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ABSTRACT

Within-Network Classification (WNC) techniques are de-
signed for applications where objects to be classified and
those with known labels are interlinked. For WNC tasks
like web page classification, the homophily principle suc-
ceeds by assuming that linked objects, represented as ad-
jacent vertices in a network, are likely to have the same la-
bels. However, in other tasks like chemical structure comple-
tion, recent works suggest that the label of a vertex should
be related to the local structure it resides in, rather than
equated with those of its neighbors. These works also pro-
pose structure-aware vertex features or methods to deal with
such an issue.

In this paper, we demonstrate that frequent neighborhood
patterns, originally studied in the pattern mining literature,
serve as a strong class of structure-aware features and pro-
vide satisfactory effectiveness in WNC. In addition, we iden-
tify the problem that the neighborhood pattern miner indis-
criminately mines patterns of all radiuses, while heuristics
and experiments both indicate that patterns with a large
radius take much time only to bring negligible effectiveness
gains. We develop a specially designed algorithm capable of
working under radius threshold constraints, by which pat-
terns with a large radius are not mined at all. Experiments
suggest that our algorithm helps with the trade-off between
efficiency and effectiveness in WNC tasks.
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Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining

1. INTRODUCTION
Since the ninetieth of the last century, frequent pattern

mining has been an active research theme, enabling knowl-
edge discovery and mining in various kinds of data [10]. Be-
sides applications like association rule mining [1] and index-
ing [35], according to [6], frequent patterns are especially
effective features for corresponding classification tasks [21,
7], because they tend to capture the rich underlying seman-
tics of the hosting data.

For graph data, it is obvious that the properties of the
data do not hide in any single vertex or edge, but in the
way they are combined and organized. In other words, the
semantics of graphs lie in their structures. In the literature
of graph classification, feature-based approaches, such as [7],
all embrace sub-structure patterns of graphs as the most
significant cue for classification.

In fact, [20] clarified that graph data is actually mod-
eled differently in two settings: the graph-transactional set-
ting and the single-graph setting. In the first setting such
as chemical structure databases, the data is viewed as a
set of relatively small graphs, called transactions. Graph
classification tasks, such as molecule property prediction,
should be categorized into this setting because they essen-
tially classify transactions. In the second setting such as
the web graph and social networks, however, the data is
viewed as a large network. The corresponding classification
task, commonly referred to as Within-network classification
(denoted by WNC for short), actually involves classifying
vertices rather than transactions.

Since transactions have structural patterns as indicators of
their property, two analogous questions are interesting in the
single-graph setting: 1) do vertices have structural patterns?
and 2) if so, can they serve as vertex classification features?
Our earlier work [11] answered the first question, where we
formulated Frequent Neighborhood pattern Mining (FNM)
to mine patterns for vertices from the local structure they
reside in. For example, in an academic network, a neigh-
borhood pattern may suggest that some papers cite another
paper with a common author. In a social network, a neigh-
borhood pattern may represent persons having a son and a
daughter. In the structure graph of a molecule, a neighbor-
hood pattern may indicate that some carbon atoms appear
on a cycle of length 6. It is obvious that neighborhood pat-
terns carry rich semantics about the behavior of vertices in a



network. In the first half of this paper we answer the second
question based on the work of [11], by relating the label of
a vertex to the neighborhood patterns it follows.

It is worth clarifying that our assumption is essentially
different from the homophily principle, which states that
the label of a vertex tends to follow the majority of the
vertex’s neighbors. This principle undoubtedly applies to
many scenarios, e.g., friends share hobbies, and web pages
link to pages with similar topics. However, properties of
vertices do not always propagate along edges. For example,
a carbon atom in a chemical structure may be surrounded
by many hydrogen ones. Instead, we relate the classification
of a vertex to the structure of its neighborhood, which is
not limited to the information of all neighbors’ labels. The
“homophily-or-structure” issue has caught some attention in
recent WNC studies [12, 8, 25]. But to the best of our
knowledge, we are the first to address this issue under the
context of frequent-pattern-based classification.

In the second half of this paper, we consider incorporating
the Markov assumption [24] of WNC into our neighborhood-
pattern-based classifier. According to the assumption, dis-
tant structures tend to have negligible effects on the classi-
fication of a vertex, thus can be neglected for the interest
of efficiency. However, the neighborhood miner in [11] can-
not directly control the radius of the patterns it finds. For
example, it may produce a pattern of radius 3, saying that
the center person has a friend whose father works for a com-
pany with the label “IT”. This pattern may not be effective
in classifying the person because it takes distant structures
into consideration. We design an algorithm called r-FNM
(radius-constrained frequent neighborhood mining), which
accommodates a pre-defined radius threshold on the pat-
terns. Compared to the näıve approach of post-filtrating
large-radius patterns, r-FNM saves time by not generating
them at all, thus making the trade-off more worthwhile.

We summarize our contributions as follows: 1) We empir-
ically show that neighborhood patterns are effective vertex
features in WNC tasks; 2) We propose an algorithm r-FNM
to directly mine neighborhood patterns w.r.t. a given radius
upper bound; 3) We experimentally show that r-FNM helps
balancing effectiveness and efficiency in WNC tasks.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work. Section 3 introduces relevant
preliminaries. In Section 4, we discuss how to apply neigh-
borhood patterns to classify networked data. We incorpo-
rate the radius constraints into the generation of neighbor-
hood patterns in Section 5. We present experimental results
in Section 6, followed by conclusions in Section 7.

2. RELATED WORK
The problem of within-network classification has been ex-

tensively studied in recent years. The distinguishing chal-
lenge of WNC problems is that the conventional independent
and identical distribution (i.i.d.) assumption does not hold,
because the labels of unclassified objects depend on each
other. [24] points out that common within-network classi-
fiers all comprise a local classifier, a relational classifier, and
a collective inference procedure. The local classifier performs
a rough classification using network-independent informa-
tion (such as the text content of a web page or the age of a
person) to provide an initial estimation. Given a vertex v,
the relational classifier adjusts the prediction for v by consid-
ering both the network structure and the predictions of the

Figure 1: Random walk and degree information cannot dis-
tinguish between the neighborhoods of vertex 1, 2, 3, . . .

other vertices. The collective inference component repeat-
edly calls the relational classifier on every vertex according
to certain updating strategies, and returns the classification
results when certain stopping criterion is met.

Our focus lies under the scope of the relational classi-
fier component. We note that, the relational classifier actu-
ally encodes our assumption for the specific problem. The
simplest wvRN [23] method, which operates under the ho-
mophily assumption, classifies a vertex using the weighted
votes of its neighbors’ labels. Moreover, cdRN [28] and nLB
[22] adopt a more general assumption, which relates (but
not equals) a vertex’s label to the distribution of those of
its neighbors. However, none of those classifiers exploits
the rich structural information of the network. [8] proposes
RL-RW-Deg, which characterizes the structure of a vertex’s
neighborhood by its degree and the distribution of different
label sequences obtained after starting a random walk from
the vertex. RL-RW-Deg is reported to outperform various
non-structural methods [23, 28, 22] in the chemical struc-
ture completion task. However, we categorize RL-RW-Deg
as a semi-structural method, because it is not enough to
recover a vertex’s neighborhood structure using only its de-
gree and random walk distribution information. Consider
Figure 1. Here each connected component is a cycle of an
even length, where vertices have alternating A and B la-
bels. Let v1, v2, . . . , vi be an arbitrary A vertex in the
component of length 2i. Apparently, v1, v2, . . . , vi reside
in different neighborhood structures. However, they have
equal degrees, and all of them only initiates random walks
of the label sequence AaBaAaBa . . . . Therefore, RL-RW-
Deg does not have a full discriminative power at least in this
case. In this paper, we adopt RL-RW-Deg as the baseline
and compete with it on the same task. It is worth noting
that [12, 25] also proposes structure-dependent approaches.
However, their methods cannot exploit edge label informa-
tion, thus are only applicable to homogeneous networks.

As Section 1 mentions, many WNC methods employ the
Markov assumption, while ours is no exception. Besides [23,
28, 22], ego-net based graph mining methods [2, 12], which
represent a vertex as the induced graph generated by its
neighbors and itself, also adopt this assumption implicitly.

The collective inference component is critical to WNC
tasks [15]. Common collective inference algorithms include
iterative classification (ICA) [27], Gibbs sampling [4], and
relaxation labeling [5]. In our method, we use ICA as our
collective classifier. We refer readers to [29] for a summary
of common collective classifiers and their comparison.

When evaluating classification algorithms, it is common to
use cross-validation to fully exploit the labeled data. Mean-
while, it is desirable to compare the effectiveness of different
WNC algorithms with networks of varied label ratio (i.e.,
the proportion of labeled vertices). However, the above two
options are contradictory, because the fold number of cross-
validation determines the ratio of training set size and test-
ing set size, thus fixing the label ratio. To cope with this



issue, work such as [24] replaces cross-validation with a sim-
ple resampling procedure, thus resulting in overlapped test-
ing sets. [26] points out that applying paired t-test in such
a scenario leads to potentially high type I error (i.e., per-
formance improvements will be incorrectly concluded when
there is none). They also proposeNetwork Cross-Validation
(NCV) as a solution to enable cross-validation in WNC with-
out introducing overlapped testing sets. In this paper, we
adopt NCV in our experimental methodology. More details
will be given in Section 6.1.

Like the single-graph-based WNC problem, graph classi-
fication under the graph-transactional setting has also re-
ceived much attention. Common graph classification meth-
ods fall under two categories: pattern-based and kernel-
based. Pattern-based methods, such as [7], employ frequent
subgraph patterns as classification features, which inspires
us to apply neighborhood patterns to vertex classification.
Sophisticated feature selection methods [32, 18] are also pro-
posed to select the most discriminative subgraphs for clas-
sification. Kernel-based methods, however, propose various
kernel functions to measure the similarity between different
transactions by the structure indicators they share. Com-
mon indicators include random walks [16], shortest paths [3],
subtrees [30], cycles [13], and graphlets [31]. [9] provides an
interesting hardness result, suggesting that any graph ker-
nel is not complete, i.e., having a full discriminating power,
unless it is as hard to compute as to test graph isomorphism.

3. PRELIMINARIES

3.1 Problem Definition

Definition 1. Let ΣV be the set of vertex label names, and
ΣE that for edge labels. An (undirected) labeled graph is
a 3-tuple G = 〈V,E, l〉, where V is a set of all vertices, and
E = {(vi, vj)|vi, vj ∈ V, i < j} is a set of edges. l : V →
ΣV ∪ {null} and E → ΣE is a labeling function mapping
vertices and edges to their labels. Note that a vertex v may
have no label, i.e., l(v) = null.

In the rest of this paper, when modeling our data graphs,
i.e., networks, we use symbol N instead of G. Although only
undirected graphs are discussed, our work can be straight-
forwardly extended to directed graphs.

Given a network N with some vertices having no labels,
following [24], we let V U = {v|l(v) = null} be the set of
vertices to be classified, and V K = V \V U the set of vertices
with known labels. Our task is to classify V U into ΣV based
on the given information about V U and N .

3.2 Mining Neighborhood Patterns
In this section, we revisit some key points of [11], which

will be used in this paper.

Definition 2. A pivoted graph is a tuple G = 〈G, vp〉,
where G is a labeled graph, and vp ∈ V (G) is a special
vertex in G, called the pivot of G.

A neighborhood pattern P is a connected pivoted graph,
where the pivot points out the vertex whose neighborhood
the whole pattern describes. For example, Figure 2b shows
7 neighborhood patterns (referred by IDs), where P2 stands
for vertices associated with two a-edges. All non-null ver-
tex labels and labeled edges are called elements of a pat-
tern. The size of a pattern P is defined as |P| = |{v|l(v) 6=
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Figure 2: A network with some neighborhood patterns. We
use uppercase letters for vertex labels and lowercase for
edges. Null vertex labels are omitted.

null}| + |E|, i.e., the number of elements. For example, in
Figure 2b, the sizes of both P2 and P4 are 2, respectively.

Definition 3. A pivoted graph G1 is pivoted subgraph
isomorphic to G2, denoted by G1 ⊆p G2, if there exists
an injective mapping f : V (G1) → V (G2) such that: 1)
∀v ∈ V (G1), l(v) = null or l(v) = l(f(v)) (preserving vertex
labels); 2) ∀(v1, v2) ∈ E(G1), l(v1, v2) = l(f(v1), f(v2)) (pre-
serving edge labels); 3) f(vp(G1)) = vp(G2), where vp(G) is
the pivot of G (mapping pivot to pivot).

Using pivoted subgraph isomorphism, the match between
a neighborhood pattern and a vertex in the network can be
defined. P matches vertex v of a network N , if P is pivoted
subgraph isomorphic to the pivoted graph derived by making
v the pivot in N , i.e., P ⊆p 〈N, v〉. For instance, in Figure
2b, P2 matches v2, v3, v4, and v5 in Figure 2a, while P5

only matches v3 and v4. We can also use ⊆p to define a
partial order on all neighborhood patterns to describe the
sub/super pattern relationship. A neighborhood pattern P
is called a sub-pattern of P ′, if P ⊆p P

′. For example, in
Figure 2b, P1 and P2 are both sub-patterns of P5.

Definition 4. Given a vertex set V0 ⊆ V (N), the set of
vertices in V0 that P matches is MV0

(P) = {v ∈ V0|P ⊆p

〈N, v〉}. The support of P in V0 is defined as the size of
MV0

(P). P is a frequent neighborhood pattern of V0,
if its support is above a given threshold τ .

For instance, in Figure 2a, MV (P2) = {v2, v3, v4, v5}.
Therefore, the support of P2 in Figure 2a is 4. With the
support measure defined, the FNM problem is simply find-
ing all frequent neighborhood patterns, w.r.t. a given vertex
set V0 and a threshold τ .

Like conventional apriori-based algorithms, [11] generates
and verifies patterns in the search space in a level-wise man-
ner, where patterns are at levels corresponding to their sizes.
After obtaining all frequent patterns at level k, we join each
pair of patterns which share a size-(k − 1) sub-pattern to



generate candidates to be verified at the next level. For in-
stance, in Figure 2b, the join of P2 and P3 produces P5, and
we get P7 if we join P3 and P4. Note that self-join is allowed.
A join may produce multiple candidates. For example, the
self-join of P3 produces P5 and P6.

Like most frequent pattern mining problems, e.g., frequent
itemset mining [1] and frequent subgraph mining [14, 19, 34],
FNM also satisfies the anti-monotonicity property, i.e., for
any patterns P ⊆p P

′, the support of P ′ does not exceed
that of P . For example, in Figure 2b, the support of P2 is
4, while for P5 it is 2. Given a threshold τ , say, 3, once
P5 is found infrequent, we removes it to avoid checking its
super-patterns. The pruning is both sound and efficient.

Although the anti-monotonicity property of FNM ensures
a complete result set for apriori-based algorithms, we em-
phasize non-trivial building blocks as a particularity of FNM,
which, if improperly treated, may harm the completeness of
the results. We define building blocks as follows and give the
following result:

Definition 5. A pattern is called a building block, if it
cannot be obtained by joining smaller patterns at the pre-
vious level.

Lemma 1. A pattern P is a building block, if and only if
there do not exist two elements in it, by removing either we
obtain a valid, but smaller pattern P ′ ⊆p P.

For example, in Figure 2b, building blocks are marked by
dotted lines. P3 is a building block, because to obtain a
connected sub-pattern of size 1, we have no other choice
than removing the rightmost dangling edge b (the vertex on
the right tail is simultaneously removed because this does
not affect the size). P4 is also a building block because the
only choice to shrink it is to remove the vertex label A.

When designing an apriori-based algorithm, it is vital to
know the shape of building blocks in advance and guide the
algorithm to treat them specially, because 1) they cannot
be obtained by the join operation, 2) they themselves are
part of the mining result, and 3) the absence of any of them
may cause higher-level patterns depending on them to be
missed. For conventional pattern mining problems, it is safe
to trivially initiate with all level-1 patterns, because building
blocks only appear at level-1. However, this is apparently
not enough in the FNM case, since as shown in the above
example, P3 and P4 are found to be non-trivial building
blocks at level-2, and there are potentially more at the upper
levels. For the FNM problem, where do building blocks
appear, and what do they generally look like?

Interestingly, [11] formally proved that the building blocks
of FNM are only limited to path patterns as defined below:

Definition 6. A neighborhood pattern is a path pattern
if 1) it is a path of labeled edges, where the pivot is on one
end of the path; 2) it contains at most one vertex label,
which (if exists) must appear on the other end of the path.

As the search space of path patterns is tree-like, they are
easy to be generated in advance. Therefore, the FNM al-
gorithm follows the apriori framework, with an important
difference. During initiation, the algorithm generates all fre-
quent path patterns by“extending”rather than joining, then
an apriori-based search is performed. Note that, the join op-
eration at each level misses all building blocks belonging to
the current level. Therefore, before moving on to the next

level, the building blocks of appropriate size must be added
to allow for larger patterns that depend on them. In the rest
of this paper, for application-specific requirements, some-
times we use an additional parameter k to end the search at
level-k to produce all patterns whose size are up to k.

4. NEIGHBORHOOD PATTERNS AS VER-

TEX FEATURES
In the literature of graph classification, there is a signif-

icant branch of research (e.g., [7]) which explores the ef-
fectiveness of frequent subgraph patterns as classification
features. Given a collection of patterns S generated by a
subgraph mining algorithm, they represent each graph g in-
volved in the task as a vector xg = (x1, x2, ..., xj , ..., x|S|),
where xj = 1 if and only if g contains the j-th pattern as
a subgraph. After all graphs are vectorized, common clas-
sification algorithms like SVM are performed to learn from
graphs with known labels and classify the others.

Inspired by this, we are interested in an analogous ques-
tion: can frequent neighborhood patterns [11] help classify-
ing vertices in the setting of within-network classification?
To the best of our knowledge, this problem is never studied
in the literature. In this section, we introduce this approach
by aligning it to the framework described in Section 2, and
preview some of our experimental results which suggest that
this approach is not only feasible but also competitive. We
also identify and analyze a drawback of this approach, which
motivates the second and third contributions of this paper.

4.1 Approach and Preliminary Results
According to the framework described in [24], a within-

network classifier commonly consists of three key compo-
nents: a local model, a relational model, and a collective
inference procedure. To use neighborhood patterns to assist
WNC tasks, we have to first specify the role of neighborhood
patterns in such a framework, and appropriately instantiate
the three components.

A local model exploits network-independent information
on a vertex to provide the whole task with a good initial
guess. In our method, we simply keep the null labels of un-
classified vertices as the initial guess. We make this choice
for three reasons: 1) a null label does not mean a cold start
since the edge structure of the network carries information
and is always available, 2) the study of how local classi-
fiers affect the overall performance is rather orthogonal to
that of the other two components, and 3) the principle of
constructing local classifiers has been well studied in con-
ventional machine learning literature.

In the relational model component, the neighborhood pat-
terns actually take effect. Given V K as training set, first,
we run the FNM algorithm on V K with appropriate param-
eters and obtain a list of patterns {Pj}, j = 1...m. Each Pj

describes the surrounding structures where a number of ver-
tices reside1. Second, we represent each vertex v in V K as

1Note that as “features”, Pj must not contain any infor-
mation about the label of its pivot vertex. This could be
done by a post-filtration on the mining results. However,
it is provably correct and efficient to achieve this by simply
blocking those size-1 patterns consisting of only a pivot with
a label from entering level-2.
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an m-dimensional vector xv = (x1, x2, ..., xj , ..., xm), where

xj =

{

1 if Pj ⊆p 〈N, v〉

0 otherwise

Clearly, the patterns Pj serve as vertex features for training
the relational model. In the following parts of this paper,
we will not distinguish “patterns” from “features” as they
are essentially equivalent in our task. Third, we use the
true label of v to form the training label, i.e., yv = l(v).
Finally, we collect all 〈x, y〉 pairs as training data to train
the relational modelM.

Algorithm 1 Iterative Classification

Input: NetworkN , Neighborhood Features {Pj}, relational
modelM

Output: Predicted Labels yU .
1: while true do
2: xU ← 1(Pj ⊆p 〈N, vUi 〉) //1(pij) is a 0-1 matrix,

where the (i, j)-th element is 1 if and only if pij is true.
3: yU ← Classify(xU ,M)
4: if yU converges or niter is reached then
5: Break
6: else
7: Update N with yU

8: end if
9: end while
10: return yU

When doing inference, we adopt ICA [27] as the collective
inference component because it is simple and effective. The
pseudo code of our implementation is in Algorithm 1. Given
an initial guess and a relational model, the algorithm per-
forms multiple iterations over V U . In each iteration, the fea-
tures of every vertex v are reconstructed because the labels
of vertices that v depends on might have changed. Then,
the relational model is applied to provide a newer version of
prediction. The algorithm stops when the result converges
or a given number of iterations niter have been reached.

In practice, we find frequent neighborhood features quite
effective. In Figure 3, we use the chemical structure comple-
tion task [8] to compete our approach with the baseline on

testing networks of different label ratio |V K |
|V |

. We carry out

10-fold network cross-validation (further explained in Sec-
tion 6.1) and all results are averaged over the 10 runs. It
turns out that our method outperforms RL-RW-Deg by at
least 11.7% in terms of weighted F1 score. Our features are
powerful because they remember the exact structures rather
than a statistics or an aggregation of the structure, which
leads to a definite classification of the residing vertex. We

RL-RW-Deg r = 1 r ≤ 2 r ≤ 3 r ≤ 4

#Feature - 906.2 4804.1 7370.7 7978.6
F1 0.804 0.824 0.834 0.836 0.836

Time (sec) 79.6 3.1 18.3 28.8 31.4

Table 1: Large-radius features bring negligible improve-
ments. All improvements over the baseline are statistically
significant under the p < 0.01 paired t-test.

will present more detailed experimental methodology, pa-
rameter setting, and results in Section 6.

4.2 Analysis of Feature Contribution
In Figure 3, our relational model is trained using all neigh-

borhood features of size up to 4. Generally speaking, fea-
tures of large sizes increase the expressivity of the relational
model, enabling it to capture more semantics of the data.
However, a large k allows many weak features to pass, caus-
ing the training & inferencing to be rather slow. Therefore,
it is critical to explore techniques to prune weak features
while keeping the remaining ones as expressive as possible.

For a pattern P , there is no doubt that its size |P| char-
acterizes some properties of itself. However, due to the par-
ticularity of neighborhood patterns, another characteristic
indicator, called radius, also deserves to be emphasized. The
radius of P , denoted by r(P), is defined as

r(P) = max
v∈V (P)

d(v, vp)

where d(u, v) is the distance between vertex u and v in P .
A neighborhood pattern’s radius has rich connections with

several concepts in the network mining and classification
literature. For example, in within-network classification [24]
and graphical model [17], the first-order Markov assumption
(or property) relates the label of a vertex to those of its direct
neighbors. In [2], the ego-net (the induced graph generated
by a vertex and all its neighbors) of a vertex v is used to fully
represent the behavior of v. In essence, they all recognize a
nature of real networks that a vertex’s property tends not
to be affected by distant vertices or edges.

Similarly, in our approach, a feature with a large radius
tends to incorporate the influence from sub-structures far-
away into the classification of a vertex, while small-radius
features only consider information nearby. To investigate
the contribution of features of different radius, we grouped
all features in Figure 3 by their radius. We retrained the
model with features of radius up to 1, 2, 3, and 4, respec-
tively, applied it in the classification task, and report the fea-
ture number and performance (label rate = 50%) in the first
two rows of Table 1. Two points are clearly observed from
the table. First, under all feature combinations, our method
outperforms RL-RW-Deg. Second, the classification perfor-
mance in terms of weighted F1 almost stops increasing when
we attempt to add features of r = 3 and 4 (weighted preci-
sion and recall also follow the same trend). This reveals the
fact that, compared to small-radius features, features with
a large radius tend to be relatively weak.

Since large-radius features are weak, did we spend much
time on mining them? In the FNM algorithm, the time spent
on patterns of different radius cannot be directly recorded,
because at each level, patterns of all radius are mixed and
mined simultaneously. However, the time spent and the dis-
tributions of patterns w.r.t. radius at each level are avail-
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able. Therefore, we estimate the time cost w.r.t radius as
follows. We ignore the time spent on building blocks because
it makes up only a small proportion of the whole procedure.
We also assume that at each level, time is uniformly amor-
tized among patterns. For each level, we calculate the time
cost w.r.t. radius using the time cost and the radius distribu-
tion at this level. Then, the radius-specified time cost at all
levels are accumulated to obtain the time cost w.r.t radius.
We transform the results to the time cost of different feature
combinations and present them in the third row of Table 1.
For comparison, we also attach the time RL-RW-Deg needs
for a run. It is obvious from the estimation that we could
have spent little time only on small-radius features to gain
most of the potential performance.

5. HANDLING RADIUS CONSTRAINTS
The observation described in Section 4.2 indicates that,

when applying neighborhood features to WNC, most of the
classification performance is earned by features with a small
radius. By contrast, features with relatively large radiuses
cause large running time in the feature-mining stage and
classification stage, but only bring a small effectiveness im-
provement. We can prune all large-radius features from the
mined features to reduce the classification time. However,
the time spent on mining those large-radius features cannot
be taken back. When the size of training data is large and
complicated, e.g., the network N is highly dense or large,
the wasted computation is even bigger. This raises an in-
teresting question: can we directly mine neighborhood fea-
tures w.r.t. a given radius threshold rmax, without generat-
ing those whose radius are above rmax?

5.1 Building Blocks Again
Recall that the FNM algorithm without radius constraint

is a two-stage algorithm. In the first stage, the algorithm
searches for all frequent path patterns. In the second stage,
a level-wise apriori-based search is performed, using all path
patterns from the first stage as building blocks.

With the additional radius constraint at hand, let us con-
sider modifying the original algorithm to produce a correct
and efficient algorithm. One may thinks that we only need
to generate paths whose length is no larger than rmax. How-
ever, this approach again misses some building blocks, thus
resulting in an incomplete result set.

Take rmax = 3 as an example, i.e., the length of any
path building block should not exceed 3. We consider the
first neighborhood pattern in Figure 4a, where each vertex
is associated with an ID for reference. Please note that
the word “Head”, “Slider”, and “Tail” are not vertex or edge
labels, and are only markers for future reference. Each edge
is associated with a certain edge label, which is omitted to

keep the figure clear. Intuitively, the size of this pattern is
5 and the radius is 3. Therefore, according to Lemma 1, if
the pattern is not a building block, we can find two edges in
the pattern, by removing either of them we obtain a valid
pattern of size 4 and radius no larger than 3.

We consider removing the five edges individually. Remov-
ing edge (1, 2) or (2, 3) is not valid because it produces un-
connected patterns. (3, 4) or (3, 5) are unremovable either,
since the radius of the resulted pattern is 4. Edge (4, 5) is
the only choice. Therefore, we cannot find two removable
edges, and the original pattern is actually a building block.

For rmax = 3, there are three types of non-path building
blocks. In addition to the one discussed above, the other two
are also shown in Figure 4a. If we arrange them in an ap-
propriate order as in Figure 4a, from left to right they look
like an opening zipper (Figure 4b), with the slider (the only
vertex of degree 3, if it is not overlapped with the pivot) ap-
proaching the tail. Therefore, we call them zipper patterns.

Definition 7. A neighborhood pattern is a zipper pat-
tern of radius rmax if 1) it has no vertex labels; 2) there
exists exactly one special edge (we name it the “head”), af-
ter removing which the pattern is a rooted tree of depth
rmax, with the pivot as the root; 3) the two ends of the
“head” are the only two leaves of the rooted tree, and they
both have depth rmax.

Interestingly, we can prove that for any rmax, all building
blocks are either path patterns or zipper patterns.

Theorem 1. Given a FNM instance with a radius thresh-
old rmax, the building blocks consist of 1) all path patterns
whose length is no greater than rmax, and 2) rmax types of
zipper patterns, whose size ranges from rmax+2 to 2rmax+1.

Proof. It is easy to verify that path and zipper patterns
are building blocks. Therefore we only prove that any build-
ing block is a path or zipper pattern. We prove by making
step-wise restrictions and contradictions. Given a building
block P , we narrow down by proposing predicates on the
structure of P : if P violates the predicates there will be two
removable elements, suggesting it is not a building block.
For each case discussed below, we attach a figure in Figure
5 to illustrate the case. Finally readers will see that the
predicates converges to the three conditions in Definition 7.

For all cases, P must have no more than 1 vertex label.
Otherwise, denoting two of them as l1 and l2, it turns out
that l1 and l2 are two removable elements.

For all cases, noticing that r(P) ≤ rmax, P must have
a rooted spanning tree PT , whose root is at the pivot and
depth is no greater than rmax. Throughout Figure 5, edges
on PT are marked bold. Let ne be the number of edges of P
not on PT . ne must not exceed 1. Otherwise, denoting two
of them as e1 and e2, e1 and e2 are two removable elements.
Note that the removal of e1 or e2 does not increase the radius
of P . Next, we enumerate the possible values of ne.

1. ne = 0: in this case, P = PT is itself a rooted tree
with at most one vertex label. This tree must have only one
leaf. If there are two leaves, the two dangling edges they
are associated with will be the two removable elements. In
the case where a leaf carries the only vertex label, we only
remove the label instead.

1.1. The tree with only one leaf now is actually a path.
However, we still have to prove that the only vertex label,
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Figure 5: Cases in the proof of Theorem 1. Labels with no
direct influence on the proof are omitted.

if exists, must be on the only leaf. If any vertex other than
the leaf carries the label, the label and the dangling edge
are removable. This branch of proof finally converges to the
case of path patterns in Definition 6.

2. ne = 1: we denote the only edge not on PT as e. In
this case, P must not contain any vertex label l. Otherwise,
e and l are two removable elements. We denote the number
of PT ’s leaves as nf , and enumerate all possible cases.

2.1. nf ≥ 3: P must have at least one dangling vertex v
because e can consume two leaves on PT at most. In this
case, e and the dangling edge are removable.

2.2. nf = 1: in this case, PT is a path pattern. We denote
the dangling edge associated with the only leaf as ef . e and
ef are removable. Note that removing ef does not violate
the radius constraint.

2.3. nf = 2: we denote the two leaves as v1 and v2. We
consider two possible locations of e.

2.3.1. e is not between v1 and v2: w.l.o.g., we assume that
v1 is not associated to e, i.e., v1 is a dangling vertex. In this
case, e and the dangling edge are removable.

2.3.2. e links v1 and v2: in PT , v1 and v2 must both
have depth rmax. Otherwise, we assume that v1’s depth is
d < rmax. We denote the dangling edge associated with v2
as e′2. In this case, e and e′2 are two removable elements.
Note that in P \ {e′2}, the depth of v2 is no greater than
(d + 1) ≤ rmax because it is linked to v1 by e. This branch
of proof finally converges to the definition of zipper patterns
in Definition 7.

5.2 Generating Zipper Patterns
In the last section, we graphically and formally describe

the structure of zipper patterns for the radius-constrained
FNM problem. Similar to the path patterns in the original
FNM problem, the new zipper patterns cannot be gener-
ated by joining smaller ones, and need special treatment in
algorithm design. Next, we present an approach.

Again we assume rmax = 3, and we find all zippers of
the first type in Figure 4a, which belong to level-5. Sup-
pose P is a frequent zipper pattern. According to the anti-
monotonicity property of the mining problem, the“Y”-shaped
pattern PY obtained by removing the head of P must also
be frequent, thus appearing in the results at the 4-th level.
It is relatively easy to identify them from the list of size-
4 patterns. We only need to check whether a pattern is a
tree, calculate the number of leaves, and find the depth of
the leaves. Once a pattern PY is discovered, we find all its
matching instances in the network N , and find all possible
labeled edges appearing at the position of the head edge.
Only those edge labels that lead to a frequent zipper pat-
tern are assembled into PY to produce a valid P . From now
on, we call the radius-constrained version of neighborhood
mining algorithm r-FNM.

5.3 Discussion
FNM and r-FNM share some similar optimizations as FSG

[19] such as TID (transaction ID) lists and canonical labels.
In our current implementation, we adopted the VID (ver-
tex ID) lists optimization [11], which is similar to the TID
[19] one under the subgraph mining scenario. VID lists not
only reduce the mining time by avoiding unnecessary verifi-
cations of unpromising patterns, but also provide the IDs of
vertices each pattern matches as a by-product output. This
by-product is particularly useful to our classification task
because the 0-1 matrix for training the relational model can
be directly built with it.

Compared to the apriori-based breadth-first mining meth-
ods [14, 19], it is well recognized that depth-first methods,
such as gSpan [34], achieve better performances in graph
pattern mining tasks. The frequent neighborhood mining
problem and its radius-constrained version are both solv-
able in a similar depth-first manner. We leave them as our
future work.

6. EXPERIMENTS
In this section, we carry out the chemical structure com-

pletion task on three real-life datasets to empirically evaluate
our approaches. A state-of-the-art structure-aware WNC
method called RL-RW-Deg [8]2 was employed as the base-
line. We aim to empirically answer the following questions:
1) Does neighborhood features consistently outperform the
state-of-the-art? 2) Does the r-FNM algorithm save time as
estimated in Table 1? 3) Does the new parameter rmax en-
able an efficiency-effectiveness tradeoff? 4) Compared with
tuning k, does rmax provides a better tradeoff?

6.1 Experimental Terminology
We used the first three datasets in [8] (Table 2), namely

Mutagenicity, AIDS, and Protein, provided in the IAMGraph

2The paper also proposed another method called RL-RW.
However, it is used as a baseline of RL-RW-Deg.



Mutag. AIDS Protein

Graph count 4337 2000 600
Avg. vertices 30.3 15.7 32.6
Avg. edges 30.8 16.2 62.1

|ΣV | 14 38 3
|ΣE | 3 3 5

Freq. class(%) 44.3 59.3 49.4

Table 2: Dataset and statistics

Training (Labeled) Validation Testing

Inference

Non-Testing

Figure 6: Partitioning data for network cross-validation

Database Repository3. We did not explore the other two
datasets in [8] since they are homophily-based. Because
the three datasets were originally introduced respectively as
benchmarks for graph classification, we need to first convert
them such that they can be utilized in our task.

We processed the three datasets in the same manner. For
each dataset, we sampled a subset of graph transactions con-
sisting of 100 molecules (or proteins). We merged all trans-
actions into a network, where they were regarded as con-
nected components of the network. We performed 10-fold
network cross-validation [26] to generate training, valida-
tion, and testing sets as Figure 6 shows. Specifically, we first
divided the vertex set into 10 folds. Each time we used one
fold for testing, and merged the other nine as “non-testing
set”. We sampled V K from the non-testing set as training

set such that the label ratio |V K |
|V |

ranged from 10% to 80%.

In the non-testing set, we also sampled 10%|V | vertices as
the validation set, which was disjoint from the training set
V K . Following [26], we denote V U = V \ V K as the “in-
ference set”, whose labels were removed and predicted in
each classification run. However, in V U , only vertices in the
testing set were considered in evaluation.

In our methods, neighborhood features were mined on V K

with the minimum support4 set to 2. We used SVMmulticlass

[33]5 with linear kernel to train models with neighborhood
features. The parameter C of SVM, which controls the bal-
ance between empirical loss and regularization, was chosen
from {10−1, 100, ..., 105} using ground truths on the valida-
tion set. For RL-RW-Deg, which does not involve a training
phase, we used the validation set to tune its four parame-
ters, which include α = {0.5, 0.75, 1}, β = {1, 1.5, 2, 2.5, 3},
Nmax = {2, 3}, γ = {0.1, 0.3, 0.5}. Readers can refer to [8]
for the specific meaning of the parameters.

3http://www.iam.unibe.ch/fki/databases/
iam-graph-database
4According to [6], an appropriate support threshold prevents
features without statistical significance from causing over-
fitting in training. However, currently we do not address
techniques for automatically deciding the support threshold.
Given that the linear kernel has a low risk of over-fitting and
that an improperly high support threshold can potentially
block useful features, we decided to take this safe choice and
leave the study of this parameter for future work.
5http://www.cs.cornell.edu/People/tj/svm_light/
svm_multiclass.html

When running the collective inferencing component in both
methods, the number of iteration was set to 3 because it
ensures convergence by observation. We evaluated the ef-
fectiveness of all methods using the metric of weighted F1
score, which is the average of the conventional F1 score of
different classes weighted by their true distribution. Each
reported F1 score was an average on all 10 testing runs.

All experiments were conducted on a PC with two Xeon
2.50GHz processors and 64GB memory. All algorithms were
implemented in C# and run on a single core. We report all
efficiency results in milliseconds.

6.2 Results
We report experimental results through answering the four

questions raised at the beginning of Section 6.
Question 1: In Section 4.1 we mentioned that, on one of

our datasets, neighborhood features of size below 4 build a
strong relational model. Equipped with ICA [27] as collec-
tive inferencing component, our solution outperforms RL-
RW-Deg by at least 11.7% in terms of weighted F1.

In fact, neighborhood-feature-based classifiers can com-
pete with the baseline, even with weaker classes of features.
In Table 3 we list the performance of RL-RW-Deg and neigh-
borhood features of size up to 2, 3, and 4, respectively (de-
noted byNb(2,−) and so on). When k = 1, our features only
consider the types of adjacent edges, which cannot exploit
vertex label dependency. This case is theoretically trivial
and empirically weak, and is thus not reported here. Clearly,
as k grows, the classification performance of neighborhood
features increases. Equipped with features of sizes up to 3
and 4 respectively, our methods consistently outperform the
baseline (passed the p < 0.01 paired t-test). In the case
of k = 2, the improvements are not statistically significant
for some label ratios. Although there are two cases (marked
bold) where our performance is worse in average, the perfor-
mance difference is neither large nor statistically significant.

Question 2: In Table 1, we estimated the time spent on
mining features of different radius by adopting some assump-
tions. When the r-FNM algorithm is applied, it is natural
to ask, does it really save time as estimated, by not generat-
ing large-radius features? In Figure 7, we report the feature
mining time on different datasets and under different param-
eter settings. Again we use the notation Nb(k,−) to denote
features mined using the original neighborhood mining al-
gorithm FNM. We also use Nb(k, rmax) to denote features
mined by the r-FNM algorithm described in Section 5. For
example, Nb(4, 2) stands for features generated by r-FNM
using k = 4 and rmax = 2. All time costs are averaged over
the 10 training sets.

From Figure 7 it is obvious that, when k is fixed, the fea-
ture mining time generally decreases as rmax decreases. This
indicates that when we need to use rmax to filter the features
by their radius, it is beneficial to call r-FNM with rmax in-
stead of filtering the features after calling FNM. There are
some exceptions, for example, in Figure 7b at ratio 50%,
the time of (4, 3) exceeds that of (4,−). We note that the
zipper generating component is actually an extra, though
not significant, computation overhead of the entire task. In
the cases where rmax approaches k (e.g., rmax = k − 1), r-
FNM may spend some time dealing with many zippers, only
to avoid generating a small number of large-radius patterns.
However, this does not deteriorate the significance of r-FNM



Dataset Method
Label Ratio(%)

10% 20% 30% 40% 50% 60% 70% 80%

Mutag.

Nb(4,-) 0.926 0.948 0.949 0.959 0.964 0.964 0.968 0.970
Nb(3,-) 0.914 0.924 0.935 0.942 0.941 0.942 0.949 0.947
Nb(2,-) 0.882

‡
0.882

‡ 0.890‡ 0.890‡ 0.894‡ 0.899 0.901† 0.902†

RL-RW-Deg 0.888 0.884 0.881 0.878 0.886 0.880 0.885 0.886

AIDS

Nb(4,-) 0.645 0.671 0.691 0.702 0.709 0.735 0.768 0.779
Nb(3,-) 0.631 0.668 0.681 0.699 0.711 0.720 0.729 0.739
Nb(2,-) 0.607 0.625 0.655 0.672 0.668 0.672 0.659† 0.674

RL-RW-Deg 0.561 0.555 0.574 0.589 0.567 0.567 0.601 0.623

Protein

Nb(4,-) 0.717 0.765 0.786 0.828 0.836 0.848 0.867 0.870
Nb(3,-) 0.705 0.764 0.778 0.822 0.826 0.843 0.854 0.858
Nb(2,-) 0.675 0.742 0.759‡ 0.799‡ 0.813‡ 0.833† 0.835 0.846

RL-RW-Deg 0.642 0.707 0.754 0.787 0.804 0.814 0.814 0.820

Table 3: Classification effectiveness in terms of weighted F1 score. Bold texts denote cases where our method did NOT
outperform the baseline. Except these ‡ (failed the p < 0.05 test) and † (failed the p < 0.01 test but passed the p < 0.05 one),
all improvements are statistically significant under the p < 0.01 paired t-test.
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Figure 7: Feature mining time of r-FNM and FNM under different parameter settings.

because no other obvious methods can ensure such efficiency
when rmax takes small or medium values.

Question 3: Since r-FNM enables the choice of not gen-
erating large-radius features, how will the classification ef-
fectiveness and efficiency change when large-radius features
are blocked by rmax? To study this issue, we fix the label ra-
tio at 50%, and jointly plot the classification time (including
feature mining and generating test data) and F1 scores of
different parameter settings in Figure 8. We do not include
RL-RW-Deg in the figures because it is generally several
times slower than our methods, but only provides a similar
performance as Nb(2,−) does.

In Figure 8, we observe that if we connect the data points
of Nb(4,−), Nb(4, 3),Nb(4, 2) and Nb(4, 1) in order, we end
up with a polyline roughly from upper right to lower left.
Since the lower left direction represents the trend of worse
performance and less time, it is clear that r-FNM provides
a valid tradeoff of effectiveness and efficiency, by allowing
specifying the maximum feature radius rmax. There may be
exceptions when a polyline goes lower right at some point.
For example, in Figure 8b, Nb(4, 3) has lower F1 score than
Nb(4,−), but costs more time. Recall that, when answer-
ing question 2, we mentioned that for large rmax, r-FNM
may not be efficient. Besides these “bad” exceptions, we
also observe “good” exceptions. For example, in Figure 8a,
Nb(4, 2) is both more efficient and slightly more effective
than Nb(4,−).

Question 4: Since rmax encodes the Markov-assumption-
based tradeoff, how about the other parameter k? Through

reading Table 3 and Figure 7, it seems that k also pro-
vides means for an efficiency-effectiveness tradeoff. Gen-
erally speaking, k controls the complexity of the features
generated by the neighborhood pattern miner, which is ir-
relevant from the Markov assumption. When a tradeoff is
required, which parameter we should try first actually de-
pends on the data and task.

In Figure 8, we also mark out the polyline (4,−)→ (3,−)→
(2,−) to illustrate the tradeoff by varying k. We denote it
as the k-line, and the previous one as the rmax-line. We ob-
serve that on the Mutagenicity dataset, the rmax-line is to
the upper left of the k-line, indicating that on this dataset,
the rmax parameter provides a better tradeoff than k. This
is because the valency information of atoms on the Muta-
genicity dataset serves as a strong cue in classification, which
falls under the scope of first-order Markov assumption. How-
ever, the two lines exchanges their positions on the other two
datasets. This is because the valency information is noisy
on the second dataset (bonds to hydrogen atoms are omit-
ted) and unavailable on the third one (vertices represent
secondary structures, not atoms). The different results of
applying the first-order Markov assumption indicate that,
pre-knowledge about the data and task should be incorpo-
rated into the stage of choosing algorithms and parameters.
In this sense, r-FNM does not always ensure a better trade-
off, but actually enables Markov-based assumptions to be
adopted when necessary.
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Figure 8: Two ways of tradeoff on three datasets, with label ratio 50%.

7. CONCLUSION
In this paper, we proposed using neighborhood patterns

of vertices to build relational classifiers for within-network
classification. We experimentally showed that neighborhood
features are not only feasible, but also competitive, in structure-
dependent WNC tasks. Moreover, we formulated the prob-
lem of incorporating the Markov assumption into feature
mining as the radius-constrained version of FNM. We algo-
rithmically solved it by identifying zipper patterns as new
building blocks of the pattern space. The new r-FNM algo-
rithm was shown to help providing more effective choices on
the efficiency-effectiveness trade-off in WNC tasks.
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