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ABSTRACT
The importance of dominance and skyline analysis has been
well recognized in multi-criteria decision making applica-
tions. Most previous studies assume a fixed order on the
attributes. In practice, different customers may have dif-
ferent preferences on nominal attributes. In this paper, we
identify an interesting data mining problem, finding favor-
able facets, which has not been studied before. Given a set
of points in a multidimensional space, for a specific target
point p we want to discover with respect to which combina-
tions of orders (e.g., customer preferences) on the nominal
attributes p is not dominated by any other points. Such
combinations are called the favorable facets of p.

We consider both the effectiveness and the efficiency of
the mining. A given point may have many favorable facets.
We propose the notion of minimal disqualifying condition
(MDC) which is effective in summarizing favorable facets.
We develop efficient algorithms for favorable facet mining for
different application scenarios. The first method computes
favorable facets on the fly. The second method pre-computes
all minimal disqualifying conditions so that the favorable
facets can be looked up in constant time. An extensive per-
formance study using both synthetic and real data sets is
reported to verify their effectiveness and efficiency.
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1. INTRODUCTION
Dominance analysis is important in many multi-criteria

decision making applications. As an example, consider a
customer looking for a vacation package to San Jose using
three criteria: price, hotel-class and number of stops. For
two packages p and q, if p is better than q in one factor,
and is not worse than q in any other factors, then p is said
to dominate q. For example, we have three packages (price,
hotel-class, number-of-stops): p1 (1600, 4, 1), p2 (3000, 5, 2)
and p3 (2000, 3, 2). We know that lower price, higher hotel
class and less stops are more preferable. Thus, p1 dominates
p3 because p1 has lower price, higher class and less stops.
Package p2 does not dominate p3 because p3 has lower price
than p2. Similarly p3 does not dominate p2 because p2 has
higher hotel class than p3. A point that is not dominated
by any other point is said to be a skyline point or it is in the
skyline.

Recently, skyline analysis [18, 14] has received a lot of
interest from both research and applications. Continuing
with our example of vacation packages. Package p is in the
skyline if it is not dominated by any other packages. The
packages in the skyline are the best possible tradeoffs among
the three factors in question. For example, p1 is in the
skyline because it is not dominated by p2 and p3. Similarly,
p2 is also in the skyline. However, p3 is not in the skyline
because p3 is dominated by p1.

In order to conduct a skyline analysis, an (either total
or partial) order is assumed on each attribute to reflect the
users’ preference. In our example, lower price, higher ho-
tel class and less stops are more preferable. Most previous
studies [18, 14, 15, 2, 3, 4] assume that orders on attributes
are predefined for all users. Recently, some studies [6, 5, 11,
10] consider that the orders on attributes are different for
different users. However, in some situations, we may be in-
terested in the orders that can make a given point a skyline
point.

Consider a skyline analysis on selecting vacation packages.
Table 1 shows a synthetic data set as our running example.
Unlike the attributes price and hotel-class on which a total
order exists for all customers, for the attribute hotel-group,
different users may have different preferences. We refer to
such an attribute which does not come with a fixed order
for all users a nominal attribute.

Nominal attributes are common in data analysis. For
choosing vacation packages, some commonly encountered
nominal attributes include hotel-group and airline. It is easy
to name a few other important business applications, such as
realities (where type of realty, style and regions are examples
of nominal attributes) and selecting air flights (where airline
and transition airport are examples of nominal attributes).

What challenges do nominal attributes bring to skyline



Package ID Price Hotel-class Hotel-group
a 1600 4 T (Tulips)
b 2400 1 T (Tulips)
c 3000 5 H (Horizon)
d 3600 4 H (Horizon)
e 2400 2 M (Mozilla)
f 3000 3 M (Mozilla)

Table 1: Table which contains a set of packages

Customer Preference on Hotel-group Skyline
Alice T ≺ M { a, c }
Bob No special preference { a, c, e, f }
Chris H ≺ M { a, c, e }
David H ≺ M ≺ T { a, c, e }
Emily H ≺ T ≺ M { a, c }
Fred M ≺ T { a, c, e, f }

Table 2: Table which contains customer preferences

analysis? The change of preference orders on nominal at-
tributes may lead to changes in skylines. Due to the changes
of the orders on nominal attributes, some skyline points may
become dominated by other points and some points that are
not in the original skyline may become so if they are pre-
ferred by the updated order.

Example 1 (Skylines in Different Preferences).
Consider the packages in Table 1 and the customer prefer-
ences in Table 2. In Table 1, the numeric attributes, price
and hotel-class, are totally ordered. The lower the price and
the higher the hotel-class, the more preferable a vacation
package is. Hotel-group is a nominal attribute. Different
customers have different preferences on that attribute. In
Table 2, “T ≺ M” denotes that the customer prefers Tulips
to Mozilla.

When a customer such as Fred prefers Mozilla to Tulips,
package f is in the skyline. However, for another customer
such as Alice who prefers Tulips to Mozilla, f is not in the
skyline anymore since it is dominated by a. Similarly, for a
customer such as Chris preferring Horizon to Mozilla, f is
not in the skyline, either, since it is dominated by c. Another
interesting observation is that packages a and c are always
in the skyline no matter what preference order is chosen
(because a has the lowest price and c has the highest hotel
class). Also, b and d are always dominated.

From the above example, we observe that, with different
preferences, a particular package may or may not be in the
skyline. How is such information useful in applications?

Example 2 (Applications). Let us consider the pack-
ages in Table 1 and the customer preferences in Table 2
again. Suppose that hotel-group Mozilla wants to promote
its own packages to potential customers. The best strategy
is to promote to those customers who may choose its pack-
ages rather than other packages. Which customers should
Mozilla target for marketing?

Consider package f of hotel-group Mozilla. As described
in Example 1, Fred prefers Mozilla to Tulips and f is in the
skyline in this case. Thus, Fred should be one of the targets
for promotion. On the other hand, Alice and Chris should
not be in the target list for promotion of f since f is not

Customer Package e Package f

Alice N N
Bob Y Y
Chris Y N
David Y N
Emily N N
Fred Y Y

Table 3: Recommendation of packages to customers

in Example 2

Package ID Disqualifying Conditions
e T ≺ M

f T ≺ M ∨ H ≺ M

Table 4: Disqualifying Conditions in Example 2

in the skyline with respect to their preference orders. The
targets for promotion are those customers who include f in
their skyline sets. Similarly, we can also consider package e

for promotion. Table 3 shows whether we should promote
packages e and f to each customer, respectively. Table 4
shows the conditions under which e or f will be disqualified
as skyline points. How to find these conditions will be the
core of our study. These conditions give the hotel-group bet-
ter understanding of the reason why a package is favorable
or not favorable. Therefore, they are considered interesting
and useful information which is hidden in the data.

From the above examples, we conclude that whether a
customer is in the target list of a particular package de-
pends on his/her preference. Given a particular package, it
is interesting to find a set of preference conditions that favor
the package. We model this task as mining favorable facets.
This information is valuable to target the right customers
whose preferences are consistent with the orders.

Generally, given a set of points in a multidimensional
space where some nominal attributes are present, for a point
p, favorable facet mining is to find the orders with respect
to which p is in the skyline. With favorable facets, we can
understand not only whether p is in the skyline of a pref-
erence, but also the conditions on the dimensions that can
affect the skyline membership of p.

While enumerating all favorable facets is helpful, there
can be a large number of such orders. In the example, in
Table 1, as long as Tulip does not dominate Mozilla, e will
be a skyline point. The favorable facets can be M ≺ T ≺ H,
T ≺ H, H ≺ T , H ≺ M , M ≺ H ≺ T , M ≺ T , M ≺ H, or
no preference on hotel. Therefore, instead of returning all
favorable facets, returning a succinct summarization of the
facets such as the disqualifying conditions is more useful.

A naive method to compute the favorable facets is to enu-
merate the skylines for all possible combinations of the or-
derings of the nominal attributes. However, it is not scalable
since there will be an exponential number of possible combi-
nations. In this paper, we propose much more efficient ways
of mining a summarization of the favorable facets.

To the best of our knowledge, the problem of mining favor-
able facets has not been identified before. Favorable facets
can disclose novel information about skylines that cannot be
addressed by the existing methods. We believe that this is
the first work to study the problem.

In addition to identifying a new data mining problem, we



also give effective and efficient solutions. Returning all fa-
vorable facets is expensive because there are typically many
such orders. Also, it is difficult for the user to understand
many orders in the result set. To tackle this problem, we
propose to use a succinct representation called the minimal
disqualifying condition (MDC) which can summarize favor-
able facets and is meaningful to the user.

In order to conduct efficient mining, we develop two al-
gorithms. The first method finds on-the-fly the minimal
conditions on the preference orders that disqualify a query
point from the skyline. Using those minimal disqualifying
conditions, we can answer querying of favorable facets effec-
tively.

The second method pre-computes all minimal disqualify-
ing conditions of every data point, and organize them in a
compact way. Then, favorable facets can be analyzed online.

We present a systematic performance study using both
real data sets and synthetic data sets to verify the effective-
ness and the efficiency of our methods. The experimental
results show that mining favorable facets is interesting, and
our proposed methods are efficacious.

The rest of the paper is organized as follows. We discuss
related work in Section 2. In Section 3, we investigate the
changes of skylines due to changes of orders on attributes,
and propose the notion of minimum disqualifying conditions
(MDC). The MDC On-the-fly method and the MDC mate-
rialization method are developed in Section 4. A systematic
performance study is reported in Section 5. The paper is
concluded in Section 6.

2. RELATED WORK
Skyline queries have been studied since 1960s in the the-

ory field where skyline points are known as Pareto sets and
admissible points [9] or maximal vectors [8]. However, ear-
lier algorithms such as [8, 7] are inefficient when there are
many data points in a high dimensional space. The problem
of skyline queries was introduced in the database context
in [1].

We can categorize the existing work into two major groups
– full-space skyline queries and subspace skyline queries.

Many efficient methods have been proposed for full-space
skyline queries which return the set of skyline points in a spe-
cific space. Some representative methods include a bitmap
method [18], a nearest neighbor (NN) algorithm [14], and
branch and bound skylines (BBS) method [15].

Recently, skyline computation has been extended to sub-
spaces. Subspace skyline queries return the skylines in all
subspaces [20, 17, 19, 16].

Most of the existing studies assume that only numeric
attributes present. Some recent studies [2, 3, 4, 6, 5, 11, 10]
consider partially-ordered attributes. For example, [2, 3]
transform each partially-ordered attribute into two integer
attributes. Then, the conventional skyline algorithms can be
applied. [4] studies estimating the cost of skyline operator
involving the partial ordered attribute.

Nevertheless, most existing work assumes that each at-
tribute has only one order: either a total or a partial order.
In this paper, we consider the scenarios where different users
may have different preferences on nominal attributes. That
is, more than one order need to be considered in nominal
attributes.

Some latest works consider skylines on nominal attributes.
[6, 5] study how to specify a query based on preferences on

nominal attributes. When preferences change, the query re-
sults can be incrementally refined. In [11], a user can specify
some values in nominal attributes as an equivalence class to
denote the same “importance” for those values. Whenever a
value v has a higher preference than a value v′ in the equiv-
alence class, v also has a higher preference than all the other
values in the equivalence class. [10] is an extension of [11].
In [10], whenever a user performs a query and obtains the
results, if s/he finds that there are a lot of irrelevant results,
s/he can modify the query by adding more conditions in the
query so that the result set is smaller to suit her/his need.

Clearly, all those studies still focus on skyline computa-
tion. In this paper, we study the problem of favorable facet
mining. The output is a representation for the facets. No
previous studies has addressed the problem studied here.

3. SKYLINES AND ORDERS
A skyline analysis involves multiple attributes. A user’s

preference on the values in an attribute can be modeled
by a partial order on the attribute. A partial order � is
a reflexive, asymmetric and transitive relation. A partial
order is also a total order if, for any two values u and v

in the domain, either u � v or v � u. We write u ≺ v if
u � v and u 6= v. A partial order also can be written as
R = {(u, v)|u � v}. u � v also can be written as (u, v) ∈ R.

By default, we consider points in an m-dimensional1 space
S = D1 ×· · ·×Dm. For each dimension Di, we assume that
there is a partial or total order Ri. For a point p, p.Di is the
projection on dimension Di. If (p.Di, q.Di) ∈ Ri, we also
write p.Di � q.Di or simply p �Di

q. We can omit Di if it
is clear from the context.

For points p and q, p dominates q, denoted by p ≺ q, if, for
any dimension Di ∈ S, p �Di

q, and there exists a dimension
Di0 ∈ S such that p ≺Di0

q. If p dominates q, then p is more
preferable than q according to the preference orders. The
dominance relation R can be viewed as the integration of
the preference partial orders on all dimensions. Thus, we
can write R = (R1, . . . , Rm). It is easy to see that the
dominance relation is a strict partial order.

Given a data set D containing n points in space S, a point
p ∈ D is in the skyline of D (i.e., a skyline point in D) if
p is not dominated by any points in D. The skyline of D,
denoted by SKY (D), is the set of skyline points in D.

In an application, there often exist some orders on the
dimensions that hold for all users. In our running example
as shown in Table 1, a lower price and a higher hotel-class
are always more preferred by customers. Even, for nominal
attributes, there may exist some universal partial orders.
For example, in a realty market, detached houses are often
more preferred than semi-detached houses. Hence, we as-
sume that we are given a template, which contains a partial
order for every dimension. The partial orders in the tem-
plate are applicable to all users. Each user can then express
his/her specific preference by refining the template. The
containment relation of orders captures the refinement.

For partial orders R and R′, R′ is a refinement of R,
denoted by R ⊆ R′, if for any (u, v) ∈ R, (u, v) ∈ R′.
Moreover, if R ⊆ R′ and R 6= R′, R is said to be weaker
than R′ and R′ be stronger than R.

Example 3 (Preference orders). Let R = {(T, M)}
1In this paper, we use the terms “attribute” and “dimension”
interchangeably.



{}(the template order)
SKY={a, c, e, f}

{(T, H)}
SKY={a, c, e, f}

{(T, M)}
SKY={a, c}

{(H, T)}
SKY={a, c, e, f}

{(H, M)}
SKY={a, c, e}

{(M, T)}
SKY={a, c, e, f}

{(M, H)}
SKY={a, c, e, f}

{(T, H), (T, M)}
SKY={a, c}

{(T, H), (M, H)}
SKY={a, c, e, f}

{(T, M), (H, M)}
SKY={a, c}

{(H, T), (H, M)}
SKY={a, c, e}

{(T, H), (T, M), (H, M)}
SKY={a, c}

{(T, H), (T, M), (M, H)}
SKY={a, c}

T

SKY={}

...

...

border for data point f

Figure 1: The lattice of refinement orders

and R′ = {(T, M), (H,M)}. Then, R ⊆ R′. That is, R′ is a
refinement of R by adding a preference H ≺ M . As R 6= R′,
R is weaker than R′ and R′ is stronger than R.

Property 1. For orders R = (R1, . . . , Rm) and R′ =
(R′

1, . . ., R′

m), R ⊆ R′ if and only if Ri ⊆ R′

i for 1 ≤ i ≤ m.

Now, we are ready to define the problem of favorable
facets formally.

Definition 1 (Favorable facets). If p is a skyline
point with respect to an order Rp, Rp is called a favorable
facet of p. Given a data point p and a template R, the
problem of mining favorable facets is to find all Rp that are
favorable facets of p and are refinements of R (i.e. R ⊆ Rp).

3.1 A Naı̈ve Method: Lattice Search
How can we compute the favorable facets of a point p?

Let us consider a näıve approach which computes all skyline
points with all possible refinements of a given template R.
After the computation, all refinements with respect to which
p is a skyline point are selected as the favorable facets of p.

All the possible refinements of a given template order form
a partially ordered set (poset) L where the ordering is gov-
erned by the refinement relationship, and the template order
serves as the unit(greatest) element in L. For example, all
possible orders on attribute hotel-group in our running ex-
ample form a poset as shown in Figure 1. In our running
example, the template order R on dimension hotel-group is
∅. That is, the template does not prefer any hotel-group to
another. Each node in the figure is associated with a re-
finement of the template. The skylines with respect to the
orders are also shown. We write the orders in the form of
a fully expanded transitive closure. For example, we do not
have a node labeled {(T, H), (H, M)} because its transitive
closure is {(T, H), (H,M), (T, M)}. The node at the top
corresponds to the template order. The node at the bottom
is a special node which corresponds to a zero(least) element
>, and with this node, the poset L forms a lattice. The
skyline with respect to > is defined to be ∅.

In the lattice, b is not a skyline point because it is dom-
inated by a on attributes price and hotel-class and it has
the same value as a on hotel-group. Interestingly, although
e and f are less preferable than a on attributes price and
hotel-class, a does not dominate e nor f since the template

does not prefer T to M . In fact, both e and f are skyline
points with respect to the template.

From Figure 1, we observe an important monotonicity
property.

Theorem 1 (Monotonicity). Given a data set D and
a template R, if p is not in the skyline with respect to R, then
p is not in the skyline with respect to any refinement R′ of
R.
Proof. Consider order R and points p and q such that
q � p with respect to R. Then, for any attribute D, we
have q �D p with respect to R. Let R′ be a refinement of
R where R ⊆ R′. Then, q �D p still holds in R′. That is,
q � p still holds in R′.

Theorem 1 indicates that, when the orders on dimensions
are strengthened, some skyline points may be disqualified.
However, a non-skyline point never gains the skyline mem-
bership due to a stronger order. This monotonic property
greatly helps in analyzing skylines with respect to various
orders.

When there are multiple nominal attributes, each attribute
has a corresponding lattice based on the template and re-
finements. The lattice for multiple attributes is the product
of the lattices for individual attributes. The properties for
the single nominal attribute carry forward to the product
lattice.

Note that this lattice is different from SKYCUBE [20]
because this lattice has the monotonic property which does
not generally exist in SKYCUBE.

3.2 Minimal Disqualifying Conditions (MDC)
Although the lattice helps us to mine favorable facets,

there can be many favorable facets for one query point. It is
difficult for users to comprehend a large number of favorable
facets. How can we represent the mining result in a concise
and meaningful way?

Example 4. In Table 1, with respect to what refinements
of the template R that f is in the skylines? The refinement
order lattice in Figure 1 can be used to find all favorable
facets.

f is in the skyline provided that none of the following two
conditions hold: T ≺ M (otherwise, a ≺ f) or H ≺ M

(otherwise c ≺ f). Thus, (T, M) and (H,M) are called the
minimal disqualifying conditions.

In the refinement order lattice, if an order Rx contains
neither T ≺ M nor H ≺ M , any order weaker than Rx does
not contain these conditions. On the other hand, if an order
Rx contains one of these two conditions, so does every or-
der stronger than Rx. Based on the monotonicity property,
there exists a border between the orders that qualify f as
a skyline point and those that disqualify f which partitions
the lattice into two parts: f is a skyline point in the upper
part and is not a skyline point in the lower part, as shown
in Figure 1.

Based on the observations in Example 4, to mine favorable
facets, we only need to compute the border. Particularly, we
can use the set of minimal disqualifying conditions.

Let R and R′ be two partial orders. R and R′ are conflict-
free if there exist no values u and v such that u 6= v, (u, v) ∈
R, and (v, u) ∈ R′. R ∪ R′ is still a partial order if R

and R′ are conflict-free. For example, if R = {(T, H)} and



R′ = {(T, M)}, R and R′ are conflict-free. If R = {(T, H)}
and R′ = {(H, T )}, R and R′ are not conflict-free.

Definition 2 (Minimal disqualifying condition).
For a skyline point p and a template order R, a partial order
R′ is called a minimal disqualifying condition (or MDC for
short) if (1) R′ ∩R = ∅, (2) R′ and R are conflict-free, (3) p

is not a skyline point with respect to R ∪ R′, and (4) there
exists no R′′ such that R′′ ⊂ R′ and p is not a skyline point
with respect to R ∪ R′′. The set of minimal disqualifying
conditions for p is denoted by MDC(p).

Example 5 (Minimal disqualifying condition). In
our running example, R′ = {(T, M)} and R′′ = {(H,M)}
are the minimal conditions that disqualify f as a skyline
point. They are the minimal disqualifying conditions of f .
That is, MDC(f) = {{(T, M)}, {(H,M)}}.

Based on the monotonicity in Theorem 1, we can show
that minimum disqualifying conditions can be used to sum-
marize favorable facets effectively.

Theorem 2 (MDC). For a point p and a template or-
der R, p is in the skyline with respect to a refinement R′ of
R if and only if (1) p is in the skyline with respect to R, and
(2) ∀Rx ∈ MDC(p), Rx 6⊆ R′.

4. ALGORITHMS
In this section, we develop efficient algorithms to compute

MDCs for favorable facet mining. We describe the MDC On-
the-fly method in Section 4.1 and the MDC Materialization
method in Section 4.2.

4.1 MDC-O: Computing MDC On-the-fly
For two skyline points p and q with respect to the template

order R = (R1, . . . , Rm), two cases may arise.
Case 1: There is an attribute Di0 such that p ≺Di0

q.
Then, q never dominates p in any refinement of R, and thus
cannot lead to a minimal disqualifying condition for p. For
example, in Table 1, c never dominates a because the Price
value of a is smaller than that of c.

Case 2: There does not exist any attribute Di0 such that
p ≺Di0

q. That is, p never dominates q on any dimension.
Then, q may dominate p with respect to some refinements of
R, and thus may lead to a minimal disqualifying condition
of p.

Formally, q quasi-dominates p if (p.Di, q.Di) 6∈ Ri for 1 ≤
i ≤ m. For example, in Table 1, a quasi-dominates f because
a has a lower price and a higher hotel-class than f . The only
reason that a does not dominate f in the template is that
T does not dominate M . As shown in Example 5, in a
refinement R′ = {(T, M)} of R, a dominates f . Thus, R′ is
a minimal disqualifying condition for f .

Given a template order R = (R1, . . . , Rm), if q quasi-
dominates p, the minimum condition that q dominates p

is Rq→p = {(q.Di, p.Di)|q.Di 6= p.Di and (q.Di, p.Di) 6∈
Ri for 1 ≤ i ≤ m}. It is easy to see that q dominates p

in (R∪Rq→p). Rq→p strengthens the template in a minimal
way such that q dominates p.

Based on the above idea, we have the MDC-O (for MDC
on-the-fly) algorithm as shown in Algorithm 1 to compute
the minimal disqualifying conditions of a point p as follows.
Let R be the template order. We assume that in a pre-
processing step the skyline SKY (R) has been computed.

Algorithm 1 MDC On-the-fly Method MDC-O(p, D, R)

Input: a data point p, data set D, order template R, and
the skyline with respect to R SKY (R)

Output: the minimal disqualifying conditions of p

1: suppose that the skyline SKY (R) is {p1, . . . , pk}
2: if p 6∈ SKY (R) then

3: return that p cannot be a skyline point with respect
to any refinement of R

4: else

5: set MDC(p) = ∅
6: for j := 1 to k do

7: if p 6= pj and pj quasi-dominates p then

8: if MDC(p) does not have a condition weaker
than Rpj→p then

9: add Rpj→p to MDC(p) and remove any
stronger conditions in MDC(p)

10: return MDC(p)

Let SKY (R) = {p1, . . . , pk}. We check whether p is in
SKY (R). If no, we report to the user that p is not in the
skyline with respect to any refinement of R. Otherwise, we
initialize MDC(p) to ∅. For each pj where 1 ≤ j ≤ k and
pj 6= p such that pj quasi-dominates p, if MDC(p) does
not have a condition weaker than Rpj→p, then we insert
Rpj→p into MDC(p) and remove any stronger conditions in
MDC(p).

Here, if there are two disqualifying conditions and one
is stronger than the other, we store the weaker one. Since
both conditions disqualify a data point as a skyline point,
the stronger one is redundant and can be removed.

The algorithm assumes a pre-processing step for comput-
ing the skyline points with respect to R. One can adopt any
existing algorithm (e.g., [2, 3]) for computing the skyline for
partially ordered domains.

Let us analyze the complexity of MDC-O. We have to
check whether p ∈ SKY (R), which takes O(k) time, where
k is the number of skyline points with respect to R. For each
skyline point pj quasi-dominating p, the minimum condition
is computed with cost O(m′), where m′ is the number of
nominal dimensions. The minimum conditions are inserted
into the set of minimal disqualifying conditions if the cur-
rent set does not have a weaker condition. The insertion
takes cost O(l), where l is the maximum number of minimal
disqualifying conditions of a skyline point. Thus, the overall
complexity is O((m′ + l)k).

4.2 MDC-M: A Materialization Method
When there are many skyline points in SKY (R), the

MDC-O algorithm can be costly and may not return the
MDCs in real time. In some applications, online response
may be required. For example, a salesperson may want to
check online whether a product is in the skyline with respect
to a customer’s preference.

In order to meet the online response requirement, one fea-
sible solution is to materialize all minimal disqualifying con-
ditions of all data points in the data set. We propose an
algorithm as shown in Algorithm 2 for this purpose.

The algorithm consists of two parts. The first part com-
putes the skyline points with respect to R. The second part
finds all MDCs.

Let us analyze the complexity of the second part of our al-
gorithm. Since we have to check every pair of skyline points



Algorithm 2 MDC Materialization Method MDC-

M(D, R)

Input: data set D and order template R

Output: the set of skyline points with respect to R and
their minimal disqualifying conditions

1: compute the skyline with respect to R, suppose the sky-
line SKY (R) is {p1, . . . , pk}

2: set MDC(pi) = ∅ for (1 ≤ i ≤ k)
3: for i := 1 to (k − 1) do

4: for j := (i + 1) to k do

5: if pi quasi-dominates pj then

6: if MDC(pj) does not have a condition weaker
than Rpi→pj then

7: add Rpi→pj to MDC(pj) and remove any
stronger conditions in MDC(pj)

8: if pj quasi-dominates pi then

9: if MDC(pi) does not have a condition weaker
than Rpj→pi then

10: add Rpj→pi to MDC(pi) and remove any
stronger conditions in MDC(pi)

11: return MDC

p and q, and derive the corresponding minimal disqualifying
conditions for p over q and for q over p, the overall complex-
ity is O((m′ + l)k2). However, the lookup of the MDC for a
given point p will be very fast. If an array is used to store
all MDCs, it takes constant time or O(1) time to reach the
required MDC.

Example 6 (The MDC Materialization Method).
Let us illustrate Algorithm 2 using Table 5, which is an ex-
tension of Table 1 by adding one more nominal attribute,
airline. Suppose that the template R on hotel-group and
airline are set to ∅.

For the first step, we compute the skyline with respect
to R, which is { a, c, d, e, f}. We can remove data point b

because b is not in the skyline with respect to R.
Then, we check whether any skyline point quasi-dominates

another. We compare a and c first, which do not quasi-
dominate each other. Then, we compare a and d. a quasi-
dominates d. The minimum condition that a dominates d

Ra→d = {(T, H), (G, R)}. Similarly, we compare a and e

and obtain Ra→e = {(T, M), (G, R)}. We compare a and
f and obtain Ra→f = {(T, M), (G, W )}. The MDC of each
data point after a is compared with all other points is shown
in Table 6.

In the second iteration, we compare c with other points.
First, we compare c and d. c quasi-dominates d. The mini-
mum condition that c dominates d Rc→d = {(G, R)}. From
Table 6, the current MDC of d contains only {(T, H), (G, R)},
which is stronger than {(G, R)}. Thus, we insert {(G, R)}
and remove {(T, H), (G, R)}. Similarly, we compare c with
e and f . We obtain the MDC as shown in Table 7 after
processing c.

Similarly, we continue with the remaining iterations. It
can be verified that the final MDCs are as shown in Table 7.

4.3 Indexing for Speed-up
When the given template R consists of a set T of totally

ordered attributes and a set N of nominal attributes with
no total order, we can make use of an indexing structure

Package
ID

Price Hotel-class Hotel group Airline

a 1600 4 T (Tulips) G (Gonna)
b 2400 1 T (Tulips) G (Gonna)
c 3000 5 H (Horizon) G (Gonna)
d 3600 4 H (Horizon) R (Redish)
e 2400 2 M (Mozilla) R (Redish)
f 3000 3 M (Mozilla) W (Wings)

Table 5: A table which contains a set of packages

with two nominal attributes.

Package MDC
a -
c -
d {(T, H), (G, R)}
e {(T, M), (G, R)}
f {(T, M), (G, W)}

Table 6: MDCs of points after comparing a to other

points.

Package MDC
a -
c -
d {(G, R)}
e {(T, M), (G, R)}
f {(T, M), (G, W)}, {(H, M), (G, W)}

Table 7: MDCs of points after comparing c to other

points.

for speeding up the process for either the on-the-fly or the
materialization approach. The idea is based on the following
lemma.

Lemma 1. Given a template with a set T of totally or-
dered attributes. Given a point p, if q quasi-dominates p,
then for each attribute Di in T , q ≺Di

p.

In either MDC-O or MDC-M, the first step is to compute
the skyline SKY (R). An R-tree [12] can be built with di-
mensions only for the totally ordered attributes T . Points in
the skyline set SKY (R) are inserted into this R-tree based
on the attributes in T . Then, to find points that quasi-
dominates p, a range search is conducted on the R-tree with
a range of <= p.Di for each dimension Di in the R-tree. The
set of points Q returned by the range search is a superset of
the set of points that quasi-dominate p. We then examine
the nominal attributes in N of each point q in Q. First we
check whether (q.Di, p.Di) for each Di ∈ N is conflict-free
with R. If there is any conflict with R, point q is discarded.
Otherwise, the minimum condition that q dominates p is
given by Rq→p = {(q.Di, p.Di)|Di ∈ N ∧ q.Di 6= p.Di}.
We then try to insert Rq→p in the same manner as in MDC-
O and MDC-M.

With the R-tree search method above, the time com-
plexity for the MDC computation in MDC-O will become
O((m + l)r), where O(r) is cost of a range search in the R-
tree. For the materialization algorithm MDC-M, the time
complexity for computing the MDCs for all points becomes
O((m + 1)kr). The complexity for looking up the MDC of
a particular point with MDC-M remains O(1).



Parameter Default value
No. of tuples 500K
No. of numeric dimensions 3
No. of nominal dimensions 1
No. of values in a nominal dimension 20
Zipfian parameter θ 1

Table 8: Default values

5. EMPIRICAL STUDY
We have conducted extensive experiments on a Pentium

IV 3.2GHz PC with 2GB memory, on a Linux platform.
The algorithms were implemented in C/C++. In our exper-
iments, we adopted the data set generator released by the
authors of [1]. As this data set generates only numeric at-
tributes, we modified the program to generate both numeric
attributes and nominal attributes. The numeric attributes
are totally ordered and are generated as in [1]. The nominal
attributes are generated according to a Zipfian distribution
[13]. By default, we set the Zipfian parameter θ = 1. The
default values of other experimental parameters are shown
in Table 8. Note that the total number of dimensions is
equal to the number of numeric dimensions plus the number
of nominal dimensions. By default, we adopted a template
where the most frequent value in a nominal dimension has a
higher preference than all other values. For R-tree indexing,
each node occupies one page size of 4Kbytes. In the default
settings, with this page size, the maximum branching factor
is 130, and the minimum number of children is set to 65.

We denote the on-the-fly method and the materialization
method without any indexing by MDC-O and MDC-M , re-
spectively. We denote the two methods with R-tree indexing
[12] by MDC-O(I) and MDC-M(I), respectively.

We evaluate the performance of the algorithms in terms of
(1) the memory requirements, (2) pre-processing time, and
(3) the execution time of a favorable facet search, which
finds the MDC for a given data point. We also evaluate the
algorithms in term of the proportion of the skyline points
with respect to the template and the average size of MDCs
of each data point stored. For pre-processing, MDC-M and
MDC-M(I) construct a materialized MDC set, and MDC-
O(I) and MDC-M(I) construct an R-tree, and all methods
require the computation of the skyline set for template R,
SKY (R). MDC-M and MDC-M(I) stores a materialized
MDC set and MDC-O(I) stores an R-tree for the search.
The favorable facet search time of MDC-M and MDC-
M(I) is the lookup time in the materialized MDCs while
that of MDC-O is the execution time of Algorithm 1 and
that of MDC-O(I) is the time of an on-the-fly search using
the R-tree.

For measurements (1) and (2), each experiment was con-
ducted 100 times and the average of the results was reported.
For measurement (3), in each experiment, we randomly se-
lected 100 data points from the data set for the favorable
facet search, and the average search time is reported.

5.1 Synthetic Data Sets
Three types of data sets are generated as described in [1]:

(1) independent data sets, (2) correlated data sets and (3)
anti-correlated data sets. The detailed description of these
data sets can be found in [1]. For the interest of space, we
only show the experimental results for the anti-correlated
data sets. The results for the independent data sets and
the correlated data sets are similar in the trend but their

execution times are much shorter.

5.1.1 Comparison with the Naı̈ve Method
We compare MDC-O and MDC-M methods with the

näıve method (Naive) described in Section 3.1. We use
the default values except that the cardinality is equal to 5
because the näıve method ran out of storage when the car-
dinality is above 5. In the default data set, the storage size
and the pre-processing time of Naive are 9MB and 954,801s,
respectively. In comparison MDC-M requires 22.6KB for
storage and 49s for pre-processing. Consider the favorable
facet search time. For the materialized methods, on aver-
age, MDC-M requires 0.001s and Naive requires 22s for
the search. MDC-M is much faster than the näıve method
because it returns the concise MDC results. Thus, the MDC
methods outperform the näıve method. In the following, we
focus on the MDC methods.

5.1.2 Effect of the Number of Dimensions
We fixed the number of numeric attributes to 3 and varied

the number of nominal attributes from 1 to 4. Figure 2(a)
shows that the R-tree sizes increase with the number of nom-
inal attributes.The increase in materialization size is due to
the increase in the number of conditions in the MDC for
each data point. When the number of nominal attributes
increases, the storage size of the materialized MDC set sur-
passes that of the R-tree indexing. This is because the MDC
sizes increase very rapidly with the number of nominal at-
tribute while the R-tree sizes are less sensitive to this factor.

As shown in Figure 2(b), the pre-processing times of MDC-
M , MDC-M(I) and MDC-O(I) increase with the number
of nominal attributes. This is because more nominal at-
tributes need to be compared in order to generate a minimal
disqualifying condition for each data point when the num-
ber of nominal attributes increases. The pre-processing time
of MDC-O(I) is smaller than MDC-M(I) because MDC-
M(I) involves the additional step of MDC materialization.
MDC-M is the slowest because it does not benefit from any
speedup by the indexing technique. MDC-O is the fastest
because it only computes the skyline set SKY (R).

From Figure 2(c), the favorable facet search times for
MDC-M and MDC-M(I) are close to zero since it is a
simple lookup of the materialized MDC set. With increase
in the number of nomimal attributes, the search time in-
creases for MDC-O(I) since there are more skyline points
and the index size is larger. MDC-O needs to find the
MDCs of a point from the skyline set SKY (R). When there
are more nominal dimensions, it takes more time. MDC-
M and MDC-M(I) are much faster than MDC-O because
they pre-computed the result. It is interesting to see that
MDC-O(I) is very fast because MDC-O(I) builds an index
which speeds up the search. In Figure 2(d), as we expected,
the number of skyline points increases when the number of
nominal attributes increases. This is because there is higher
chance that a data point is not dominated by other data
points. Besides, it is trivial that the average size of MDCs
among all points stored increases when there are more nom-
inal attributes.

The effects of variations in the number of numeric at-
tributes have been studied and the results are shown in Fig-
ure 3 where we fixed the number of nominal attributes to
1 and varied the number of numeric attributes from 2 to 5.
As expected, both the execution time and the storage size



 0

 10

 20

 30

 40

 50

 4  5  6  7

S
to

ra
g

e
 S

iz
e

 (
M

b
yt

e
s)

No. of Dimensions

DB Size
materialized MDC set

R-tree

 0

 500

 1000

 1500

 2000

 4  5  6  7

P
re

p
ro

ce
ss

in
g

 T
im

e
 (

s)

No. of Dimensions

MDC-O
MDC-M

MDC-O(I)
MDC-M(I)

 0

 20

 40

 60

 80

 100

 4  5  6  7F
a

vo
ra

b
le

 F
a

ce
t 

S
e

a
rc

h
 T

im
e

 (
m

s)

No. of Dimensions

MDC-O
MDC-M, MDC-M(I)

MDC-O(I)

 0

 10

 20

 30

 40

 50

 3  4  5  6  7  8
 0

 250

 500

 750

 1000

 1250

P
ro

p
. 

o
f 

S
ky

lin
e

 P
o

in
ts

 (
%

)

A
vg

. 
M

D
C

 S
iz

e
 (

B
yt

e
s)

No. of Dimensions

Prop.
Average Size

(a) (b) (c) (d)

Figure 2: Scalability with respect to dimensionality where the number of numeric attributes is fixed to be 3
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Figure 3: Scalability with respect to dimensionality where the number of nominal attributes is fixed to be 1
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Figure 4: Scalability with respect to database size
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Figure 5: Scalability with respect to template size
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Figure 6: Scalability with respect to cardinality of nominal attribute



increase with the number of numeric dimensions. Besides,
we observe that the average size of MDCs decreases when
the number of numeric attributes increase. When there are
more numeric attributes, there is higher chance that a data
point the data set is not quasi-dominated by other points.
It is more likely that the data point is a skyline point with
respect to any refinement of the template and thus has no
MDCs stored. Thus, the average size of MDCs decreases.

5.1.3 Effect of the Number of Tuples
In this experiment, the number of tuples are varied from

250K to 1,000K. Figure 4(a) shows that the storage sizes
of all algorithms increase with the number of tuples. When
there are more tuples, SKY (R) increases in size which leads
to bigger R-tree and increase in the materialization size.
The pre-processing time of all algorithms except MDC-O
increases as shown in Figure 4(b), because more tuples are
processed. The search time of MDC-O increases with the
data size. In Figure 4(d), the proportion of skyline points
decreases with the number of tuples because there is a higher
chance that a data point is dominated by another data point
when there are more data points. The average size of MDCs
is not affected because it is mainly dependent on the nominal
values.

5.1.4 Effect of the Template Size
We next studied the effect of different template sizes. Let

vc be the most frequent value in the nominal attribute. We
started the experiment with a template that was an empty
set. Then, one binary order was added to the template at
a time. The binary order to be added was vc ≺ vi, where
vi was a value in the nominal attribute, vi 6= vc, and vi

was not in the current template. We observe that there
is no significant effect of the template size in Figures 5(a),
(b), (c) and (d). This is because the storage size, the pre-
processing time and the search time are mainly dependent
on the size of SKY (R), and when the template contains
more orders, the number of skyline points decreases slightly.
This is because the more order pairs in the template creates
more chance of domination among the tuples. The average
MDC size decreases also since MDC stores the conditions
which do not appear in the template.

Let us call the above set of templates (A). We have also
conducted the experiments with two other kinds of tem-
plates: (B) the templates where the least frequent value has
a higher preference than the other values and (C) the tem-
plates in which the “median” frequent value has a higher
preference than the other values, where the “median” fre-
quent value is the value ranked in the middle of the values.
The storage size for the MDC materialization is the small-
est when we apply the template containing the least fre-
quent value with a higher preference. This is because there
is less chance for the data points with the lowest preference
(on nominal attributes) to be quasi-dominated by the data
points with the higher preference (on nominal attributes).
As there are a lot of data points with the lower preference
and we now do not need to store MDCs related to these data
points, the storage size is thus smaller.

5.1.5 Effect of the Cardinality of Nominal Attributes
Figure 6 shows the results with the variation of the car-

dinality of a nominal attribute. In Figure 6(a), the storage
sizes of the MDC materializations increase with the cardi-

nality. As there are more values in the nominal attribute,
the number of the minimal disqualifying conditions for a
data point is greater, yielding the increase in the storage
size of the MDCs. Since there are more values in a nominal
attribute, the R-tree sizes increase. For similar reasons, in
Figure 6(b), the pre-processing times of MDC-M , MDC-
M(I) and MDC-O(I) increase with cardinality. The pre-
processing time of MDC-O remains unchanged. The favor-
able facet search times of all algorithms (Figure 6(c)) remain
nearly the same because the cardinality of nominal attribute
does not affect the search significantly. In Figure 6(d), the
proportion of skyline points increases with the cardinality
of nominal attribute. This is because there is higher chance
that a data point is not dominated by others when the car-
dinality is larger. It is trivial that the average MDC size
increases with the cardinality of nominal attribute.

5.1.6 Effect of the Zipfian Parameter
We have also conducted experiments with variation of the

Zipfian parameter θ. When θ increases, the storage sizes of
all algorithms decrease. When θ is large, there are more tu-
ples with the frequent value in the nominal attribute. Thus,
there is a higher chance that these tuples quasi-dominate
other tuples, yielding disqualifying conditions. However, the
template contains a binary order where the most frequent
value has a higher preference than other values. Thus, these
disqualifying conditions are not minimal and are not stored.
The pre-processing time and the favorable facet search time
decreases when θ increases. The reasons are similar. The
number of skyline points increases when θ increases. This is
because there is higher chance that a tuple is not dominated
by others when θ is larger. The average MDC size remains
nearly the same since θ does not affect the average MDC
size significantly.
Conclusion: Comparing the on-the-fly method and the ma-
terialization method, there is a trade-off between pre-processing
time plus storage and the search time. The R-tree indexing
helps to greatly reduce the search time for the on-the-fly
method on the expenses of more pre-processing and more
storage. The R-tree also reduces the pre-processing time of
the materialization method in most cases.

5.2 Real Data Sets
To demonstrate the usefulness of our methods, we ran our

algorithms on two real data sets.

5.2.1 Nursery Data Set
The first set is Nursery, which is publicly available from

the UCIrvine Machine Learning Repository2. Nursery was
derived from a hierarchical decision model originally de-
veloped to rank applications for nursery schools in Ljubl-
jana and Slovenia where the rejected applications frequently
needed an objective explanation. Each tuple is an applica-
tion to the nursery schools. Semantically, if an application
is in the skyline, it can be considered a good candidate. Dif-
ferent nursery schools may have different order preferences
on the nominal attributes.

In the Nursery data set, there are 12,960 instances and 8
attributes. We transformed 6 attributes (parents, has nurs,
housing, finance, social and health) to numeric attributes be-
cause these values are totally ordered. For example, the “so-
cial” attribute has three possible values: non-problematic,

2http://kdd.ics.uci.edu/



slightly problematic and problematic, we matched them to
the numbers 0, 1 and 2, respectively. The remaining two
attributes are form of the family (e.g. incomplete family
and foster family) and the number of children, since there is
no trivial order on their values, they would be our nominal
attributes. (Note that although the number of children is
a numeric attribute, it is not clear whether a family with
one child is “better” than a family with two children.) The
cardinality of both nominal attributes are equal to 4. We
have adopted the default settings for the remaining settings
in this experiment. The results in the performance are sim-
ilar to those for the synthetic data sets. The storage size
of the materialized MDC set is 91KB. The pre-processing
times of MDC-O(I), MDC-M and MDC-M(I) are 92s,
94s and 60s, respectively. The storage size of the R-tree
index is 902KBytes. The favorable facet search time of the
materialization methods and MDC-O(I) is negligibly small.

5.2.2 Automobile Data Set
Our second real data set is Automobile, also adopted from

the UCIrvine Machine Learning Repository. Our goal is
to study the utility of favorable facets. We have chosen
four attributes in the experiments, namely “symboling”,
“normalized-losses”, “price” and “make”. Attribute “sym-
boling” is the assigned numeric insurance risk rating. The
smaller the value is, the safer the vehicle is. Attribute
“normalized-losses” is the relative average loss payment per
insured vehicle year. If the value is smaller, the loss will be
smaller. Hence, the only nominal attribute is “make”, rep-
resenting the car brand names. There were only 205 tuples.
The computation times were negligibly small. We are in-
terested to see the meaning and utilization of the favorable
facets for different data points. Three car brand names are
chosen for our study, namely Honda, Mitsubishi and Toyota.
We would find the disqualifying condition for 3 data points
that belong to these three brand names, respectively.

1. Our first selected data was a Honda car which was a
skyline point in some orders. The disqualifying condi-
tion is the following Make order Toyota ≺ Honda.

2. The second data was a Mitsubishi car and the minimal
disqualifying conditions were the following Make order
Honda ≺ Mitsubishi or Toyota ≺ Mitsubishi.

3. Finally, we chose a Toyota car and it gave an empty
disqualifying condition. The reason was that this car
model had the lowest price among all cars in the database.
So, it was in the skyline set with respect to any order.

From the above results, a salesperson for the first car
should not try to promote the car to a customer that prefers
Toyota to Honda, but he may promote it to a customer who
prefers Mitsubishi to Honda, since the car has some other
advantage that can be attractive. The second car should be
promoted to someone who prefers Mitsubishi. The third car
can be promoted to any customer.

6. CONCLUSION
In this paper, we identify and tackle an interesting data

mining problem, finding favorable facets, which has not been
studied before. Given a set of points in a multidimensional
space such as a collection of products with attributes like
brand, type, color and price, for a specific target point we

want to discover with respect to which combinations of or-
ders (e.g., customer preferences) on the nominal attributes
the given point is not dominated by any other points. We
consider both the effectiveness and the efficiency of the min-
ing. We propose the notion of minimal disqualifying condi-
tion (MDC) which is effective in summarizing the favorable
facets. We develop efficient algorithms for favorable facet
mining for different application scenarios. An extensive per-
formance study using both synthetic and real data sets is
reported to verify their effectiveness and efficiency.

As future work, dominance analysis with respect to dy-
namic data and ordering is an interesting topic.
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