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Abstract— In some applications of privacy preserving data
publishing, a practical demand is to publish a data set on multiple
quasi-identifiers for multiple users simultaneously, which poses
several challenges. Can we generate one anonymized version of
the data so that the privacy preservation requirement like k-
anonymity is satisfied for all users and the information loss is
reduced as much as possible? In this paper, we identify and tackle
the novel problem by an elegant solution.

The full paper [1] can be found at http://www.cs.sfu.
ca/˜jpei/publications/butterfly-tr.pdf.

I. INTRODUCTION

In some applications of privacy preserving data publish-
ing, a practical demand is to publish a data set simultane-
ously on multiple quasi-identifiers for users carrying different
background knowledge. For example, the traffic management
board of a region collects records of road accidents for
research and analysis. Suppose each record has five attributes,
namely occupation, age, vehicle-type, postcode,
and faulty. Consider the tuples in Table I.

Such records are interesting to auto insurance companies
which can use such information to analyze the risk of their
business and define their policies accordingly. Simultaneously,
such traffic accident records are also interesting to the human
resource department in the government since they can be
used to analyze the impact of accidents on working groups.
Therefore, the traffic management board may want to release
the data to multiple users.

Importantly, different users may carry different background
knowledge. For example, the auto insurance company may
join the traffic accident records with the vehicle registration
records on attributes age, vehicle-type, and postcode
to find out whether its customers were at fault in some
accidents. Typically, the company does not have the occupation
information of its customers, as such information is not
required in applying for auto insurance. Therefore, to protect
privacy, the traffic management board has to anonymize the
traffic accident records on attributes age, vehicle-type,
and postcode before the data can be released to the auto
insurance company. Suppose 2-anonymity is required. Table II
shows a 2-anonymous release of the records with respect to
quasi-identifier (age, vehicle-type, postcode).

Simultaneously, the human resource department may join
the traffic accident records with the resident records on
attributes occupation, age, and postcode to find
out which residents were faulty in some accidents. There-
fore, to protect privacy, the traffic management board

TABLE I
A SET OF TRAFFIC ACCIDENT RECORDS.

Occupation age vehicle postcode faulty
Dentist 30 Red Truck 31043 No

Family doctor 30 White Sedan 31043 Yes
Banker 30 Green Sedan 31043 No

Mortgage broker 30 Black Truck 31043 No

TABLE II
A 2-ANONYMOUS RELEASE OF THE TRAFFIC ACCIDENT RECORDS IN

TABLE I WITH RESPECT TO QUASI-IDENTIFIER (age, vehicle-type,
AND postcode).

Occupation age vehicle postcode faulty
Dentist 30 Truck 31043 No

Family doctor 30 Sedan 31043 Yes
Banker 30 Sedan 31043 No

Mortgage broker 30 Truck 31043 No

TABLE III
A 2-ANONYMOUS RELEASE OF THE TRAFFIC ACCIDENT RECORDS IN

TABLE I WITH RESPECT TO QUASI-IDENTIFIER (occupation, age, AND

postcode).

Occupation age vehicle postcode faulty
Medical 30 Red Truck 31043 No
Medical 30 White Sedan 31043 Yes
Finance 30 Green Sedan 31043 No
Finance 30 Black Truck 31043 No

needs to anonymize the traffic accident records on at-
tributes occupation, age, and postcode. Note that
vehicle-type is not part of the anonymization, because
the human resource department typically does not have in-
formation about residents’ vehicle types. Again, suppose 2-
anonymity is required. Table III shows a 2-anonymous release
of the records with respect to quasi-identifier (occupation,
age, postcode).

The traffic management board needs to protect the privacy
against attacks using different background knowledge. Releas-
ing a data set to multiple users leads to serious concerns on
privacy preservation. Even though we ensure that the release
to each user satisfies the corresponding privacy-preservation
requirement such as k-anonymity, privacy still can be disclosed
if collusion happens.

Suppose an adversary obtains both releases in Tables II
and III. By comparing the two tables, the adversary imme-
diately knows that a family doctor of age 30 driving a white
Sedan living in area 31043 was faulty in an accident. The vic-



tim may be easily re-identified by both the vehicle registration
record and the human resource resident record. The loophole is
serious since the attack can be made even without sharing any
background knowledge (i.e., vehicle registration records and
resident records) from the two users. Instead, any adversary
obtaining both releases can intrude the privacy.

In this paper, we tackle the problem and make the following
contributions. First, we identify the novel problem of privacy
preserving publishing on multiple quasi-identifiers. Second,
we indicate that it is possible to generate only one anonymized
table to satisfy the k-anonymity on all quasi-identifiers for
all users without significant information loss. Our method is
substantially better than the naı̈ve method which conducts
anonymization using the union quasi-identifier. Last, we sys-
tematically develop an effective method to generate such an
anonymized table for multiple users.

II. PROBLEM DEFINITION

Consider a micro-data table T = (A1, . . . , An), where a
record in the table represents the data for one individual. An
external table E = (B1, . . . , Bm) also containing records of
individuals is used to model the background knowledge of a
user. A re-identification attack to the privacy of individuals in
table T is that the user can join tables T and E on the common
attributes of the two tables so that individuals in T may be
re-identified. The set of common attributes between tables T
and E, i.e., S = T ∩E, is called the quasi-identifier (QID for
short) with respect to the re-identification attack using E.

To protect privacy against re-identification attacks, the
owner of T may change the values of tuples in T on attributes
in QID S so that at least k tuples look the same on QID S.
Then, each individual cannot be re-identified with a probability
over 1

k . Technically, an anonymization is a function f on T
such that for each tuple t ∈ T , f(t) is a tuple where some
values of t may be changed.

Suppose a table T is anonymized as T ′, i.e., T ′ = {f(t)|t ∈
T}. For a tuple t ∈ T ′, the set of tuples t′ ∈ T ′ which have
the same values as t on all attributes in S form an equivalence
class (EC for short) on S, i.e., E(t) = {t′ ∈ T ′|∀A ∈
S, t′[A] = t[A]}. Clearly, t ∈ E(t). T ′ is k-anonymous
(k > 0) on QID S if for each tuple t ∈ T ′, ‖E(t)‖ ≥ k.

A general representation of anonymized tuples [2], [3] is to
generalize an attribute value to a range. For example, if we
want to make k tuples into an EC and the values of those
tuples on attribute age range from 20 to 30, we can generalize
the values to a range [20, 30]. Apparently, the larger the range,
the more information loss is introduced by the anonymization.

Some methods have been developed to measure the infor-
mation loss in anonymization. In this paper, we adopt the
uncertainty penalty measure of information loss which is also
used in [2], [3].

Definition 1 (Uncertainty penalty): Suppose table T is
anonymized to T ′. In the domain of each attribute in T ,
suppose there exists a global order on all possible values in
the domain. If a tuple t in T ′ has range [x, y] on attribute A,
then the uncertainty penalty in t on A is lossA(t) = ‖y−x‖

‖A‖ ,
where ‖A‖ = maxt′∈T {t′[A]} −mint′∈T {t′[A]} is the range

TABLE IV
AN EXAMPLE SHOWING THE RATIONALE OF THEOREM 1.

A B C

a1 b1 c1

a1 b1 c2

a1 b2 c1

a1 b2 c2

a2 b1 c1

a2 b1 c2

a2 b2 c1

a2 b2 c2

of attribute A in T . For tuple t, the uncertainty penalty in t
is loss(t) =

∑
A∈S lossA(t), where S is the QID.

The uncertainty penalty in T ′ is
∑

t∈T ′ loss(t).
In this paper, we consider the situation where a micro-data

table T = (A1, . . . , An) needs to be anonymized and released
for a group of users U1, . . . , Um. For each user Ui (1 ≤ i ≤
m), we assume a quasi-identifier Si ⊆ T that models Ui’s
background knowledge to attack the privacy of individuals in
T . Thus, we need to make sure that the release for Ui is k-
anonymous with respect to Si.

We are interested in generating only one anonymized ver-
sion T ′ such that T ′ is k-anonymous with respect to all Si

(1 ≤ i ≤ m). The problem of privacy preserving publishing
for multiple users is to generate the k-anonymous table T ′ so
that the k-anonymity requirement for each user is satisfied,
and the information loss is as small as possible.

A naı̈ve approach is to generate a table T ′ such that T ′

is k-anonymous with respect to the union QID S = ∪m
i=1Si.

Apparently, if T ′ is k-anonymous with respect to S, T ′ is also
k-anonymous with respect to any individual Si. We call this
method the union QID method.

The union QID may contain many more attributes than any
individual QID, and thus the union QID method may introduce
substantial information loss. Interestingly, we can show that
the union QID may not be necessary to ensure k-anonymity
with respect to all individual QIDs.

Theorem 1 (Union QID): Let R = (A1, . . . , An) be a
schema of micro-data where the domain of each attribute has
the cardinality of at least 2. Let S1, . . . , Sm be m QIDs and
S = ∪m

i=1Si be the union QID. If there does not exist Si0

(1 ≤ i0 ≤ m) such that Si0 = S, then there exists a table R
on R such that R is k-anonymous with respect to every Si

(1 ≤ i ≤ m) but R is not k-anonymous with respect to S.
Rationale. Limited by space, we omit the formal proof.
Instead, we give an example to illustrate the idea. Table IV
shows a table constructed as such which is 2-anonymous with
respect to any proper subset of ABC, but is not 2-anonymous
with respect to ABC.

III. THE BUTTERFLY METHOD

Let us consider the basic case where there are 2 users,
U1 and U2, using QIDs S1 and S2, respectively. We need
to anonymize a table T = (A1, . . . , An) to a table T ′ such
that T ′ is k-anonymous with respect to QIDs S1 and S2. Let
S = S1 ∪ S2. Generally, we assume S 6= S1 and S 6= S2.



A B C

a1 b c1

a1 b c2

a2 b c1

a2 b c3

a3 b c2

a3 b c3

(a) A 2-anonymous table

b

c3

c2

c1

a3

a2

a1

(b) Visualization of a butterfly.

Fig. 1. A butterfly in a 2-anonymous table.

Example 1 (Butterfly): Table T = (A,B, C) in Fig. 1(a) is
2-anonymous with respect to S1 = AB and S2 = BC, but
not 2-anonymous with respect to S = ABC.

On QIDs S1 = AB and S2 = BC, respectively, the tuples
form ECs such that each EC is of size 2. Interestingly, the
tuples share the same values on B, the common attribute
between S1 and S2. This sharing is critical to achieve tuples
that do not need to form ECs on ABC but still can satisfy the
k-anonymity requirements on S1 and S2.

In Fig. 1(b), a tuple is a line connecting the values on
attributes A, B and C. It looks like a butterfly: the tuples
sharing the same value on B which is the body of the butterfly.
Different values on A and C form “wings” of the butterfly.
Generally, a butterfly structure in our study may have multiple
“wings”, but a biological butterfly has only 4 wings.

Based on Example 1, we define butterfly, the essential
structure in anonymizing tables for multiple QIDs.

Definition 2 (Butterfly): Given a table T , and two QIDs S1

and S2 on T such that S1 ∪S2 6= S1 and S1 ∪S2 6= S2. A set
of tuples P ⊆ T is a k-butterfly with respect to S1 and S2 if

1) P can be partitioned into ECs on S1−S2 such that each
EC is of size at least k;

2) P can be partitioned into ECs on S2−S1 such that each
EC is of size at least k;

3) All tuples in P have the same values on attributes in
S1 ∩ S2.

According to Definition 2, all tuples in Fig. 1(a) form a
2-butterfly. A k-butterfly has several interesting and desirable
properties.

Proposition 1 (k-anonymity of butterfly): Let P be a k-
butterfly with respect to QIDs S1 and S2. Then, P is k-
anonymous with respect to S1 and S2.

Proposition 1 indicates that k-butterflies can be used to
anonymize a table for two QIDs since the k-anonymity re-
quirement on each QID can be satisfied.

Proposition 2 (EC and butterfly): In table T , an equiva-
lence class of size k with respect to union QID S1 ∪ S2 is
a k-butterfly with respect to S1 and S2, where S1 and S2 are
two QIDs on T .

Proposition 2 indicates that, in anonymization for multiple
QIDs, ECs with respect to the union QID is a special case
of butterflies. Importantly, a butterfly provides more flexibility
that it does not require all values be the same on the union
QID. The flexibility brings in the opportunity for reducing
information loss in anonymizaiton, as will be explored by our
anonymization algorithm.

Are butterflies sufficient to anonymize a table for multiple
QIDs?

Theorem 2 (Butterfly): A table T is k-anonymous with re-
spect to QIDs S1 and S2 if and only if the tuples in T can
be partitioned into exclusive subsets P1, . . . , Pl such that each
Pi (1 ≤ i ≤ l) is a k-butterfly with respect to S1 and S2.

According to Theorem 2, the problem of anonymizing a
table for QIDs S1 and S2 can be reduced to transforming the
tuples in T into a set of k-butterflies. We define the k-butterfly
anonymization problem as follows.

Given a table T and QIDs S1 and S2, the problem of k-
anonymization using butterflies is to transform T into table T ′

consisting of a set of k-butterflies with respect to S1 and S2,
and the information loss from T to T ′ is minimized.

By a reduction from the k-anonymization problem which
has been shown NP-hard [4], we have the following result.

Theorem 3 (Complexity): The problem of
k-anonymization using butterflies is NP-hard.

Now, we develop a heuristic algorithm to anonymize a table
using butterflies on two QIDs.

1) General Idea: An EC of at least k tuples on S1 ∪ S2 is
a special type of k-butterfly. In the naı̈ve union QID method,
we can anonymize table T using ECs of size at least k on
S1∪S2. Alternatively, we can construct large butterflies which
are not k-anonymous with respect to S1 ∪ S2. An extreme is
that we generalize all tuples to the same on attributes S1∩S2,
and then we can conduct k-anonymization on S1 − S2 and
S2 − S1 independently.

Essentially, there is a tradeoff between using small butter-
flies and using large butterflies in information loss on different
attributes. The advantage of a large butterfly is that it allows
less information loss on attributes in S1−S2 and S2−S1 since
tuples do not need to take the same values on those attributes.
The disadvantage is that, since all tuples in a butterfly have
the same values on attributes in S1∩S2, a large butterfly may
lead to heavy information loss on those attributes.

Therefore, to reduce the information loss using butterflies,
we need to balance the gain on the attributes in S1∪S2−S1∩S2

and the loss on the attributes in S1 ∩ S2.
The general idea of our method to anonymize a table T is

in two steps.
First, we anonymize T on the union QID S1∪S2, and form

a binary hierarchy (i.e., a binary tree) of ECs. Each internal
node in the hierarchy is a set of ECs.

Second, we examine the nodes in the hierarchy of ECs
bottom-up to check whether reorganizing the tuples at a node
into a butterfly may potentially reduce the information loss.
If so, we apply a butterfly construction algorithm on the set
of tuples. If the butterfly constructed as such reduces the
information loss, it is used to anonymize the tuples.

2) Step 1: Building a Binary Hierarchy of ECs: First, we
build a binary hierarchy of ECs on S1 ∪S2. This hierarchy is
a natural product of some generalization algorithms such as
Mondrian [5]. If the ECs are computed by other algorithms,
the hierarchy can be easily constructed through a “binary
clustering” of all the ECs. To illustrate, assume that the
generalized form of each EC is a rectangle in the space formed
by the attributes of S1 ∪ S2. Then, we only need to create a
binary R-tree on the ECs, which is already a good hierarchy.



3) Estimating Reduction of Information Loss: In a binary
hierarchy of ECs, the set of tuples at a node N , denoted by
T (N), are the tuples in the ECs that are descendants of N .
Now, our task is to try to organize the tuples in T (N) into
butterflies to reduce information loss.

For a node N in the binary hierarchy of ECs, in order
to efficiently check whether reorganizing the tuples in T (N)
into a butterfly may reduce information loss, we derive a
lower bound of the information loss in such a butterfly. The
computation of the lower bound does not require to construct
the butterfly. Thus, we can first check whether the lower bound
indicates a potential reduction of information loss before we
construct the butterfly.

Recall that we adopt the uncertainty penalty (Definition 1) to
measure information loss. We use the iNN distance to establish
a lower bound.

Definition 3 (iNN distance): Let E be an equivalence class,
t ∈ E be a tuple in E, and A be a set of attributes. For
i (0 ≤ i ≤ ‖E‖), the i-th nearest neighbor distance
(iNN distance for short) of t on A is NNDistA(t, i, E) =
dist(t,NN(t, i, E)), where NN(t, i, E) is the i-th nearest
neighbor of t in E, and dist(t1, t2) =

∑
A∈S

‖t1[A]−t2[A]‖
‖A‖

is the minimum uncertainty penalty needed to generalize t1
and t2 into the same EC with respect to QID S.

We have the following lower bound of information loss.
Theorem 4 (Information loss): Let E1, . . . , Em (m ≥ 1)

be ECs on S1 ∪ S2 in a table T , and G = ∪m
i=1Ei be the

set of tuples in those ECs. If a k-butterfly with respect to
QIDs S1 and S2 is constructed using all tuples in G, then
the information loss in the k-butterfly is at least L(G) =
‖G‖(λS1−S2 +λS2−S1)+Loss(S1∩S2), where Loss(S1∩S2)
is the information loss due to the generalization of all tuples
in G to the same on S1 ∩ S2, and for A = S1 − S2

or S2 − S1, λA = max{mint∈E⊂G{NNDistA(t, d k
me −

1, E)}, mint∈E⊂G{NNDistA(t, k − 1, T )}}.
4) Step 2: Applying Butterflies: In the second step, we

scan in the bottom-up manner the binary hierarchy of ECs
built in the first step. For each node N , the tuples in T (N)
are anonymized by the children of N using either ECs or
butterflies. Thus, the total information loss can be calculated
by summing up the loss of all children of N . We compare
this loss with the lower bound of information loss using one
butterfly on all tuples in T (N) given by Theorem 4. If the
lower bound given by Theorem 4 is less, then we construct a
butterfly on N .

If all tuples in T (N) are identical on attributes in S1 ∩ S2,
then we construct a butterfly on the node. In such a case, the
information loss Loss(S1∩S2) = 0 in the butterfly. Moreover,
the butterfly allows that the tuples do not need to agree with
each other on S1 − S2 and S2 − S1, and thus is expected to
have lower information loss.

The detailed algorithm is presented in Fig. 2.
5) Building Butterflies: Let G be the set of tuples on which

we want to construct a k-butterfly. We conduct the following
two steps. First, we generalize all tuples in G to the same
on attributes in S1 ∩ S2 and calculate the information loss
Loss(S1 ∩ S2) by one scan of all tuples in G. Second, we

Input: a binary hierarchy H of ECs, QIDs S1 and S2;
Output: a binary hierarchy H using ECs and butterflies

to reduce information loss;
Method:
1: l = 0; // l is the total information loss in the current H
2: check all nodes in H in the bottom-up manner,

for each node N do
3: if N is a leaf node then
4: for each tuple t ∈ E where E is the EC in N do {
5: compute NNDistS1−S2(t, i, E) and

NNDistS2−S1(t, i, E) for i = 1, . . . , k;
6: calculate the information loss of N ;
7: l = l+ the information loss of N ; }
8: else { // N is not a leaf node
9: G = the set of tuples in the ECs that are

descendants of N ;
10: if all tuples in G take the same value on S1 ∩ S2

11: then call butterfly(N);
12: else {
13: let Loss(G) be the sum of information loss in

children of N ;
14: if Loss(G) > L(G) in Theorem 4
15: then call butterfly(N);
16: if Loss(S1 ∩ S2) ≥ l at N
17: then prune all ancestors of N ;

} }

Fig. 2. Applying butterflies to reduce information loss.

use a k-anonymization algorithm to anonymize tuples in G
on QID S1 − S2. This step constructs the “left wings” of the
butterfly. Similarly, we apply the anonymization algorithm to
anonymize tuples in G on QID S2−S1 for the “right wings”
of the butterfly.

Once the butterfly is computed at node N , we calculate
the information loss in the butterfly. If it is smaller than
the sum of information loss of the children of N , then the
butterfly replaces the children of N , and the information of N
is updated. Consequently, we also update the total information
loss of the whole data set (i.e., variable l in Fig. 2) accordingly.

In general, our approach can be extended to handle cases
where there are more than two QIDs. In addition, we can
provide privacy preservation when users may collude. Limited
by space, we have to omit the details.
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