluster in D1 with a number of
objects NL. R and L overlap if and only if xi¶< yi and xi < yi¶ for all 1 e i e k.

We need to estimate the population of R in D1 of class C and the
population of R in D1 of classes other than C. Thus, for each overlapping cluster L
in T1, we compute the overlap volume, which is given by overlap L; Rð Þ ¼Q

1�i�k min yi; y
0

i

� �
�max xi; x

0

i

� �� �
:

Fig. 5 Clusters summarizing objects in regions

Fig. 6 Using CEDT to estimate
the population of a region

J Intell Inf Syst (2006) 27: 215–242 227

To estimate the population, we assume that the objects in a cluster are evenly
distributed. In a small region, uniform distribution is a good estimation, which is
verified by the experimental results on both synthetic data sets and real data sets.

Therefore, the contribution in population from a cluster L to R in D1 can be
estimated as overlap L, Rð Þ�NL

Q
1�i�k

y
0
i
�x
0
ið Þ

.

By examining all clusters that have overlap with R, we can estimate the
population of R in data set D1 with respect to class C, i.e., popC

D1
Rð Þ, and that

with respect to classes other than C.

3.3.1.4 Presenting changing regions After we estimate the population of each class
in the region, we can determine the dominant classes. By comparing those
populations, we can determine whether R is dominated by the same class in D1 as
in D2. Since we are interested in the regions that change the class labels, if the class is
the same, we remove R from the list of candidate changing regions.

Also, the knowledge of population allows us to eliminate sparse changing regions.
If the estimated population for all classes is smaller than minimum population
threshold min_population in both datasets, we consider the region insignificant. In
addition to eliminating sparse regions, knowing the population allows us to present
the regions with higher population as more important to the user.

Now the question is how to measure the noise. As mentioned before, noise by
itself is an indicator that the change is not strong. We want to measure how
significant the change is between two data sets with respect to the certain region.
More precisely, we use the Bchange distance’’ to measure how strongly a particular
region changes. Given PCi

D1
Rð Þ— the probability that a point from region R belongs

to class Ci in data set Dj, the distance is computed as follows:

ChangeDist Rð Þ =

ffi
X

i

PCi

D1
Rð Þ � PCi

D2
Rð Þ

	
2
s

=

ffi

X

i

popCi

D1
Rð Þ

popD1
Rð Þ �

popCi

D2
Rð Þ

popD2 Rð Þ

 !2
v
u
u
t ;

where popCi

D1
Rð Þ and popCi

D2
Rð Þ are populations of class Ci in the region R in data sets

D1 and D2, respectively, and popD1
Rð Þ, pop

D2
Rð Þ— populations of the region in the

data sets D1 and D2, respectively.
While eliminating regions with low population is a straightforward solution,

dealing with noise is not that easy. A naı̈ve approach is to ask the user to set a
threshold to eliminate regions where the change is not very strong. However, this
parameter is not easy to set since it is hard to distinguish which level of change is
Bsignificant enough’’.

Therefore, instead of asking the user to define the threshold, we propose a
method of ranking change regions. There may be many approaches to rank changing
regions. In general, ranking functions can strongly depend on the particular
application. Here, we propose one method based on the regions population and
significance of changes. Intuitively, the more interesting regions have bigger
population and bigger change distance. More precisely, the function to rank the
regions is computed as follows:

228 J Intell Inf Syst (2006) 27: 215–242

Rank Rð Þ ¼
pop

D
1

Rð Þ

pop
D

1

+

pop
D

2

Rð Þ

pop
D

2

0

@

1

A � ChangeDist Rð Þ:

The overall algorithm for leaf-based change detection is presented in Fig. 7.

3.3.2 Cluster-based changing regions

The regions returned by the leaf-based approach might be too rough. If the user is
interested in finer details of the dataset comparison, the cluster-based approach can
be used to refine the results of leaf-based approach.

In this method, we compare pairs of clusters from the old and the new data sets.
We consider all clusters including those belonging to the regions classified to the
same class by both models.

Suppose we are given CEDTs T1 and T2 built on data sets D1 and D2,
respectively. To find changing regions, we compare clusters in CEDTs one by one.

Let R = ([x1, y1], ..., [xk, yk]) be a cluster in T2. Since D1 is not available, we use
T1, the CEDT on D1, to estimate both the population and the dominant class of R in
data set D1. Therefore, we need to search all clusters in T1 that overlap with R. A
naı̈ve method is to compare R with every significant cluster in T1. Obviously, it is
inefficient.

As the clusters are stored in the CEDT T1, we can use the decision tree as an
index for the clusters. That is, we allocate the leaf nodes of T1 that have overlaps
with R. Only clusters in those leaf nodes should be checked.

Technically, we start from the root of T1, and consider all children nodes of the
root. Suppose the splitting condition is on dimension Di, and the range for the child
node V is [z, w], then we need to search V if and only if the range overlaps with
[xi, yi], the range of R on dimension Di. That is, z < xi and w Q yi. All the children of

Fig. 7 The leaf-based change detection algorithm

J Intell Inf Syst (2006) 27: 215–242 229

the root node that overlap with R on dimension Di will be checked recursively, until
the leaf nodes that have overlap with R are obtained.

We retrieve all the clusters at the leaf nodes that overlap with R, and check
whether the clusters overlap with R. The overlapping population can be computed
in the same way as described in Section 3.3.1.3.

3.3.2.1 Summarization of significant changing regions As mentioned, cluster-
based approach can identify many changing regions. Now one problem remains
unsolved — how can we present the mining results effectively?

A naı̈ve approach to present a list of all changing regions may not be good in
many cases. A long list of such changes is often hard to understand. Moreover, a
user may also want to know how the changing regions are distributed in the data
space.

Here, we propose a simple yet effective solution: we build another decision tree
on the changing regions. That is, instead of single objects we are using changing
regions as training data. Each changing region R carries a label BC Á C ¶ ’’, where C
and C ¶ are the dominant classes of region R in data sets D1 and D2, respectively. In
this case, if we have m classes in data sets D1 and D2, there will be m2 classes in the
new training set. Small modifications are required in the decision tree algorithm to
take regions instead of single values.

The resulted decision tree is presented as a result of cluster-based change mining. It
provides an effective way to allocate small changing regions into meaningful groups.

4 Experimental evaluation

In this section, we present the experimental results obtained on both synthetic and
real datasets.

All the experiments are performed on a 1600-MHz Pentium PC machine with 256
megabytes main memory, running Microsoft Windows 2000. All the programs were
written in Java, and the open source software Weka (Witten & Frank, 2005) was
used to facilitate the implementation of the algorithm. In particular, the decision
tree C4.5 (Quinlan, 1993) and the K-means clustering algorithm were used as they
were implemented in Weka.

We describe the procedure of constructing synthetic datasets and introduce a
mortgage dataset from IPUMS repository in Section 4.1. Section 4.2 provides an
analysis of the algorithm effectiveness with respect to various parameters. The
efficiency of the method is verified in Section 4.3.

4.1 Datasets and experimental settings

4.1.1 Synthetic data

To verify if the proposed algorithm is able to find the changes accurately, we
compose a data generator. The experiments consist of 4 steps:

& Generate an Bold’’ dataset;
& Produce a new dataset, embedding changes of different types;
& Run the algorithm to build models and compare them;

230 J Intell Inf Syst (2006) 27: 215–242

& Evaluate whether the embedded changes and the obtained regions agree.

4.1.1.1 Data generator To run a generator, a user specifies the following
parameters: data set size, number of dimensions and number of classes. Given the
number of classes, a number of clusters are generated for each of them. Each cluster
is described by its mean and standard deviation. Cluster means are uniformly
distributed in the attribute space. The parameters used by data generator are
summarized in Table 1.

4.1.1.2 Types of changes To test the algorithm, four types of changes are
embedded:

1. Changing class — clusters are randomly selected and their class labels are
changed.

2. Removing a cluster — all samples from a particular cluster are removed from a
dataset.

3. Adding a cluster — for an arbitrary class a new cluster with random values of
mean and standard deviation is added.

4. Splitting a cluster — a cluster is split into two clusters, one with the same class
label and the other one with a different one.

4.1.2 IPUMS census data

The IPUMS dataset (Ruggles et al., 2004) contains USA census data from 1990. A
random sample containing the information on 20,000 personal records is chosen in
the source. The data set contains 10 numeric attributes, where BMortgage’’ is chosen
as the class attribute. Mortgage has 4 values, BN/A’’, BNo, owned free and clear’’,
BYes, mortgage or deed of trust’’ and BContract for sale’’. After removing all the
samples with BN/A’’ values, 17,460 tuples remain. To set the data for the change
mining task, we compare different ethnic groups, including Bwhite’’, Bblack’’ and
BAmerican Indian’’.

4.2 Effectiveness of CEDTs

4.2.1 Synthetic data

The quality of the algorithms is measured in terms of accuracy and recall. Recall
describes what proportion of embedded changes is captured by the algorithm.

Table 1 Parameters used by the data generator

Parameter Distribution

Number of clusters per

class

Gaussian with the mean of 15 and the standard deviation of 5

Number of examples in

cluster

Gaussian with mean = a � D
C�L, where D is a dataset size, C is an number

of classes and L is the number of clusters per class

Cluster mean Uniform in space [0, 1,000]d, where d is the number of dimensions

Cluster standard

deviation (radius)

Gaussian with the mean of 50 and the standard deviation of 15

J Intell Inf Syst (2006) 27: 215–242 231

Accuracy represents the percentage of the embedded changing regions with respect
to the number of regions detected by the algorithm.

In this section, we evaluate the effectiveness of leaf-based and cluster-based
approaches. Also, we present a performance comparison with Correspondence
tracing, the changing mining algorithm (Wang et al., 2003) described in Section 2.
Compared with CEDT method, it requires at least one dataset to detect changing
regions. However, as shown further, the quality of Correspondence Tracing is
comparable with the quality of CEDT.

The Correspondence Tracing algorithm outputs many changing regions ranked
by the proposed quantitative change. To compare the performance with our
method, we use a threshold on this measure to distinguish Bsignificant enough’’
changing regions from the others. Such a threshold provides a trade-off between
accuracy and recall: if chosen too high, the accuracy is high while the recall is low, if
the threshold is too low, the accuracy is not high. For the experiments, the threshold
is set so that the accuracy of Correspondence Tracing is comparable with the
accuracy of CEDT.

If not mentioned otherwise, each dataset in the experiments below contains 5,000
samples, 5 dimensions and 5 classes.

The quality of the algorithms with respect to the number of classes is shown in
Figs. 8 and 9.

Figure 9 shows that the recall is decreasing as the number of classes increases. It
can be explained by the fact that the decision trees produced for the datasets with
more classes have more leaf nodes. Since the number of samples in the dataset stays

Fig. 8 Accuracy with
respect to the number of classes

Fig. 9 Recall with respect to
the number of classes

232 J Intell Inf Syst (2006) 27: 215–242

constant, there are fewer samples in each node. Because of that, there are more
nodes where population is smaller than the minimum population threshold,
therefore at those nodes the clustering is not performed. Thus, the information
about some delta regions is lost, which reduces the recall of the algorithm.

Interestingly, the accuracy of CEDT algorithm increases when data sets contain
more classes. As explained above, many nodes contain fewer samples than
population threshold and thus are not summarized. On the other hand, remaining
nodes have a high probability to contain real changes.

We also test the accuracy and the recall with respect to dimensionality. The
quality of the algorithm is stable with respect to the number of dimensions. Since
the clusters are used to summarize data, the algorithm is able to capture the spatial
distribution of the data set even when the number of dimensions increases.

Figures 12 and 13 illustrate the quality of the algorithm with respect to the
dataset size. We can see that both the leaf-based and the cluster-based approaches
achieve good scalability. However, the accuracy of the cluster-based approach
slightly decreases with increase in the data set size. With larger data set, it is more
likely that the obtained changes reflect randomness in distribution rather than the
changes embedded in data generator.

Figure 13 shows that recall is relatively low on a small dataset. The reason for
that is that there are not many samples in each leaf node of the tree, therefore it is
very likely that the number of samples would be less than minimum population
threshold, and the information in the node would not be stored. This means that on
the second phase of the algorithm such a region cannot be identified.

Together, Figs. 8, 9, 10, 11, 12 and 13 show that CEDT and Correspondence
Tracing have comparable effectiveness. However, in comparison with CEDT,

Fig. 11 Recall with respect to
dimensionality

Fig. 10 Accuracy with respect
to dimensionality

J Intell Inf Syst (2006) 27: 215–242 233

Fig. 13 Recall with respect to
the dataset size

Fig. 14 Accuracy with respect
to minimum population
threshold

Fig. 12 Accuracy with respect
to the dataset size

234 J Intell Inf Syst (2006) 27: 215–242

Correspondence Tracing requires at least one dataset to identify changes in data,
therefore cannot be used on the dataset with access constraints.

Further we present the analysis on how the quality of the method is affected by
the choice of the minimum population threshold. In our experiments, this parameter
is proportional to the data set size (Figs. 14 and 15).

From Fig. 15 we can see that the recall is decreasing as the minimum population
threshold is increasing. Indeed, in this case more nodes are considered Bnot
significant enough’’ and therefore are not summarized by clusters. Later, on the
change detection phase those regions cannot be identified.

The results above are presented for the mixture of changes described in Section
4.1.1.2. The experiments for each type of changes show similar results for both
accuracy and recall. The only difference is that the experiments with adding and
removing a cluster display stronger sensitivity to the minimum population threshold.
Indeed, for these types of changes the exact definition of Bempty’’ region is very
important. Limited by space, we do not present details for each type.

In addition to measuring accuracy and recall to verify the effectiveness of the
algorithm, we analyze some other important characteristics of the model, such as
the number of clusters stored and the number of changing regions returned by the
algorithm (Figs. 16, 17, 18 and 19). For the experiments below, we set the minimum
population threshold to 0.005.

Fig. 15 Recall with respect to
minimum population threshold

0

50

100

150

200

250

0 5 10 15 20

Number of classes

N
um

be
r

of
 c

lu
st

er
s

Fig. 16 Number of clusters
with respect to number of
classes

J Intell Inf Syst (2006) 27: 215–242 235

0

50

100

150

200

0 5 10 15 20

Number of dimensions

N
um

be
r

of
 c

lu
st

er
s

Fig. 17 Number of clusters
with respect to dimensionality

100
110
120
130
140
150
160
170
180
190
200

0 5000 10000 15000 20000 25000

Number of samples

N
um

be
r

of
 c

lu
st

er
s

Fig. 18 Number of clusters
with respect to the data set size

0

100

200

300

400

500

0 0.002 0.004 0.006 0.008 0.01

Minimum population threshold

N
um

be
r

of
 c

lu
st

er
s

Fig. 19 Number of clusters
with respect to the minimum
population threshold

236 J Intell Inf Syst (2006) 27: 215–242

0
5

10
15
20
25
30
35
40

0 2 4 6 8 10 12 14

Number of classes
N

um
be

r
of

 c
ha

ng
in

g
re

gi
on

s

Leaf-based CEDT

Cluster-Based CEDT

Fig. 20 Number of changing
regions returned by the algo-
rithm with respect to number
of classes

0

5

10

15

20

25

30

35

40

45

0 5000 10000 15000 20000 25000

Number of samples

N
u
m

b
e
r

o
f
c
h
a
n
g
in

g
 r

e
g
io

n
s

Leaf-

based

CEDT

Cluster-

based

CEDT

Fig. 21 Number of found
changing regions with respect
to dimensionality

0

1

2

3

4

5

0 0.002 0.004 0.006 0.008 0.01

Minimum population threshold

N
um

be
r o

f c
ha

ng
in

g
re

gi
on

sFig. 22 Number of changing
regions returned by the leaf-
based approach with respect to
minimum population threshold

J Intell Inf Syst (2006) 27: 215–242 237

The number of clusters increases as the number of classes goes up. Clearly,
datasets with more classes produce decision trees with more nodes, therefore more
clusters are stored. The minimum population threshold that we use in the method is
proportional to the number of samples. Therefore, the number of clusters stored in
the model does not depend on the data set size. As expected, the number of clusters
decreases when the minimum population threshold goes up.

Figures 20, 21, 22 and 23 show the number of changing regions detected by the
algorithm. As mentioned before, the main difference between the cluster-based and
the leaf-based approaches is in the number of regions they return. It is clearly
illustrated by the figures below. The cluster-based approach detects 30–40 small
changing regions, while the leaf-based approach detects 5–10 broad regions.

As the minimum population threshold increases, less nodes are clustered to
summarize the data. Therefore, the number of regions obtained by the cluster-based
approach decreases substantially. As can be seen from Fig. 15, the recall decreases as
well.

4.2.2 Mortgage dataset

Here we report the changes found for the different subpopulations: Bblack’’ versus
Bwhite’’ (Table 2), Bwhite’’ versus BAmerican Indian’’ (Table 3) and Bblack’’ versus
BAmerican Indian’’ (Table 4).

From the Table 2 we can see that for a senior age group Bblack’’ people are still
paying off the mortgage.

Tables 3 and 4 show that there are several cases when white and black people
have a mortgage while native Indian people of the same age and income group own
a house without any debts. This can be explained by the fact that native Indian
people get some grants and loans from the government. In summary, the experi-
ments show that the proposed method found the changes that are meaningful.

3

23

43

63

83

103

0 0.002 0.004 0.006 0.008 0.01

Minimum population threshold
N

um
be

r
of

 c
ha

ng
in

g
re

gi
on

s

Fig. 23 Number of changing
regions found by the cluster-
based approach with respect to
minimum population threshold

Table 2 Changes found from black versus white

House value Age Class label for Bwhite’’ Class label for Bblack’’

12,500–37,500 59–63 No mortgage Mortgage

238 J Intell Inf Syst (2006) 27: 215–242

4.3 Efficiency of CEDT

The efficiency of the algorithm is estimated in terms of execution time. First, we
measure the time required to build clusters. Clustering is used in the model
construction phase of the algorithm as an enhancement for the decision tree
algorithm. Second, we measure the time required for change detection.

Figures below show that most of the time required by the algorithm is during the
model construction phase. Recall that the user has to construct the model only once
from each dataset. Change detection phase, in contrast, should be repeated every
time the user wants to compare a data set with another, and it takes very little time.

From Fig. 24 we can see that the time required for clustering decreases when the
number of classes increases. As explained earlier, the amount of samples in each
leaf node decreases, therefore clustering takes less time.

Time required for change detection stays constant with increase in the number of
dimensions (Fig. 25) and increases linearly with increase in data set size (Fig. 26).
The algorithm for change detection is quadratic in the number of clusters, therefore
we may anticipate the quadratic increase of time with the data set size. However,
due to the fact that the minimum population threshold is proportional to the data
set size, the number of clusters stays constant, as can be seen from Fig. 18.

Clustering time increases linearly with the number of dimensions and with
increase in the number of samples (Figs. 25 and 27). Recall that K-means clustering
algorithm is used, and it is linear in the number of objects.

5 Conclusions

Detecting important changes and developing strategies for adapting to them is
important in the changing world. In this paper, we focus on the problem of mining
changing regions accurately and efficiently from access-constrained data sets. We
develop a two-phase framework: every data set is summarized using a cluster-

Table 3 Changes found from white versus American Indian

House

value

Age Education Income Class

label for

Bwhite’’

Class label for

BAmerican

Indian’’

Change

distance

Population

proportion

>225,000 <51 Any Any Mortgage No mortgage 0.73 0.075

5,000–

32,500

<48 Any Any Mortgage No mortgage 0.34 0.142

62,500–

67,500

<51 <10 Any Mortgage No mortgage 0.57 0.048

37,500–

42,500

13–

48

Any <9500 Mortgage No mortgage 0.65 0.008

Table 4 Changes found from white versus American Indian

House value Age Class label for Bblack’’ Class label for BAmerican Indian’’

12,500–32,500 51–63 Mortgage No mortgage

J Intell Inf Syst (2006) 27: 215–242 239

0

1

2

3

4

5

6

7

0 5 10 15 20

Number of dimensions

T
im

e,
 s

ec

clustering

change
detection

Fig. 25 Clustering and change
mining time with respect to
dimensionality

0

0.1

0.2

0.3

0 10000 20000 30000
Dataset size

T
im

e,
 s

ec

Fig. 26 Time for the change
detection with respect to the
data set size

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15

Numb er of classes

T
im

e,
 s

ec

c lustering

change detection

Fig. 24 Clustering and change
mining time with respect to
number of classes

240 J Intell Inf Syst (2006) 27: 215–242

embedded decision tree, and trees are used to detect changing regions between any
two specified data sets. Our extensive experimental study on both real and synthetic
datasets shows that the CEDT method is both accurate and efficient.

Acknowledgments The authors are grateful to the anonymous reviewers for their constructive and
insightful comments and suggestions, which help to improve the quality of the paper.

References

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in
large databases. In proceedings of the ACM-SIGMOD international conference on management
of data (SIGMOD_93) (pp. 207–216). Washington, DC, May.

Agrawal, R., & Psaila, G. (1995). Active data mining. In Proceedings of the 1st international
conference on knowledge discovery in databases and data mining.

Billard, L., & Diday E. (2003). From the statistics of data to the statistic of knowledge: Symbolic
data analysis. JASA. Journal of the American Statistical Association, 98, Nb. 462, June.

Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.
Diday, E., & Esposito, F. (2003). An introduction to symbolic data analysis and the sodas software.

IDA. International Journal on Intelligent Data Analysis, 7(6).
Eiter T., & Mannila, H. (1997). Distance measures for point sets and their computation. Acta

Informatica, 34(2), 103–133.
Ganti, V., Gehrke, J., & Ramakrishnan, R. (1999). A framework for measuring changes in data

characteristics. In proceedings of the Eighteenth ACM SIGAST–SIGMOD–SIGART Sympo-
sium on Principles of Database Systems, May 31–June 2, 1999, Philadelphia, Pennsylvania
(pp. 126–137). ACM.

Liu, B., Hsu, W., Han, H., & Xia, Y. (2000). Mining changes for real-life applications. In DaWaK
2000: Proceedings of the Second International Conference on Data Warehousing and
Knowledge Discovery (pp. 337–346). London, UK: Springer.

Liu, B., Hsu, W., & Ma, Y. (2001). Discovering the set of fundamental rule changes. In Proceedings
of the seventh ACM SIKDD international conference on Knowledge discovery and data mining
(KDD_01) (pp. 335–340). San Francisco, California, USA: ACM.

Oliver, M. A., & Webster, R. (1990). Kriging: A method of interpolation for geographical
information systems. International Journal of Geographic Information Systems, 4(3).

Papoulis, A. (1984). Probability, random variables, and stochastic processes (2nd ed.) (pp. 149–151).
New York: McGraw-Hill.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann.
Rote, G. (1991). Computing the minimum Hausdorff distance between two point sets on a line

under translation. Information Processing Letters, 38, 123–127.

0

5

10

15

20

0 5000 10000 15000 20000 25000 30000
Dataset size

T
im

e,
 s

ec

Fig. 27 Time required for
clustering with respect to the
data set size

J Intell Inf Syst (2006) 27: 215–242 241

Ruggles, S., Sobek, M., Alexander, T., Fitch, C. A., Goeken, R., Hall, P. K., et al. (2004). Integrated
public use microdata series: Version 3.0 [http://www.ipums.org]. Minneapolis, MN: Minnesota
Population Center.

Wang, K., Zhou, S., Fu, C. A., & Yu, X. J. (2003). Mining changes of classification by
correspondence tracing. In Proceedings of the 2003 SIAM International Conference on Data
Mining (SDM_2003). San Francisco, CA, USA, May.

Witten, I. H., & Frank, E. (2005) Data mining: Practical machine learning tools and techniques
(2nd ed.). San Francisco: Morgan Kaufmann.

242 J Intell Inf Syst (2006) 27: 215–242

http://www.ipums.org

	Mining changing regions from access-constrained snapshots: a cluster-embedded decision tree approach
	Abstract
	Introduction
	Related work
	Cluster-embedded decision trees
	Problem description
	Model construction phase
	Choosing a model for changing region detection
	Cluster-embedded decision trees (CEDT)
	Decision tree construction
	Clustering
	Cluster representation

	Mining changing regions
	Leaf-based changing regions
	Overlay of two trees
	Real and false changing regions
	Using CEDT to estimate region population
	Presenting changing regions

	Cluster-based changing regions
	Summarization of significant changing regions

	Experimental evaluation
	Datasets and experimental settings
	Synthetic data
	Data generator
	Types of changes

	IPUMS census data

	Effectiveness of CEDTs
	Synthetic data
	Mortgage dataset

	Efficiency of CEDT

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialUnicodeMS
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

