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Abstract

Clustering the time series gene expression data is an im-
portant task in bioinformatics research and biomedical ap-
plications. Recently, some clustering methods have been
adapted or proposed. However, some concerns still remain,
such as the robustness of the mining methods, as well as the
quality and the interpretability of the mining results.

In this paper, we tackle the problem of effectively clus-
tering time series gene expression data by proposing al-
gorithm DHC, a density-based, hierarchical clustering
method. We use a density-based approach to identify the
clusters such that the clustering results are of high quality
and robustness. Moreover, The mining result is in the form
of a density tree, which uncovers the embedded clusters in
a data set. The inner-structures, the borders and the out-
liers of the clusters can be further investigated using the
attraction tree, which is an intermediate result of the min-
ing. By these two trees, the internal structure of the data
set can be visualized effectively. Our empirical evaluation
using some real-world data sets show that the method is
effective, robust and scalable. It matches the ground truth
provided by bioinformatics experts very well in the sample
data sets.

1 Introduction

DNA microarray technology [11, 12] has made it now pos-
sible to monitor simultaneously the expression levels for
thousands of genes during important biological process
[15] and across collections of related samples [1]. It is of-
ten an important task to find genes with similar expression
patterns (co-expressed genes) from DNA microarray data.
First, co-expressed genes may demonstrate a significant
enrichment for function analysis of the genes [2, 17, 6, 13].
We may understand the functions of some poorly charac-
terized or novel genes better by testing them together with
the genes with known functions. Second, co-expressed
genes with strong expression pattern correlations may in-
dicate co-regulation and help uncover the regulatory ele-
ments in transcriptional regulatory networks [17]. Cluster
techniques, which are essential in data mining process for
exploring natural structure and identifying interesting pat-

terns in underlying data, have proved to be useful in finding
co-expressed genes.

In cluster analysis, one wishes to partition the given data
set into groups based on the given features such that the
data objects in the same group are more similar to each
other than the data objects in other groups. Various cluster-
ing algorithms have been applied on gene expression data
with promising results [6, 17, 16, 4, 13]. However, as indi-
cated in some previous studies (e.g., [8, 16]), many conven-
tional clustering algorithms originated from non-biological
fields may suffer from some problems when mining gene
expression data, such as having to specify the number of
clusters, lacking of robustness to noises, and being weak to
handle embedded clusters and highly intersected clusters.
Recently, some specifically designed algorithms for clus-
tering gene expression data have been proposed aiming at
those problems [8, 4].

Distinguishing from other kinds of data, gene expression
data usually have several characteristics. First, gene ex-
pression data sets are often of small size (in the scale of ���
thousands) comparing to some other large databases (e.g.
multimedia databases and transaction databases). A gene
expression data set often can be held into main memory.
Second, for many dedicated microarray experiments, peo-
ple are usually interested in the expression patterns of only
a subset of all the genes. Other gene patterns are roughly
considered insignificant, and thus become noise. Hence, in
the gene expression data analysis, people are much more
concerned with the effectiveness and interpretability of the
clustering results than the efficiency of the clustering algo-
rithm. How to group co-expressed genes together mean-
ingfully and extract the useful patterns intelligently from
noisy data sets are two major challenges for clustering gene
expression data.

In this paper, we investigate the problems of effectively
clustering gene expression data and make the following
contributions. First, we analyze and examine a good num-
ber of existing clustering algorithms in the context of
clustering gene expression data, and clearly identify the
challenges. Second, we develop DHC, a density-based,
hierarchical clustering method aiming at gene expression
data. DHC is a density-based approach so that it effectively
solves some problems that most distance-based approaches
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cannot handle. Moreover, DHC is a hierarchical method.
The mining result is in the form of a tree of clusters. The
internal structure of the data set can be visualized effec-
tively. At last, we conduct an extensive performance study
on DHC and some related methods. Our experimental re-
sults show that DHC is effective. The mining results match
the ground truth given by the bioinformatics experts nicely
on real data sets. Moreover, DHC is robust with respect to
noise and scalable with respect to database size.

The remainder of the paper is organized as follows. In
Section 2, we analyze some important existing clustering
methods in the context of clustering gene expression data,
and identify the challenges. In Section 3, we discuss the
density measurement for density-based clustering of gene
expression, and develop algorithm DHC. The extensive ex-
perimental results are reported in Section 4. The paper is
concluded in Section 5.

2 Related Work

Various clustering algorithms have been applied to gene
expression data. It has been proved that the clustering is
helpful to identify groups of co-expressed genes and corre-
sponding expression patterns. Nevertheless, several chal-
lenges arise. In this section, we identify the challenges by
a brief survey of some typical clustering methods.

2.1 Partition-based Algorithms

K-means [17] and SOM (Self Organizing Map) [16] are
two typical partition-based clustering algorithms. Al-
though useful, these algorithms suffer the following draw-
backs as pointed out by [8, 14]. First, both K-means and
SOM require the users to provide the number of clusters as
a parameter. Since clustering is usually an explorative task
in the initial analysis of gene expression data sets, such in-
formation is often unavailable. Another disadvantage of
the partition-based approaches is that they force each data
object into a cluster, which makes the partition-based ap-
proaches sensitive to outliers.

Recently, some new algorithms have been developed for
clustering time-series gene expression data. They partic-
ularly addressed the problems of outliers and the number
of clusters discussed above. For example, Ben-Dor et al.
[4] introduced the idea of a “corrupted clique graph” data
model and presented a heuristic algorithm CAST (for Clus-
ter Affinity Search Technique) based on the data model. In
[8], the authors described a two-step procedure (Adapt) to
identify one cluster while the first step is to estimate the
cluster center ��� and the second step is to estimate the ra-
dius ��� of the cluster. Once ��� and ��� are determined,
a cluster is defined as �����
	����������������������� �"!#�$�%�'&
���)( . Both algorithms extract clusters from the data set
one after another until no more clusters can be found.
Therefore, the algorithms can automatically determine the
number of clusters, and genes not belonging to any cluster

are regarded as outliers. However, the criteron for clus-
ters defined by those algorithms are either based on some
glabal parameters or dependent on some assumptions of
the cluster structure of the data set. For example, CAST
uses an affinity threshold parameter � to control the avaer-
age pairwise similarity between objects within a cluster.
Adapt assumes that the cluster has the same radius in each
direction in the high-dimensional object space. However,
the clustering results may be quite sensitive to differenct
parameter settings and the assumptions for cluster struc-
ture may not always hold. In particular, CAST and Adapt
may not be effective with the embedded clusters and the
highly intersected clusters, respectively.

2.2 Hierarchical Clustering

A hierarchical clustering algorithm does not generate a set
of disjoint clusters. Instead, it generates a hierarchy of
nested clusters that can be represented by a tree, called a
dendrogram. Based on how the hierarchical decomposition
is formed, hierarchical clustering algorithms can be further
divided into agglomerative algorithms (i.e., bottom-up ap-
proaches, e.g., [6]) and divisive algorithms (top-down ap-
proaches, e.g., [2, 13]). In fact, the hierarchical methods
are particularly favored by the biologists becasue they may
give more insights to the structure of the clusters than the
other methods.

However, the hierarchical methods also have some
drawbacks. First, it is sometimes subtle to determine where
to cut the dendrogram and derive clusters. Usually, this
step is done by domain experts’ visual inspection. Second,
it is hard to tell the inner structure of a cluster from the den-
drogram, e.g. which object is the medoid of the cluster and
which objects are the borders of the cluster. Last, many
hierarchical methods are considered lacking of robustness
and uniqueness [16]. They may be sensitive to the order of
input and small perturbations in the data.

2.3 Density-based clustering

Density-based clustering algorithms [7, 9, 3]characterize
the data distribution by the density of each data object.
Clustering is the process of identifying dense areas in the
object space. Coventional density-based approaches, such
as DBSCAN [7], classify a data object * as one of the
cores of a cluster if * has more than +-,/.10��2	 neighbors
within neighborhood 3 . Clusters are formed by connecting
neighboring ’core’ objects and those ’non-core’ objects ei-
ther serve as the boundaies of clusters or become outliers.
Since the noises of the data set are typically randomly dis-
tributed, the density within a cluster should be significantly
higher than that of the noises. Therefore, density-based ap-
proaches have the advantage of extracting clusters from a
highly noisy environment, which is the case of time-series
gene expression data.

However, the performance of DBSCAN is quite sensi-
tive to the parameters of object density, namely, +4,/.10��2	

2



and 3 . For a complex data set, the appropriate parameters
are hard to specify. Our experimental study has demon-
strated that DBSCAN tends to reuslt in either a large num-
ber of trivial clusters or a few huge clusters merged by
several smaller ones for time-series gene expression data.
Other density-based approaches (e.g. Optics [3] and Den-
clue [9]) are more robust to their algorithm parameters.
However, none of the exsited density-based algorithms
provide a hierarchial cluster strucuture which gives people
a thorough picture of the data distribution and help people
understand the relationship between the clusters and the
data objects well.

2.4 What are the challenges?

Based on the above analysis, to conduct effective clustering
analysis over gene expression data, we need to develop an
algorithm meeting the following requirements.

First, the clustering result should be highly interpretable
and easy to visualize. As gene expression data is com-
plicated, the interpretability and visualization become very
important. Second, the clustering method should be able to
determine the number of clusters automatically. Gene ex-
pression data sets are usually noisy. It is hard to guess the
number of clusters. A method adaptive to the natural num-
ber of clusters is highly preferable. Third, the clustering
method should be robust to noise, outliers, and the param-
eters. It is well recognized that the gene expression data are
usually noisy and the rules behind the data are unknown.
Thus, the method should be robust so that it can be used as
the first step to explore the valuable patterns. Lastly but not
at least, the clustering method should be able to handle em-
bedded clusters and highly intersected clusters effectively.
The structure of gene expression data is often complicated.
It is unlikely that the data space can be clearly divided into
several independent clusters. Instead, the user may be in-
terested in both the clusters and the connections among the
clusters. The clustering method should be able to uncover
the whole picture.

3 The Algorithms

In this section, we propose DHC, an algorithm mining the
cluster structure of a data set as a density tree. First, we
dicuss how to define the density of objects properly and
then we develop the algorithm. The algorithm works in
two steps. First, all objects in a data set are organized into
an attraction tree. Then, the attraction tree is summarized
as clusters and dense areas, and a density tree is derived as
the summary structure.

3.1 Definition of density

When clustering gene expression data, we want to group
genes with similar expression patterns. Thus, we choose
the correlation coefficient, which is capable of catching the
similarity between two vectors based on their expression

patterns but not on the absolute magnitudes. The corre-
lation coefficient for two data objects * � and * � in a � -
dimension space is defined as

	�,�� , ��� � ,/���
	/*���� * �� ����	/* ��� * �� �������������! ��"$#�  &% ����' ��"(#� '�%) � ��������*�! �&"+#�! %&, ) � ��������*��' �&"-#��' %&,/.
where *��*0 is the �&1�2 scalar of data object * � and 3*�� is the

mean of the scalars of data object * � . Note that the corre-
lation coefficient � ranges between -1 and 1. The larger the
value, the more similar they are with each other.

We define the distance between objects * � and * � as

��	/*���� * �� �54 67 ���  �8 � '�% if ��	/* ��� * ��:9 �;=<
otherwise .

Given a radius � , the neighborhood of * � w.r.t. � in a� -dimension space forms a hyper-sphere > �  ? . The set of
objects in the hyper-sphere is � * � � ��	/*���� * ��A@ � ( . The

volume of the hyper-sphere is BA	&> �  ?  � C � ,D/EGF ,IH 6�JLK �NM . We

ignore the global constant coefficient C �,DOEGF ,IH 6�J and defineBQP ��	&> �! ?  � �NM .
To precisely describe the distribution of neighbors of ob-

ject *�� , we divide > �  ? into a series of hyper-shells, such
that each hyper-shell occupies exactly a unit volume. The
idea is demonstrated in Figure 1.
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Figure 1: Hypersphere and hyper-shell w.r.t object *��
The radius of the R�1�2 hyper-shell is

��S)��R �� 	TBQP ���U� I	&> �  ?WV  ��RX�YR � �N�WZ�� K[K\K  .Then, we have]_^  � � �  S �`> �  S H 6 !a> �  S �4� * � � ��S &b�U	/* ��� * ��c@ ��S H 6 ( .
By hyper-shells, the neighborhood of * � is discretized

and forms a histogram d , where each bin efS contains the
objects falling into hyper-shell

]_^  � ��S . For each e!S , we
define a weight of the contribution from efS to the density
of *�� .e!S)� � ]c^  � � �  S �[� g �, � ^ �h	 ]_^  � � �  S  � 6i j�k S .

Now, we are ready to define the density of an object * .

� �. 	�,/���
	/*  �mlnS\o 6
g �, � ^ �h	 ]_^  � � �S  K e
S .
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In our density definition, we do not simply set up a
threshold 3 and count the number of data objects within
neighborhood 3 as the density. On the contrary, we dis-
cretize the neighborhood of object * � into a series of
hyper-shells and calculate the density of an object as the
sum of contributions from individual hyper-shells. Thus,
our definition avoids the difficulty of choosing a good
global threshold 3 and accurately reflect the neighbor dis-
tribution around the specific object.

3.2 Building an attraction tree

As the first step of the mining, we organize all objects in
the data set into a hierarchy based on their density. The
resulting structure is called an attraction tree, since the tree
is built by considering the attraction among objects in a
data set. Intuitively, an object with high density “attracts”
some other objects with lower density. We formalize the
ideas as follows.

The attraction between two data objects * 6 and *��
( * 6 �� *�� ) in a R -d space is defined as follows, whereR is the dimensionality of the objects.

� � � �N��� � ,�P . 	/* 6 � *��  � �  . 	�, ���
	/* 6  K � �. 	�,/���
	/*�� �U	/* 6 � *��  S " 6 .
The attraction is said from * � to * � , if � �. 	�,/���
	/* �  &� �. 	�,/���
	/* �� , denoted as * ��� * � . In the case that two

objects are tie, we can artificially assign * ��� * � for	 , &
	  . Thus, an object * is attracted by a set of ob-
jects

� 	/*  whose densities are larger than that of * , i.e.,� 	/*  � � * � � � �. 	�,/���
	/* ��(9 �  . 	�, ���
	/*  ( . We define
the attractor of * as the object * � � � 	/*  with the largest
attraction to * , i.e.,

� � � �N��� ��P �O	/*  ������������� '���� ��� % � � � �N��� � ,�P . 	/* � � *  .
The process of determining the attractor of each data

object is as follows. For each data object * � , we initial-
ize * � ’s attractor as itself. Then we search for

� 	/* �  and
compare the attraction for each * � � � 	/*��  to *�� . Finally
the winner becomes the attractor of * � . The only special
case is * 2�M that has the largest density, where

� 	/* 2�M  will
be empty. In this case, we set * 2�M ’s attractor as itself.

The attraction relation from an object to another (i.e.,
*���� * � ) is a partial order. Based on this order, we can
derive an attraction tree � . Each node has an object *
such that

0=� � �.
�h	/*  � 4 .
, � if
� � � �N��� ��P �O	/*  � * �� � � �N��� ��P �O	/*  otherwise.

The tree construction process is as follows. First, each
data object * � is a singleton attraction tree � � . Then, we
scan the data set once. For each data object * � , we find its
attractor * � . We insert � � as a child of * � . Thus the origi-
nal singleton cluster trees merge with the others during the

scanning process. When the scanning process is over, all
data objects form an attraction tree reflecting the attraction
hierarchy. One special case here is * 2�M whose attractor
is itself. The corresponding attraction tree � 2�M cannot be a
child of any others. Instead, * 2�M is the root of the resulting
attraction tree. All other data objects are its descendants.

3.3 Deriving a density tree

The attraction tree constructed in Section 3.2 includes ev-
ery object in the data set. Thus, the tree can be bushy. To
identify the really meaningful clusters and their hierarchi-
cal structures, we need to identify the clusters and prune
the noise and outliers. This is done by a summarization of
clusters and dense areas in the form of a density tree.

There are two kinds of nodes in a density tree, namely
the collection nodes and the cluster nodes. A collection
node is an internal node in the tree and represents a dense
area of the data set. A cluster node represents a cluster that
will not be decomposed further. Each node has the medoid
of the dense area or the cluster as its representative.

Figure 2 is an example of a density tree. At the root
of the tree, the whole data set is regarded as a dense area,
and denoted as a root (collection) node

���
. This dense area

consists of two dense sub-areas, i.e.,
� 6 and � 6 . The dense

sub-areas can be further decomposed to finer sub-dense ar-
eas, i.e., ��� , � � . DHC recursively splits the dense sub-
areas until the sub-areas meet some termination criteron.
The sub-areas at the leaf level are represented by cluster
nodes in the density tree. Each cluster node corresponds to
one cluster in the data set.

A2

C3 C4

A0

A1 C1

C2

Figure 2: A density tree.

How to derive a density tree from an attraction tree?
The basic idea is that, first, we have the whole data set as
one dense area to split, then, we recursively split the dense
areas until each dense sub-area contains only one cluster.

To determine the clusters, the dense areas and the
bridges between them, we introduce two parameters: simi-
larity threshold 3 and minimum number of object threshold
+-,/.10��2	 . For an edge * � * � in an attraction tree, where
*�� is the parent of * � , the attraction sub-tree � � ' is a
dense sub-area if and only if (1) ��� �, � ^! P ��	I	/* � �23  �#"
+-,/.10��2	 and (2) 	�,T� , ��� � ,/���
	/* � � *�� :@ 3 . In other words,
a dense area is identified if and only if there are at least
+-,/.10��2	 objects in the area and the similarity between the
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center of the area and the center of the higher level area is
no more than 3 .

Once the dense areas are identified, we can de-
rive the density tree using the dense areas and their
centers attraction relation stored in the attraction tree.
The algorithm is presented in Figure 3. Function� �� ,��  � �. 	�,/��� ���   derives the density tree from the
attraction tree

� � � �N��� � ,�P . ���   . We maintain a queue
	�� ��,/����� ��  to recursively split the dense areas. The
	�� ��,/����� ��  is initialized with only one element, i.e., the� � � �N��� � ,�P . ���   . For each iteration, we extract an element
from the 	�� ��,/��� �  �  which represents the dense area to
split. Then we call the function 	�� ��,/� to identify sub-dense
areas in 	�� ��,/� ���   . If 	�� ��,/� ���   cannot be further divided,
function 	�� ��,/� returns 	�� � , � ���   unchanged. In this case,
we will serialize the 	�� ��,/� ���   area list of data objects and
record it in the cluster list � ���
	��� ��	 . Otherwise, 	�� ��,/� will
return a square type node with split sub-areas as its chil-
dren. In this case, we put all of the children as candidate
split areas and put them into 	�� ��,/����� ��  . The iteration
stops when the 	�� � , ��� � ��  is empty, i.e., no more sub ar-
eas can be split.

3.4 Why is DHC effective and efficient?

By measuring the density for each data object, DHC cap-
tures the natural distribution of the data. Intuitively, a
group of highly co-expressed genes will form a dense area
(cluster), and the gene with the highest density within the
group becomes the medoid of the cluster. There may be
many noise objects. However, they distribute sparsely in
the object space and cannot show a high degree of co-
expression, and thus have low densities.

In summary, DHC has some distinct advantages over
some previously proposed methods. Comparing to k-
means and SOM, DHC does not need a parameter about
the number of clusters, and the resulting clusters are not
affected by outliers. On the one hand, by locating the dense
areas in the object space, DHC automatically detects the
number of clusters. On the other hand, since DHC uses
the expression pattern of the medoid to represent the aver-
age expression patterns of co-expressed genes, the result-
ing clusters will not be corrupted by outliers.

Comparing to CAST and Adapt, DHC can handle the
embedded clusters and highly intersected clusters uni-
formly. Figure 4 shows an example. Figure 4(a) illus-
trates two embedded clusters, and Figure 4(b) shows two
highly intersected clusters. In both figures, let

���
be the

whole data set, � 6 and ��� be the two clusters in
���

,
and * 6 and *�� be the medoids of � 6 and � � . Suppose� �. 	�,/���
	/* 6  9 � �. 	�,/���!	/*��  . After the � � � �N��� � process
and �\P . 	�� � � � � ���   process, in both situations, the follow-
ing three facts hold: (1) * 6 will be the root of the attraction
tree of the data set, since it has a higher density than any
other data objects; (2) *�� will be the root of a subtree that
contains the data objects belonging to � � , since *�� is the
medoid of ��� and (3) *�� will be attracted by some data

Proc deriveDensityTree( �	�
�
������
������������� )
splitQueue.add( �����
�������
������������� )
while (!splitQueue.isEmpty())

spTree = splitQueue.extract()
parentTree = spTree.parent
node = splitTree(spTree)
if (parentTree == NULL) then root = node
else parentTree.addChild(node)
end if
if (node.type == CLUSTERTYPE) then

c = node.serialize()
clusters.add(c)

else // node.type==COLLECTIONTYPE
for each child �� �������� of node do

chTree.parent = node
node.remove(chTree)
splitQueue.add(chTree)

end for
end if

end while
End Proc

struct MaxCut(t,p,dist)
tree = t; parent = p; distance = dist

end Struct MaxCut
Func splitTree(tree)

finished = false;
currentDistance = MAXDISTANCE
While (! finished)

cut = findMaxCut(tree,currentDistance)
if (cut == null) then finished = true
else

currentDistance= cut.distance
if (splitable( !"� .tree,tree)) then

cut.parent.remove(cut.tree)
finished = true

end if
end if

end while
if (cut == null) then return tree
else

collection = new DensityTree(collection)
collection.addChild(cut.tree)
collection.addChild(tree)
return

end if
End Func

Figure 3: Algorithm DHC.

C1

A0

C2

O2

O1

A0

C1 O1 O2

C2

(a) Embedded cluster (b)Highly intersected cluster

Figure 4: An example of embedded cluster and highly in-
tersected cluster.

object *"# and become one of the children of *$# . Figure
5(a) demonstrates the generated attraction tree. After the
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O3

C2

e23

O2

O1
A0

C1 C2

        borders

(a) Attraction tree. (b) Derived density tree.

Figure 5: Attraction tree and derived density tree of � 6 and
� � .

� �� ,��  � �. 	�,/��� process, ��� will be identified as a dense
area and split away from the attraction tree from edge ���# .
The derived density tree is demonstrated by Figure 5 (b).
As can be seen, the embedded clusters and intersected clus-
ters are treated uniformly.

Moreover, the result of DHC can be visualized as a hi-
erarchical structure. Comparing to some conventional hi-
erarchial approaches, the two tree approach (density tree
and attraction tree) is easier to understand. First, the den-
sity tree summarizes the cluster structure of the data set,
so there is no need to cut the dendrogram. Second, instead
of putting all data objects at the leaf level, DHC puts the
medoid at the tree root to represent the “core” of the clus-
ter. Other data objects in the attraction tree are directly
or indirectly attracted to the medoid level by level. The
levels of the data objects reflect the similarity of the data
objects w.r.t. the medoid. The lower level an data object
stays, the farther it locates from the “core”. Therefore, the
attraction tree for each cluster clearly discloses the inner-
cluster structure. Third, due to the low densities, outliers
are attracted at the leave level of the attraction tree. A post-
pruning process can be applied to discard the outliers. We
can leave the user to set the prune threshold and thus retain
the flexibility of judging the outliers.

4 Experimental Results

We test algorithm DHC on real data sets. Limited by space,
we only report the results on two typical real gene expres-
sion data sets: (1) the Iyer’s Data [10], which contains gene
expression levels of � ��� human genes in response to serum
stimulation over ��Z time points; and (2) the Cho’s Data [5],
which has been preprocessed to remove duplicate genes
and genes peaking during multiple phases. It contains �����
gene expression patterns during the cell cycle of the bud-
ding yeast S. cerevisiae. Those two data sets are public on
the web and have become sort of the benchmark data sets
for clustering analysis of gene expression data.

In [6], Eisen et al. partitioned the Iyer’s data set into
��� clusters according to the gene expression patterns. In
[5], Cho et al. listed the functionally characterized genes
whose transcripts display periodic fluctuation. Five puta-

tive true clusters, which are the sets of early G1-peaking,
late G1-peaking, S peaking, � � peaking and M peaking
genes are reported at http: //171.65.26.52/ yeast cell cycle/
functional categories.html. We use the above partition as
the ground truth to test and compare the performance of
DHC with those of other clustering algorithms.

The algorithms are implemented on a Sun workstation
with a ��� � MHz CPU and Z���� MB main memory.

4.1 Experiments on the attraction trees and
the density trees

Figure 6 is the density tree generated by DHC on the Iyer’s
data set. It contains 8 clusters (i.e., the � leaf nodes with
frames in the figure). We compare the � clusters with the
ground truth. Each cluster corresponds to a cluster in the
ground truth. We will provide more detailed results later.
To illustrate the attraction tree, we plot Figure 7, which
shows the attraction sub-tree of cluster � . The cluster con-
tains 13 genes, while gene 517 is the medoid of the cluster.
As shown in the figure, genes at the second level (i.e., gene
�
	������ ������ ���O�� ������ ��� ) are directly attracted by gene � ��� ,
and other genes are indirectly attracted by gene 517. The
leaf nodes in the tree represent the genes forming the bor-
der of the cluster.

Figure 6: The density tree of the Iyer’s Data.

g517

g498  g505 g514 g515 g516

g510 g511 g506 g502 g513

g494 500

Figure 7: A attraction subtree of cluster � in the Iyer’s data.

Figures 6 and 7 also demonstrate how the clustering re-
sults in DHC can be visualized at two levels. The higher
level, the density tree, shows a comprehensive picture of
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the cluster structure in the data set. When a user is inter-
ested in a cluster or a dense area, she can go to the lower
level, the corresponding attraction subtree, which discloses
the inner-cluster structures of data objects. The medoid
of the cluster, which represents the expression pattern of
the whole cluster, sits at the root of the attraction sub-tree.
When the tree level goes down, data objects locate farther
and farther away from the medoid of the cluster.

4.2 Identification of interesting patterns
from noisy data

As mentioned above, a good clustering algorithm for gene
expression data must be robust to noise and be able to
automatically extract important genes and interesting pat-
terns from noisy data sets. As discussed in Section 2, most
distance-based algorithms may corrupt with the noise, i.e.,
the average profiles of clusters deviate from true interest-
ing patterns. One distinct feature of DHC is that it captures
the core area of a cluster that has a significantly higher den-
sity than noise. The experimental results suggest that the
density tree structure remains robust and the root of the at-
traction subtree for each cluster still precisely identifies the
corresponding pattern of interest, though in a highly noisy
environment (e.g., � fold noises presents).

In this experiment, we measure the patterns identified
from the original Iyer’s data. Then, we add one fold, three
fold and eight fold noises (permutation of real gene expres-
sion data) to the data set. We compute the average profiles
of the ��� clusters given by the ground truth as the stan-
dard patterns, and test each clustering method the ability
to identify those standard patterns.

Suppose � � � � � 6 � .[.\. � ��� ( is the set of resulting
clusters from algorithm � , and � � � 0 6 � .\.[. � 0�� ( is
the set of standard gene expression patterns in the ground
truth. First, we compute the average profile �0 � for each
cluster � � , and find the most similar standard pattern 0 �
that �0 � matches. If a set of average profiles �0 � � , �0 � , ,.\.[. , �0 � V matches the same standard pattern 0 � , we select
the one with the highest similarity with 0 � as 0 � ’s esti-
mate pattern. Then, we examine the similarity between
each standard pattern 0 � and its estimate pattern �0 � . If] ,�� , ��� � ,/���
	 0 � � �0 �� " � . 	 , we call the standard pattern
0 � is identified by the estimate pattern �0 � .

In Figure 8, we highlight the identified patterns in bold.
The value of each cell is the similarity between each stan-
dard pattern and its estimate pattern w.r.t. different clus-
tering algorithms. � 0�� means the number of standard
patterns identified by the algorithm. For the original data,
our algorithm identified all patterns except 0
	 and 0�� . 0	
was not identified by any other clustering algorithms, ei-
ther. 0� was only barely identified by K-means. When
noise rate increases, the behavior of distance-based algo-
rithms become worse, and less and less standard patterns
can be identified. However, DHC successfully identifies
significant and interesting patterns reliably.

4.3 The robustness to the parameters

In the following experiments, we test the robustness of our
algorithm against different settings of parameters. Our al-
gorithm has two parameters, the similarity threshold 3 and
the minimum number of objects threshold +4,/.10��2	 . We
test the mining results w.r.t. various parameter settings on
Cho’s data.

First we test the number of resulted clusters under a wide
range of paramter settings. Our experiment shows that the
number of clusters reported by DHC does not change much
when we change the value of the similarity threshod and
the minimum number of object threshold. Next, we test the
quality of the mining result in terms of FM index w.r.t. the
parameters settings. As shown in Figure 9, the FM index
values are not sensitive to the parameter settings. These re-
sults strongly confirmed that DHC is robust w.r.t. the input
parameters.
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(a) FM index vs. ����������� (b) FM index vs. ����������� .

Figure 9: The sensitivity of clustering results w.r.t. the in-
put parameters.

4.4 Scalability

We test the scalability of our algorithm by adding noises to
the Iyer’s data. The experimental results show that DHC
can process � �/����� � gene expressions in about � � � � � sec-
onds. It verifies that DHC is scalable in processing large
gene expression data sets. Limited by space, the details are
omitted here.

5 Conclusions

Clustering time series gene expression data is an impor-
tant task in bioinformatics research and bio-medical ap-
plications. Although some methods have been adapted or
proposed recently, several challenges remain, including the
interpretability and visualization of the clustering results,
the robustness of the mining results w.r.t. noise, outliers,
and global parameters, and handling clusters with arbitrary
shape and structures.

In this paper, we propose DHC, a density-based hierar-
chical clustering method. DHC first organizes all objects in
a data set into an attraction tree according to the density-
based connectivity. Then, clusters and dense areas (i.e.,
collections of clusters) are identified.
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Noise Fold Methods Noise Fold Methods
S O M K-Means CAST D H C S O M K-Means CAST D H C

C1 0.980 0.972 0.954 0.992 C1 0.879 0.965 0.953 0.992
C2 0.990 0.948 0.887 0.957 C2 0.992 0.994 0.696 0.957
C3 -1.0 -1.0 0.997 0.984 C3 0.973 -1.0 0.994 0.984
C4 0.978 0.995 0.968 0.979 C4 0.985 0.973 0.925 0.979

0 C5 -1.0 -1.0 -1.0 -1.0 1 C5 -1.0 0.886 -1.0 -1.0
C6 -1.0 0.964 0.983 0.974 C6 -1.0 0.932 0.986 0.974
C7 0.951 -1.0 -1.0 0.966 C7 -1.0 -1.0 -1.0 0.966
C8 -1.0 0.962 0.999 0.970 C8 0.985 0.961 0.986 0.970
C9 0.893 0.910 0.729 -1.0 C9 -1.0 -1.0 0.844 -1.0

C10 -1.0 0.930 0.995 0.973 C10 -1.0 -1.0 0.975 0.973
IPN 4 7 6 8 IPN 4 5 6 8
C1 0.978 0.985 0.938 0.992 C1 0.981 -1.0 0.671 0.992
C2 0.972 0.963 0.853 0.957 C2 0.976 0.938 0.947 0.957
C3 -1.0 -1.0 0.991 -1.0 C3 -1.0 0.936 0.950 -1.0
C4 0.955 -1.0 0.987 0.979 C4 -1.0 0.950 0.980 0.979

3 C5 -1.0 0.860 -1.0 -1.0 8 C5 -1.0 -1.0 0.920 -1.0
C6 -0.860 0.371 0.969 0.974 C6 -1.0 0.844 0.987 0.974
C7 -1.0 0.941 -1.0 0.966 C7 0.937 -1.0 -1.0 0.966
C8 -1.0 -1.0 0.986 0.970 C8 0.881 0.889 0.994 0.970
C9 0.597 0.875 0.537 0.905 C9 -1.0 -1.0 0.860 0.905

C10 0.791 0.365 0.977 0.973 C10 0.813 -1.0 0.895 0.973
IPN 3 3 6 8 IPN 3 3 6 8

Figure 8: Pattern identification from the noise-added Iyer’s Data.

As verified by our empirical evaluation, DHC is clearly
more robust than some typical methods proposed previ-
ously, in terms of handling noise, outliers, structures of
the clusters, and user-specified parameters. Moreover, the
clustering results from DHC fits the ground truth better
than most of the previously proposed methods in many
cases. As a distinct feature, the mining results from DHC
can be visualized and interpreted systematically. All these
features make DHC a desirable method for bioinformatics
data analysis.
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