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Abstract
Substring matching is fundamental to data mining methods for se-
quential data. It involves checking the existence of a short subse-
quence within a longer sequence, ensuring no gaps within a match.
Whilst a large amount of existing work has focused on substring
matching and mining techniques for certain sequences, there are on-
ly a few results for uncertain sequences. Uncertain sequences pro-
vide powerful representations for modelling sequence behavioural
characteristics in emerging domains, such as bioinformatics, sen-
sor streams and trajectory analysis. In this paper, we focus on the
core problem of computing substring matching probability in un-
certain sequences and propose an efficient dynamic programming
algorithm for this task. We demonstrate our approach is both com-
petitive theoretically, as well as effective and scalable experimental-
ly. Our results contribute towards a foundation for adapting classic
sequence mining methods to deal with uncertain data.

1 Introduction
Substring matching is a fundamental problem in pattern
mining and plays a key role in many important data mining
tasks for sequential pattern mining [4, 20, 26, 5, 19] and
top-k querying [25, 14, 13]. A substring corresponds to
a subsequence of a longer sequence without gaps between
adjacent items in the match (e.g. AB is a substring of
ACDAB, but DB is not a substring of ACDAB).

Substring matching is a core operation useful in a range
of applications. For example, i) searching for a short sub-
string within a very long sequence, such as a word within
a document, or ii) checking the frequency of a substring in
a database of sequences, as a prelude to enumerating fre-
quent subsequences, or for ranking the sequences in a top-k
best fashion. Applications areas that rely on substring match-
ing include bioinformatics (DNA and protein search), knowl-
edge discovery for moving object database trajectories, web
log analysis and text mining.

Whilst a large amount of existing work has focused
on substring matching and mining techniques for certain
sequences (i.e. where there is no ambiguity about the
elements in each sequence), the landscape of results for
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�̂ �̂ [1] �̂ [2] �̂ [3] �̂ [4] �̂ [5] �̂ [6] �̂ [7] �̂ [8] �̂ [9] �̂ [10]

A 0.6 0 0.1 0.1 0.2 0.2 0.3 0.3 0.2 0.2

C 0.2 0 0.6 0.3 0.4 0.1 0.4 0.2 0.4 0.2

G 0.1 1.0 0.2 0.1 0.1 0.3 0.1 0.1 0.2 0.1

T 0.1 0 0.1 0.5 0.3 0.4 0.2 0.4 0.2 0.5

timeID 1 2 3 4 …

O @ t 0.1 0 0.2 1.0 …

transactionID 1 2 3 4 …

I ⊆	T 0.5 0.6 0.7 0.8 …

|Alphabet|=1 Gap=0

Gap=inf

(a)

(b) (c)

Figure 1: An uncertain sequence of length 10 using alphabet
{A,C,G,T}.

uncertain sequences has been less explored. Uncertain
sequences arise naturally in applications where i) the data
measurements are imprecise, incomplete or unreliable, such
as streams of sensor measurements, RFID measurements
and trajectory measurements, or ii) flexible descriptions of
sequence properties are required, such as binding profiles of
proteins in DNA sequences, or iii) observations are private
and thus sequences of observations may have artificial noise
or uncertainty deliberately introduced.

Constructing representations of and mining techniques
for uncertain data has recently attracted much interest [10,
13] (see [2] for a survey). However, with a few exception-
s, much of this work has focused on uncertainty for vec-
tor/itemset data, rather than on uncertainty for sequence data.

In this paper, we tackle the problem of substring match-
ing for uncertain sequences. Our main contribution is the
development of an efficient algorithm to compute the fol-
lowing substring matching query: Given a certain sequence
q and an uncertain sequence ŝ, what is the probability that
q is a substring of ŝ ? Figure 1 shows an example of an un-
certain sequence ŝ using alphabet {A,C,G,T}. A sequence
is called uncertain if the occurrence of a character (from a
given alphabet) at each position of that sequence is proba-
bilistic. An example query is what is the probability that
the (certain) sequence AAAGGGCCCTTTCCCTTT is a substring of ŝss ? In
other words, what is the probability that AGCTCT occurs in
ŝ with no gaps between any two adjacent characters of the
uncertain sequence? (In Section 2 we will provide a formal
description of uncertainty and the substring matching task).

The outcome of the substring matching query can be
used as a core component within other data mining tasks,
which we will describe in this paper: (1) computing the fre-
quentness probability for a substring, (2) mining probabilis-
tic frequent substring patterns, and (3) computing the simi-
larity between two uncertain sequences.
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1.1 Challenges and Contributions Matching a (certain)
substring query pattern in an uncertain sequence is a chal-
lenging problem for several reasons. (1) As the length of an
uncertain sequence increases, the number of possible world-
s grows exponentially. This makes a naive technique that
exhaustively enumerates all possible worlds infeasible. (2)
Substring matching requires that no gaps are allowed with-
in the match. This imposes a constraint on how the match-
ing may be performed and in the case of an uncertain se-
quence, effectively rules out the use of techniques which
can scan through a sequence in a markov or memoryless
fashion. Our experience is that developing an algorithm for
substring matching for uncertain sequences is considerably
more complex than subsequence matching for uncertain se-
quences (where unlimited gaps are allowed). (3) The devel-
opment of an algorithm requires partitioning the problem in-
to a series of independent, smaller problems. Care is needed
to avoid double counting possible worlds across these small-
er problems.

In this paper, we address these challenges. In particular,
we make the following contributions:

• We develop a dynamic programming approach to calcu-
late the substring matching probability which has linear
time (assuming a constant query size) complexity. This
is the first such linear time result we are aware of for
matching strings in uncertain sequences with an arbi-
trary alphabet .

• We illustrate applications of substring matching for
three important scenarios: (1) computing the frequent-
ness probability for a substring in uncertain sequence
databases. (2) mining probabilistic frequent substrings
from uncertain sequence databases. (3) computing the
similarity between two uncertain sequences.

1.2 Related Work The problem of classical sequential
pattern mining has been an area of extensive research in the
context of certain databases [4, 20, 26, 5, 19]. The general
task of sequence similarity calculation was introduced in [3]
and also studied in [17, 11].

In the context of uncertain databases, the problem of
uncertain frequent itemset mining in probabilistic databas-
es was earlier studied under the expected support measure
in [1, 10, 9, 8]. However, work in [27, 6, 21] found that the
use of expected support may lead to the loss of important pat-
terns. Thus, the use of a probabilistic frequentness measure
has recently become more popular, based on possible world
semantics. The characteristics of a pattern are assessed by
its confidence. For example, a pattern is called frequent in
[6, 16] if its probabilistic measurement exceeds a confidence
threshold τ . We will use possible world semantics to calcu-
late the substring matching probability (c.f. Section 2). A
recent survey comparing expected support and frequentness

probability is given in [22].
For the problem of uncertain sequential patterns, there

is less work in the literature [18, 28, 16, 23]. In [18], the
authors measure the frequentness of a pattern in uncertain
event databases based on the expectation measurement, but
this may sometimes lead to the loss of interesting pattern-
s [6, 21]. Work by Zhao et al. [28] addressed uncertain
sequence mining under two different models of uncertain-
ty, sequence level uncertainty and element level uncertainty.
Their study is complementary, yet distinct from our work
in this paper, since they focus on the case where unlimit-
ed gaps are permitted when matching a query subsequence
against a longer sequence. Likewise, work by Wan et al.
[23] examines the mining of frequent serial episodes with-
in an uncertain sequence. Here again, the problem studied
allows unlimited gaps in the matching, whereas our work
enforces a constraint that disallows gaps. In a more recent
study by Li et al. [16], the probabilistic spatial-temporal pat-
tern with gap constraints was introduced. Gaps are allowed
in a spatio-temporal pattern provided they satisfy a maxi-
mum gap constraint. The problem studied corresponds to a
specialised type of matching using an alphabet with only a s-
ingle character that may either occur or not occur (in contrast
to this paper where an alphabet of unlimited size is permitted,
allowing more rich applications to be modelled). A study
in [12] examined the approximation between two uncertain
strings based on their edit distance (insertions, deletions or
substitutions), which is very different from our problem def-
inition. An approach used in [24] is only able to output the
approximate result of the substring matching probability. In
comparison, we propose an efficient exact algorithm in this
paper.

2 Preliminaries and Problem Definition
Let s = {s[1],s[2], ...,s[n]} be a sequence that contains n
characters chosen from a finite alphabet Λ. Let q =
{q[1],q[2], ...,q[m]} be a sequence that contains m (m ≤ n)
characters chosen from the same alphabet Λ. We begin by
first defining substring containment, which essentially cor-
responds to matching a query subsequence in a longer se-
quence, without allowing any gaps in the matching.

DEFINITION 2.1. A sequence q is called a substring of
another sequence s iff there exists a k (0 ≤ k ≤ n−m), such
that ∀i ∈ [1,m] : q[i] = s[i+ k]. We use the notation q v s to
denote that q is a substring of s.

EXAMPLE 1. q = AC is a substring of s = GACT . q = AT
is not a substring of s = GACT . q = ACT is a substring of
GACT GACT .

Observe that the index k in Definition 2.1 may not be unique
and the substring q may in fact match in the sequence s in
several places. The key point is that there needs to exist at
least one match for q, in order for it to qualify as a substring.
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�̂ �̂ [1] �̂ [2] �̂ [3] �̂ [4] �̂ [5] �̂ [6] 

A 0.1 0 0.2 1.0 0 0.2 

C 0.2 1.0 0.4 0 0 0.5 

G 0.3 0 0.2 0 1.0 0.2 

T 0.4 0 0.2 0 0 0.1 

 

i World P(Wi)   i World P(Wi)   i World P(Wi) 

1 AAAAA  12   23   

2   13   24   

3   14   25   

4   15   26   

5   16   27   

6   17   28   

7   18   29   

8   19   30   

9   20   31   

10   21   32   

11   22      

 

�̂ �̂ [1] �̂ [2] �̂ [3] �̂ [4]  k World P(Wk)  k World P(Wk) 

A 0.1 0 0.2 0 1 ACAC 0.02 9 GCAC 0.06 

C 0.2 1.0 0.4 1.0 2 ACCC 0.04 10 GCCC 0.12 

G 0.3 0 0.2 0 3 ACGC 0.02 11 GCGC 0.06 

T 0.4 0 0.2 0 4 ACTC 0.02 12 GCTC 0.06 

 5 CCAC 0.04 13 TCAC 0.08 

6 CCCC 0.08 14 TCCC 0.16 

7 CCGC 0.04 15 TCGC 0.08 

8 CCTC 0.04 16 TCTC 0.08 

 

 

 

i World P(Wi)   i World P(Wi) 

1 ACAA 0.02 9 AAAA 0.02 

2 ACCA  10 ACAA  

3 ACGA  11 ACAA  

4 ACTA  12 ACAA  

5 CCAA  13 ACAA  

6 CCCA  14 ACAA  

7 CCGA  15 ACAA  

8 CCTA  16 ACAA  

Figure 2: An example of an uncertain sequence and its non-
zero possible worlds.

In the presence of data uncertainty, the occurrence of the
character of s[ j] is now probabilistic. In this paper, we use
P(ŝ[ j] = σ) ∈ [0,1] (σ ∈ Λ) to denote the probability (con-
fidence) that we observe σ at ŝ[ j], where ŝ is an uncertain
sequence defined as follows:

DEFINITION 2.2. An uncertain sequence ŝ = {P(ŝ[1] =
σ),P(ŝ[2] = σ), ...,P(ŝ[n] = σ)} is given by a |Λ|×n prob-
ability matrix, where σ ∈ Λ and ∑σ∈Λ P(ŝ[ j] = σ) = 1,
j ∈ [1,n].

Based on possible world semantics, an uncertain se-
quence ŝ can be instantiated into a possible world w as a
deterministic sequence by choosing the character σ from Λ

for each position j of ŝ according to P(ŝ[ j] = σ). Given an
uncertain sequence ŝ with a size of n and a finite alphabet
Λ, the number of possible worlds of ŝ increases exponential-
ly with n. i.e. |Λ|n in the worst case. Figure 2 shows all
16 non-zero possible worlds derived from ŝ, where n = 4.
The probability of a possible world w is denoted as P(w) and
∑P(w) = 1. Assuming independence of characters at each
position, the probability of w is:

(2.1) P(w) = ∏
j∈[1,n]

P(ŝ[ j] = s(w)[ j])

where s(w) is the instantiated sequence in possible world w.

EXAMPLE 2. In Figure 2, P(W1) = P(s(W1)[1] = A) ·
P(s(W1)[2] =C) ·P(s(W1)[3] = A) ·P(s(W1)[4] =C) = 0.02.

Note that we are using a simple model of uncertainty
here, where the probabilities of characters at each position
of the sequence are independent. If more complex depen-
dencies are used to represent uncertainty, our techniques can
be extended. However, we focus on the basic model in this
paper. We use the following notation for our core substring
matching problem.

DEFINITION 2.3. The probability that q is a substring of
an uncertain sequence ŝ is called the substring matching
probability and it is denoted as P(qv ŝ).

At the beginning of Section 3 we will describe how this
matching probability has an interpretation using the possible
worlds model.

DEFINITION 2.4. Problem definition: Given a query sub-
string q and an uncertain sequence ŝ, our main task is to
calculate the substring matching probability P(qv ŝ).

Based on the solution of our problem definition, we
are able to develop efficient approaches for a number of
applications which will be discussed in Section 4.

3 Calculating Substring Matching Probabilities
A simple way to compute the substring matching probability
is to enumerate all possible worlds of ŝ and sum up the
probabilities of possible worlds where qv s(w), where s(w)
is the instantiated sequence in possible world w.

(3.2) P(qv ŝ) = ∑
w∈W :qvs(w)

P(w)

EXAMPLE 3. In Figure 2, given query substring q = AC,
P(qv ŝ) = P(W1) + P(W2) + P(W3) + P(W4) + P(W5) +
P(W9)+P(W13) = 0.28

Since the number of possible worlds increases exponentially
with n, a naive approach is very time costly, as confirmed by
our experiments in Section 5.1.

To speed up the calculation, an approximation approach
has been proposed in the literature [24]. Equation 3.3 gives
an approximate result of the substring matching probability.

(3.3) P(qv ŝ)≈ ∑
k∈[0,n−m]

∏
i∈[1,m]

P(ŝ[i+ k] = q[i])

EXAMPLE 4. In Figure 2, given query substring q = AC,
P(qv ŝ) ≈ P(ŝ[1] = q[1]) ·P(ŝ[2] = q[2]) +P(ŝ[2] = q[1]) ·
P(ŝ[3] = q[2])+P(ŝ[3] = q[1]) ·P(ŝ[4] = q[2]) = 0.3 > 0.28.

As we can see in the above example, the substring
matching probability is overestimated where P(W1) is count-
ed twice. In addition, the overestimated probability can
exceed 1.0. For example, if we change ŝ[1] and make it
P(ŝ[1] = A) = 1.0 in the above example. The overestimat-
ed probability will be P(AC v ŝ) = 1.02. For this reason, the
approximate method only gives a score, rather than a true
probability. Our experiments in Section 5.2 confirm that this
approximation approach yields different results compared to
our method, which is able to compute the true probability.

3.1 A Dynamic Programming Approach To avoid the
exhaustive enumeration of possible worlds, we propose a
dynamic programming approach to efficiently calculate the
exact substring matching probability. Table 1 summarizes
the main notations used in our paper.

DEFINITION 3.1. For query q and uncertain sequence ŝ,
q(i) = {q[1], ...,q[i]} and ŝ( j) = {ŝ[1], ..., ŝ[ j]}, where i ∈
[1,m] and j ∈ [1,n].
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ŝ Uncertain sequence with size of n.

q Substring to be matched (query substring)
over ŝ, where |q|= m and m≤ n.

q[i], ŝ[ j] The ith character of q and the jth character
of ŝ.

q(i), ŝ( j) q(i) = {q[1], ...,q[i]} and ŝ( j) =
{ŝ[1], ..., ŝ[ j]}

P(ŝ[ j] = σ) Probability that we observe character σ at
ŝ[ j], where σ ∈ Λ (the alphabet).

P(qv ŝ) Probability that q is a substring of ŝ.

Pq(i), j Probability that q(i) is a substring of ŝ( j).
P(qv ŝ) = Pq(m),n.

Table 1: Summary of Notation.

DEFINITION 3.2. Pq(i), j is defined as the probability that
q(i) is a substring of uncertain sequence ŝ( j). Thus, we have
P(qv ŝ) = Pq(m),n

The main idea of our dynamic programming approach
is to split the problem of computing Pq(i), j in ŝ( j) into sub-
problems of computing the substring matching probabili-
ties in ŝ( j− 1). We have four different scenarios that need
to be considered: (1) Forward matching: we continue to
match q(i− 1) over ŝ( j− 1), else (2) Backward match-
ing: we move backward and match q(k) over ŝ( j−1), where
k ∈ (i,m), else (3) Tail matching: we move to the last char-
acter of q and match q(m− 1) over ŝ( j− 1), else (4) Reset:
we reset the current matching position of q and restart match-
ing q(m) over ŝ( j−1).
Forward matching: In the step of matching q(i) over ŝ( j),
if ŝ[ j] = q[i], then we need to match q(i−1) over ŝ( j−1).

EXAMPLE 5. Given q = AGCT , ŝ and |ŝ|= n = 6. If ŝ[6] =
q[4], then we need to match AGC over ŝ(5) after using the
forward matching.

Backward matching and Tail matching: Alternatively, if
ŝ[ j] = q[m] (i.e. we move backward to match q[m] over ŝ[ j]),
then we need to match q(m− 1) over ŝ( j− 1) under the
constraint that j ≥ m. This constraint ensures that there is
still enough “room” in ŝ( j) for accommodating q(m).

EXAMPLE 6. Continuing from Example 5, in the step of
matching AGC over ŝ(5), if ŝ[5] = q[3] = C, we keep using
forward matching. Else, if ŝ[5] = q[4] = T , then we use tail
matching in this step and we need to match AGC over ŝ(4) in
next step.

However, if q[i] = q[m], an “ambiguity” will occur. In this
case, there are two different interpretations for the step of

ŝ( j − 1): (1) it can be seen as the result of the forward
matching of q(i) over ŝ( j); (2) it also can be seen as the
result of tail matching of q(m) over ŝ( j).

EXAMPLE 7. Given q = ACTC, ŝ and |ŝ|= n = 6. Suppose
that we have matched C and T in the step of ŝ(6) and ŝ(5),
in the step of matching q(2) = AC over ŝ(4), if ŝ[4] = C =
q[2] = q[m] there are two interpretations for the step of ŝ(3):
(1) it can be seen as the result of forward matching of AC
over ŝ(4), thus the current step is to match A over ŝ(3). (2)
it also can be seen as the result of tail matching ACTC over
ŝ(4), thus the current step is to match ACT over ŝ(3).

�̂ [1] �̂ [2] �̂ [3] �̂ [4] �̂ [5] �̂ [6]

* * A C T C

A C T C T C

To be matched

q = ACTC

Matched
�̂[4]= q[2]=q[m]

m = 4

As we can see, if we just consider one of the interpre-
tations, the probability will be underestimated. In the above
example, if we only consider to match AC over ŝ(4), the case
ŝ = ACTCTC will not be covered. In fact, this is a key rea-
son why our problem is significantly more complicated than
matching in the single-character alphabet case. In our ap-
proach, we solve this problem as follows: (1) in the step of
matching q(i) over ŝ( j), a forward matching is performed;
(2) in the next step where matching q(i− 1) over ŝ( j− 1),
a backward matching is performed to match q(m− 1) over
ŝ( j−1). The reason for performing a backward matching in
ŝ( j−1) is to cover the case of the tail matching in ŝ( j).

EXAMPLE 8. Same conditions as in Example 7. In the step
of matching q(2) = AC over ŝ(4), if ŝ[4] =C, then (1) in ŝ(4),
forward matching is used to match AC over ŝ(4). (2) In ŝ(3),
backward matching is used to match ACT over ŝ(3).

However, if q[m− 1] = q[i− 1], a new “ambiguity” will oc-
cur, then backward matching will be postponed to the next
step until the entrance condition is satisfied (c.f. Equa-
tion 3.6). The general case for backward matching is to
match q(k) over ŝ( j− 1), where k ∈ (i,m). We call k the
backward index. The algorithm that determines k will be
discussed shortly.
Reset: The matching will be reset if all the conditions for the
above three scenarios are false. Then, we match q(m) over
ŝ( j−1).

EXAMPLE 9. Continuing from Example 5, in the step of
matching AGC over ŝ(5), if ŝ[5] = A, then we restart match-
ing and match AGCT over ŝ(4).

Overview: Our dynamic programming approach con-
sists of two parts. The first part performs a top-down scan on
q (from q[m] to q[1]) for computing the backward indices of
q. The second part computes the substring matching proba-
bility using a bottom-up dynamic programming scheme.
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Algorithm 1 Computing-Backward-Index
Input: Substring q with size of m
Output: Backward index array bw

1: bw[1...m]← 0 // initialize elements in bw to zero
2: if m = 1 then
3: return
4: q[0]← φ such that ∀σ ∈ Λ : σ 6= φ

5: k← 0 //backward index
6: for i← m−1; i≥ 1; i← i−1 do
7: if q[i] = q[k] then
8: k← k−1
9: else

10: bw[i]← k
11: k← 0
12: if q[i] = q[m] and k = 0 then
13: k← m−1 // initialize a backward matching

3.1.1 Backward index computation The details of how
to compute the backward indices for q, which are stored
as an array bw with size of m, are shown in Algorithm
1. Backward matching will be performed in the step of
matching q(i) over ŝ( j) if bw[i] 6= 0. The elements in bw
are all initialized to zero in line 1. No backward matching
is needed for the trivial case where m = 1. For convenience,
we define q[0] = φ such that ∀σ ∈ Λ : σ 6= φ (please note
that q[0] is not actually stored in q). In line 13, if q[i] = q[m]
and k = 0, then a backward matching is initialized for the
next step q(i− 1) (and thus no tail matching for q(i)). If
q[i] = q[k], we will postpone the backward matching to next
step. Otherwise, we set bw[i] = k and reset k (lines 7 – 11).

Figure 3 (a) shows an example of how to compute
the backward indices for q = AGCTCT (m = 6): (1) k is
initialized to 0 for bw[6]. (2) i = 5: we actually start from
i = m−1 = 5, where no backward matching is initialized in
our example. (3) i = 4: because of q[4] = q[6], a backward
matching is initialized for q(i− 1) = 3 with k = m− 1 =
5. Thus no tail matching is required for q(4). (4) i = 3:
because of q[i] = q[k] = C (q[3] = q[5] = C), we postpone
the backward matching to next step. (5) i = 2: backward
matching will be performed for q(2) with bw[2] = k = 4
(additionally, no tail matching for q(2) because q[bw[2]] =
q[6], c.f. Equation 3.7). (6) i = 1: bw[1] = k = 0.

3.1.2 Dynamic programming scheme After the back-
ward indices of input q have been computed, together
with the discussion above, we can now calculate the sub-
string matching probability using our dynamic programming
scheme. Equation 3.4 is the entry of our approach, where
i = m and j = n. The two input parameters for the substring
matching over ŝ are the query substring q and the backward
index array bw.

(3.4) Pq(i), j =PFW (i, j)+PBW (i, j)+PTail(i, j)+PReset(i, j)

where

(3.5) PFW (i, j) = Pq(i−1), j−1×P(ŝ[ j] = q[i])

Equation 3.6 Entrance condition: bw[i] 6= 0 and j ≥ bw[i]

(3.6) PBW (i, j) = Pq(bw[i]−1), j−1×P(ŝ[ j] = q[bw[i]])

Equation 3.7 Entrance condition: q[i] 6= q[m] and q[bw[i]] 6=
q[m] and j ≥ m

(3.7) PTail(i, j) = Pq(m−1), j−1×P(ŝ[ j] = q[m])

(3.8)
PReset(i, j) = Pq(m), j−1× (1−P(ŝ[ j] = q[i])− pbw− ptail)

where, pbw = P(ŝ[ j] = q[bw[i]]) if entering Equation 3.6;
pbw = 0 otherwise. ptail = P(ŝ[ j] = q[m]) if entering Equa-
tion 3.7; ptail = 0 otherwise.

The recursion termination conditions are:

(3.9) Pq(0), j = 1 and Pq(i), j = 0,∀i > j

The above equations are further explained as follows.
After entering Equation 3.4 with i = m and j = n, for-
ward matching is computed via Equation 3.5 if ŝ[ j] = q[i].
The backward index bw[i] is retrieved in Equation 3.6, if
the entrance condition is met. The condition j ≥ bw[i] en-
sures there is still enough “room” in ŝ( j) for accommodat-
ing q(bw[i]). No tail matching for q(i) if q[i] = q[m] or
q[bw[i]] = q[m] (Equation 3.7) where an “ambiguity” will oc-
cur. The matching will be reset via Equation 3.8 if the other
three scenarios are false. These equations are calculated re-
cursively. The recursion termination conditions are shown in
Equation 3.9.

Figure 3 (b) shows an example of how to use our dy-
namic programming approach to match q = AGCTCT over
ŝ(n), where m = 6 and n = 10. For clarity, q(i) is explicitly
shown at each iteration. The characters of q that have been
“consumed” are underlined. For example, PAGCTCT ,5 repre-
sents Pq(4),5. Theoretically, the equations can be used as a
top-down approach. However, this approach leads to repeat-
ed calculations of internal results. For example, in Figure 3,
PAGCTCT ,5 is used by both PAGCTCT ,6 and PAGCTCT ,6. Instead,
as a dynamic programming method, we use a bottom-up ap-
proach. As shown in Figure 3 (b), we compute the matching
probability column by column from j = 1 to j = n. For
each column j, the rows we need to compute in a bottom-
up manner are between [imin( j), imax( j)], where imin( j) =
max(m− (n− j),1) and imax( j) = min( j,m). For example,
for column j = 5, imin( j = 5) = 1 and imax( j = 5) = 5. At
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Figure 3: Details of how to calculate Pq(6),10 (q = AGCTCT ) using our dynamic programming approach: (a) A top-down
scan on q to compute the backward index array bw. (b) A bottom-up dynamic programming scheme to compute Pq(6),10.

each iteration, we store internal results for further calcula-
tions until we reach the upper-leftmost node.

The width for each row is n−m+1 with m rows in total.
Thus the number of computed nodes is −m2 + n ·m+m. It
is a quadratic function and reaches its peak for m = n/2. We
now state a key theorem for the computational complexity of
our method to compute the substring matching probability.

THEOREM 1. Both the time complexity and space complex-
ity for calculating P(qv ŝ) = Pq(m),n are O(n).

Proof. To compute the backward index array of q, we need
to perform one scan on q and store the indices in bw (|bw|=
m). For the dynamic programming scheme, the nodes we
need to compute and store are parallelogram in shape with
width = n−m+1 and height = m. Thus, it requires O(m+
(n−m+1) ·m) = O(m ·n−m2 +2 ·m) = O(m ·n) time and
space. Since m is assumed to be small and thus can be
bounded by a constant c, the overall complexity is O(n) (a
similar analysis was given in [6]).

The Example that shows how to use our approach to cal-
culate P(q v ŝ) = Pq(6),10 over ŝ from Figure 1, where q =
AGCTCT , can be found in [15].

Comment: Note that the internal results Pq(i), j (where i <
m) computed by our algorithm are used for computing
Pq(m), j only. That is, given q = {q[1], ...,q[m]} and q′ =
{q[1], ...,q[m′]}, where m > m′, Pq(m′), j 6= Pq′(m′), j. This is
due to the consecutiveness (no gap) constraint of substrings.

4 Applications and Extensions
In this section, we will sketch a number of applications
and extensions that leverage our solution for computing the
substring matching probability.

4.1 Computing the Frequentness Probabilities of Sub-
strings Given a collection of uncertain sequences SDB =
{ŝ1, ŝ2, ..., ŝ|SDB|}, we may call SDB an uncertain sequence

database. In the context of deterministic databases, given
a minimum support threshold minSupp, a string q is called
a frequent substring if support(q) ≥ minSupp. Similarly,
in uncertain sequence databases, a substring is called proba-
bilistic frequent if P≥minSupp(q)≥ τ , where P≥minSupp(q) de-
notes the probability that q is a substring of at least minSupp
uncertain sequences in SDB (called the frequentness proba-
bility of q) , and τ is the probabilistic threshold. In order to
check whether q is probabilistic frequent, we need to com-
pute P≥minSupp(q).

The important step of this task is to compute {P(q v
ŝ1),P(q v ŝ2), ...,P(q v ŝ|SDB|)}, which can be obtained by
our techniques proposed in Section 3.1. After that, this task
can be seen as an analogue of uncertain frequent itemset
mining [6] or uncertain timestamp sequence mining [16]
(where we set gap = in f ). The formula is as follows:
(4.10)
P≥i, j(q) = P≥i−1, j−1(q) ·P(qv ŝ j)+P≥i, j−1 ·(1−P(qv ŝ j))

where P≥i, j(q) is the probability that q have a support of
at least i in the first j uncertain sequences. The entry case
is i = minSupp and j = |SDB|. As we can see, computing
P(qv ŝ j) is an essential part of this task.

4.2 Mining Probabilistic Frequent Substring Patterns
Once we know how to decide whether a substring is prob-
abilistic frequent P≥minSupp(q)≥ τ , a further step can be em-
ployed that uses an enumeration framework for mining all
the probabilistic frequent substrings from SDB. We leave the
merits of different frameworks as an open question. Fortu-
nately, as shown in [6], the support anti-monotonicity (Apri-
ori rule) still holds for uncertain data. That is, if q is not
probabilistic frequent then any proper superset of q can not
be probabilistic frequent. Thus, standard pattern enumera-
tion frameworks can be used to output all probabilistic fre-
quent substring patterns, such as Apriori enumeration, or set
enumeration trees.
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4.3 Computing the Similarity between Two Uncertain
Sequences Computing the similarity between two DNA se-
quences or protein sequences is a common task in biological
research and can be used for similarity and clustering. In
some contexts, the two sequences may be uncertain - such
as the case when the sequences correspond to motifs rep-
resented by a position-frequency matrix, describing binding
probabilities of a protein. A popular approach for similari-
ty is to use k-mer spectrum comparison [24]. A k-mer is a
short substring of length k and a biological sequence can be
translated into a vector, whose features correspond to k-mers
and whose feature values correspond to the probability of the
k-mers occurring in the sequence.

Given an alphabet Λ and k and uncertain sequences ŝ1

and ŝ2, we calculate P(qv ŝ1) and P(qv ŝ2), where q∈
(|Λ|

k

)
.

The results will be two vectors describing the probability
distributions of k-mers within each sequence. Standard
vector similarity measures, such as cosine similarity, can
then be used to calculate the similarity of these vectors.

4.4 Matching Subsequences without Consecutiveness
Constraint According to Definition 2.1, the characters of
q in s are required to be all consecutive (no gaps). However,
one might wish to relax this constraint for some applications.

DEFINITION 4.1. q is called a subsequence of s iff q can be
derived from s by deleting finite characters without changing
the order of the remaining characters.

For example, q = GC is a subsequence of s = GACT but
not a substring of s. In the context of uncertain data, the
subsequence matching is a task to compute the probability
that q is a subsequence of ŝ which is denoted as P(q⊆ ŝ).

Without the consecutiveness constraint, the computation
of subsequence matching probability becomes more straight-
forward. Using similar notations to Section 3.1, we can cal-
culate P(q⊆ ŝ) = Pq(m),n as follows. In the step of matching
q(i) over ŝ( j), if ŝ[ j] = q[i], we need to match q(i− 1) over
ŝ( j− 1). If ŝ[ j] 6= q[i], because we do not have a consec-
utiveness constraint in a subsequence, we now can rematch
partial of q (i.e. q(i) where i < m) anytime. That is, we can
match q(i) over ŝ( j−1). This technique has also been used
in previous work on probabilistic top-k queries [25]. The
subsequence matching probability is computed by:
(4.11)
Pq(i), j = Pq(i−1), j−1 ·P(ŝ[ j] = q[i])+Pq(i), j−1 ·P(ŝ[ j] 6= q[i])

Where P(q⊆ ŝ) = Pq(m),n is the entry case.

EXAMPLE 10. Given q = AGCT , ŝ and |ŝ| = n = 6. After
we match q[4] = T and q[3] = C in ŝ(6) and ŝ(5). If
q[2] 6= ŝ[4], we can rematch q(2)=AG over ŝ(3), which is not
allowed in the substring matching due to the consecutiveness
constraint.
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Figure 4: Synthetic datasets: (a) Dynamic programming
method vs. Naive method. (b) Scalability of DP method. (c)
Probability ratio: “P DP” denotes the exact probability cal-
culated by our dynamic programming approach; “P Approx”
denotes the approximate probability calculated by Equa-
tion 3.3. (d) Effect of m on elapsed time.

5 Experiments
We first consider large synthetic datasets to test the efficiency
of our dynamic programming approach for the substring
matching probability. Then, we use real-world uncertain
DNA data to further explore the behaviour of our algorithm.
All experiments were performed on an Intel Core i7 3.4GHz
machine with 32GB main memory.

5.1 Evaluation on Synthetic Data We use synthetic un-
certain sequences to test the efficiency of our dynamic pro-
gramming approach. Our experiments measure the (average)
time needed to compute the substring matching probabili-
ty, across different choices of q and ŝ. The size of the un-
certain sequence ŝ varies from n = 10 to n = 107 and Λ =
{A,C,G,T}. The probability P(ŝ[ j] = σ ) is randomly drawn
from [0,1], where j∈ [1,n], σ ∈Λ and ∑σ∈Λ P(ŝ[ j] =σ)= 1.
All results are the average of ten runs. The default size of the
query substring q is m = 10, unless stated otherwise. The
characters in q are randomly chosen from Λ. Abbreviations
used in our figures: (1) Naive: naive approach of matching
probability calculation (c.f. Equation 3.2); (2) Approx: the
approximation approach of [24] (c.f. Equation 3.3); (3) DP:
our dynamic programming approach.
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Figure 5: Evaluation on a real-world uncertain DNA
database. The probability ratios of queries are sorted in the
ascending order.

5.1.1 Scalability Figure 4 (a) compares the elapsed time
of our dynamic programming approach against the naive
method. The elapsed time of the naive method increases
exponentially when the size of the uncertain sequence in-
creases. The elapsed time of the naive method is out of the
figure’s maximum scale when |ŝ|= n = 20. In fact, the total
number of possible worlds has already reached 420 by that
point. Thus the naive method is not practical. The scalability
of our proposed dynamic approach is illustrated in Figure 4
(b). The performance of our proposed approach is highly
promising: as n increases, the running time grows in a lin-
ear trend as in line with our time complexity theorem (c.f.
Theorem 1).

Figure 4 (c) shows the ratio between the exact prob-
ability (“P DP”) calculated by our dynamic programming
approach and the approximate probability (“P Approx”),
which is a likelihood score, calculated by Equation 3.3, us-
ing the same group of synthetic data above. As we can see,
the difference between the true probability and the approx-
imate probability becomes more significant as n increases.
The approximate probabilities are considerably overestimat-
ed in our synthetic datasets.

5.1.2 Effect of m on Elapsed Time The elapsed time for
calculating Pq(m),104(O) is shown in Figure 4 (d), where m
varies from 1 to 104 with an increment of 500. As we can
see, the elapsed time reaches a peak at around 6000≈ n/2 =
5000. The curve in the figure is not completely symmetrical.
For example, the elapsed time at m= 10000 is slightly higher
than m = 1. The reason is that in the first part of our dynamic
programming approach, we need to scan q and compute the
backward index array. As m increases, the right half of the
figure takes slightly more time for computing the backward
index array than the left half.

5.2 Evaluation on Real Data A real-world uncertain D-
NA sequence database [7] was next used to explore the d-
ifferences between our method and the approximation ap-

proach for substring matching from [24]. The database
contains 476 uncertain sequences where Λ = {A,C,G,T}.
Each uncertain sequence corresponds to a transcription fac-
tor (protein/motif) which can bind to a DNA sequence. The
uncertainty arises from the fact that each protein is capable
of binding to different sites on the DNA and a consensus de-
scription of a protein’s binding preferences requires uncer-
tainty at each position. The total length of sequences is 4720
and each uncertain sequence is relatively short (on average
size 10). The elapsed time of experiments on this dataset is
negligible for our approach. However, our primary aim here
is to compare the output of our approach with the output of
the approximation method of equation 3.3, as follows. We
enumerated all combinations of k-mers (k = 2 and k = 3)
and got 16 2-mers and 64 3-mers. Using each k-mer (as
a query substring q), we computed the substring matching
probabilities for all 476 uncertain sequences and then took
the average. The top matched k-mers (substrings) are shown
in Figure 6.

Rank 2-mer Probability     Rank 3-mer Probability 

1 AA 0.552 1 TAA 0.289 

2 AT 0.541 2 AAT 0.277 

3 TA 0.510 3 ATT 0.233 

4 TG 0.440 4 TTA 0.230 

5 GA 0.430 5 GGA 0.156 

(a) 

Rank 2-mer ApproxProb  Rank 3-mer ApproxProb 

1 AA 1.825 1 AAA 1.408 

2 TT 1.648 2 TTT 1.216 

3 GG 1.441 3 GGG 1.103 

4 CC 1.311 4 CCC 0.983 

5 AT 0.270 5 TAA 0.091 

(b) 

 

 

 

 

 

 

 

Rank 2-mer Probability ApproxProb  3-mer Probability ApproxProb 

1 AA 0.552 1.825 TAA 0.289 0.091 

2 AT 0.541 0.270 AAT 0.277 0.091 

3 TA 0.510 0.270 ATT 0.233 0.090 

4 TG 0.440 0.201 TTA 0.230 0.090 

5 GA 0.430 0.256 GGA 0.156 0.085 

(a) 

Rank 2-mer ApproxProb Probability  3-mer ApproxProb Probability 

1 AA 1.825 0.552 AAA 1.408 0.149 

2 TT 1.648 0.429 TTT 1.216 0.102 

3 GG 1.441 0.382 GGG 1.103 0.108 

4 CC 1.311 0.328 CCC 0.983 0.099 

5 AT 0.270 0.541 TAA 0.091 0.289 

(b) 

 

Figure 6: The 2-mers and 3-mers that have highest substring
matching probabilities discovered from the uncertain DNA
sequence database. (a) Ranked by our dynamic program-
ming approach. (b) Ranked by the approximation approach.

Figure 6 shows that the two methods do not rank the k-
mers in the same way. For example, TAA is the top ranked
3-mer by our method, yet it is ranked number 5 by the
approximation approach. The approximation approach ranks
AAA as the top 3-mer, yet it is not ranked in the top five
by our approach. As we can see, the two approaches return
significantly different rankings for both 2-mers and 3-mers.
It can be observed that the approximation approach (c.f.
Equation 3.3) favors k-mers consisting of single character.
Using Spearman’s rank correlation coefficient ρ to compare
the two rankings we found i) for 2-mers, ρ = 0.36 and ii) for
3-mers, ρ = 0.41. Both cases indicating only a mild positive
correlation between the rankings output by the two methods.

Figure 5 compares the exact probabilities (“P DP”) cal-
culated by our dynamic programming approach against ap-
proximate probabilities (“P Approx”) calculated by Equa-
tion 3.3 for 2-mers and 3-mers in this database. The proba-
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bility ratios of queries are sorted in the ascending order. The
probability for each query is the average of 476 uncertain
sequences. In Figure 5 (a), the matching probabilities of 2-
mers: AA, GG, T T and CC are overestimated by the approx-
imation approach, while the matching probabilities of other
2-mers are underestimated. In Figure 5 (b), the matching
probabilities of TCT , AAA, CCC, GGG and T T T are among
those most overestimated. As we can see, the approximation
approach differs in its output for this type of real-world data.

Based on Figures 5 and 6 we can make the following
conclusions: i) our exact approach and the approximation ap-
proach provide different rankings for the substring matching
probability of k-mers, ii) our method provides a true and the-
oretically justified probability calculation, whereas the ap-
proximation does not, iii) using the approximation approach
could lead to different (and possibly erroneous) conclusion-
s. In summary, our exact approach has great potential to be
used as a replacement for the approximate approach in this
type of application.

6 Conclusions
In this paper, we have formulated and studied the problem
of substring matching in uncertain sequences. We proposed
a dynamic programming approach for computing the sub-
string matching probability with linear time complexity. We
further investigated a number of applications and extensions
based on our solution of substring matching. We provided
experimental evidence that demonstrated the scalability of
our approach and also contrasted its exact output, against that
of an approximate algorithm. Our results contribute towards
a foundation for adapting classic sequence mining methods
to deal with uncertain data.
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