
Outlier Detection on Uncertain Data: Objects,
Instances, and Inferences

Bin Jiang

Simon Fraser University
Burnaby, BC, Canada
bjiang@cs.sfu.ca

Jian Pei

Simon Fraser University
Burnaby, BC, Canada
jpei@cs.sfu.ca

Abstract—This paper studies the problem of outlier detection
on uncertain data. We start with a comprehensive model consid-
ering both uncertain objects and their instances. An uncertain
object has some inherent attributes and consists of a set of
instances which are modeled by a probability density distribution.
We detect outliers at both the instance level and the object
level. To detect outlier instances, it is a prerequisite to know
normal instances. By assuming that uncertain objects with similar
properties tend to have similar instances, we learn the normal
instances for each uncertain object using the instances of objects
with similar properties. Consequently, outlier instances can be
detected by comparing against normal ones. Furthermore, we
can detect outlier objects most of whose instances are outliers.
Technically, we use a Bayesian inference algorithm to solve
the problem, and develop an approximation algorithm and a
filtering algorithm to speed up the computation. An extensive
empirical study on both real data and synthetic data verifies the
effectiveness and efficiency of our algorithms.

I. INTRODUCTION

Uncertainty is inherent in data collected in various applica-

tions, such as sensor networks, marketing research, and social

science. Uncertain data poses significant challenges for data

analytic tasks. In this paper, we investigate a fundamental data

mining problem – outlier detection – on uncertain data.

Example 1 (Motivation – product evaluation): A digital

camera manufacturer carries a whole series of products. Each

product has some inherent properties, such as pixel density,

sensor type, and aperture range. The similarity between two

products can be measured by the proximity of their inherent

properties.

By analyzing customer evaluations on individual products,

the manufacturer can study the market and adjust its strategies

on marketing and product development. One product may

receive multiple evaluations which may vary to one another.

The reviews of the product are not certain and can be modeled

as an uncertain object, where each evaluation is regarded as

an instance. Similar products are expected to receive similar

evaluation grades from customers.

For a product, some evaluations may be very different from

the majority. Those outlier evaluations need to be examined.

They may be interesting if they capture some issues in rare

scenarios or reflect opinions of specific user groups. They

may be excluded from analysis if they are noise, such as

spam reviews. Some products may receive evaluations very

different from similar products. Those outlier products are

particularly interesting since they may provide important hints

on customer/market interests.

Clearly, outlier detection on uncertain data at both the

instance level and the object level is practically useful.

Example 2 (Motivation – sensor data): As an extensively

adopted approach for environment surveillance, sensors are

deployed to cover an area of interest. Each sensor keeps

reporting its readings to monitor several sensing measures at

its location. Each sensor has some inherent properties, such as

its spatial location. The spatial distance between two sensors

can be measured.

In many applications, the target sensing measure such as

temperature can be regarded stable in a short period such as

30 minutes. However, the true value of temperature cannot be

accurately obtained due to limitations of measuring equipment.

Instead, sensor readings are collected in order to approximate

the true temperature. So the true value of the temperature at a

certain location is an uncertain object, where multiple readings

collected from a sensor at this location are the instances of this

uncertain object. Often, it is expected that the target sensing

measures at nearby locations are similar, so are the readings

of the sensors.

For a sensor, some readings may be very different from

the true values of the target sensing measure due to factors

like dynamic errors, drifts, and noise. It is important to clean

those outlier readings to improve the accuracy of the sensor.

Moreover, some sensors may deviate significantly from their

neighbors. Such outlier sensors may be caused by malfunc-

tioning sensor units or sensors at specific locations such as a

deep hole on the ground.

Again, detecting outliers from uncertain data at both the

instance level and the object level is meaningful.

One may think that outlier detection on uncertain data

is straightforward – we can first detect and remove outlier

instances within each object, and then detect outlier objects

using aggregates (such as mean or median) of objects as the

representatives. Unfortunately, such a simple approach may

not work well in practice. Critically, instances in an uncertain

object may follow a probability mixture model. For example,

customer evaluations on a product, instead of converging to

an unanimous agreement, may likely be a mixture of opinions

from multiple groups. Therefore, using aggregates such as

mean or median may not represent an object properly for

outlier detection at the object level. Moreover, within one



 0

 20

 40

 60

 80

 100

1 2 3 4 5

co
un

t
grade

(a) A

 0

 20

 40

 60

 80

 100

1 2 3 4 5

co
un

t

grade

(b) B

 0

 20

 40

 60

 80

 100

1 2 3 4 5

co
un

t

grade

(c) C

Fig. 1. An example of three proximate products.

object, outlier detection without considering the neighbor

objects may lose useful information.

Example 3: Suppose we have three products, A, B, and C,

which are similar to each other. Figure 1 shows the distribution

of customer evaluations on the three products. If we only

consider product A, the evaluations of grade 5 are likely

to be regarded as outliers. However, considering that similar

products B and C receive a substantial amount of evaluations

of grade 5, the evaluations of grade 5 for product A should

not be considered as outliers. Instead, the evaluations of grade

1 should be the suspects of outliers, since they are rare for

products B and C.

In Section VI, we will empirically demonstrate that the

straightforward method cannot detect outliers satisfactorily.

In order to detect outliers at both the object level and

the instance level, we need a comprehensive model of un-

certain objects and their instances. In this paper, we take a

general model where an uncertain object is associated with

some inherent properties described by a set of conditioning
attributes and a set of instances which are described by a

set of dependent attributes. For example, we can model the

target measures of a sensor as an uncertain object. The factors

determining the target measures of the sensor, such as latitude,

longitude, terrain, and altitude of the location of the sensor,

are the conditioning attributes. The readings are instances

with dependent attributes like temperature and precipitation

which are modeled as probability distributions [1], [2], [3].

Essentially, we model the conditioning attributes as latent

variables that generate the dependent attributes. Figure 2 shows

the graphical illustration.

In order to determine outlier instances, we first need to

know normal instances. In many applications, it is reasonable

to assume that objects with similar properties tend to have

similar instance distributions. The central idea of our outlier

detection technique is to learn the normal instances of each

object by taking into account the instances of objects with

similar properties.

Under this model, our outlier detection approach learns

the conditional distribution of dependent attributes given the

conditioning attributes. We measure the normality, which is the

opposite of outlierness, of an instance by its conditional proba-

bility. After finding outlier instances, we can then detect outlier

objects most of whose instances are outliers. The normality of

an object is defined as the geometric mean of the normality

of all its instances, which is meaningful in probability theory.

Fig. 2. An example of the uncertain object model.

Furthermore, as the conditional distribution is learned from the

existing instances, more objects with similar properties give us

more accurate results. Hence, the density of the conditioning

attribute space provides us a confidence of the accuracy of the

learned conditional distribution and the detected outliers.

Technically, we use Bayesian inference to learn the condi-

tional distribution. In many applications, we have very little

information about the true probability density function of

the dependent attribute distribution or even as to its form.

The probability density functions are often very complex.

Therefore, we do not make any assumption on the conditioning

attributes of objects or the population of instances of objects.

Instead, we propose to employ kernel density estimation to

estimate a probability distribution. To speed up the compu-

tation, we further develop an approximation algorithm that

approximates the probability density of a target instance using

instances within its ε-neighborhood, and a filtering algorithm

that tries to filter instances without computing their exact

normality.

In the rest of the paper, we first formally define our problem

in Section II. After that, we develop the basic algorithm,

the approximation algorithm, and the filtering algorithm in

Sections III, IV, and V, respectively. Section VI presents

an extensive empirical study. We review the related work in

Section VII and conclude the paper in Section VIII.

II. PROBLEM DEFINITION

We assume a space of conditioning attributes (C-space
for short) of dimensionality dC and a space of dependent
attributes (D-Space for short) of dimensionality dD. The two

spaces are exclusive.

An uncertain object (object for short) Ri is a tuple

(li, {rij |1 ≤ j ≤ mi}) where li is a point in the C-space



describing the inherent properties of Ri, and {rij |1 ≤ j ≤ mi}
is a set of mi instances in the D-space. It is possible that

multiple objects coincide in the C-space (i.e., have the same

property values). We also overload Ri by writing Ri =
{rij |1 ≤ j ≤ mi}.
Often, we use a variable R for objects whose conditioning

attribute values form a random variable l in the C-space. We

use a variable r for instances of R in the D-space.

By assuming that the instances of an object depend on

the its conditioning attributes in the C-space, we measure

the normality of an instance rij ∈ Ri by the conditional

probability of rij given li of Ri, that is,

nor(rij) = P (r = rij |R = Ri, l = li). (1)

For the sake of simplicity, Equation (1) is also written as

nor(rij) = P (rij |Ri, li).
The normality defined as such measures the likelihood of an

instance that is consistent with the uncertain objects and their

instances observed. We note that the normality is the opposite

of the outlierness commonly used in the literature. We use this

form in order to preserve the probability meaning.

Then, the normality of an object Ri can be measured by

the geometric mean of the normality of all instances of Ri,

nor(Ri) =
( mi∏
j=1

P (rij |Ri, li)
) 1
mi . (2)

Here, we use geometric mean because
∏mi
j=1 P (rij |Ri, li)

measures the likelihood that Ri is consistent with the uncertain
objects and their instances observed, and the mi-th root nor-

malizes the difference in number of instances among various

objects. Please note that our outlier detection framework does

not rely on the specific form of nor(Ri). Generally, it can be

applied to normality defined in other forms.

By the above definition, the smaller the normality of an

instance or an object, the larger its outlierness and the more

likely it is an outlier.

As a byproduct, the confidence of detecting an outlier object

Ri and outlier instances of Ri is proportional to the probability
density of its conditioning attribute li, that is,

conf(Ri) = P (li). (3)

In this paper, we tackle the problem of finding outlier

instances and outlier objects given a user specified normality

threshold δ > 0.
Problem Definition: Given a normality threshold δ > 0

and a set of n uncertain objects R = {Ri|1 ≤ i ≤ n}, where
object Ri = (li, {rij |1 ≤ j ≤ mi}), the problem of outlier
detection on uncertain data is to find all instances rij such
that nor(rij) < δ and all objects Ri such that nor(Ri) < δ.
Please note that, to keep our discussion simple, we use

the same threshold for both objects and instances. In general,

different thresholds can be used to find outliers at the object

level and the instance level, respectively.

Table I summaries the frequently used symbols.

Symbol Description

dC the dimensionality of the C-space
dD the dimensionality of the D-space
n the number of objects
Ri the (distribution/sample of) the i-th object
mi the number of instances in the sample of Ri

rij the j-th instance of the i-th object Ri

rij .k the value of the k-th dependent attribute of rij
hik the kernel bandwidth of the k-th dependent

attribute of Ri

Nd(x|s,Σ) a d-dimensional Gaussian function with mean s
and covariance matrix Σ

TABLE I
THE SUMMARY OF SYMBOLS

III. THE BASIC ALGORITHM

This section develops a basic algorithm to calculate the

normality for instances and objects. Since we estimate the

probability density of distributions, we first briefly review

kernel density estimation in Section III-A. Then, Section III-B

presents a Bayesian inference approach.

A. Kernel Density Estimation

To estimate the probability density of a distribution given its

sample, we make use of kernel density estimation [4], [5] with

Gaussian kernels. Given a sample S of a distribution f , the
kernel density estimate approximates the probability density

function f by the sum of |S| Gaussian kernel functions, each

of which is centered at a sample point s ∈ S with variance

h2, where h is called the bandwidth and is used to control the

level of smoothing. A popular choice of the bandwidth is the

Sliverman approximation rule [4] for which h = 1.06σ|S|− 15 ,
σ being the standard deviation of the sample. For the 1-
dimensional case, the density estimate is

f̂(x) =
1

|S|
∑
s∈S

N (x|s, h2),

where N (x|s, h2) is the density of x in a Gaussian function

with mean s and variance h2. For the d-dimensional case (d ≥
2), assuming dimensions are independent to each other, the

kernel function is the product of d Gaussian functions, each

with its own bandwidth hk (1 ≤ k ≤ d), the density estimate

is

f̂(x) =
1

|S|
∑
s∈S

Nd(x|s,Σ),

where Nd(x|s,Σ) is a d-dimensional Gaussian function with

mean s and covariance matrix Σ =

⎛
⎜⎝
h2
1 0 0

0
. . . 0

0 0 h2
d

⎞
⎟⎠.



Algorithm 1 The basic algorithm.

Input: a set of objects R; a normality threshold δ;
Output: the set of outlier instances OI and the set of outlier

objects OO;

Description:
1: OI = ∅; OO = ∅;
2: for all Ri ∈ R do
3: for all rij ∈ Ri do
4: calculate nor(rij) by Equation (8);

5: if nor(rij) < δ then OI = OI ∪ {rij};
6: end for
7: calculate nor(Ri) by Equation (2);

8: if nor(Ri) < δ then OO = OO ∪ {Ri};
9: end for
10: return OI , OO;

B. Bayesian Inference

The core task in our outlier detection is to infer

P (rij |Ri, li). By Bayes’ theorem, we have

P (rij |Ri, li) = P (rij |Ri)P (li|rij , Ri)
P (li|Ri)

=
P (rij |Ri)P (li|rij)

P (li)
,

(4)

since the C-space variable l is not dependent on the object

variable R.

The priors P (rij |Ri) and P (li) can be estimated directly

from the data obtained by kernel density estimation as

P (rij |Ri) =
1

mi

mi∑
j′=1

NdD (rij |rij′ ,ΣRi), (5)

P (li) =
1

n

n∑
i′=1

NdC (li|li′ ,ΣC), (6)

where ΣRi is the covariance matrix of the instances of Ri and
ΣC is the covariance matrix of the conditioning attributes of

objects.

To calculate the likelihood P (li|rij), we can first calculate

the probability of rij given any object Ri′ , i.e., P (rij |Ri′).
Then the probability of li given the observation of rij is

calculated using kernel density estimation where every point

li′ is weighted by P (rij |Ri′), that is,

P (li|rij) =
∑n
i′=1

(
P (rij |Ri′)NdC (li|li′ ,ΣC)

)
∑n
i′=1 P (rij |Ri′) . (7)

Plugging Equations (5), (6), and (7) into Equation (4), we

can evaluate the normality nor(rij) of instance rij as

nor(rij) =
P (rij |Ri)

∑n
i′=1

(
P (rij |Ri′)NdC (li|li′ ,ΣC)

)
∑n
i′=1 P (rij |Ri′)P (li)

(8)

C. Implementation
Algorithm 1 shows the pseudo code of the basic algorithm.

It exhaustively calculates the normality of all instances of

all objects according to Equation (8). Then, the normality

of objects is evaluated using Equation (2). Checking with

the normality threshold δ, the algorithm can identify outlier

instances and outlier objects.
Essentially, we need to estimate the probability density

of each point li in the C-space, and the probability density

of each instance rij in the distributions of all n objects.

In total, the number of Gaussian functions evaluated in the

kernel density estimation is O(n2m2), where m =
∑n
i=1mi
n

is the average number of instances of all objects. To reduce

the computational cost, we will develop an approximation

algorithm and a filtering algorithm in Sections IV and V,

respectively.

IV. THE APPROXIMATION ALGORITHM

To evaluate the density of a target point in a distribution

represented by a sample of m points, the kernel density

estimate requires to sum up the density contributions of

all m points. However, because a Gaussian function decays

exponentially with respect to the distance to its mean, the

density contribution is small if a sample point is far away from

the target point. By neglecting the effect of distant points to

the target point, we save the computation with small cost in

accuracy.

A. Approximation
To be concrete, we estimate the probability density using

only points within an ε-range. For each instance rij (i ∈
[1, n], j ∈ [1,mi]), we define the ε-neighborhood instances
as

N(rij) = {r ∈ Ri′ , Ri′ ∈ R
∣∣max
k
{|r.k − rij .k|} ≤ ε},

where maxk{|r.k−rij .k|} is the maximum projected distance

on any dimension between r and rij . Essentially, N(rij)
consists of the instances in a hyper-cube centered at rij with
edge length 2ε. Ri′ is called an ε-neighborhood object of rij
if at least one instance of Ri′ is in the ε-neighborhood of rij .
We also denote the set of ε-neighbor objects of rij as

NS(rij) = {Ri′ |∃r ∈ Ri′ , r ∈ N(rij)}.
Example 4: Figure 3 illustrates an example of ε-

neighborhood instances and ε-neighborhood objects. The

dashed square is a hyper-cube centered at rij with edge

length 2ε. r is an ε-neighborhood instance. Ri and Ri′ are

ε-neighborhood objects.
P (rij |Ri) and P (li|rij) can be approximated using the

ε-neighborhood instances in N(rij) and the ε-neighborhood
objects in NS(rij) as follows.

P (rij |Ri) = 1

mi

∑
∀rij′∈N(rij)

NdD (rij |rij′ ,ΣRi), (9)

P (li|rij) =
∑
∀Ri′∈NS(rij)

(
P (rij |Ri′)NdC (li|li′ ,ΣC)

)
∑
∀Ri′∈NS(rij) P (rij |Ri′) . (10)



�

��

���

���������������

�

	�

	��

Fig. 3. An example of ε-neighborhood instance and ε-neighborhood object.

Algorithm 2 The approximation algorithm.

Input: a set of objects R; a normality threshold δ;
Output: the set of outlier instances OI and the set of outlier

objects OO;

Description:
1: OI = ∅; OO = ∅;
2: index the instances of all objects in R into an R*-tree T ;
3: self-join T to find the ε-neighborhood of every instance;

4: for all Ri ∈ R do
5: for all rij ∈ Ri do
6: estimate nor(rij) using its ε-neighborhood;
7: if nor(rij) < δ then OI = OI ∪ {rij};
8: end for
9: calculate nor(Ri) by Equation (2);

10: if nor(Ri) < δ then OO = OO ∪ {Ri};
11: end for
12: return OI , OO;

Similarly, we can also estimate the probability density P (li)
for each point li. Then, we can approximate the normality in

Equation (8).

When we approximate the Gaussian function

NdD (rij |rij′ ,ΣRi), the approximation error happens if

maxk{|rij .k − rij′ .k|} > ε. Therefore, the approximation

error is at most
exp(−∑dDk=1 ε2

2h2
i,k

)

(2π)
dD
2
∏dD
k=1 hik

, where hik is the bandwidth

of Ri on the k-th dimension. In practice, we can choose

ε to be about the average standard deviation σ of the

objects. Suppose hik is selected to be 1.06σm
− 15
i . When

we have mi = 100 instances in a dD = 3 dimensional

D-space, exp(−∑dD
k=1

ε2

2h2i,k
) ≈ exp(−dDm

2
5
i ) ≈ 10−8. The

approximation error is very small.

Consider the approximation of P (rij |Ri). The density con-

tribution of rij itself is N (rij |rij , Ri) = 1

(2π)
dD
2
∏dD
k=1 hik

,

which is 108 times larger than the approximation error stated

above. Hence, we expect our approximation of P (rij |Ri)
and Equation (8) to be accurate. This is verified by our

experiments.

B. Implementation

To efficiently implement the approximation algorithm, we

need to find the ε-neighborhood for every instance. R*-tree [6]

is one of the practical data structures to solve this problem. A

node of an R*-tree contains a set of entries. Each entry in a


���� 
������


����

��

�
(a) φ.k = B′

min.k −Bmax.k


����
������


����


��

�
(b) φ.k = 0

Fig. 4. An illustration of calculating φ.k.

leaf node contains an instance. Each entry in a non-leaf node

has the form 〈child,MBB〉 where child refers to a child node,

and MBB is the minimum bounding box of the child node.

We index all instances of all objects into a single R*-tree.

By self-joining this R*-tree, we can find the ε-neighborhood
for every instance with a single pass of the tree.

In detail, we maintain two copies of the R*-tree and traverse

them synchronously. We start from the root of both copies. In

each iteration, a pair of nodes B and B′ from the two copies,

respectively, is processed. If the minimum distance between

B and B′ is no less than ε, then any instance in B will not

be in the ε-neighborhood of any instances in B′. Thus, the
pair of B and B′ can be excluded for further consideration.

Otherwise, if B and B′ are not leaf nodes, for every child

node b of B and every child node b′ of B′, the pair b and b′

will be examined in the same manner. In the case where B
and B′ are leaf nodes, then every pair of instances from the

two nodes is checked to see if they are ε-neighbors.

The minimum distance between two nodes B and B′

is the minimum projected distance on any dimension be-

tween their minimum bounding boxes, which is given by

mindist(B,B′) = mink{φ.k}, where

φ.k =

⎧⎪⎨
⎪⎩
B′min.k −Bmax.k if Bmax.k ≤ B′min.k;
Bmin.k −B′max.k if B′max.k ≤ Bmin.k;

0 otherwise.

Here, Bmax and Bmin are the maximum and minimum corners

of the minimum bounding box of B, respectively. Figure 4

illustrates the formula of φ.k.

Algorithm 2 shows the pseudo code of the approximation

algorithm.

Since the approximation algorithm calculates the normality

of every instance using only the ε-neighborhood, it evalu-

ates O(mnt) Gaussian functions in total, assuming on av-

erage there are t instances in the ε-neighborhood of each

instance. The cost to build the R*-tree is approximately

O(mn log(mn)) and the cost to retrieve the ε-neighborhood
of every instance is O(mn log(mn)). Thus, the total cost of

the approximation algorithm is O
(
mn(t+ 2 log(mn))

)
.

The basic algorithm and the approximation algorithm both

calculate the normality of every instance individually. In the

next Section, we develop a filtering algorithm such that we can



determine whether an instance is an outlier without actually

computing its normality value.

V. THE FILTERING ALGORITHM

Heuristically, in an object, instances similar to a normal

instance are likely to be normal as well. In a smooth dis-

tribution, similar instances should have similar probability

densities. We use Gaussian distribution, which is smooth, in

our approximation method. Based on this property, once we

find a normal instance, we have a chance to determine that

some similar instances are also normal without computing

their exact normality values.

A. Bounding the Normality

The normality values of two instances have the following

relationship.

Lemma 1 (Bounding normality): For two instances rij and
rij′ of object Ri located at li, if

max
k
{|rij .k − rij′ .k|} ≤ α, (α > 0),

then
nor(rij′)

nor(rij)
≥ exp

(− 3

2
(α2 + 2εα)β

)
,

where

β = max
i′
{
dD∑
k=1

1

h2
i′k
|Ri′ ∈ NS(rij) ∪NS(rij′)}.

Proof: We first prove, for any object Ri′ ,

exp
(−(

α2

2
+εα)

dD∑
k=1

1

h2
i′k

)≤ P (rij′ |Ri′)
P (rij |Ri′)

≤exp
(
(
α2

2
+εα)

dD∑
k=1

1

h2
i′k

)
.

(11)

For any instance r ∈ Ri′ , following the approximation

strategy, we have maxk{|rij .k− r.k|} ≤ ε. Then, for the k-th
dependent attribute (k ∈ [1, dD]), we have

(rij′ .k − r.k)2 =
(
(rij′ .k − rij .k) + (rij .k − r.k)

)2
≤ (rij .k − r.k)2 + 2εα+ α2.

Plugging the above inequality into Gaussian function,

N (rij′ |r,ΣRi′ ) ≥ N (rij |r,ΣRi′ ) exp
(−(

α2

2
+εα)

dD∑
k=1

1

h2
i′k

)
,

where ΣRi′ is the covariance matrix of Ri′ and hi′k is the

bandwidth of the k-th dimension of Ri′ . So,

P (rij′ |Ri′) ≥ P (rij |Ri′) exp
(− (

α2

2
+ εα)

dD∑
k=1

1

h2
i′k

)
.

On the other hand,(
(rij′ .k − r.k)− (rij′ .k − rij .k)

)2
= (rij .k − r.k)2,

(rij′ .k − r.k)2 ≥ (rij .k − r.k)2 − 2εα− α2.

Algorithm 3 The filtering algorithm.

Input: a set of objects R; a normality threshold δ;
Output: the set of outlier instances OI and the set of outlier

objects OO;

Description:
1: OI = ∅; OO = ∅;
2: for all Ri ∈ R do
3: while Ri �= ∅ do
4: find a stationary point rij of Ri using mean shift;

5: compute nor(rij) by Algorithm 2;

6: if nor(rij) > δ then
7: compute the filtering region F (rij) (Theorem 1);

8: Ri = Ri \ ({rij} ∪ {rij′ ∈ F (rij)});
9: else if nor(rij) < δ then

10: OI = OI ∪ {rij}; Ri = Ri \ {rij};
11: end if
12: end while
13: determine whether Ri is an outlier;

14: end for
15: return OI and OO;

Similarly, we have

P (rij′ |Ri′) ≤ P (rij |Ri′) exp
(
(
α2

2
+ εα)

dD∑
k=1

1

h2
i′k

)
.

Thus, Inequality (11) holds. Applying it to the normality

formula (Equation (8)) and let

β = max
i′
{
dD∑
k=1

1

h2
i′k
|Ri′ ∈ NS(rij) ∪NS(rij′)},

we have

P (rij′ |Ri, li)
P (rij |Ri, li) ≥

exp
(− 2(α

2

2 + εα)β
)

exp
(
(α

2

2 + εα)β
) .

Thus, the lemma is proved.

Using Lemma 1, once we find a normal instance rij , we
can determine its filtering region within which any instance is

also normal.

Theorem 1 (Filtering region): For two instances rij and

rij′ of object Ri located at li such thatmaxk{|rij .k−rij .k|} ≤
α, if nor(rij) > δ and

α <

√
2

3β
ln
nor(rij)

δ
+ ε2 − ε,

then nor(rij′) > δ.
Proof: By Lemma 1, if exp

(− 3
2 (α

2+2εα)β
)
> δ
nor(rij)

,

then nor(rij′) > δ. Solving this inequality, we have the

theorem.

B. Implementation

In order to maximize the filtering power of Theorem 1, a

heuristic approach is to find an instance in the dense area of

an object so that the filtering region is large and dense, and



contains a good number of instances. We borrow the idea used

in mean shift [7], [8] to achieve this goal.

Given a set of data points in a multidimensional space, mean

shift is a simple iterative procedure that shifts a query point

to the mean of data points in its neighborhood. Eventually,

the procedure converges at a stationary point which has the

maximum local density.

In our problem, for each object Ri, we identify a stationary
instance rij which is in a dense region of the instance

distribution of Ri. To identify a stationary instance, we first

randomly pick a query point r(0) in the D-space. In the z-th
iteration (z ≥ 1), the query point r(z−1) is shifted to its local

center r(z) according to the following formula, for k ∈ [1, dD],

r(z).k =

∑mi
j=1N (rij .k|r(z−1).k, h2

ik)rij .k∑mi
j=1N (rij .k|r(z−1).k, h2

ik)
.

Like the approximation algorithm, we can also evaluate r(z)

using only its ε-neighborhood. Limited by space, we omit the

details here. Once the distance between r(z) and r(z−1) is

smaller than a parameter γ, we stop the iteration and find the

instance rij closest to r
(z). rij is the stationary instance in the

distribution of Ri.
Algorithm 3 presents the pseudocode of the filtering algo-

rithm. For each object Ri, we first find a stationary instance

rij and compute the normality of rij (lines 4, 5). If we find

that rij is a normal instance, then its filtering region F (rij) is
computed according to Theorem 1 (lines 6, 7). The instances in

F (rij) are normal instances and thus can be pruned for further

computation (line 9). Otherwise, rij is an outlier instance

(line 10).

All outlier instances and some normal instances have their

normality computed in the algorithm. For those filtered normal

instances, their normality are greater than the threshold δ.
Therefore, by Equation (2), we have a lower bound of the

normality of an object Ri. If this lower bound passes δ, then
Ri is a normal object. Otherwise, the exact value of nor(Ri)
is computed by the approximation algorithm. As the amount

of outlier instances is small, we expect that the lower bound

works well in practice, as verified by our experiment results.

VI. EMPIRICAL STUDY

We conducted extensive experiments on synthetic data sets

and a real data set to evaluate the effectiveness and efficiency

of the three algorithms developed in this paper, namely, the

basic algorithm (denoted by BS), the approximation algorithm

(denoted by AP), and the filtering algorithm (denoted by

FT). For comparison, we implemented a density-based outlier

detection algorithm (denoted by DS) which simply measures

the normality of each instance rij ∈ Ri by its probability

density P (rij |Ri) in Ri.
All methods were implemented in C++ and compiled by

GCC 4.3.3. All experiments were conducted on a computer

with an Intel Core 2 Duo P8700 2.53GHz CPU and 4GB

main memory running Ubuntu 9.10. All programs run in main

memory. The I/O cost is not reported.

A. Results on Synthetic Data

Since mixture Gaussian models can approximate a large

class of probability density functions, we use mixture Gaussian

models to generate the conditioning attributes of objects and

the normal instances of an object. The outlier instances of an

object are drawn from a uniform distribution which is totally

different from the mixture Gaussian model.

The dimensionality dC of the C-space varies from 2 to

6, and the dimensionality dD of the D-space varies from

2 to 10. To generate a synthetic data set, we first generate

a set of n points in a dC-dimensional space following a

mixture Gaussian model consisting of 5 equally weighted

processes having random means and variances. The i-th point

is associated with an object Ri having m instances. We

randomly select 10 objects as outlier objects. The others are

normal objects. For each normal object, 99% of the instances

are normal, and the rest 1% are outlier instances. The amount

of outlier instances of an outlier object is randomly picked

between 50% and 90%.

The normal instances of each object are drawn from a

dD-dimensional mixture Gaussian model which is generated

in a specific way so that two objects have similar instance

distributions if their conditioning attributes are similar. The

mixture Gaussian model of each object consists of 3 equally

weighted process having the same variance 0.1. The mean of

each Gaussian process is generated by a mapping f from the

C-space to the D-space such that this mapping preserves the

locality between the two spaces. That is to say, given two

points l, l′ in the C-space, their corresponding points r, r′ in
the D-space satisfy ||r − r′|| = ||l − l′||, where ||.|| is the

Euclidean distance.

To construct a locality preserving mapping from C-space to

D-space, we require dC ≤ dD to guarantee there exists such

a mapping. The mapping is constructed as

f((l.1, · · · , l.dC)) = (r.1, · · · , r.dD),
where

r.i =

dC∑
j=1

wj .i× l.j for i ∈ [1, dD],

and wj .i’s picked such that

dD∑
i=1

wj .i
2 = 1 for ∀j ∈ [1, dC ]

and

dD∑
i=1

wj .i× wk.i = 0 for ∀j, k ∈ [1, dC ], j �= k.

This can be done by the following iterative method with

respect to j from 1 to dC . For every j, we first randomly

pick wj .i for i ∈ [j, dD]. Then, we solve a linear system of

equations

dD∑
i=1

wj .i× wk.i = 0 for k ∈ [1, j − 1]



 0

 0.1

 0.2

 0.3

 0.4

0.01
0.02

0.03
0.04

0.05
0.06

0.07
0.08

0.09
0.1

ra
tio

 (s
)

ε

DS AP

(a) dD = 3,m = 100

 0

 0.1

 0.2

 0.3

 0.4

0.01
0.02

0.03
0.04

0.05
0.06

0.07
0.08

0.09
0.1

ra
tio

 (s
)

ε

DS AP

(b) dD = 3,m = 1000

 0

 0.1

 0.2

 0.3

 0.4

0.01
0.02

0.03
0.04

0.05
0.06

0.07
0.08

0.09
0.1

ra
tio

 (s
)

ε

DS AP

(c) dD = 10,m = 100

 0

 0.1

 0.2

 0.3

 0.4

0.01
0.02

0.03
0.04

0.05
0.06

0.07
0.08

0.09
0.1

ra
tio

 (s
)

ε

DS AP

(d) dD = 10,m = 1000

Fig. 5. Accuracy on small data sets (n = 100, dC = 2, δ = 0.1).

 0

 0.2

 0.4

 0.6

 0.8

 1

pr
ec

is
io

n

DS
BS

AP & FT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

pr
ec

is
io

n

recall

(a) dD = 3,m = 100

 0

 0.2

 0.4

 0.6

 0.8

 1
pr

ec
is

io
n

DS
BS

AP & FT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

pr
ec

is
io

n

recall

(b) dD = 3,m = 1000

 0

 0.2

 0.4

 0.6

 0.8

 1

pr
ec

is
io

n

DS
BS

AP & FT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

pr
ec

is
io

n

recall

(c) dD = 10,m = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

pr
ec

is
io

n

DS
BS

AP & FT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

pr
ec

is
io

n

recall

(d) dD = 10,m = 1000

Fig. 6. Precision and recall on detecting outlier instances on small data sets (n = 100, dC = 2, δ = 0.1).

 0.01

 0.1

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

DS
BS

AP & FT

(a) dD = 3,m = 100

 0.01

 0.1

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

DS
BS

AP & FT

(b) dD = 3,m = 1000

 0.01

 0.1

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

DS
BS

AP & FT

(c) dD = 10,m = 100

 0.01

 0.1

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

DS
BS

AP & FT

(d) dD = 10,m = 1000

Fig. 7. Precision and recall on detecting outlier objects on small data sets (n = 100, dC = 2, δ = 0.1).

to determine wj .i for i ∈ [1, j − 1]. After that, we normalize

wj .i for i ∈ [1, dD] to make
∑dD
i=1 wj .i

2 = 1.

For each object, we also generate outlier instances following

uniform distribution. We note that it is very likely that some

outlier instances might be generated in an area being populated

by normal instances. Thus, even a good outlier detection

mechanism cannot find such outlier instances.

1) Effectiveness: We first conduct experiments to evaluate

the approximation error of the normality by AP developed in

Section IV. The error ratio of the normality of an instance is

computed as |appr−exact|/exact, where appr and exact are the
approximated and exact normality of an instance, respectively.

exact is computed by BS. We plot the average error ratio of

all instances in Figure 5. DS simply uses the density of each

instance as its normality. The ratio is plotted with ε varying

from 0.01 to 0.1. AP gets more accurate approximation as we

increase ε. AP always outperforms DS on 3-dimensional data

sets, and is better than DS on 10-dimensional data sets when

ε > 0.04. In the rest of our experiments, be default, ε = 0.05.

Figure 6 shows the precision-recall graphs on detecting

outlier instances of the 4 algorithms on 4 data sets, each of

which has n = 100 objects. The D-space dimensionality dD

and the number m of the instances of each object are shown

in the subtitle of each figure. AP and FT output the same

result and they are represented by a single curve. Generally,

when the recall level is low, our algorithms BS, AP, and FT

achieve high precision, while the precision of DS is low. The

precision of our algorithms decreases as the recall increases,

because outliers may be sampled into the dense area of the

normal instances, which cannot be found.

Figure 7 shows the precision-recall graphs on detecting

outlier objects. The graphs are drawn in logarithmic scale.

Clearly, BS, AP, and FT can rank all outlier objects into

top positions perfectly. However, DS cannot correctly identify

outlier objects.

In summary, our algorithms, BS, AP, and FT, can detect

the outlier instances not only in normal objects but also in

outlier objects. But DS cannot detect outlier instances in

outlier objects thus it fails to detect outlier objects.

2) Efficiency: Figure 8 shows the running time in logarith-

mic scale of the 4 algorithms on small data sets with only

100 objects . BS spends more than 2, 000 seconds to process

a data set of 100 objects, each object having 1, 000 instances.

Thus, BS cannot handle large data sets. AP and FT are much



 0.1

 1

 10

 100

 1000

 10000

0.01
0.02

0.03
0.04

0.05
0.06

0.07
0.08

0.09
0.1

tim
e 

(s
)

ε

DS BS AP FT

(a) dD = 3,m = 100

 1

 10

 100

 1000

 10000

0.01
0.02

0.03
0.04

0.05
0.06

0.07
0.08

0.09
0.1

tim
e 

(s
)

ε

DS BS AP FT

(b) dD = 3,m = 1000

 0.1

 1

 10

 100

 1000

 10000

0.01
0.02

0.03
0.04

0.05
0.06

0.07
0.08

0.09
0.1

tim
e 

(s
)

ε

DS BS AP FT

(c) dD = 10,m = 100

 1

 10

 100

 1000

 10000

0.01
0.02

0.03
0.04

0.05
0.06

0.07
0.08

0.09
0.1

tim
e 

(s
)

ε

DS BS AP FT

(d) dD = 10,m = 1000

Fig. 8. Time on small data sets in logarithmic scale (n = 100, dC = 2, δ = 0.1).

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

2000 4000 6000 8000 10000

tim
e 

(s
)

m

DS
AP
FT

(a) number of instances with n = 100

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2000 4000 6000 8000 10000

tim
e 

(s
)

n

DS
AP
FT

(b) number of objects with n=m=500

 0

 100

 200

 300

 400

 500

2 3 4 5 6

tim
e 

(s
)

d
C

DS
AP
FT

(c) dC with n = m = 500

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

2 3 4 5 6 7 8 9 10

tim
e 

(s
)

d
R

DS
AP
FT

(d) dD with m = 100

 0

 50

 100

 150

 200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e 

(s
)

δ

DS
AP
FT

(e) threshold with n = m = 500

Fig. 9. Time on large data sets (by default dC = 2, dD = 4, δ = 0.1).

faster than BS thanks to the approximation techniques. FT

outperforms AP because of the filtering. The running time

increases when ε increases.

Figure 9 shows the scalability of AP and FT with respect to

5 different factors, the number m of instances per object, the

number n of objects, the dimensionality dC of the C-space,

the dimensionality dD of the D-space, and the threshold δ. FT
outperforms AP in all cases, especially when there are a large

number of instances and dD is large. The running time of AP

and FT increases super-linearly with respect to m and n, and
sub-linearly with respect to dD. However, the running time

decreases as dC increases. This is because the overlap among

objects in both spaces decreases according to the mapping

used to generate the data sets, so the cost of computing the

normality of each target instance is reduced since there are

fewer instances in the ε-neighborhood of the target instance.

The runtime also increases slightly as the threshold δ increases.

Figure 10 investigates the filtering power of FT on the

corresponding data sets. This explains the reason why FT runs

faster then AP. In most cases, FT can filter out 30% instances.

And the filtering power is as high as 60% when each object

has a large number of instances.

In conclusion, FT runs faster than AT in all cases thanks to

the filtering technique. FT works especially well when objects

have a large number of instances.

B. Results on a Real Data Set

We obtained a weather data set from the National Center

for Atmospheric Research data archive (http://dss.ucar.edu/

datasets/ds512.0/). The data set consists of 7, 437 stations

around the world. We use the longitude and latitude of each

station as its conditioning attributes. Each station contains 366
daily records in 2008, which are treated as instances. Each

record has 3 attributes, average temperature, precipitation, and

average humidity. The data set is normalized so that the range

of each attribute is roughly the same.

As a case study, Figure 11(a) shows the temperature dis-

tributions of 4 nearby cities, Vancouver, Calgary, Edmonton,

and Prince George. We observe, except for Vancouver, the

other 3 cities have similar temperature distributions. The

temperature distribution of Vancouver is very different due

to its different terrain. Figure 11(b) shows the distributions

of instance normality of the 4 cities. Clearly, instances of

Vancouver have much lower normality scores, thus are more

likely to be outliers. This case clearly shows how the instance

normality can help to define the object normality.

Figure 12 shows the running time and the filtering power of

FT. The results on this real data set are consistent with those



 0

 20

 40

 60

 80

 100

2000 4000 6000 8000 10000

%
 o

f i
ns

ta
nc

es
 fi

lte
re

d

m

FT

(a) number of instances with n = 100

 0

 20

 40

 60

 80

 100

2000 4000 6000 8000 10000

%
 o

f i
ns

ta
nc

es
 fi

lte
re

d

n

FT

(b) number of objects with m = 100

 0

 20

 40

 60

 80

 100

2 3 4 5 6

%
 o

f i
ns

ta
nc

es
 fi

lte
re

d

d
C

FT

(c) dC with n = m = 500

 0

 20

 40

 60

 80

 100

2 3 4 5 6 7 8 9 10

%
 o

f i
ns

ta
nc

es
 fi

lte
re

d

d
R

FT

(d) dD with n = m = 500

 0

 20

 40

 60

 80

 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f i
ns

ta
nc

es
 fi

lte
re

d

δ

FT

(e) threshold with n = m = 500

Fig. 10. Filtering power of the filtering algorithm (by default dC = 2, dD = 4, δ = 0.1).

 0

 5

 10

 15

 20

 25

 30

-50 -40 -30 -20 -10  0  10  20  30

co
un

t

temperature (˚C)

Vancouver
Calgary

Edmonton
Prince George

(a) Temperature

 0

 50

 100

 150

 200

 0  1  2  3  4  5  6  7  8  9

co
un

t

normality

Vancouver
Calgary

Edmonton
Prince George

(b) Normality

Fig. 11. A case study of 4 cities.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0.01
0.02

0.03
0.04

0.05
0.06

0.07
0.08

0.09
0.1

tim
e 

(s
)

ε

DS
AP
FT

(a) Running time

 60

 70

 80

 90

 100

0.01
0.02

0.03
0.04

0.05
0.06

0.07
0.08

0.09
0.1

%
 o

f i
ns

ta
nc

es
 fi

lte
re

d

ε

FT

(b) Filtering power

Fig. 12. Results on the weather data set.

on the synthetic data sets. The runtime of FT is much faster

than that of AP, because the objects in the weather data set are

heavily overlapping. On the one hand, the overlap increases

the cost of computing the normality of each instance. Thus,

AP runs much slower than it does on the synthetic data sets.

On the other hand, the overlap enables AP to filter out a large

amount of instances as shown in Figure 12(b).

VII. RELATED WORK

Uncertain data has been attracting a lot of attention in

research and development. In the data mining field, various

mining techniques, such as clustering [9], [10], [11], [12], [13],

[14] and frequent pattern mining techniques [15], [16], [17],

are migrated from certain data to deal with uncertain data. In

this section, we first review the models of uncertain data in

Section VII-A, and then compare our work with the previous

work on outlier detection on certain data and uncertain data,

in Section VII-B and Section VII-C, respectively.

A. Uncertain Data Models

In the literature, uncertain data can be represented in two

ways, the probabilistic database model and the uncertain
object model, following the possible world semantics [18],

[19], [20], [21], [22].

A probabilistic database [23], [21], [24] is a finite set of

probabilistic tables. A probabilistic table T contains a set of

(uncertain) tuples, where each tuple t ∈ T is associated with a

membership probability P (t) > 0, namely, t takes probability
P (t) to appear in a possible world. The relationships among

tuples are modeled by generation rules which specify a set of

exclusive tuples. Among all tuples involved in a generation

rule, only one appears in a possible world.

An uncertain object [1], [2], [3] is conceptually described

by a probability density function f in a data space D.

Practically, the probability density function is often unavailable

explicitly. Instead, a set of samples are drawn or collected in

the hope of approximating the probability density function.

Correspondingly, an uncertain object is modeled as a set of

points as its instances, denoted by U = {u1, . . . , um}, and
associated with a probability mass function over the set of

instances. An object has only one instance in a possible world.

The probabilistic database model and the uncertain object

model are equivalent in the discrete case and can be con-

verted to each other [25]. A set of uncertain objects can be

represented as a probabilistic database as follows. For each

instance u of an uncertain object U , a tuple is created and

associated with a membership probability f(u). Each uncertain



object U corresponds to a generation rule such that only one

of its instances can appear in a possible world. To convert a

probabilistic database, an instance is created for each tuple and

an object is created for a generation rule which contains all

instances of the corresponding tuples in this generation rule.

In this paper, we present our model and techniques follow-

ing the uncertain object model. We also extend the uncertain

object model to allow an object to have some inherent proper-

ties in its conditioning space. As the two models are equivalent

and can be converted to each other, our model and techniques

work for general uncertain data.

B. Outlier Detection on Certain Data

Many techniques have been developed for outlier detection

on certain data. Chandola et al. [26] gave a comprehensive

survey. There are two major types of outliers, point outliers

and contextual outliers. We briefly review them in this section.

1) Point Outliers: Point outliers consider an individual data

point as outliers with respect to the rest of the data. This is

the simplest type of outliers and is the major focus in the

research community. Among various methods on detecting

point outliers, the statistical distribution-based approach [27]

is the most relevant one to our method.

Given a certain data set, the statistical distribution-based

approach makes a hypothesis which assumes a distribution

or a probabilistic model for the data set. Then, it identifies

outliers with respect to the model using a hypothesis test. The

test verifies whether an object (i.e., a point in the certain data

case) is significantly different from the assumed distribution.

If so, the object is found as an outlier.

Our method for outlier detection on uncertain data also

uses distributions. An instance of an object is outlier if it is

very different from the true instance distribution of the object.

However, the fundamental difference is that in order to make

an efficient hypothesis the traditional statistical distribution-

based approach requires the knowledge of the object, that

is, the type of the distribution that the instances follow in

our problem. Our method learns the instance distribution

of the object using other objects. Moreover, most statistical

hypothesis tests are for a single attribute, they are not suitable

for solving our problem in a multidimensional space.

Besides statistical distribution-based outlier detection meth-

ods, there are also other point outlier detection approaches

developed for certain data, including distance-based outlier

detection [28], [29], density-based outlier detection [30], and

deviation-based detection [31]. Compared to our method, these

approaches more or less assume the knowledge of the normal

data points. So the outlier detection becomes a task to find

outliers which are different from the normal data points

according to various measurements. However, in our problem,

the normal instances of an object cannot be determined by

the object itself. To identify outlier instances, we first need to

learn what normal instances are.

2) Contextual Outliers: Contextual outliers are also called

conditional outliers [32]. A data point is a contextual outlier

if it is an outlier in a specific context, but not otherwise.

Similar to our model, a data point is associated with a set of

contextual attributes and a set of behavioral attributes, which
are analogous to our terminology conditioning attributes and

dependent attributes. Contextual outliers have applications in

spatial data and time series data, etc. Contextual attributes

define the context, such as the longitude and latitude of a

location in spatial data and timestamps in time series data. Be-

havioral attributes are used to determine outliers. For example,

in a spatial data set of average precipitation of the world, the

amount of the average precipitation is the behavioral attribute.

A low precipitation is an outlier in a rainforest, but the same

value may be normal in a desert. Similarly, in a time series

data set, a low precipitation in June may be an outlier, but it

may not be so in Winter.

One approach for contextual outliers is to apply a point

outlier detection technique as follows [26]. First, the context is

identified using the contextual attributes and a mapping from

the context to the behavioral attributes is learned. Then, an

outlier score is computed using the behavioral attributes within

the context. The methods of identifying context vary from one

problem to the other. Most of them came up with a function

using specific domain knowledge (e.g., Euclidean distances in

spatial data) to measure the outlierness.

Our framework adopts a similar strategy. However, the

major difference is that the dependent/behavioral attributes

of an uncertain object are a distribution instead of a single

value. Techniques developed for certain data cannot solve our

problem. Moreover, our Bayesian inference based methods do

not use specific domain knowledge, thus are more general.

C. Outlier Detection on Uncertain Data

There are two studies in the literature on detecting outliers

on uncertain data.

Aggarwal et al. [33] are the first to investigate the problem

of outlier detection on uncertain data. In their work, an

uncertain point (object) is represented by a probability density

function. They define an uncertain point X to be a (δ, η)-
outlier if the probability of X lying in a region in some

subspace with density at least η is less than δ. Similar to

our work, the density is estimated by Gaussian kernel density

estimation. However, their work only focuses on detecting

outlier objects without considering outlier instances.

Wang et al. [34] propose the distance-based outlier detection
on an uncertain table consisting of a set of tuples, each of

which is associated with an appearing probability. Their defini-

tion of outliers is based on the possible world semantics [18],

[19], [20], [21], [22]. A tuple t is an (up, ud, λ)-outlier if

the sum of the probabilities of the possible worlds, each of

which consists of more than (1 − up)% of tuples within a

distance ud to t, is less than λ. They only consider tuple level

uncertainty, that is, a tuple either appears or not, but not a

multi-representation uncertain object. Thus, they only consider

detecting outliers at the object level.

To the best of our knowledge, we are the first to detect both

outlier instances and outlier objects on uncertain data.



VIII. CONCLUSIONS

This paper studies the problem of outlier detection on

uncertain data. An uncertain object is characterized by a

set of conditioning attributes and associated with a set of

instances which are described by a set of dependent attributes.

In our model, dependent attributes are conditionally dependent

on conditioning attributes. Objects with similar conditioning

attribute values likely have similar dependent attribute values.

Under this assumption, we learn the true values of the de-

pendent attributes of each object, then detect outliers at both

the object level and the instance level. To the best of our

knowledge, this paper is the first to detect outlier instances

as well as outlier objects.

ACKNOWLEDGEMENT

This research is supported in part by an NSERC Discovery

Grant and an NSERC Discovery Accelerator Supplement

Grant. All opinions, findings, conclusions and recommen-

dations in this paper are those of the authors and do not

necessarily reflect the views of the funding agency.

REFERENCES

[1] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Evaluating probabilistic
queries over imprecise data,” in Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data. ACM, 2003, pp.
551–562.

[2] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on uncertain
data,” in Proceedings of the 33rd International Conference on Very Large
Data Bases. ACM, 2007, pp. 15–26.

[3] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar,
“Indexing multi-dimensional uncertain data with arbitrary probability
density functions,” in Proceedings of the 31st International Conference
on Very Large Data Bases. ACM, 2005, pp. 922–933.

[4] B. W. Silverman, Density Estimation for Statistics and Data Analysis.
Chapman and Hall, 1986.

[5] D. W. Scott, Multivariate Density Estimation: Theory, Practical, and
Visualization. Wiley, New York, 1992.

[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree:
An efficient and robust access method for points and rectangles,” in
Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data, 1990, pp. 322–331.

[7] K. Fukunaga and L. Hostetler, “The estimation of the gradient of
a density function, with applications in pattern recognition,” IEEE
Transactions on Information Theory, vol. 21, no. 8, pp. 32–40, 1975.

[8] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp.
790–799, 1995.

[9] W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M. Chau, and K. Y. Yip,
“Efficient clustering of uncertain data,” in Proceedings of the 6th IEEE
International Conference on Data Mining (ICDM). IEEE Computer
Society, 2006, pp. 436–445.

[10] B. Kao, S. D. Lee, D. W. Cheung, W.-S. Ho, and K. F. Chan, “Clustering
uncertain data using voronoi diagrams,” in Proceedings of the 8th IEEE
International Conference on Data Mining (ICDM). IEEE Computer
Society, 2008, pp. 333–342.

[11] S. D. Lee, B. Kao, and R. Cheng, “Reducing uk-means to k-means,”
in Workshops Proceedings of the 7th IEEE International Conference on
Data Mining (ICDM). IEEE Computer Society, 2007, pp. 483–488.

[12] H.-P. Kriegel and M. Pfeifle, “Density-based clustering of uncertain
data,” in Proceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2005,
pp. 672–677.

[13] ——, “Hierarchical density-based clustering of uncertain data,” in Pro-
ceedings of the 5th IEEE International Conference on Data Mining
(ICDM). IEEE Computer Society, 2005, pp. 689–692.

[14] P. B. Volk, F. Rosenthal, M. Hahmann, D. Habich, and W. Lehner,
“Clustering uncertain data with possible worlds,” in Proceedings of the
25th International Conference on Data Engineering, ICDE. IEEE,
2009, pp. 1625–1632.

[15] C. C. Aggarwal, Y. Li, J. Wang, and J. Wang, “Frequent pattern
mining with uncertain data,” in Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2009, pp. 29–38.

[16] Q. Zhang, F. Li, and K. Yi, “Finding frequent items in probabilistic
data,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD, 2008, pp. 819–832.

[17] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Züfle, “Proba-
bilistic frequent itemset mining in uncertain databases,” in Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2009, pp. 119–128.

[18] S. Abiteboul, P. C. Kanellakis, and G. Grahne, “On the representation
and querying of sets of possible worlds,” in Proceedings of the Associ-
ation for Computing Machinery Special Interest Group on Management
of Data Annual Conference. ACM Press, 1987, pp. 34–48.

[19] T. Imielinski and W. L. Jr., “Incomplete information in relational
databases,” Journal of ACM, vol. 31, no. 4, pp. 761–791, 1984.

[20] N. N. Dalvi and D. Suciu, “Management of probabilistic data: founda-
tions and challenges,” in Proceedings of the Twenty-Sixth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems.
ACM, 2007, pp. 1–12.

[21] A. D. Sarma, O. Benjelloun, A. Y. Halevy, and J. Widom, “Working
models for uncertain data,” in Proceedings of the 22nd International
Conference on Data Engineering, ICDE. IEEE Computer Society, 2006,
p. 7.

[22] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J.
Haas, “MCDB: a monte carlo approach to managing uncertain data,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD, 2008, pp. 687–700.

[23] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom, “ULDBs:
Databases with uncertainty and lineage,” in Proceedings of the 32nd
International Conference on Very Large Data Bases. ACM, 2006, pp.
953–964.

[24] M. Hua, J. Pei, W. Zhang, and X. Lin, “Ranking queries on uncertain
data: a probabilistic threshold approach,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD.
ACM, 2008, pp. 673–686.

[25] J. Pei, M. Hua, Y. Tao, and X. Lin, “Query answering techniques on
uncertain and probabilistic data: tutorial summary,” in Proceedings of
the ACM SIGMOD International Conference on Management of Data,
SIGMOD, 2008, pp. 1357–1364.

[26] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Survey, vol. 41, no. 3, 2009.

[27] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2000.

[28] E. M. Knorr and R. T. Ng, “A unified notion of outliers: Properties and
computation,” in Proceedings of the Third International Conference on
Knowledge Discovery and Data Mining (KDD-97), 1997, pp. 219–222.

[29] ——, “Algorithms for mining distance-based outliers in large datasets,”
in VLDB’98, Proceedings of 24rd International Conference on Very
Large Data Bases, 1998, pp. 392–403.

[30] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, 2000, pp. 93–104.

[31] A. Arning, R. Agrawal, and P. Raghavan, “A linear method for deviation
detection in large databases,” in Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (KDD-96), 1996,
pp. 164–169.

[32] X. Song, M. Wu, C. M. Jermaine, and S. Ranka, “Conditional anomaly
detection,” IEEE Transaction on Knowledge and Data Engineering,
vol. 19, no. 5, pp. 631–645, 2007.

[33] C. C. Aggarwal and P. S. Yu, “Outlier detection with uncertain data,”
in Proceedings of the SIAM International Conference on Data Mining,
SDM, 2008, pp. 483–493.

[34] B. Wang, G. Xiao, H. Yu, and X. Yang, “Distance-based outlier detection
on uncertain data,” in Ninth IEEE International Conference on Computer
and Information Technology, 2009, pp. 293–298.


