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Abstract. Frequent-pattern mining has been studied extensively and has many useful applica-
tions. However, frequent-pattern mining often generates too many patterns to be truly efficient or
effective. In many applications, it is sufficient to generate and examine frequent patterns with
a sufficiently good approximation of the support frequency instead of in full precision. Such
a compact but “close-enough” frequent-pattern base is called a condensed frequent-pattern base.

In this paper, we propose and examine several alternatives for the design, representation,
and implementation of such condensed frequent-pattern bases. Several algorithms for computing
such pattern bases are proposed. Their effectiveness at pattern compression and methods for
efficiently computing them are investigated. A systematic performance study is conducted on
different kinds of databases, and demonstrates the effectiveness and efficiency of our approach
in handling frequent-pattern mining in large databases.
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1. Introduction

It has been well recognised that frequent-pattern mining plays an essential role
in many important data mining tasks, such as mining association (Agrawal and
Srikant 1994), correlation (Brin et al. 1997), causality (Silverstein et al. 1998), se-
quential patterns (Agrawal and Srikant 1995; Pei et al. 2001), episodes (Mannila
et al. 1997), multi-dimensional patterns (Lent et al. 1997; Kamber et al. 1997),
max-patterns (Bayardo 1998), partial periodicity (Han et al. 1999), and emerging
patterns (Dong and Li 1999). Frequent-pattern mining techniques have also been
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shown to be useful in some other tasks, such as iceberg-cube computation (Beyer
and Ramakrishnan 1999) and classification (Liu et al. 1998). However, it has also
been widely recognised that frequent-pattern mining often produces a huge num-
ber of patterns (Zaki 2000), which reduces not only the efficiency but also the
effectiveness of mining, since it is unrealistic to store and comprehend so many
patterns.

Recently, efforts have been devoted to address this problem. In general, interesting
proposals can be classified into two categories. Firstly, concise representations of
frequent patterns have been explored, such as frequent closed patterns (Pasquier et
al. 1999; Zaki 2000; Pei et al. 2000), which can be used to remove sub-patterns
which have the same support as some of their super-patterns. Studies such as (Zaki
2000) have shown that by doing so, the total number of patterns and rules can be
reduced substantially, especially in dense data sets. Secondly, constraints can be used
to capture the users’ focus, and effective strategies have been developed to push
various constraints deep into the mining process (Ng et al. 1998; Lakshmanan et
al. 1999; Pei et al. 2001).

Even though these approaches are useful, they may still be insufficient in some
situations. Compression using the closed-pattern approach may not be very effective,
since slightly different counts often exist between super- and sub-patterns. Constraint-
based mining, though useful, can hardly be used for pre-computation, since different
users are likely to have different constraints.

Although it seems to be inherent that a large database will contain numerous fre-
quent patterns, it is easy to observe a simple fact in practice: Most applications will
not need precise support information for frequent patterns: a good approximation
for the support count could be more than adequate. Here, by a good approximation,
we mean that the frequency of every frequent pattern can be estimated with a guar-
anteed maximal error bound. For example, for a frequent pattern {diapers, beer},
instead of giving the exact support count (e.g., 10 000), a range, e.g., 10 000 ± 1%,
may be good enough. Here 1% indicates the error bound for the range.

Using the approximations of frequent patterns, one can derive approximate asso-
ciation rules. By introducing approximations, many redundant rules can be removed
and the number of rules can be reduced substantially. For example, suppose that
if a customer buys {bread, milk}, the probability that s/he also buys {cheese, ce-
real, butter} is almost the same as the probability that s/he buys cereal. We may
have two rules, R1 : {bread, milk} → {cheese, cereal, butter} and R2 : {bread, milk}
→ {cereal}, both with approximate support 2.5%±0.1% and approximate confidence
85% ± 1%. In this case it is obvious that rule R2 can be pruned. With a reasonable
error bound, it is likely that many similar sub-rules can be pruned.

As many studies have shown, frequent patterns can be used effectively in many
other data mining tasks, such as association-based classification (Liu et al. 1998; Li
et al. 2001), frequent-pattern-based clustering (Beil et al. 2002), and multidimen-
sional cube or transaction gradient analysis (Imielinski et al. 2002; Dong et al. 2001).
Approximate frequent-pattern mining will benefit these tasks as well. For example,
approximate frequent patterns may substantially reduce the number of rules to be
stored in a classifier, which not only leads to efficient construction of a compact
association-rule-based classifier, but also speeds up the prediction process.

We believe that a condensed frequent-pattern base is not only acceptable but often
more preferable in applications for the following reasons.

• When mining a large database, a small deviation often has a minor effect on
the analysis. For an analyst, the exact information “diapers and beer have been
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bought together 10 050 times out of the 10 million transactions” and an approx-
imation “diapers and beer have been bought together 10 050 ± 50 times” may
not have any essential difference. Notice that such a minor deviation will usu-
ally have to be ignored when truncation or rounding is needed for presentation
to users. Thus, what an analyst really cares about is that the mined patterns are
close enough and a specified error bound is guaranteed.

• Condensing the frequent-pattern base leads to more effective frequent-pattern
mining. By computing a condensed pattern base, the number of patterns can
be reduced dramatically, but the general information of the frequent patterns is
essentially preserved. A much smaller base of patterns certainly helps users com-
prehend the mining results.

• Computing a condensed frequent-pattern base leads to more efficient frequent-
pattern mining. A condensed frequent pattern base could be much smaller than
the complete frequent pattern base. Thus, one may need to compute and access
a much smaller pattern base, which leads to better efficiency.

In summary, mining a condensed frequent-pattern base may make frequent-pattern
mining more realistic in real-life applications.

In this paper, the concept of condensed frequent-pattern bases with guaranteed
maximal error bound is introduced and methods for the efficient computation of
such a condensed pattern base are studied. More specifically, this paper makes the
following contributions.

1. We introduce the concept of the condensed frequent pattern base and devise
systematic representations of such frequent-pattern bases. We show that such
representations achieve satisfactory approximations with a guaranteed maximal
error bound on the support.

2. We develop efficient algorithms for computing condensed pattern bases directly
from transaction databases. Our algorithms are able to prune many patterns in the
mining process, by exploiting the relaxation of the counting requirement allowed
by frequent-pattern bases.

3. We present a systematic performance study to verify the effectiveness and effi-
ciency of condensed frequent-pattern bases. Our results show that computing con-
densed frequent-pattern bases is highly promising as a practical frequent-pattern
mining approach for large databases.

Previously, the ideas of approximating frequent patterns have been probed in some
related studies. For example, (Mannila and Toivonen 1996) showed that approximate
association rules are interesting and useful. In (Boulicaut et al. 2000), the notion
of free-sets was proposed and led to an error-bound approximation of frequencies.
However, none of the previous studies systematically explored the problem of design-
ing and mining condensed frequent-pattern bases with a guaranteed maximal error
bound.

The rest of this paper is organised as follows. The problem of computing a con-
densed frequent-pattern base is introduced in Sect. 2. A level-by-level frequent-
pattern base construction method is presented in Sect. 3. In Sect. 4, we develop
an effective and efficient method for frequent-pattern base construction using max-
patterns at various layers. Section 5 presents a comprehensive performance study
to demonstrate the effectiveness and efficiency of our approach. We discuss related
issues, potential extensions, implications, and applications in Sect. 6, and conclude
our study in Sect. 7.
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2. Problem Definition

We firstly review some standard terminology for frequent-pattern mining. Let I =
{i1, . . . , in} be a set of literals, called items. An itemset (or pattern) X, denoted by
X = i j1 · · · i jl (i.e., by omitting set brackets), is a subset of items in I . An itemset
with l items is called an l-itemset. For two patterns X and Y such that X ⊆ Y , Y is
called a super-pattern of X, and X a sub-pattern of Y .

A transaction T = (tid, X) is a tuple in which tid is a transaction identifier and
X is an itemset. A transaction T = (tid, X) is said to contain itemset Y if Y ⊆ X.
A transaction database TDB is a set of transactions. The support of an itemset X
in TDB, denoted by sup(X), is the number of transactions in TDB containing X,
i.e., sup(X) = |{(tid, Y )|((tid, Y ) ∈ TDB) ∧ (X ⊆ Y )}|.

Given a transaction database TDB and a support threshold min_sup, an itemset X
is called a frequent itemset or a frequent pattern if sup(X) ≥ min_sup. The problem
of frequent-pattern mining is to find the complete set of frequent patterns from TDB
w.r.t. a user-specified support threshold min_sup. The set of all frequent patterns is
called a frequent-pattern base, or FP-base for short.

It is often expensive to find the complete set of frequent patterns, since an FP-
base may contain a huge number of frequent patterns. For example, in a transaction
database TDB containing only one transaction, (1, a1 · · · a100), every non-empty sub-
pattern of a1 · · · a100 is a frequent pattern. Thus, the FP-base has (2100 − 1) ≈ 1030

frequent patterns!
In this paper, we propose to overcome the difficulty caused by the huge num-

ber of frequent patterns as follows: compute a small subset of frequent patterns,
i.e., a condensed FP-base, and then use it to approximate the supports of arbitrary
frequent patterns.

Problem statement. Given a transaction database, a support threshold, and a user-
specified error bound k, the problem of computing a condensed FP-base is to find
a subset of frequent patterns B and a function fB such that the following holds for
each pattern X:

fB(X) =






0 if X is infrequent ,

[suplb, supub] s.t. (suplb ≤ sup(X) ≤ supub) if X is frequent .

and (supub − suplb) ≤ k

The function fB is called a (support) approximation function, and the set B is called
a condensed FP-base w.r.t. fB .1

Example 1. Consider the transaction database shown in Table 1. Let the support
threshold be min_sup = 1 and the error bound be k = 2. The lattice of a total of
15 frequent patterns is shown in Fig. 1a.

The set Bd = {a : 5, b : 5, c : 4, d : 4, acd : 1, abcd : 1} is a condensed FP-base.
Patterns in Bd are those labelled with supports in Fig. 1b. For each pattern X, the

1 Instead of an absolute error bound k, computing a condensed FP-base can also take a relative, percentage-
based error bound k%. In that case, supub−suplb

suplb
≤ k% should be satisfied for frequent patterns.
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Table 1. A transaction database with seven transactions.

Transaction-id Itemset

10 a

20 ab

30 abc

40 abcd

50 cd

60 abd

70 bcd

ab:4 ac:2 ad:2 bd:3 cd:3

d:4b:5

null:7

abc:2 abd:2

bc:3

acd:1

c:4

bcd:2

abcd:1

a:5

(a) Lattice of frequent patterns

ab:4 ac ad bd cd

d:4ba

null

abc abd

bc

acd

c:4

bcd

abcd:1

ac bd cd

d:4b:5a:5

null

abc abd

bc

c:4

bcd

abcd:1

(b) Condensed FP-base (c) Condensed FP-base

acd:1

ab ad

m

Fig. 1. Lattice of frequent patterns for Example 1.

function fBd is defined as follows:

fBd (X) =






0 if there exists no X ′ ∈ Bd ,

s.t. X ⊆ X ′

[sup(X), sup(X)] if X ∈ Bd ,

[sup(X0) − 2, sup(X0)] X0 ⊂ X and
sup(X0) = min(sup(X ′′))
for X ′′ ⊂ X and X ′′ ∈ Bd .

For example, fBd (abcde) = 0 for the infrequent pattern abcde, since there is
no X ′ ∈ Bd s.t. abcde ⊆ X ′; fBd (ac) = [4 − 2, 4] = [2, 4], since c is a sub-
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pattern of ac in Bd with the smallest support count (of 4). Here, we used the well-
known a priori property that supp(X) ≥ supp(Y ) if X ⊆ Y . One can verify that
fBd can approximate the support count of each frequent pattern as required by the
definition given above. For example, sup(ab) is approximated by [3, 5] and sup(abc)
by [2, 4].

Moreover, Bm = {c : 4, d : 4, ab : 4, abcd : 1} is another condensed FP-base,
as plotted in Fig. 1c. The corresponding approximation function fBm is defined (for
each pattern X) as follows:

fBm (X) =






0 if there exists no X ′ ∈ Bm ,

s.t. X ⊆ X ′

[sup(X), sup(X)] if X ∈ Bm ,

[sup(X0), sup(X0) + 2] X0 ⊃ X and sup(X0) =
max{sup(X ′′) | X ′′ ⊃ X, X ′′ ∈ Bm} .

Condensed FP-bases and approximation functions are not unique. A superset of
a condensed FP-base is also a base w.r.t. the identical approximation function. A con-
densed FP-base is minimal (w.r.t. an approximation function f ) if it does not con-
tain a proper subset which is also a condensed FP-base w.r.t. f . Interestingly, even
minimal condensed FP-bases are not unique. For Example 1, both Bd and Bm are
minimal condensed FP-bases.

Among possible approximation bases, we prefer those requiring as little space as
possible. Such condensed FP-bases offer a significant compression effect, which can
be measured by the compression ratio, defined as

compression ratio = number of patterns in the condensed FP-base

total number of frequent patterns
. (1)

Clearly, the smaller the compression ratio, the better the compression effect. We
observe from Example 1 that condensed FP-bases can produce considerable space
savings even with a small error bound. (Bd achieves a compression ratio of 40%,
whereas Bm achieves 26.7%. Bm achieves better compression than Bd .)

Previous research has also considered computing reduced sets of frequent pat-
terns, including reduction based on frequent closed itemsets (Pasquier et al. 1999)
and containment-based reduction (Bayardo 1998; Dong and Li 1999). An itemset
X is called a closed pattern if there exists no proper superset X ′ of X such that
sup(X) = sup(X ′), while X is called a max-pattern if there exists no superset X ′
of X such that X ′ is also frequent. Interestingly, it can be shown that the complete
set of frequent closed patterns is a minimal condensed FP-base with error bound 0,
while the complete set of max-patterns is a minimal condensed FP-base with error
bound (|TDB| − min_sup), where min_sup is the support threshold. However, none
of these considers approximating supports of frequent patterns with a user-specified
error bound as we do here.

Now, let us ask the following question: How can we construct condensed FP-
bases effectively and efficiently? This is the topic of the following sections. We will
consider two approaches: the first method (see Sect. 3) constructs a base by consid-
ering all frequent patterns in the a priori manner; the second method (see Sect. 4)
constructs a base by considering only maximal frequent patterns at various layers
for a range of support thresholds.
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3. Constructing a Condensed FP-Base Level-by-Level

We now consider an approach that constructs a condensed FP-base by examining all
frequent patterns level-by-level: A frequent pattern is added into the condensed FP-
base only if it cannot be approximated by its sub-patterns in the base. The method
is illustrated in the following example.

Example 2. We construct a condensed FP-base Bd as follows for the transaction
database TDB in Table 1, for a support threshold of 1 and an error bound of 2. Bd
is shown in Fig. 1b, while the approximation function fBd is defined in Example 1.

For each pattern X, let X.ub denote min{sup(X ′)|X ′ ∈ Bd , and X ′ ⊆ X}, i.e.,
X.ub is the minimum of the supports of all proper sub-patterns of X in Bd .

1. We initialise Bd = ∅ and mine length-1 and length-2 frequent patterns. Since
length-1 frequent patterns are the most frequent end borders of frequent patterns
and none of their sub-patterns is in the base, we insert all of them (i.e., a, b, c,
and d) into Bd .
For each length-1 frequent pattern x, x.ub = sup(x).

2. For the next level, i.e., length-2 frequent patterns, we have xy.ub = min(x.ub,
y.ub) for each length-2 frequent pattern xy.
We do two types of insertion into Bd . Firstly, a length-2 frequent pattern X is
added into Bd if X.ub−sup(X) is over the error bound (i.e., if its support cannot
be approximated by its sub-patterns in the base Bd). In this example, since all
length-2 frequent patterns can be approximated properly by their length-1 sub-
patterns, no length-2 frequent pattern is inserted into Bd .
Secondly, if a length-2 frequent pattern has no frequent length-3 super-pattern,
i.e., it is a max-pattern, then it is inserted into Bd . Max-patterns are needed
in Bd since they are used to determine whether a pattern is frequent. In this
example, no such length-2 frequent pattern exists.

3. For the length-3 level, since acd.ub − sup(acd) = 4 − 1 > 2, pattern acd is
inserted into Bd . Here, abc.ub = min(ab.ub, ac.ub, bc.ub). After the insertion,
we set abc.ub = sup(abc) = 1. We then mine length-4 frequent patterns and see
that there is no length-3 max-pattern.

4. The length-4 frequent pattern abcd is a max-pattern, since there are no length-5
frequent patterns, and so it is inserted into Bd .

At the end, the base Bd contains 6 patterns: {a : 5, b : 5, c : 4, d : 4, acd : 1,
abcd : 1}. Since the search is downward from length-1 patterns, we call the resulting
base a downward condensed FP-base.

Now, let us generalise the level-by-level condensed FP-base construction method.
We firstly define the approximation function ϑ as follows.

Definition 1. Given a condensed FP-base B, an error bound k and a pattern X:

ϑ(X) =






0 if there exists no X ′ ∈ B s.t. X ′ ⊇ X ,

[sup(X), sup(X)] if X ∈ B ,

[m − k, m] if X 
∈ B, where
m = min{sup(X ′) | X ′ ∈ B, X ′ ⊂ X} .

The following algorithm computes a condensed FP-base with respect to approx-
imation function ϑ.
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Algorithm 1 (CFP-D: a level-by-level downward search method).

Input: A transaction database TDB, the support threshold min_sup, and the error
bound k

Output: A condensed FP-base B w.r.t. ϑ
Method:

1: let B = ∅;
2: find length-1 frequent patterns and insert them into B;
3: for each length-1 frequent pattern X, let X.ub = sup(X);
4: let i = 1;
5: repeat
6: i = i+1;
7: generate the set F i of length-i frequent patterns;
8: for each length-i frequent pattern X,

let X.ub = min(X ′.ub), where X ′ ranges over length-(i − 1)
sub-patterns of X;

// the calculation of X.ub can be done as a byproduct of
// candidate-generation

9: if (X.ub − sup(X)) > k, then insert X into B and
set X.ub = sup(X);

10: for each length-(i − 1) frequent pattern X s.t. X has no
super-pattern in F i , insert X into B;

// rationale: X is a max-pattern
11: until F i = ∅;
12: return B

One advantage of the method shown in Example 2 is that it is intuitive and
can be easily integrated into Algorithm 1. The correctness and effectiveness of the
algorithm are shown in the following theorem.

Theorem 3.1. Algorithm 1 returns a minimal condensed FP-base with respect to
approximation function ϑ.

Proof. The fact that the algorithm returns a condensed FP-base w.r.t. ϑ can be proven
by induction on the pattern length i. From steps 1–3, we see that all length i = 1
frequent patterns can be properly approximated, since they belong to B. For length
i pattern X for i > 1, two cases arise. Case (a): X is not a maximal frequent
pattern (i.e., it is contained in some other frequent patterns). Then, let X.ub be the
minimum of the supports of X’s sub-patterns in B. We need to insert X into B
if the difference between X.ub and X’s support is more than k, since X’s support
cannot be approximated properly. This is exactly what step 9 does. Case (b): X is
a maximal frequent pattern. Then we need to insert X into B; this is exactly what
step 10 does.

It is clear that if we remove any pattern X from B, ϑ cannot give an approxi-
mation for sup(X) under the error bound. Thus, B is minimal.

What kind of patterns are included in B computed by Algorithm 1? A frequent
pattern X is called a seed pattern if for each proper sub-pattern X ′ ⊂ X, sup(X ′) >
sup(X). Interestingly, we have

Lemma 3.1. Every pattern in B computed by Algorithm 1 is either a seed pattern
or a max-pattern.
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Proof. Let X ∈ B be a pattern which is not a seed pattern. Then there exists another
pattern X ′ ⊂ X such that sup(X) = sup(X ′). Clearly, X ′.ub ≥ X.ub. Thus, X ′.ub −
sup(X ′) ≥ X.ub − sup(X). Since X ∈ B, it follows that X ′ ∈ B. It is easy to see
that X.ub = sup(X ′), and hence X.ub − sup(X) = 0. Since X is inserted into B,
X is a max-pattern.

4. Constructing a Condensed FP-Base Using Max-Patterns

While Algorithm 1 is intuitive and correct, it has to check every frequent pattern.
When there are many frequent patterns, the mining cost is non-trivial. Can we avoid
checking every frequent pattern when constructing a condensed FP-base? In this
section we will explore this question by providing a type of condensed FP-base and
an efficient mining technique to find such a base.

Intuitively, we are going to construct a condensed FP-base consisting of max-
imal frequent patterns for a series of support thresholds. More specifically, given
a support threshold min_sup and error bound k, we divide the set of frequent pat-
terns into a number of disjoint subsets: (1) the set of patterns with support in the
range [min_sup, min_sup+k], (2) those with support in the range [min_sup+k +1,
min_sup + 2k + 1], and so on. The i-th subset contains those patterns with sup-
port in the range [min_sup + (i − 1)(k + 1), min_sup + ik + i − 1], where 1 ≤
i ≤ |TDB|+1−min_sup

k+1 . Given a frequent pattern, we can approximate its support with
a maximal error of k, by determining which subset the pattern belongs to. To de-
termine which subset a pattern belongs to, we only need to record the max-patterns
at various layers w.r.t. the lower bounds of the supports of the ranges. The idea is
illustrated in the following example.

Example 3. Given the transaction database TDB in Table 1, a support threshold of 1,
and an error bound of 2, a condensed FP-base Bm can be constructed as follows.

Since the support threshold is 1 and the total number of transactions in the
database is 7, we consider three ranges of supports: [1, 3], [4, 6], and [7, 7]. We
mine max-patterns w.r.t. support thresholds 1, 4, and 7, respectively. The only max-
pattern w.r.t. support threshold 1 is abcd, the max-patterns w.r.t. support threshold
4 are ab, c, and d, while there is no max-pattern w.r.t. support threshold 7. These
four patterns form a condensed FP-base Bm .

The base Bm is shown in Fig. 1c. The approximation function is fBm , as defined
in Example 1. In essence, for each given pattern X we find the super-pattern Y of
X in Bm having the largest support, and use the range of the support for Y as the
estimate of the support of X.

We now generalise the ideas by providing the definition of a condensed FP-base.

Definition 2. Given a transaction database TDB, a support threshold min_sup, and
an error bound k, let the number of levels be

n_level = �|TDB| + 1 − min_sup

k + 1
� .

Define

min_sup1 = min_sup ,
min_sup2 = min_sup + k + 1 ,

. . .
min_supi = min_sup + (i − 1)(k + 1) for (1 ≤ i ≤ n_level) .
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Then, B = ⋃i<n_level
i=0 Mi is called an M-base w.r.t. the approximation function ζ

defined below. Here, Mi is the set of max-patterns w.r.t. support threshold min_supi .

The name M-base is used because the base is based on max-patterns.

Definition 3. Given an error bound k, an M-base B, and a pattern X, let

ζ(X) =






0 if there exists no X ′ ∈ B s.t. X ′ ⊇ X ,

[sup(X), sup(X)] if X ∈ B ,

[m, m + k] if X 
∈ B, where

m = max{sup(X ′) | X ′ ∈ B, X ′ ⊃ X} .

The following result shows that each M-base is not only a proper condensed
FP-base w.r.t. function ζ , but also a minimal one.

Theorem 4.1. Each M-base B is a minimal condensed FP-base w.r.t. approximation
function ζ .

Proof. We firstly show that B is a condensed FP-base w.r.t. ζ . For each pattern X,
three cases arise.

• Case 1: sup(X) < min_sup. Then there exists no max-pattern Y ∈ B such that
X ⊆ Y . Thus, ζ(X) = 0, and ζ correctly identifies X as an infrequent pattern.

• Case 2: (sup(X) ≥ min_sup)∧ (X ∈ B). Then ζ(X) = [sup(X), sup(X)], and so
ζ approximates X’s support without error.

• Case 3: (sup(X) ≥ min_sup) ∧ (X 
∈ B). There must be some j (1 ≤ j ≤
n_level) such that j = max{i | sup(X) ≥ min_supi}. Therefore, there exists
some max-pattern Y ∈ M j ⊆ B w.r.t. support threshold min_sup j s.t. X ⊆ Y .
Let Y0 ∈ B be the max-pattern with the largest support. Then, we have

min_sup j ≤ sup(Y0) ≤ sup(X) < min_sup j+1 = min_sup j + k + 1

for ( j < n_level), or

min_supn_level ≤ sup(Y0) ≤ sup(X) ≤ |TDB| ≤ min_supn_level + k

for ( j = n_level). Hence, ζ(X) approximates sup(X) with [sup(Y0), sup(Y0)+ k]
(within the error bound k).

Hence, B is indeed a condensed FP-base w.r.t. ζ . To show that B is minimal,
we only need to note that, for each pattern X ∈ B, sup(X) cannot be approximated
properly by ζ using B − {X}.

The remaining problem is how to find the max-patterns efficiently in the con-
densed FP-base Bm .

There are many methods for mining max-patterns, such as MaxMiner (Bayardo
1998), Depth-first Search (Agarwal et al. 2001), MAFIA (Burdick et al. 2001), and
GenMax (Gouda and Zaki 2001). A naïve method to compute Bm is to call a max-
pattern mining algorithm multiple times, once for each lower bound of the ranges
as a support threshold.

How do we mine the patterns of M-bases more efficiently than the naïve method?
Roughly speaking, we propose an algorithm to mine the database only once, for

all the max-patterns w.r.t. the series of support thresholds. The algorithm proceeds
in a depth-first manner. Moreover, our algorithm also uses other new pruning tech-
niques. We will demonstrate the spirit of our algorithm with the following example.
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Example 4. Consider the mining of max-patterns w.r.t. support thresholds 1 and 4
in the M-base Bm for the transaction database TDB of Table 1.

By scanning the transaction database TDB once, all frequent items, namely a : 5,
b : 5, c : 4, and d : 4, are found. These items are sorted in support descending order,
producing the list F-list= a − b − c − d.

F-list can be used to divide all max-patterns into four disjoint subsets: (1) the set
of max-patterns containing item a; (2) those containing item b but not a; (3) those
containing item c but not a nor b; and (4) those containing item d, i.e., the pattern
d itself, if it is a max-pattern. We mine these four subsets of max-patterns one by
one.

1. To find max-patterns containing item a, we form the a-projected database TDBa
by collecting all transactions containing item a, namely b, bc, bcd, and bd.
Items b, c, and d are local frequent items in TDBa. A list F-lista = b − c − d is
formed by sorting these local frequent items in local support descending order.
Based on F-lista, all max-patterns containing item a can be further divided into
four disjoint subsets: (1) pattern a itself, if it is a max-pattern; (2) the ones
containing ab; (3) the ones containing item ac but not b; and (4) pattern ad if
it is a max-pattern. We mine them one by one recursively.
(a) The support of b in TDBa is 4, denoted by supTDBa(b) = 4. Since sup(ab) =

supTDBa(b) = 4, pattern a is not a max-pattern w.r.t. support threshold 4.
(b) To find max-patterns containing ab, we form the ab-projected database

TDBab, which contains c, cd, and d. Items a and b are omitted in TDBab,
since they appear in every transaction in the ab-projected database. There is
no item having support 4 or over in TDBab. Thus, ab is a max-pattern w.r.t.
support threshold 4 (the lower bound of the second range of supports).
Items c and d are frequent in TDBab. We recursively mine max-patterns by
forming projected databases. It can be checked that abcd is a max-pattern
w.r.t. support threshold 1. Thus, the max-patterns containing ab are ab : 4
itself and abcd : 1.

(c) To find max-patterns containing ac but not b, we form the ac-projected data-
base TDBac, which contains d. Here, items a, b, and c are omitted since ac
appears in every transaction and b occurs before c in F-list. The only frequent
item in TDBac is d. However, ac ⊂ abcd and 4 > sup(ac) > sup(abcd) = 1.
That means there exists no max-pattern containing ac but not b.

(d) Since 4 > sup(ad) > sup(abcd) = 1, ad is not a max-pattern.
Therefore, the max-patterns containing a are ab and abcd.

2. To find all max-patterns containing b but not a, we form the b-projected database,
which contains c, cd, d, and cd. The local frequent items in TDBb are c and d,
and F-listb = c−d. The max-patterns containing b but not a can be divided into
three subsets: (1) pattern b itself, if it is a max-pattern; (2) the ones containing
bc; and (3) pattern bd, if it is a max-pattern. Let us mine them one by one.
Since b ⊂ ab and ab is a max-pattern, b is not a max-pattern.
Since sup(bc) = supTDBb(c) = 2, we have 4 > sup(bc) ≥ sup(bcd) > sup(abcd).
It follows that there are no max-pattern containing bc but not a.
Similarly, we can check that bd is not a max-pattern.
Thus, there are no max-patterns containing b but not a.

3. To mine max-patterns containing c but not a nor b, we can form the c-projected
database and mine recursively. It can be verified that c is the only such max-
pattern.

4. It can be verified that d is a max-pattern.
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We have now found the complete set of max-patterns for condensed FP-base
Bm = {ab : 4, abcd : 1, c : 4, d : 4}.

As shown in the example, the general framework is in a depth-first manner. A list
of frequent items in support descending order, called F-list, is used to divide the data
as well as the mining task. In general, given F-list= x1 · · · xn, the set of max-patterns
can be divided into n disjoint subsets: the i-th subset contains the max-pattern having
item xi but none of x j (0 < j < i).

To mine max-patterns containing X = xi1 · · · xim (items in X are listed according
to F-list), an X-projected database TDBX is formed: every transaction t = (tid, Y ) ∈
TDB such that X ⊂ Y is projected onto TDBX as (tid, Y ′); only items after xim in
the F-list are in Y ′. In Example 4, F-list= a − b − c − d. Thus, the ac-projected
database TDBac contains only one transaction, d (see step 1c). Here, the transaction-
id is omitted.

The pruning techniques used in the mining are verified as follows.
Firstly, how can we determine whether a frequent pattern X is a local max-

pattern? We have the following lemma.

Lemma 4.1. Let X be a frequent pattern and i X = max{i | sup(X) ≥ min_supi}.
Then, X is a max-pattern w.r.t. min_supiX if and only if X is not a sub-pattern of
any max-pattern w.r.t. min_supiX and supTDBX (x) < min_supiX for each item x in
TDBX .

Proof. (Direction IF) For each pattern X = x1 · · · xn (items in X are listed according
to F-list) as stated in the lemma, let us consider sup(X y) for every y 
∈ X. Clearly,
if y is after xn in F-list, then sup(X y) < min_supiX . In the case that y is before
xn in F-list, since X is not a sub-pattern of any max-pattern w.r.t. min_supiX , we
have sup(X y) < min_supiX . Thus, following the definition of “max-pattern”, X is
a max-pattern w.r.t. min_supiX .

(Direction ONLY-IF) The statement follows from the definition of “max-pattern”
immediately.

In step 1b of Example 4, pattern ab is determined as a max-pattern w.r.t. support
threshold 4 according to Lemma 4.1.

Secondly, can we prune some unpromising patterns as early as possible? We
have the following lemma.

Lemma 4.2. Let X be a frequent pattern and F-listX = y1 − . . .− ym be the F-list of
local frequent items in TDBX . For an item yi in F-listX , if there exists a max-pattern
Z and i (1 ≤ i ≤ n_level) such that (X ∪ yi · · · ym) ⊆ Z and

min_supi ≤ sup(Z) ≤ supTDBX (yi) < min_supi+1 ,

then for Y ⊆ yi · · · ym , X ∪ Y cannot be a max-pattern, and thus (X ∪ yi)-, . . . ,
(X ∪ ym)-projected databases can be pruned.

Proof. We only need to notice the following two facts: For X and yi as stated in
the lemma, (1) X ∪ yi · · · ym ⊆ Z is not a max-pattern (by Lemma 4.1). (2) From
X and yi · · · ym , we cannot derive any max-pattern which is a super-pattern of Z ,
since X ∪ yi · · · ym ⊆ Z . Thus, we have the lemma.

In step 2 of Example 4, we do not need to form and mine the bc-projected
database since (1) the frequent items in the b-projected database are c and d with
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support less than 4; and (2) bcd is not a max-pattern w.r.t. support threshold 1. Thus,
Lemma 4.2 is applied here.

Based on the above analysis, we summarise the algorithm for constructing an
M-base as follows.

Algorithm 2 (CFP-M: mining max-patterns at various layers).

Input: transaction database TDB, support threshold min_sup, and error bound k%;
Output: an M-base B w.r.t. ζ ;
Method:

let I be the set of all items; call mine(TDB,∅, I ).
Function mine(DBX, X, IX )

// DBX : a projected database, X: a frequent pattern, IX : a set of items to be
processed
1. scan DBX once to find all frequent items within IX ;
2. let Fe be the set of items appearing in every transaction in DBX , i.e., Fe =

{x | x ∈ IX , sup(x) = |DBX|}; let Fr = FX − Fe;
3. let i = max{ j | |DBX | ≥ min_sup j};

if min_supi > sup(y) for each item y ∈ Fr , and X ∪ Fe is not contained in
any max-pattern w.r.t. support threshold min_supi , then output X ∪ Fe;
// X ∪ Fe is a max-pattern w.r.t. min_supi .
// This step is based on Lemma 4.1.

4. let F-listX be the list of items in Fr in support descending order;
for each item x ∈F-listX (processed in the order) do
(a) if the pruning criteria of Lemma 4.2 is satisfied for X, x (as yi), and Fr

(as F-listX ), then return;
(b) otherwise, let DBXx ⊂ DB be the subset of transactions containing x;

let IXx ⊂ Fr be the set of frequent items after x in FX ;
call mine(DBXx, Fe ∪ {x}, IXx);

5. return;
Analysis. The correctness of the algorithm follows from the lemmas given above. In

this algorithm, we do not check every frequent pattern. Instead, we only check
frequent patterns without a proper super-pattern that have exactly the same sup-
port count. Furthermore, by using Lemma 4.2, we prune patterns approximately
contained by other max-patterns.

The implementation of Algorithm 2 involves projected databases and containment
tests of frequent patterns. Accordingly, we propose the following two implementation
optimisations.

• We use FP-tree (Han et al. 2000) to compress the database and projected data-
bases. An FP-tree is a prefix tree storing transactions. Only frequent items in
transactions are stored. From FP-trees, projected databases can be derived effi-
ciently.

• One critical implementation issue of Algorithm 2 is that we need to identify
max-patterns that contain a given pattern and stay in the same support range. In
our implementation, we index max-patterns of the condensed FP-base by support
level i (i.e., the pattern is w.r.t. min_supi) and length. Moreover, to facilitate the
search, we organise all max-patterns by using a prefix tree, while all the nodes
with the same item label are linked together.
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5. Experimental Results and Performance Study

To evaluate the effectiveness and efficiency of condensed FP-bases, we conducted
a comprehensive set of experiments. In this section, we report a summary of our
results. All experiments were conducted on a PC with a Pentium III-750 CPU and
188 Mb main memory. All the programs were coded using Microsoft Visual C++6.0.

We used both synthetic datasets and real datasets in the experiments. The results
are consistent. Due to lack of space, we only report results on three datasets as
follows.

Firstly, to report results on the effectiveness and efficiency of FP-bases, we used
the following dense datasets. A dataset is dense if it contains many long patterns
even though the support threshold is relatively high. Mining frequent patterns from
dense databases is very challenging.

• Real dataset Mushroom. The Mushroom dataset obtained from the UC-Irvine Ma-
chine Learning Database Repository has 8124 transactions, while the average
length of a transaction is 23. It is a typical dense dataset.

• Real dataset Connect-4. This dataset was also obtained from the UC-Irvine Ma-
chine Learning Database Repository. It has 67 557 transactions and each transac-
tion has 43 items. It is frequently considered a “difficult-to-mine” dense dataset.

To test the scalability of FP-bases, we also used a synthetic dataset T10I4D100−
1000k. This dataset was generated by using the well-known IBM synthetic data gen-
erator (Agrawal and Srikant 1994). It is a sparse dataset simulating the market basket
data. The number of transactions in this dataset is up to 1 million.

In our experiments, we compared the following three algorithms for mining con-
densed FP-bases.

• CFP-D: the level-by-level method for constructing condensed FP-base Bd , i.e.,
Algorithm 1.

• CFP-CLOSET: we adapted the CLOSET algorithm (Pei et al. 2000) to CFP-
CLOSET for mining condensed FP-base Bm as follows. CFP-CLOSET finds
frequent closed patterns and checks whether a frequent closed pattern is in Bm
according to Lemma 4.1. Only frequent closed patterns are output.

• CFP-M: it is Algorithm 2, which finds condensed FP-base Bm with all pruning
and optimisation.

5.1. Effect of Compression

The compression effects of condensed FP-bases can be measured by the compression
ratio defined in (1). Please note that the smaller the compression ratio, the better the
compression effect.

Firstly, we fixed the support threshold and tested the compression ratio with re-
spect to various error bounds. The results on datasets Mushroom and Connect-4 are
shown in Figs. 2 and 3, respectively.

Here, the error bound is set as a percentage of the total number of transactions
in the dataset. If there are 1000 transactions in the dataset, then an error bound of
0.1% means that the absolute error bound is 1.

It is clearly shown that condensed FP-base Bm can achieve a much better com-
pression ratio than Bd . For example, in dataset Mushroom, when the support thresh-
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Fig. 2. The compression ratio of Bd and Bm on dataset Mushroom (min_sup = 14%).
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Fig. 3. The compression ratio of Bd and Bm on dataset Connect-4 (min_sup = 93%).

old is set to 14%, there are in total 103 845 frequent patterns, and 2591 frequent
closed patterns. As shown in Fig. 2, Bm is much smaller than Bd . For both con-
densed FP-bases, the larger the error bound, the better the compression ratio.

Please note that, when the error bound is 0%, Bm is exactly the set of frequent
closed patterns. As can be seen, frequent closed itemsets can achieve a good com-
pression ratio. Condensed FP-base Bm can carry the benefit and take advantage of
the error bound to do even better compression.

Since condensed FP-base Bm performs better than Bd , we now focus on the
compression effect of Bm with respect to support threshold. The results are shown
in Figs. 4 and 5, respectively.
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Fig. 4. The compression ratio of Bm w.r.t. support threshold on dataset Mushroom.
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Fig. 5. The compression ratio of Bm w.r.t. support threshold on dataset Connect-4.

To help verify the compression effect, we also plot the compression ratio of
the condensed FP-base using frequent closed patterns. A condensed FP-base using
frequent closed patterns is one with an error bound of 0. As is clearly shown in the
two figures, the larger the error bound, the better the compression. The results also
confirm that, even with a small error bound, condensed FP-base Bm can be much
smaller than the condensed FP-base of frequent closed patterns.

Moreover, the compression ratio is sensitive to the distribution of frequent patterns
with respect to a specific support threshold. Fortunately, the general trend is that the
lower the support threshold, the better the compression. When the support threshold
is low, there are many frequent patterns with similar support counts. Thus, one pattern
in a condensed FP-base may be a “representative” of many patterns.
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Fig. 6. The runtime w.r.t. error bound on dataset Connect-4 (min_sup = 93%).

Similar trends can be observed for the compression effect of Bd , but the compres-
sion ratio of Bd is larger than that of Bm in the same setting, i.e., the compression
power of Bd is weaker. Limited by space, we omit the details here.

5.2. Efficiency of Computing Condensed FP-Bases

We compare the runtime of CFP-D, CFP-CLOSET, and CFP-M with respect to
various error bounds in Fig. 6. The support threshold is set to 93%.

From the figure, we can see that the trends are as follows. The runtimes of both
CFP-D and CFP-CLOSET is insensitive to the error bound. The two methods find the
complete set of frequent patterns and frequent closed patterns, respectively, which
are their dominant costs. We note that the cost of computing X.ub for pattern X
in CFP-D and that of the super-pattern checking in CFP-CLOSET are very minor
compared with the expensive pattern mining in these two algorithms.

CFP-D fully utilises the error bound to prune the search space. The larger the
bound, the faster the execution. Thus, it is faster than the other two algorithms when
the error bound is not very small.

We observe a similar trend in dataset Mushroom. Limited by space, we omit the
details here. Moreover, since CFP-D is dramatically slower than CFP-CLOSET and
CFP-M, in the remainder of this subsection, our discussion focuses on CFP-CLOSET
and CFP-M.

In Fig. 7, we compare the runtimes of CFP-CLOSET and CFP-M with respect to
support threshold. The error bound was set to 0.1% of the total number of transac-
tions in the dataset. When the support threshold is high, the runtimes of both methods
are close. However, when the support threshold is low, the runtime of CFP-CLOSET
increases dramatically, since it has to mine and check the complete set of frequent
closed patterns. The runtime of CFP-M increases moderately even when the support
threshold is low, since the pruning techniques help to confine the search in a small
subset of frequent closed patterns.
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Fig. 7. The runtime w.r.t. support threshold on dataset Mushroom (err_b = 0.1%).

Again, similar trends are observed in experiments on other datasets. We omit the
details here.

5.3. Scaling-up Test

We also tested the scalability of condensed FP-bases as well as related algorithms.
Firstly, we tested the scalability of the compression ratio of condensed FP-bases.

(If the curve is flatter, we say that the curve is more scalable, since the compres-
sion ratio is not sensitive to the database size.) In Fig. 8, we show the results on
dataset Connect-4. We fix the support threshold at 90% of the number of transac-
tions in the tests, and vary the number of transactions from 10% to 100% of that
in the original dataset. In the figure, we compare the compression ratio of an FP-
base using frequent closed patterns with that of Bm . Interestingly, as the number of
transactions increases, the compression ratio also increases. The reason is that, when
there are more transactions, there are more patterns with different supports. Thus,
the compression effect is not as good as that in the databases with small numbers
of transactions. Fortunately, both the number of frequent closed patterns and that of
patterns in Bm do not increase dramatically. Moreover, Bm is more scalable, since
its compression ratio increases in a more moderate way.

Secondly, we used the synthetic dataset T10I4D100 − 1000k to demonstrate the
scalability of Algorithm CFP-M. To make a comparison with traditional frequent-
pattern mining, we include the runtime of CLOSET in the figure. CLOSET computes
the set of frequent closed patterns. The results are shown in Fig. 9. In this test, the
error bound for CFP-M was set to 0.1%. From the figure, we can see that both
methods are scalable with respect to the number of transactions in the datasets. Their
runtimes are also close. CLOSET is faster when the database is large, since it does
not need to check against the error bound. CFP-M has a scalability comparable to
CLOSET and, at the same time, achieves non-trivial compression.

In summary, from the experimental results, we can draw the following conclu-
sions. Firstly, condensed FP-bases can achieve non-trivial compression for frequent
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Fig. 9. Scalability of the runtime on dataset T10I4D100 − 1000k.

patterns. Bm often performs considerably better than Bd , and thus is more preferable.
Secondly, the larger the error bound, the more we compress. The error bound can
help to make the condensed FP-bases more compact. Thirdly, CFP-M is an efficient
and scalable algorithm for computing condensed FP-base Bm . It is comparable to
CLOSET in terms of runtime and scalability, and Bm achieves a better compres-
sion effect than the set of all frequent closed patterns. The optimisation and pruning
techniques help make CFP-M efficient and scalable. Overall, Bm and CFP-M are
the clear winners for frequent-pattern base compression and the corresponding com-
putations.
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6. Discussion

In this section, we firstly discuss the relationships between the complete FP-base
and various condensed FP-bases. Then, we discuss some potential applications and
extensions of condensed FP-bases.

6.1. What Kinds of Frequent Patterns Should a User Store?

Frequent-pattern mining approaches can be categorised into several themes, depend-
ing on the patterns mined: all frequent patterns, frequent closed patterns, max-pat-
terns, and condensed FP-bases. What kinds of frequent patterns should one mine and
in what situation? and what are the corresponding benefits and overheads? A concise
comparison is presented as follows.

Mining all frequent patterns. The complete set of frequent patterns is the basis of
all other kinds of “condensed sets” of frequent patterns, and the latter are concise
representations of the former.
With the complete set of frequent patterns and the corresponding well-designed
index, one can quickly determine whether a pattern is frequent and the support of
a frequent pattern. However, the number of frequent patterns in a large database
is often huge and computing the complete set of frequent patterns is often costly
or even computationally prohibitive. An even more serious problem is that it is
very hard or even impossible for users to comprehend a huge number of frequent
patterns.

Mining frequent closed patterns. As shown before, a set of frequent closed pat-
terns is a condensed FP-base. In many cases, the number of frequent closed
patterns is much smaller than that of all frequent patterns. Thus, mining frequent
closed patterns improves mining all frequent patterns in terms of effectiveness:
a smaller set of patterns is easier to understand. Moreover, the exact support of
a frequent pattern can be determined from a set of frequent closed patterns. To
achieve this, we need to build a proper index and perform efficient containment
checking.
Some algorithms have been developed and proposed to mine frequent closed
patterns, such as CHARM (Zaki and Hsiao 2002) and CLOSET (Pei et al. 2000).
Often, mining frequent closed patterns can be faster than mining all frequent
patterns. However, when the database is sparse, mining frequent closed patterns
can be more expensive than mining all frequent patterns. The major overhead is
checking whether a frequent pattern is closed.

Mining max-patterns. Max-patterns (Bayardo 1998) are the borders of frequent pat-
terns. The set of max-patterns can be much smaller than that of all patterns and
that of frequent closed patterns. Given a set of max-patterns, one can determine
whether a pattern is frequent but cannot determine the support count of a frequent
pattern if it is not in the set.
Often, mining max-patterns is faster than mining all frequent patterns or frequent
closed patterns.

Mining condensed FP-bases. Condensed FP-bases are more condensed representa-
tions than frequent closed patterns. With proper design, such as Bm in this pa-
per, a condensed FP-base can be smaller than the set of frequent closed patterns.
While achieving a better compression ratio than the set of frequent closed pat-
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terns, a condensed FP-base can be used to determine the support of a frequent
pattern approximately with a maximal error bound.
In particular, in Bm , we chose a subset of closed patterns to form a condensed
FP-base. Thus, the users are given the flexibility to balance the trade-off between
the space overhead and the accuracy of the support count information.
Computing a condensed FP-base can be faster or slower than mining a set of
frequent closed patterns. The major overhead of computing a condensed FP-base
is to determine whether a frequent pattern should be materialised in the base.

As shown above, all frequent patterns, frequent closed patterns, max-patterns, and
condensed FP-bases provide a full range of choice and flexibility. One advantage of
condensed FP-bases is that the user can control the trade-off between base size and
error bound.

6.2. Recovering the Complete Set of Frequent Patterns From
a Condensed FP-Base

In some cases, it may be necessary to recover the complete set of frequent patterns.
In this subsection, we present an efficient method of fulfilling the requirement on an
M-base. The complete set of frequent patterns can be derived similarly from a level-
by-level condensed FP-base Bd .

Let X and Y be two patterns in an M-base B such that X ⊂ Y . X is called
a parent2 of Y in B, denoted by X ≺ Y , if there exists no pattern Z ∈ B such that
X ⊂ Z ⊂ Y .

Clearly, the relation ≺ is a strict partial order over the patterns in B. If we build
an index on patterns in B such that (1) patterns are sorted in support descending
order; and (2) the link between a pattern and all of its parents are recorded, then the
complete set of frequent patterns can be derived by scanning M-base B only once
as follows.

We scan the patterns in the order of ≺. For each pattern X, there are two cases:

• X has no parent in B. We generate all non-empty proper subsets of X, if X
has not been generated before. Their supports can be approximated as [sup(X),
sup(X) + k], where k is the error bound.

• X has parents Y1, . . . , Yn . We generate all proper supersets Z of X such that
X ⊂ Z ⊂ Yi (1 ≤ i ≤ n), if Z has not been generated before. Clearly, Z’s can be
generated systematically by the differential of X and Yi . For each Z , its support
can be estimated as [sup(X), sup(X) + k].
It can be verified that the above process generates the complete set of frequent

patterns with proper approximated supports.
In order to derive the exact support of the frequent patterns, one can scan the

database once and only count those patterns with approximate supports; i.e., the
patterns in the condensed FP-base do not need to be counted again.

6.3. Applications and Extensions of Condensed FP-Bases

Condensed FP-bases can be used to solve many other data-mining problems. For
example, one can use condensed FP-bases to build Bayesian belief networks, like

2 We call X a parent of Y since X is above Y in the lattice graph analogous to the graphs in Fig. 1.
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the approach in Margaritis et al. (2001). Since a condensed FP-base contains a much
smaller number of frequent patterns, working with condensed FP-bases may be more
efficient than working with all frequent patterns. We illustrate the potential applica-
tions in the following two examples.

Case 1. Let us consider mining frequent patterns from market basket data. The min-
ing results may be used to generate association rules, build a classifier for customers,
build a product recommender, and cluster customers based on their frequent purchas-
ing patterns. As all these tasks need information about frequent patterns, to avoid
duplicated mining of the patterns from the database, we should mine them once and
store them. A complete set of frequent patterns could be huge. That brings non-trivial
challenges for storage and retrieval.

Mining condensed FP-bases may solve the problem nicely, if an approximation
with a user-specified error bound is acceptable. Firstly, a condensed FP-base is mined
with the minimum error bound acceptable to all tasks. Then, association rules, the
classifier, the product recommender, and the clusters of customers can be derived
from the condensed FP-base. Since the condensed FP-base may be substantially
smaller than the complete set of frequent patterns, the mining is more efficient while
at the same time the quality of the mining results is guaranteed.

Case 2. Mining condensed FP-bases is a promising approach for mining frequent
patterns in transaction streams. When mining transaction streams, it is very likely
that the system does not have enough resources (including time and storage space)
to maintain the complete set of frequent patterns. Thus, it is natural to introduce ap-
proximations. Condensed FP-bases can be used as synopses of transaction streams.
Developing techniques of mining and maintaining a condensed FP-base is an inter-
esting and important research problem.

It is also interesting to explore other approaches to construct condensed FP-bases.
For example, we can consider using semantic relationships between patterns in defin-
ing condensed FP-bases, instead of simply using syntactic relationships. When we
consider semantic relationships, we associate with each frequent pattern X the set
SAT(X), which is defined as the set of all transactions t in the database such that
X ⊆ t. Possible semantic relationships include containment (SAT(X) ⊆ SAT(Y )) or
large overlap, where SAT(X)∩ SAT(Y ) is relatively large compared with SAT(X)∪
SAT(Y ).

Another possible way to define condensed FP-bases is to allow statistically guar-
anteed error bounds of the estimated frequencies of patterns, instead of absolutely
guaranteed error bounds as we have done in this paper. While this may lead to the
loss of some frequency information, we conjecture that it may lead to much smaller
bases.

7. Conclusions

In this paper, we introduced and considered the problem of mining a condensed
frequent-pattern base. The notion of a condensed FP-base was introduced to signifi-
cantly reduce the set of patterns that need to be mined, stored, and analysed, while
providing a guaranteed error bound for frequencies of patterns not in the bases. We
considered two types of condensed FP-bases: the downward condensed FP-base Bd
and the max-pattern-based condensed FP-base Bm . For the downward condensed
FP-base, we used an a priori-style algorithm to mine it. For the max-pattern-based
condensed FP-base, we introduced an interesting algorithm, together with several
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novel optimisation techniques. Experimental results show that we can achieve a sub-
stantial compression ratio for condensation using condensed FP-bases, and that our
algorithms are efficient and scalable. We also discussed some interesting extensions
of our methods.
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