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Abstract

Recently, privacy preserving data publishing has attracted significant interest in research.

Most of the existing studies focus on only the situations where the data in question is published

using one quasi-identifier. However, in a few important applications, a practical demand is to

publish a data set on multiple quasi-identifiers for multiple users simultaneously, which poses

several challenges. How can we generate one anonymized version of the data so that the privacy

preservation requirement like k-anonymity is satisfied for all users? Moreover, how can we reduce

the information loss as much as possible while the privacy preservation requirements are met?

In this paper, we identify and tackle the novel problem of privacy preserving publishing on

multiple quasi-identifiers. A näıve solution of respectively publishing multiple versions for differ-

ent quasi-identifiers unfortunately suffers from the possibility that those releases can be joined

to intrude the privacy. Interestingly, we show that it is possible to generate only one anonymized

table to satisfy the k-anonymity on all quasi-identifiers for all users without significant informa-

tion loss. We systematically develop an effective method for privacy preserving publishing for

multiple users, and report an empirical study using real data to verify the feasibility and the

effectiveness of our method.

1 Introduction

Micro-data, which is actual data collected instead of statistical summaries, is particularly useful

in many data analysis applications. However, privacy is a serious concern in sharing micro-data.

To address the concern, a large amount of research has been focused on privacy-preserving data

publishing. Several models such as k-anonymity [35, 37, 38] and l-diversity [27] are proposed, and

a few effective and efficient methods such as [23, 24, 46, 45, 8] are designed.

Most of the existing studies focus on only the situations where a micro-data set in question is

published using one quasi-identifier. However, in a few important applications, a practical demand
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Table 1: A set of traffic accident records.

Occupation age vehicle postcode faulty

Dentist 30 Red Truck 31043 No

Family doctor 30 White Sedan 31043 Yes

Banker 30 Green Sedan 31043 No

Mortgage broker 30 Black Truck 31043 No

is to publish a data set simultaneously on multiple quasi-identifiers for users carrying different

background knowledge.

For example, the traffic management board of a region collects records of road accidents for

research and analysis. Such records are interesting to auto insurance companies which can use such

information to analyze the risk of their business and define their policies accordingly. Simultane-

ously, such traffic accident records are also interesting to the human resource department in the

government since they can be used to analyze the impact of accidents on working groups. There-

fore, the traffic management board may want to release the data to multiple users. Importantly,

different users may carry different background knowledge. For example, an auto insurance company

has the vehicle registration records of its customers, and the human resource department has the

resident records in the region. Thus, the traffic management board needs to protect the privacy

against attacks using different background knowledge.

Releasing a data set to multiple users leads to serious concerns on privacy preservation. Even

though we ensure that the release to each user satisfies the corresponding privacy-preservation

requirement such as k-anonymity, privacy still can be disclosed if collusion happens.

Example 1 (Multiple releases are unsafe). In the traffic accident database, suppose each record

has five attributes, namely occupation, age, vehicle-type, postcode, and faulty. Consider the

tuples in Table 1.

The data set is to be released respectively to an auto insurance company and the human resource

department of the government. The auto insurance company may join the traffic accident records

with the vehicle registration records on attributes age, vehicle-type, and postcode to find out

whether its customers were at fault in some accidents. Typically, the company does not have the

occupation information of its customers, as such information is not required in applying for auto

insurance. Therefore, to protect privacy, the traffic management board has to anonymize the traffic

accident records on attributes age, vehicle-type, and postcode before the data can be released

to the auto insurance company. Suppose 2-anonymity is required. Table 2 shows a 2-anonymous

release of the records with respect to quasi-identifier (age, vehicle-type, postcode).

Simultaneously, the human resource department may join the traffic accident records with the

resident records on attributes occupation, age, and postcode to find out which residents were

faulty in some accidents. Therefore, to protect privacy, the traffic management board needs to

anonymize the traffic accident records on attributes occupation, age, and postcode. Note that

vehicle-type is not part of the anonymization, because the human resource department typically

does not have information about residents’ vehicle types. Again, suppose 2-anonymity is required.
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Table 2: A 2-anonymous release of the traffic accident records in Table 1 with respect to quasi-

identifier (age, vehicle-type, and postcode).

Occupation age vehicle postcode faulty

Dentist 30 Truck 31043 No

Family doctor 30 Sedan 31043 Yes

Banker 30 Sedan 31043 No

Mortgage broker 30 Truck 31043 No

Table 3: A 2-anonymous release of the traffic accident records in Table 1 with respect to quasi-

identifier (occupation, age, and postcode).

Occupation age vehicle postcode faulty

Medical 30 Red Truck 31043 No

Medical 30 White Sedan 31043 Yes

Finance 30 Green Sedan 31043 No

Finance 30 Black Truck 31043 No

Table 3 shows a 2-anonymous release of the records with respect to quasi-identifier (occupation,

age, postcode).

Nevertheless, the two 2-anonymous tables are insufficient to protect privacy when collusion

happens. Suppose an adversary obtains both releases in Tables 2 and 3. By comparing the two

tables, the adversary immediately knows that a family doctor of age 30 driving a white Sedan living

in area 31043 was faulty in an accident. The victim may be easily re-identified by both the vehicle

registration record and the human resource resident record.

As shown in Example 1, generating a k-anonymous release for each user does not automatically

guarantee the k-anonymity for all data entries when collusion among users happens. In Example 1,

the loophole is serious since the attack can be made even without sharing any background knowledge

(i.e., vehicle registration records and resident records) from the two users. Instead, any adversary

obtaining both releases can intrude the privacy.

A näıve method is to anonymize the table on the union of the quasi-identifiers of all users.

In the context of Example 1, we can anonymize tuples on the union quasi-identifier (occupation,

age, vehicle-type, postcode). However, anonymization on the union quasi-identifier, which may

contain much more attributes than any individual quasi-identifier, may lead to heavy information

loss.

Generally, privacy preserving publishing for multiple users poses several technical challenges

in both data publishing models and anonymization methods. How can we generate one release of

the data so that the privacy preservation requirement like k-anonymity is satisfied for all users?

Moreover, how can we reduce information loss as much as possible while the privacy preservation

requirements are met?

In this paper, we tackle the problem and make the following contributions. First, we identify the

novel problem of privacy preserving publishing on multiple quasi-identifiers. Second, we indicate
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that it is possible to generate only one anonymized table to satisfy the k-anonymity on all quasi-

identifiers for all users without significant information loss. Our method is substantially better

than the näıve method which conducts anonymization using the union quasi-identifier. Third, we

systematically develop an effective method to generate such an anonymized table for multiple users.

Last, we report an empirical study using real data sets to verify the feasibility and the effectiveness

of our method.

The rest of the paper is organized as follows. In Section 2, we define the problem of privacy

preserving publishing on multiple quasi-identifiers, and present an important observation. We

review the related work and compare with our study in Section 3. An effective solution for the

basic case of 2 quasi-identifiers is developed in Section 4. In Section 5, we discuss how the basic case

can be extended to the general case where more than 2 quasi-identifiers exist and how to protect

privacy when collusion among users may happen. An empirical study is reported in Section 6. We

discuss the possible extensions and conclude the paper in Section 7.

2 Problem Definition

In this section, we first recall the essential notions of privacy preserving publishing and the k-

anonymity mechanism. Then, we define the problem of privacy preserving publishing on multiple

quasi-identifiers, and present an important observation.

2.1 K-Anonymity

Consider a micro-data table T = (A1, . . . , An), where a record in the table represents the data for

one individual. An external table E = (B1, . . . , Bm) which also contains records of individuals can

be used to model the background knowledge of a user. A re-identification attack to the privacy of

individuals in table T is that the user can join tables T and E on the common attributes of the

two tables so that individuals in T may be re-identified. The set of common attributes between

tables T and E, i.e., S = T ∩ E, is called the quasi-identifier (or QID for short) with respect to

the re-identification attack using E.

To protect privacy against re-identification attacks, the owner of T may change the values of

tuples in T on attributes in QID S so that at least k tuples look the same on QID S. Then, each

individual cannot be re-identified with a probability over 1
k
. Technically, an anonymization is a

function f on T such that for each tuple t ∈ T , f(t) is a tuple where some values of t may be

changed.

Suppose a table T is anonymized as T ′, i.e., T ′ = {f(t)|t ∈ T}. For a tuple t ∈ T ′, the set of

tuples t′ ∈ T ′ which have the same values as t on all attributes in S form an equivalence class (EC

for short) on S, i.e., E(t) = {t′ ∈ T ′|∀A ∈ S, t′[A] = t[A]}. Clearly, t ∈ E(t). T ′ is k-anonymous

(k > 0) on QID S if for each tuple t ∈ T ′, ‖E(t)‖ ≥ k.

A general representation of anonymized tuples [48, 18] is to generalize an attribute value to a

range. For example, if we want to make k tuples into an EC and the values of those tuples on

attribute age range from 20 to 30, we can generalize the values to a range [20, 30]. Apparently, the

larger the range, the more information loss is introduced by the anonymization.

Some methods have been developed to measure the information loss in anonymization. For
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example, the discernability measure [8] assigns to each tuple t a penalty based on the size of the

equivalence class that t is generalized, i.e., the number of tuples equivalent to t on the quasi-

identifier. That is, CDM =
∑

E∈group-bys on quasi-identifier ‖E‖2.

In this paper, we adopt the uncertainty penalty measure of information loss which is also used

in [48, 18].

Definition 1 (Uncertainty penalty). Suppose table T is anonymized to T ′. In the domain of each

attribute in T , suppose there exists a global order on all possible values in the domain. If a tuple t

in T ′ has range [x, y] on attribute A, then the uncertainty penalty in t on A is

lossA(t) =
‖y − x‖

‖A‖
,

where

‖A‖ = max
t′∈T

{t′[A]} − mint′∈T {t
′[A]}

is the range of attribute A in T . For tuple t, the uncertainty penalty in t is loss(t) =
∑

A∈S lossA(t), where S is the QID.

The uncertainty penalty in T ′ is
∑

t∈T ′ loss(t).

Given a table T and a QID S, the problem of k-anonymization is to generalize T to a k-

anonymous table T ′ such that the information loss is minimized. The k-anonymization problem

has been shown NP-hard [29] in general. Several heuristic methods have been proposed. We will

review some representative ones in Section 3.

2.2 Privacy Preserving Publishing for Multiple Users

In this paper, we consider the situation where a micro-data table T = (A1, . . . , An) needs to be

anonymized and released for a group of users U1, . . . , Um. For each user Ui (1 ≤ i ≤ m), we assume

that Ui can issue re-identification attacks using some background knowledge. Technically, we

assume that the background knowledge that Ui has can be used to attack the privacy of individuals

in T on a quasi-identifier Si ⊆ T . Thus, we need to make sure that the release for Ui is k-anonymous

with respect to Si.

Due to the problem in generating different releases for different users as analyzed in Example 1,

we are interested in generating only one anonymized version T ′ such that T ′ is k-anonymous with

respect to all Si (1 ≤ i ≤ m). The problem of privacy preserving publishing for multiple users is to

generate the k-anonymous table T ′ so that the k-anonymity requirement for each user is satisfied,

and the information loss is as small as possible.

A näıve approach is to generate a table T ′ such that T ′ is k-anonymous with respect to the

union QID S = ∪m
i=1Si. Apparently, if T ′ is k-anonymous with respect to S, T ′ is also k-anonymous

with respect to any individual Si. We call this method the union QID method.

As analyzed in Section 1, the union QID may contain many more attributes than any individual

QID, and thus the union QID method may introduce substantial information loss. Interestingly,

we can show that the union QID may not be necessary to ensure k-anonymity with respect to all

individual QIDs.
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Table 4: An example of constructing R1 in the proof of Theorem 1.
A B C

a1 b1 c1

a1 b1 c2

a1 b2 c1

a1 b2 c2

a2 b1 c1

a2 b1 c2

a2 b2 c1

a2 b2 c2

Theorem 1 (Union QID). Let R = (A1, . . . , An) be a schema of micro-data where the domain of

each attribute has the cardinality of at least 2. Let S1, . . . , Sm be m QIDs and S = ∪m
i=1Si be the

union QID. If there does not exist Si0 (1 ≤ i0 ≤ m) such that Si0 = S, then there exists a table R

on R such that R is k-anonymous with respect to every Si (1 ≤ i ≤ m) but R is not k-anonymous

with respect to S.

Proof. Since the domain of each attribute has the cardinality of at least 2, for each attribute Aj ,

we can choose two distinct values vj,1, vj,2 ∈ Aj . Since the attributes not in S do not matter for

anonymization, without loss of generality, let us assume S = R.

Consider table R1 = {v1,1, v1,2} × · · · × {vm,1, vm,2} which contains 2m tuples. Since there does

not exist Si0 (1 ≤ i0 ≤ m) such that Si0 = S, there does not exist Si0 such that Si0 = R. Thus,

table R1 is 2-anonymous with respect to every Si, but is not 2-anonymous with respect to S.

For example, Table 4 shows a table constructed as such which is 2-anonymous with respect to

any proper subset of ABC, but is not 2-anonymous with respect to ABC.

To construct a table R in the theorem, we copy ⌈k
2⌉ times every tuple t ∈ R1 into R. Then, R

is k-anonymous with respect to every Si, but is not with respect to S.

Theorem 1 presents an interesting observation: when the union QID is not a QID for any

user, k-anonymity with respect to the union QID is not necessary to achieve k-anonymity with

respect to the QID of every user. Clearly, avoiding anonymization using the union QID can reduce

information loss substantially. Then, the question is how we can avoid anonymization with respect

to the union QID, which is the topic of Sections 4 and 5.

3 Related Work

In this section, we first review the previous algorithms for generalizing microdata. Then, we

discuss the alternative privacy models. Finally, we briefly survey research on other topics of privacy

protection.

3.1 Generalization Algorithms

Since the introduction of k-anonymity by Samarati and Sweeney [35, 37], numerous algorithms have

been developed to compute k-anonymous tables with small information loss. An early attempt is
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by Iyengar [20], who suggests a genetic paradigm to explore the vast search space, and return

the best solution among those examined within a time limit. Bayardo and Agrawal [8] propose a

method that guarantees the optimal solution. The method utilizes a set-enumeration tree, which

organizes all the possible solutions into a hierarchy, and effectively prunes the branches of the tree

that cannot contain a better solution (than the best one currently found). LeFevre et al. [23]

devise a faster approach that finds the optimal generalization satisfying certain constraints (called

full-domain generalization), by leveraging techniques reminiscent of mining frequent item sets.

Apart from the above algorithms, considerable efforts have been paid to computing reasonably

good (although not optimal) generalization by fast heuristics. There are two primary directions

for designing effective heuristics. The first one treats the generalization problem as an instance of

clustering, where each equivalence class (EC) is a cluster, and the quality of clustering is gauged

by the information loss. Fung et al. [17] advocate a top-down approach, where initially a single

gigantic cluster covers the entire dataset, and it is gradually broken into smaller clusters to achieve

better clustering. Xu et al. [48] propose a bottom-up method, where each micro-cluster includes

tuples with exactly the same QID values, and micro-clusters are recursively grouped together into

larger clusters to satisfy k-anonymity. Ghinita et al. [18] present an interesting solution that forms

clusters according to a space filling curve.

The second direction analogizes generalization to building a multi-dimensional index, where each

leaf node is adopted as an EC directly. The research issue here is to adapt the index construction

routines to ensure that each leaf node should have at least k entries. Iwuchukwu and Naughton [19]

present a method based on R+-trees [36], while LeFevre et al. [24] give an algorithm, Mondrian,

based on kd-trees, which is later extended in [25] to workload-aware anonymization. Next, we

elaborate the details of Mondrian, because they are useful to our discussion in Section 4.2.2.

Let us consider a simple example, where a microdata set T has nine tuples, and the QID of

T has two attributes x and y. Thus, each tuple of T can be regarded as a two-dimensional point

in the x-y plane. Figure 1(a) shows the point representations p1, p2, . . . , p9 of the tuples in T .

Suppose that the goal is to achieve 2-anonymity.

Mondrian repetitively carries out the following split operation: given a set E of points and a

split axis, divide E into E′ and E′′, where E′ (E′′) includes the points of E whose coordinates on

the split axis is at most (larger than) the median coordinate in E. To illustrate, let the first split be

performed on the x-dimension. The median coordinate of T is 4 (i.e., the ⌊‖T‖/2⌋ = 4-th smallest1

x-coordinate in T ); hence, the split divides T into two sets E1 and E2. Figure 1(b) represents E1

and E2 using the minimum bounding rectangles (MBR) of their points, respectively. Next, E1 (E2)

is split on the y-dimension, producing E3, E4 (E5, E6), as shown in Figure 1(c).

In general, the split axis is chosen in a round-robin fashion: if an MBR E results from a split on

x, then the next split happens on y, and vice versa. The split continues until E contains between k

and 2k − 1 points (in this case, no more split is possible, because another split necessarily spawns

an MBR covering less than k points). The final E becomes an EC, and its MBR is taken as

its generalized form. In Figure 1(c), since no more splits are possible on E1, E2, E3 and E4, they

constitute the final ECs of the 2-anonymous generalization of T . Figure 1(d) demonstrates a binary

tree recording the split history. For example, E1 is the parent of E3 and E4, because they result

from the split of E1.

1Likewise, we could also decide the median as the ⌈‖T‖/2⌉-th smallest.
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The algorithms mentioned earlier work well on practical datasets, but do not have attractive

asymptotical performance in the worst case. This motivates studies on the theoretical aspects of

k-anonymity. Meyerson and Williams [29] are the first to prove the NP-hardness of optimal k-

anonymous generalization, and give an O(k log k)-approximation algorithm. Aggarwal et al. [4] re-

duce the approximation ratio to O(k), which is further improved to O(log k) by Park and Shim [32].

Unlike these solutions whose approximation ratios are functions of k, Du et al. [14] present a method

having a ratio O(d), where d is the number of attributes in the QID. Aggarwal et al. [5] develop con-

stant approximation algorithms. Wong et al. [43] observe that, in general, a deterministic algorithm

may suffer from minimality attacks, which can be avoided with certain randomization.

3.2 Privacy Models

Besides k-anonymity, several other privacy models have been developed, explicitly assuming the

existence of a sensitive attribute (SA), which is not part of the QID. In particular, l-diversity [27]

requires each EC to include at least l “well-represented” SA-values. (α, k)-anonymity [44] is a

combination of l-diversity and k-anonymity. t-closeness [26] demands that the SA distribution of

each EC should deviate from that of the entire table by at most a certain threshold t. Personaliza-

tion [46] allows each individual to specify the level of protection for her/his own data. Focusing on

a numeric SA, (k, e)-anonymity [49] demands that, in each EC, there are at least k tuples, and the

maximum SA value exceeds the minimum by at least e. (c, k)-safety [28] deals with complex forms

of background knowledge, and privacy-skyline [12] balances the protection against different types

of background knowledge. Unlike the above principles, δ-presence [31] does not deal with any SA;

it aims at preventing an adversary from knowing that an individual has records in the microdata.

In this work, we focus on k-anonymity for several reasons. First, k-anonymous publishing is

compliant with governmental privacy regulations [1] such as HIPAA (Health Insurance Portability

and Accountability Act) and European Union Data Directive. Second, k-anonymity can be applied

in circumstances where it is difficult to determine which attributes are “sensitive”, and/or sensitive

attributes are also a part of the QID. Third, the simplicity of k-anonymity permits us to explain,

in an approachable context, the complex concepts proposed in this paper. Nevertheless, extending

our techniques to other privacy models is an interesting direction for future work.

3.3 Other Research on Privacy Preserving Publishing

The literature of data anonymity has expanded considerably in the past few years, and a thorough

survey falls out of the scope of this paper. Instead, we indicate here several major topics in this

area, and provide references that serve as entry points to further reading.

Kiffer and Gehrke [22] study marginal publication, where the objective is to publish the

anonymized versions of various projections of the microdata onto different subsets of attributes.

Wang and Fung [41] tackle sequential publication where new projections are released after the old

ones have gone public. Xiao and Tao [47] address re-publication, which aims to release new versions

of the microdata after it has been updated with insertions and deletions and secure privacy against

a persistent adversary that may have audited all the versions released in the past.

In addition to generalization, privacy protection in data publication can also be achieved with

other methodologies such as anatomy [18, 45, 49], condensation [3] and perturbation [7, 16, 33].
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A B C

a1 b c1

a1 b c2

a2 b c1

a2 b c3

a3 b c2

a3 b c3

(a) A 2-anonymous table

b

c3

c2

c1

a3

a2

a1

(b) Visualization of a butterfly.

Figure 2: A butterfly in a 2-anonymous table.

Finally, it is worth mentioning that data anonymity is a general concern in several other applications

as well, including association rule hiding [2, 13, 40, 42], multi-party computation [21, 34, 39],

privacy-aware query processing [11, 15, 30], and access control [6, 9, 10].

Summary. Despite the bulk of literature on privacy preservation, we are not aware of any work

on generalization in the presence of multiple QIDs. The next section settles this problem with a

novel technique called butterfly.

4 The Butterfly Method

In this section, we discuss the basic case where there are 2 users, U1 and U2, using QIDs S1 and

S2, respectively. We need to anonymize a table T = (A1, . . . , An) to a table T ′ such that T ′ is

k-anonymous with respect to QIDs S1 and S2. Let S = S1 ∪ S2. We consider the general case

where S 6= S1 and S 6= S2.

We first identify an essential structure called butterfly that is essential in every anonymization

for two QIDs. Then, we develop an efficient algorithm for anonymization.

4.1 The Butterfly Structure

Example 2 (Butterfly). Table T = (A,B,C) in Figure 2(a) is 2-anonymous with respect to S1 =

AB and S2 = BC, but not 2-anonymous with respect to S = ABC.

On QIDs S1 = AB and S2 = BC, respectively, the tuples form ECs such that each EC is of

size 2. Interestingly, the tuples share the same values on B, the common attribute between S1 and

S2. This sharing is critical to achieve tuples that do not need to form ECs on ABC but still can

satisfy the k-anonymity requirements on S1 and S2.

Figure 2(b) visualizes the tuples. A tuple is a line connecting the values on attributes A, B, and

C. It looks like a butterfly: the tuples sharing the same value on B which is the body of the butterfly.

Different values on A and C form “wings” of the butterfly. Generally, a butterfly structure in our

study may have multiple “wings”, but a biological butterfly has only 4 wings.

Based on the observation in Example 2, we identify butterfly, the essential structure in

anonymizing tables for multiple QIDs.
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Definition 2 (Butterfly). Given a table T , and two QIDs S1 and S2 on T such that S1 ∪ S2 6= S1

and S1 ∪ S2 6= S2. A set of tuples P ⊆ T is a k-butterfly with respect to S1 and S2 if

1. P can be partitioned into ECs on S1 − S2 such that each EC is of size at least k;

2. P can be partitioned into ECs on S2 − S1 such that each EC is of size at least k;

3. All tuples in P have the same values on attributes in S1 ∩ S2.

According to Definition 2, all tuples in Figure 2(a) form a 2-butterfly. A k-butterfly has several

interesting and desirable properties.

Proposition 1 (k-anonymity of butterfly). Let P be a k-butterfly with respect to QIDs S1 and S2.

Then, P is k-anonymous with respect to S1 and S2.

Proof. The k-anonymity of P with respect to S1 follows with the first and the third conditions of

Definition 2. Similarly, the k-anonymity of P with respect to S2 follows with the second and the

third conditions of Definition 2.

Proposition 1 indicates that k-butterflies can be used to anonymize a table for two QIDs since

the k-anonymity requirement on each QID can be satisfied.

Proposition 2 (EC and butterfly). In table T , an equivalence class of size k with respect to union

QID S1 ∪ S2 is a k-butterfly with respect to S1 and S2, where S1 and S2 are two QIDs on T .

Proof. An EC of size k clearly satisfies the three conditions in Definition 2.

Proposition 2 indicates that, in anonymization for multiple QIDs, ECs with respect to the union

QID is a special case of butterflies. Importantly, a butterfly provides more flexibility that it does

not require all values be the same on the union QID. The flexibility brings in the opportunity for

reducing information loss in anonymizaiton, as will be explored by our anonymization algorithm in

Section 4.2.

Are butterflies sufficient to anonymize a table for multiple QIDs?

Theorem 2 (Butterfly). A table T is k-anonymous with respect to QIDs S1 and S2 if and only if

the tuples in T can be partitioned into exclusive subsets P1, . . . , Pl such that each Pi (1 ≤ i ≤ l) is

a k-butterfly with respect to S1 and S2.

Proof. The sufficiency follows with Proposition 1 immediately. We only need to show the necessity.

Assume that T is k-anonymous with respect to QIDs S1 and S2. If S1 ∩ S2 = ∅, then trivially

all tuples in T form a k-butterfly. Moreover, if S1∪S2 = S1 or S1∪S2 = S2, then T is k-anonymous

with respect to S1 ∪S2. In other words, table T can be divided into ECs on S1 ∪S2 such that each

EC is of size at least k. According to Proposition 1, each EC on S1 ∪ S2 is a k-butterfly.

Now, let us consider the situation where S1 ∩ S2 6= ∅, S1 ∪ S2 6= S1, and S1 ∪ S2 6= S2. Then,

the tuples can be divided into ECs on S1 ∩ S2. Since T is k anonymous with respect to S1 and

S1 ⊃ S1 ∩ S2, each EC on S1 ∩ S2 has at least k tuples. We show that each EC on S1 ∩ S2 is a

k-butterfly with respect to S1 and S2.
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Consider an EC P on S1 ∩ S2, i.e., all tuples in P have the same values on the attributes in

S1 ∩ S2. Immediately, the third condition in Definition 2 is satisfied. Since T is k-anonymous with

respect to S1, the tuples in P can be divided into ECs on S1 such that each EC has at least k

tuples. Each such an EC is also an EC on S1− (S1∩S2) = S1−S2. Similarly, all tuples in P can be

divided into ECs on S2 such that each such an EC is also an EC in S2−S1 and has at least k tuples.

Thus, the first two conditions in Definition 2 are satisfied, too. That is, P is a k-butterfly.

According to Theorem 2, the problem of anonymizing a table for QIDs S1 and S2 can be reduced

to transforming the tuples in T into a set of k-butterflies. We define the k-butterfly anonymization

problem as follows.

Given a table T and QIDs S1 and S2, the problem of k-anonymization using butterflies is to

transform T into table T ′ consisting of a set of k-butterflies with respect to S1 and S2, and the

information loss from T to T ′ is minimized.

Theorem 3 (Complexity). The problem of k-anonymization using butterflies is NP-hard.

Proof. We conduct a reduction from the k-anonymization problem defined in Section 2.1, which

has been shown NP-hard [29].

Suppose we want to anonymize table T on QID S. Without loss of generality, let us assume

‖S‖ ≥ 3 and let S = {A1, . . . , Al}. We expand table T to table T by adding (l − 1) attributes

A′
2, . . . , A

′
l. On attribute A′

i (2 ≤ i ≤ l), each tuple t in T takes the same value as it has on Ai.

Consider anonymizing T using k-butterflies to satisfy k-anonymity with respect to QIDs S and

S′ = {A1, A
′
2, . . . , A

′
l}. We claim that we can always obtain an anonymization using k-butterflies

with the minimum information loss such that for each tuple t in the anonymization, t has the same

value on Ai and A′
i (2 ≤ i ≤ l).

Suppose T
′
is an anonymized table with the minimum information loss. We consider C, the

information loss of all tuples on attributes A1, A2, . . . , Al (i.e., the information loss in projection

ΠA1,A2,...,Al
T
′
), and C ′, the information loss of all tuples on attributes A1, A

′
2, . . . , A

′
l (i.e., the

information loss in projection ΠA1,A′

2
,...,A′

l
T
′
).

We show by contradiction C = C ′. Assume C < C ′. We change the value of t on A′
i (2 ≤ i ≤ l)

to that of t on Ai. The information loss decreases to C which contradicts the assumption that T
′

has the minimum information loss. Similarly, it is impossible that C > C ′.

Since C = C ′, we can change the value of t on A′
i (2 ≤ i ≤ l) to that of t on Ai. The information

loss does not change.

Now, we prove by contradiction that ΠA1,A2,...,Al
T
′
is the k-anonymization with respect to S

with the minimum information loss. Assume T ′ is a k-anonymization of T with respect to S and

T ′ has less information loss than ΠA1,A2,...,Al
T
′
. Then, we can expand T ′ to table T

′′
such that

attributes A′
2, . . . , A

′
l are added, and a tuple t in T

′′
takes the same value on A′

i as it has on Ai

(2 ≤ i ≤ l). Table T
′′

is k-anonymous with respect to S ∪ S′ and has less information loss than T
′
.

A contradiction.

The above reduction is of time complexity linear to the number of tuples and the number of

attributes in T .
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4.2 Anonymization Algorithm

Due to Theorem 3, in this section, we develop a heuristic algorithm to anonymize a table using

butterflies on two QIDs in order to reduce information loss as much as possible.

4.2.1 General Idea

An EC of at least k tuples on S1 ∪ S2 is a special type of k-butterfly. In the näıve union QID

method, we can anonymize table T using ECs of size at least k on S1 ∪ S2.

Alternatively, we can construct large butterflies which are not k-anonymous with respect to

S1 ∪ S2. An extreme is that we generalize all tuples to the same on attributes S1 ∩ S2, and then

we can conduct k-anonymization on S1 − S2 and S2 − S1 independently.

Essentially, there is a tradeoff between using small butterflies and using large butterflies in

information loss on different attributes. The advantage of a large butterfly is that it allows less

information loss on attributes in S1−S2 and S2−S1 since tuples do not need to take the same values

on those attributes. The disadvantage is that, since all tuples in a butterfly have the same values

on attributes in S1 ∩ S2, a large butterfly may lead to heavy information loss on those attributes.

Therefore, to reduce the information loss using butterflies, we need to balance the gain on the

attributes in S1 ∪ S2 − S1 ∩ S2 and the loss on the attributes in S1 ∩ S2.

The general idea of our method to anonymize a table T is in two steps.

First, we anonymize T on the union QID S1 ∪ S2, and form a binary hierarchy (i.e., a binary

tree) of ECs. Each internal node in the hierarchy is a set of ECs.

Second, we examine the nodes in the hierarchy of ECs bottom-up to check whether reorganizing

the tuples at a node into a butterfly may potentially reduce the information loss. If so, we apply a

butterfly construction algorithm on the set of tuples. If the butterfly constructed as such reduces

the information loss, it is used to anonymize the tuples.

4.2.2 Step 1: Building a Binary Hierarchy of ECs

First, we build a binary hierarchy of ECs on S1 ∪ S2. This hierarchy is a natural product of some

generalization algorithms such as Mondrian [24] (reviewed in Section 3), which is employed in

our experiments. In case the ECs are computed by other algorithms, the hierarchy can be easily

constructed through a “binary clustering” of all the ECs. To illustrate, assume that the generalized

form of each EC is a rectangle (c.f. Figure 1) in the space formed by the attributes of S1 ∪ S2.

Then, we only need to create a binary R-tree on the ECs, which is already a good hierarchy.

4.2.3 Estimating Reduction of Information Loss

In a binary hierarchy of ECs, the set of tuples at a node N , denoted by T (N), are the tuples in

the ECs that are descendants of N . Now, our task is to try to organize the tuples in T (N) into

butterflies to reduce information loss.

For a node N in the binary hierarchy of ECs, in order to efficiently check whether reorganizing

the tuples in T (N) into a butterfly may reduce information loss, we derive a lower bound of the

information loss in such a butterfly. The computation of the lower bound does not require to
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construct the butterfly. Thus, we can first check whether the lower bound indicates a potential

reduction of information loss before we construct the butterfly.

Recall that we adopt the uncertainty penalty (Definition 1) to measure information loss. We

use the iNN distance to establish a lower bound.

Definition 3 (iNN distance). Let E be an equivalence class, t ∈ E be a tuple in E, and A be a

set of attributes. For i (0 ≤ i ≤ ‖E‖), the i-th nearest neighbor distance (iNN distance for

short) of t on A is NNDistA(t, i, E) = dist(t,NN(t, i, E)), where NN(t, i, E) is the i-th nearest

neighbor of t in E, and dist(t1, t2) =
∑

A∈S
‖t1[A]−t2[A]‖

‖A‖ is the minimum uncertainty penalty needed

to generalize t1 and t2 into the same EC with respect to QID S.

We have the following lower bound of information loss.

Theorem 4 (Information loss). Let E1, . . . , Em (m ≥ 1) be ECs on S1 ∪ S2 in a table T , and

G = ∪m
i=1Ei be the set of tuples in those ECs. If a k-butterfly with respect to QIDs S1 and S2 is

constructed using all tuples in G, then the information loss in the k-butterfly is at least

L(G) = ‖G‖(λS1−S2
+ λS2−S1

) + Loss(S1 ∩ S2)

where Loss(S1 ∩S2) is the information loss due to the generalization of all tuples in G to the same

on S1 ∩ S2, and for A = S1 − S2 or S2 − S1,

λA = max{mint∈E⊂G{NNDistA(t, ⌈ k
m
⌉ − 1, E)},

mint∈E⊂G{NNDistA(t, k − 1, T )}}.

Proof. Suppose we build a k-butterfly on m ECs E1, . . . , Em. In the resulting butterfly, all tuples

are generalized to the same on S1 ∩ S2, which leads to information loss Loss(S1 ∩ S2). Let us

consider the information loss on attributes sets S1 − S2 and S2 − S1.

On S1 − S2, the tuples are partitioned into ECs E′
1, . . . , E

′
l . Clearly, due to the pigeonhole

principle, when k > m, for each j (1 ≤ j ≤ l), at least ⌈ k
m
⌉ tuples in E′

j must be from one of

E1, . . . , Em. Thus, the information loss for each tuple in each E′
j , denoted by λS1−S2

, satisfies

λS1−S2
≤ min

t∈Ei,1≤i≤m
{NNDistS1−S2

(t, ⌈
k

m
⌉ − 1, Ei)} (1)

Moreover, each EC contains at least k tuples in T . Thus, trivially we have

λS1−S2
≤ min

t∈Ei,1≤i≤m
{NNDistS1−S2

(t, k − 1, T )} (2)

Combining Equations 1 and 2, we have

λS1−S2
= max{mint∈E⊂G{NNDistS1−S2

(t, ⌈ k
m
⌉ − 1, E)},

mint∈E⊂G{NNDistS1−S2
(t, k − 1, T )}}.

There are ‖ ∪m
i=1 Ei‖ tuples in total. Thus, the information loss of the butterfly on S1 − S2 is

at least ‖ ∪m
i=1 Ei‖ · λS1−S2

. A similar analysis holds for the information loss on S2 − S1. Summing

up the information loss items on S1 − S2, S1 ∩ S2, and S2 − S1, we have L(∪m
i=1Ei) in the theorem

as the lower bound of the information loss.
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Computing the lower bound in Theorem 4 is efficient. By scanning all tuples in G once, we can

get the range of the values on each attribute in S1 ∩ S2. Thus, Loss(S1 ∩ S2) can be calculated

immediately as the sum of the width of ranges on all attributes in S1 ∩ S2. We will explain how to

compute λS1−S2
and λS2−S1

efficiently in Section 4.2.4. Furthermore, we preprocess the data set T

to find NNDistS1−S2
(t, k − 1, T ) and NNDistS2−S1

(t, k − 1, T ) for each tuple t in the whole table

T .

4.2.4 Step 2: Applying Butterflies

In the second step, we scan in the bottom-up manner the binary hierarchy of ECs built in the first

step. For each node N , the tuples in T (N) are anonymized by the children of N using either ECs

or butterflies. Thus, the total information loss can be calculated by summing up the loss of all

children of N . We compare this loss with the lower bound of information loss using one butterfly

on all tuples in T (N) given by Theorem 4. If the lower bound given by Theorem 4 is less, then we

construct a butterfly on N .

As a special case, if all tuples in T (N) are identical on attributes in S1 ∩ S2, then we construct

a butterfly on the node. In such a case, the information loss Loss(S1 ∩ S2) = 0 in the butterfly.

Moreover, the butterfly allows that the tuples do not need to agree with each other on S1 −S2 and

S2 − S1, and thus is expected to have lower information loss.

The detailed algorithm is presented in Figure 3. In order to compute the lower bounds in

Theorem 4 efficiently, we pre-compute the iNN distance for each tuple in an EC for i = 1, . . . , k.

In implementation, for each EC, we only need to keep the shortest iNN distance for i = 1, . . . , k

among all tuples in the EC. Therefore, the space cost for each EC is O(k). In the binary hierarchy

of ECs, there are totally O(n/k) leaf nodes (each corresponding to an EC), where n is the total

number of tuples in the table. The hierarchy has O(n/k) internal nodes, each of which requires

O(1) space. Hence, the overall space cost of the binary hierarchy is O(n
k
· k) = O(n).

Importantly, Loss(S1 ∩ S2) in Theorem 4 monotonically increases as we traverse the binary

hierarchy bottom-up. That is, if N1 is the parent of N2 in the hierarchy, then Loss(S1 ∩ S2) at N1

is larger than or equal to that at N2. Thus, when the information loss on Loss(S1 ∩S2) is large, it

offsets the gain on S1 − S2 and S2 − S1 of using butterflies. This control avoids constructing large

butterflies at nodes close to the root of the binary hierarchy. In the algorithm, once Loss(S1 ∩ S2)

at a node N is greater than or equal to the total information loss on the whole data set, we do not

need to check any ancestors of N further based on the monotonicity.

Without any index on points in an EC, it takes O(k2) time to calculate the iNN distances

within each EC; thus the total overhead of iNN-distance computation is (k2 · n
k
). In butterfly

computation, the time cost to check a node is linear to the number of leaves in its subtree. Hence,

the total check-time for all nodes at the same level of the hierarchy equals the number O(n/k) of

leaves. Considering all levels of the hierarchy, the overall checking time is O(n
k

log2
n
k
). Hence, the

overall time complexity of the second step is O(k2 · n
k

+ n
k

log2
n
k
·α) = O(k ·n + n

k
log2

n
k
·α), where

α is the cost to build a butterfly.
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Input: a binary hierarchy H of ECs, QIDs S1 and S2;

Output: a binary hierarchy H using ECs and butterflies

to reduce information loss;

Method:

1: l = 0; // l is the total information loss in the current H

2: check all nodes in H in the bottom-up manner,

for each node N do

3: if N is a leaf node then

4: for each tuple t ∈ E where E is the EC in N do {

5: compute NNDistS1−S2
(t, i, E) and

NNDistS2−S1
(t, i, E) for i = 1, . . . , k;

6: calculate the information loss of N ;

7: l = l+ the information loss of N ;

}

8: else { // N is not a leaf node

9: G = the set of tuples in the ECs that are

descendants of N ;

10: if all tuples in G take the same value on S1 ∩ S2

11: then call butterf ly(N);

12: else {

13: let Loss(G) be the sum of information loss in

children of N ;

14: if Loss(G) > L(G) in Theorem 4

15: then call butterf ly(N);

16: if Loss(S1 ∩ S2) ≥ l at N

17: then prune all ancestors of N ;

}

}

Figure 3: Applying butterflies to reduce information loss.

4.2.5 Building Butterflies

Now, the only remaining issue is how to construct a butterfly on a set of tuples. This is straight-

forward according to Definition 2.

Let G be the set of tuples on which we want to construct a k-butterfly. We conduct the following

two steps.

First, we generalize all tuples in G to the same on attributes in S1 ∩ S2 and calculate the

information loss Loss(S1 ∩ S2). As explained before, this can be done by one scan of all tuples in

G.

Second, we can use a k-anonymization algorithm to anonymize tuples in G on QID S1−S2. This

step constructs the “left wings” of the butterfly. Similarly, we apply the anonymization algorithm

to anonymize tuples in G on QID S2 − S1 for the “right wings” of the butterfly.
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Figure 4: A super butterfly for k-anonymization with respect to 4 QIDs.

Once the butterfly is computed at node N , we can calculate the information loss in the butterfly.

If it is smaller than the sum of information loss of the children of N , then the butterfly replaces

the children of N , and the information of N is updated. Consequently, we also update the total

information loss of the whole data set (i.e., variable l in Figure 3) accordingly.

5 Extensions

In Section 4, we discussed the basic case where there are two QIDs. In this section, we first extend

our solution to the general case where there are more than two QIDs. In addition, we discuss how

to provide privacy preservation when users may collude.

5.1 Handling More Than Two QIDs

In the case of having two QIDs, we generalize the tuples in a butterfly to be the same on the

common attributes between the two QIDs, and thus the tuples can be anonymized independently

in the remaining attributes in the two QIDs, respectively. We can generalize the idea to handle

more than two QIDs as elaborated in the following example.

Example 3 (Super butterfly). Consider anonymizing a table T = (A,B,C,D,E, F,G) with respect

to 4 QIDs, S1 = ABC, S2 = CDE, S3 = BDF and S4 = BG. The union QID method can anonyize

the table on the union QID S = ∪4
i=1Si = ABCDEFG.

Noticing that attributes A, E, F and G appear in only one QID, while attributes B, C and D

appear in multiple QIDs, we can construct a super butterfly on a set of tuples as follows. First, all

tuples are generalized to the same on attributes BCD. Then, the tuples can be independently gen-

eralized into ECs on A, E, F and G, respectively. This super butterfly has wings in 4 “directions”,

as visualized in Figure 4.

Let us generalize the observation in Example 3.

Definition 4 (Super butterfly). Given a table T and m QIDs S1, . . . , Sm in T such that S = ∪m
i=1Si

is a proper superset of every Si (1 ≤ i ≤ m), i.e., Si ⊂ S. A set of tuples P ⊆ T in T is a k-super

butterfly with respect to S1, . . . , Sm if (1) for each Si (1 ≤ i ≤ m), P can be partitioned into ECs

on Si −∪j 6=iSj such that each EC is of size at least k; and (2) all tuples in P have the same values

on ∪i6=jSi ∩ Sj.
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Similar to the discussion in Section 4.1, we have the following properties of super butterflies.

Proposition 3 (k-anonymity of super butterfly). Let P be a k-super butterfly with respect to QIDs

S1, . . . , Sm. Then, P is k-anonymous with respect to Si (1 ≤ i ≤ m).

Proposition 4 (EC and super butterfly). In table T , an EC of size k with respect to union QID

∪m
i=1Si is a k-super butterfly with respect to Si (1 ≤ i ≤ m), where Si is a QID on T .

Importantly and interestingly, Theorem 2 can also be generalized for super-butterflies.

Theorem 5 (Super butterfly). A table T is k-anonymous with respect to QIDs S1, . . . , Sm if

and only if the tuples in T can be partitioned into exclusive subsets P1, . . . , Pl such that each Pj

(1 ≤ j ≤ l) is a k-super butterfly with respect to S1, . . . , Sm.

Proof. The sufficiency follows with Proposition 3 immediately. We only need to show the necessity.

The proof of the necessity is a straightforward generalization of the proof of Theorem 2.

Consequently, our anonymization algorithm in Section 4.2 can also be generalized for multiple

QIDs. We first anonymize a table into ECs of size at least k on the union QID, and construct a

binary hierarchy of those ECs. Then, we scan the nodes in the binary hierarchy in a bottom-up

manner and check for each node whether using all tuples at the node to build a super butterfly

may lead to less information loss using a lower bound similar to Theorem 4. If so, we generalize all

tuples at the node to the same on ∪i6=jSi ∩ Sj, the “body” of the super butterfly, and anonymize

the tuples into ECs of size at least k on each Si −∪i6=jSj independently and compute the reduction

of information loss. If the super butterfly leads to less information loss, it is taken. Limited by

space, we omit the details here.

5.2 Handling Collusion

In the discussion so far, we assume that different users would not collude, that is, they would not

share or exchange their background knowledge. This assumption is often reliable in practice when

the data receivers are reputable organizations. In the example in Section 1, the anonymized data is

sent to an auto-insurance company and a government department, respectively. The likelihood that

these two organizations collude is minor, because both of them are tightly watched by legislative

agencies and the penalty of collusion is severe.

In practice, to be conservative, we may still need some mechanism to protect privacy even when

users may collude. We consider two types of collusion.

Definition 5 (Collusion types). Data sharing collusion is that two or multiple users share the

k-anonymous tables respectively published to them. Background knowledge sharing collusion

is that two or multiple users share their background knowledge which can be used to issue re-

identification attacks.

As illustrated in Example 1, the multiple release method cannot protect data sharing collusion.

In the butterfly method and the union QID method, all user receive the same k-anonymous table,

and thus data sharing collusion cannot help re-identification attacks at all.
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Now, let us focus on background knowledge sharing collusion. When two users carrying the

capability of re-identification using QIDs S1 and S2 collude, they can re-identify individuals using

the joint QID S1 ∪S2. In the worst case, if all users U1, . . . , Um collude, the re-identification attack

may use the union QID ∪m
i=1Si.

Obviously, we should guarantee k-anonymity with respect to each user’s QID. Do we, however,

need as strong protection against their collusion? Since collusion is unlikely to happen, why not

lower the protection level to achieve less information loss in anonymization and retain better quality

in data utilization? Here, we advocate a framework where the privacy preserving requirement on

re-identification attacks using joint QIDs should be lower than the requirement for individual users.

We propose a two level anonymization framework.

• To release the micro data in a table T for multiple users U1, . . . , Um, the table should be

anonymized to T ′ so that T ′ is k-anonymous with respect to S1, . . . , Sm where Si (1 ≤ i ≤ m)

is the QID modeling the background knowledge of user Ui.

• To protect privacy even when collusion happens, table T ′ should also be k′-anonymous with

respect to ∪m
i=1Si, where k′ < k reflects a weaker requirement on privacy preservation due to

the low chance of collusion.

Our butterfly solution can be easily adapted to handle collusion based on the above two level

framework. The adapted solution consists of the following steps.

First, to anonymize a table T with respect to QIDs S1, . . . , Sm, we can first conduct k′-

anonymization on the union QID ∪m
i=1Si to obtain table T1. After this step, the requirement

of k′-anonymity with respect to the union QID is satisfied.

Second, we obtain T ′
1 by removing duplicate tuples from T1. That is, each EC in T1 has only

one representative in T ′
1. Then, we conduct ⌈ k

k′ ⌉-anonymization with respect to S1, . . . , Sm using

butterflies on T ′
1 to obtain table T2.

Last, we make up table T ′ as follows. For each tuple t in T ′
1, which represents an EC E in T1,

if t is anonymized to t′ in T ′
1, we duplicate t′ ‖E‖ times in T ′. Since ‖E‖ ≥ k′ and ⌈ k

k′ ⌉k′ ≥ k, T ′

is at least k-anonymous with respect to S1, . . . , Sm, respectively.

6 Empirical Study

In this section, we report a systematic empirical study using the Adults census data set from

the UC Irvine machine learning repository. This data set has become a de facto benchmark in

evaluations of k-anonymization methods. In our experiments, we use a randomly selected subset

of 300 thousand tuples. Following the similar way to use the data set in the previous studies, we

use 9 attributes as shown in Table 5. The domain of each attribute is integers in the range shown

in Table 5.

All our experiments are conducted on a PC computer with a Pentium 3.0 GHz CPU and 1 GB

main memory, running the Microsoft XP operating system. All our programs are written in C++.

We use the uncertainty penalty (Definition 1) as the information loss measure. We compare two

methods: the union QID method (defined in Section 2.2) and the butterfly method in Section 4.

Limited by space, we only report the results on k-anonymization with respect to 2 QIDs here.
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Table 5: The attributes and their domains in our experiments.
Attribute Domain

Age [16, 93]

Occupation [1, 25]

Birthplace [1, 83]

Marital [1, 6]

Gender [1, 2]

Salary [0, 50]

Work-class [2, 10]

Education [1, 17]

Race [1, 9]

Except for Section 6.7, to enforce the two level anonymization framework discussed in Sec-

tion 5.2, we always set k′ = 2 and vary k. That is, we first conduct a 2-anonymization on the union

QID and then apply the butterfly method to achieve k-anonymity with respect to individual QIDs.

The reason that we set k′ to a small number in the experiments is to leave more space to verify

the effectiveness of butterflies. We will examine the effectiveness of k′ on two level anonymization

in Section 6.7.

6.1 Effectiveness of Butterflies

Figure 5 shows the percentage of tuples in the whole data set anonymized by non-trivial butterflies

(i.e., not anonymized into an EC with respect to the union QID). Two cases are tested. In the

case dcom = 2, there are two common attributes, Education and Marital, between the two QIDs,

while in the case dcom = 3, there are three common attributes, Education, Marital and Gender.

In addition to the common attributes, in both cases, S1 also contains attributes Age, Occupation,

and Birthplace, and S2 contains attributes Salary, Work-class, and Race.

The results clearly show that most of the tuples can be anonymized by butterflies to achieve

information loss less than that in the union QID method. This strongly verifies the effectiveness of

the butterflies.

As explained in Sections 4.2.4 and 4.2.5, the butterfly method uses Theorem 4 to check whether

constructing butterflies may have a chance to reduce information loss in anonymization. To test the

effectiveness of Theorem 4, Figure 6 shows the success rate of butterfly construction with respect

to different values of k. The success rate is defined as b
a

where a is the number of internal nodes in

the hierarchy of ECs which are indicated by Theorem 4 that constructing butterflies may reduce

information loss, and b is the number of nodes where constructing butterflies actually reduces

information loss.

The success rate in both cases increases monotonically as k increases. With a larger k, more

tuples need to be grouped together in the union method and thus lead to heavier information

loss. The butterflies can have more opportunities to reduce information loss when k is larger, since

butterflies can identify the local areas where the tuples can be re-grouped to reduce information

loss.
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ples anonymized by non-trivial but-

terflies.
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fly construction.
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Figure 7: The information loss w.r.t.

diversity of QIDs.
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Figure 8: The information loss w.r.t.

complexity of common attributes.

6.2 Diversity of QIDs

Intuitively, the more diverse the QIDs (i.e., the more attributes that are not shared between the

two QIDs in question), the better chance butterflies have to reduce information loss. To verify the

effectiveness, we set Education as the common attribute between QIDs S1 and S2, and vary the

number of attributes in S1 and S2 from 2 to 5. In addition to the common attribute Education,

the attributes added into S1 are Age, Occupation, Birthplace, and Marital in the order, and the

ones added into S2 are Salary, Work-class, Race, and Gender in the order. For example, when the

number of distinct attributes is 1, S1 = {Education, Age} and S2 = {Education, Salary}. When

the number of distinct attributes is 2, S1 = {Education, Age, Occupation} and S2 = {Education,

Salary, Work-class}.

Figure 7 shows the result. The information loss in both the union method and the butterfly

method is divided into two parts: the loss on the common attributes (the lower parts in the bars)

and the loss on the distinct attributes (the upper parts in the bars).

When the number of distinct attributes in each QID increases, the union QID has to include

more attributes and thus the information loss increases dramatically. However, the butterfly method

only needs to conduct k-anonymization with respect to individual QIDs, which have much fewer

attributes. As shown in the figure, the difference in information loss between the union QID method

and the butterfly method increases dramatically as the number of distinct attributes in each QID

increases.
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w.r.t. parameter k.
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Figure 12: The scalability.

Importantly, the results clearly show that the information loss on the common attributes in

the butterfly method and that in the union method are highly comparable. The extra lost in the

butterfly method is very small comparing to the overall reduction in information loss. In other

words, butterflies pay only very minor extra information loss on the common attributes and save

substantial information loss on the distinct attributes.

6.3 Number of the Common Attributes

As explained in Section 4.2.1, for QIDs S1 and S2, the effectiveness of the butterfly method depends

on the tradeoff between the gain on anonymizing S1 − S2 and S2 − S1 independently versus the

loss on anonymizing all tuples in a butterfly to be the same on S1 ∩ S2. If the common attributes

between S1 and S2 has small cardinality (i.e., many tuples share the same values on them), building

butterflies can gain more.

In Figure 8, we test the effectiveness of the butterfly method with respect to the number of

common attributes between the two QIDs. We add attributes Education, Marital, and Gender in

the order into both S1 and S2, the two QIDs. In addition, S1 contains attributes Age, Occupation,

and Birthplace, and S2 contains Salary, Work-class, and Race. This experiment also tests the

effect of the cardinality of the common attributes between the two QIDs, since we can treat multiple

common attributes as one composite attribute whose cardinality is the product of the cardinalities

of the common attributes. Again, we show the breakdown of the information loss including the loss

on the common attributes and that on the distinct attributes.
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The difference between the two methods in information loss remains relatively stable as the

number of common attributes increases. On the one hand, with more common attributes, the

union QID becomes larger and thus incurs more information loss. On the other hand, the butterfly

method has to pay more information loss in anonymizing tuples in a butterfly to the same on the

common attributes. Interestingly and importantly, comparing to the union method, the butterfly

method only incurs very small extra information loss on the common attributes. The butterflies

can balance the tradeoff between the loss on common attributes and that on distinct attributes

well.

6.4 Effect of k

To test the effect of parameter k on anonymization quality, in Figure 9, we vary k from 20 to

100, and plot the information loss. We set S1 = {Age, Occupation, Birthplace, Gender, Marital,

Education} and S2 = {Gender, Marital, Education, Salary, Work-class, Race}. There are three

common attributes, Education, Marital and Gender, between S1 and S2.

With a larger value of k, more tuples need to be anonymized to an EC in order to satisfy the

k-anonymity requirement, and thus more information loss happens. The advantage of the butterfly

method against the union QID method is insensitive to the value of k. In other words, the butterfly

method can improve the anonymization quality remarkably no matter to what value k is set.

6.5 Effect of Data Set Size

We test the anonymization quality of the two methods on data sets of various number of tuples.

The QIDs are the same as those in Section 6.4. The cardinality of the data sets (i.e., the number

of tuples) varies from 100, 000 to 500, 000. The results are shown in Figure 10.

The information loss in both methods increases as the number of tuples increases, since more

tuples are involved, more anonymization is conducted. However, the average information loss per

tuple in both methods decreases in both methods as more tuples are added into the data set.

Limited by space, we omit the figure here.

In anonymization, tuples are organized into local groups as ECs. Both the union QID method

and the butterfly method can identify tuples that are similar to each other to form ECs. When there

are more tuples, the data set becomes denser, and thus the local groups become more compact.

Generalizing such a more compact group leads to less average information loss per tuple.

The increase of information loss in the butterfly method is slower than that in the union QID

method. This is consistent with the results from the other experiments showing that the butterfly

method can exploit more opportunities to preserve information in anonymization.

6.6 Anonymization Efficiency

Since the butterfly method uses the union QID method as the first step, the runtime of the butterfly

method is expected longer than that of the union QID method. Figures 11 and 12 show the runtime

of the two methods with respect to parameter k and the database size, respectively. The settings

are the same as the experiments in Figures 9 and 10, respectively.

With a larger value of k, there are less ECs in the union QID method and thus the runtime of the

union QID method decreases mildly. However, the runtime of the butterfly method increases mildly
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anonymized by non-trivial butterflies

in two level anonymization.

since the corresponding butterflies are larger and thus the number of possible ways of re-organizing

tuples also increases. Both methods are scalable with respect to the database size.

As anonymization is off-line, background processing, the butterfly method, which provides re-

markable information loss reduction, is highly preferable to the union QID method.

6.7 Effectiveness of Two Level Anonymization

To test the effectiveness of two level anonymization, we set S1 = {Age, Occupation, Birthplace,

Marital, Education} and S2 = {Education, Gender, Salary, Work-class, Race}. Education is

the common attribute between S1 and S2. We set k = 100 and vary k′ from 0 to 90.

Figure 13 shows the information loss of the two methods with respect to k′. The union method

cannot take the advantage of the two level anonymization and thus the information loss is constant.

The information loss in the butterfly method increases as k′ increases, since tuples have to be

grouped into ECs of size k′ before butterfly construction can be applied. Interestingly, the gain

of the butterfly method is notable even when k′ is 60% of k, which indicates that the two level

anonymization mechanism in the butterfly method can reduce information loss effectively even

when k′ is close to k. Moreover, Figure 14 shows the percentage of tuples anonymized by non-

trivial butterflies in two level anonymization. Even when k′ = 0.9k, more than 60% of tuples

are in non-trivial butterflies. The results strongly suggest that butterflies can be used to reduce

information loss extensively.

7 Conclusions

In this paper, we tackled a novel problem of privacy preserving publishing on multiple QIDs. The

problem is challenging and the straightforward union QID method is ineffective. We developed an

elegant solution – the butterfly approach. The critical idea is that we can anonymize data with

respect to individual QIDs as long as we can keep the anonymization consistent on the attributes

common to the QIDs. We proved that finding the optimal butterflies is NP-hard. A fast and

practical algorithm was proposed. Our solution can handle multiple QIDs and provide proper

protection against possible collusion. We use a de facto benchmark data set to test the effectiveness
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of our solution.

Privacy preserving publishing for multiple users can find many applications. Our approach

takes only the initial step. A few very interesting problems remain open. For example, in some

applications, l-diversity or other more specific privacy preservation requirements are needed. Then,

how can we anonymize data properly for multiple users and reduce information loss as much as

possible? Those stimulating questions need to be explored systematically by future work.
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